NFAL5012L5B [ONSEMI]

Intelligent Power Module, SPM49, 1200 V, 50A;
NFAL5012L5B
型号: NFAL5012L5B
厂家: ONSEMI    ONSEMI
描述:

Intelligent Power Module, SPM49, 1200 V, 50A

文件: 总15页 (文件大小:685K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SPM 49 Series  
Smart Power Module (SPM)  
Inverter, 1200 V, 50 A  
NFAL5012L5B  
General Description  
The NFAL5012L5B is a smart power module providing  
a fully−featured, high−performance inverter output stage for AC  
induction, BLDC, and PMSM motors. These modules integrate  
optimized gate drive of the built−in IGBTs to minimize EMI and  
losses, while also providing multiple on−module protection features:  
under−voltage lockouts, over−current shutdown, temperature sensing,  
and fault reporting. The built−in, high−speed HVIC requires only  
a single supply voltage and translates the incoming logic−level gate  
inputs to high−voltage, high−current drive signals to properly drive the  
module’s internal IGBTs. Separate negative IGBT terminals are  
available for each phase to support the widest variety of control  
algorithms.  
www.onsemi.com  
Features  
1200 V – 50 A 3−Phase IGBT Inverter, Including Control ICs  
for Gate Drive and Protections  
Low−Loss, Short−Circuit-Rated IGBTs  
Very Low Thermal Resistance Using Al O DBC Substrate  
2
3
3D Package Drawing  
(Click to Activate 3D Content)  
Built−In Bootstrap Diodes/Resistors  
Separate Open-Emitter Pins from Low−Side IGBTs for  
SPM49−CAA  
CASE MODGR  
Three−Phase Current Sensing  
Adjustable Over−Current Protection via Integrated Sense−IGBTs  
Isolation Rating of 2500 Vrms/1 min  
These Devices are RoHS Compliant  
MARKING DIAGRAM  
Typical Applications  
Motion Control − Industrial Motor (AC 400 V Class)  
NFAL5012L5B  
ZZZ ATYWW  
Integrated Power Functions  
ON  
1200 V – 50 A IGBT Inverter for Three−Phase DC/AC Power  
Conversion (Refer to Figure 2)  
NNNNNNN  
Integrated Drive, Protection, and System Control Functions  
For Inverter High−Side IGBTs: gate−drive circuit, high−voltage  
isolated high−speed level−shifting control circuit, Under−Voltage  
Lock−Out protection (UVLO), available bootstrap circuit example is  
given in Figures 4 and 15  
For Inverter Low−Side IGBTs: gate−drive circuit, Short−Circuit  
Protection (SCP) control circuit, Under−Voltage Lock−Out protection  
(UVLO)  
NFAL5012L5B  
ZZZ  
AT  
Y
WW  
NNNNNNN  
= Specific Device Code  
= Lot ID  
= Assembly & Test Location  
= Year  
= Work Week  
= Serial Number  
Fault Signaling: corresponding to UV (low−side supply) and  
SC faults  
Input Interface: active−HIGH interface, works with 3.3 V/5 V logic,  
Schmitt−trigger input  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 10 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
April, 2020 − Rev. 0  
NFAL5012L5B/D  
NFAL5012L5B  
PIN CONFIGURATION  
(30) LIN(W)  
(29) LIN(V)  
(28) LIN(U)  
(27) VFO  
NW (1)  
(26) CFOD  
(25) CIN  
NV (2)  
NU (3)  
(24) VTS  
(23) VSS(L)  
(22) VDD(L)  
(21) RSC  
(20) VS(W)  
(19) VB(W)  
W (4)  
Case Temperature (Tc)  
Detecting Point  
(18) VSS(H)  
(17) VDD(WH)  
(16) HIN(W)  
V (5)  
U (6)  
P (7)  
(15) VS(V)  
(14) VB(V)  
(13) VDD(VH)  
(12) HIN(V)  
(11) VS(U)  
(10) VB(U)  
(9) VDD(UH)  
(8) HIN(U)  
17.15  
Figure 1. Pin Configuration − Top View  
www.onsemi.com  
2
 
NFAL5012L5B  
PIN DESCRIPTION  
Pin Number  
Pin Name  
NW  
Pin Description  
1
Negative DC−Link Input for W Phase  
Negative DC−Link Input for V Phase  
Negative DC−Link Input for U Phase  
Output for W Phase  
2
NV  
3
NU  
4
W
5
V
Output for V Phase  
6
U
Output for U Phase  
7
P
Positive DC−Link Input  
8
HIN(U)  
VDD(UH)  
VB(U)  
VS(U)  
HIN(V)  
VDD(VH)  
VB(V)  
VS(V)  
HIN(W)  
VDD(WH)  
VSS(H)  
VB(W)  
VS(W)  
RSC  
Signal Input for High−Side U Phase  
High−Side Bias Voltage for U Phase IC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
High−Side Bias Voltage for U Phase IGBT Driving  
High−Side Bias Voltage GND for U Phase IGBT Driving  
Signal Input for High−Side V Phase  
High−Side Bias Voltage for V Phase IC  
High−Side Bias Voltage for V Phase IGBT Driving  
High−Side Bias Voltage GND for V Phase IGBT Driving  
Signal Input for High−Side W Phase  
High−Side Bias Voltage for W Phase IC  
High−Side Common Supply Ground, connected to HVIC  
High−Side Bias Voltage for W Phase IGBT Driving  
High−Side Bias Voltage GND for W Phase IGBT Driving  
Resistor for Over and Short−Circuit Current Detection  
Low−Side Bias Voltage for IC and IGBTs Driving  
Low−Side Common Supply Ground, connected to LVIC  
Voltage Output for LVIC Temperature Sensing Unit  
Input for Current Protection  
VDD(L)  
VSS(L)  
VTS  
CIN  
CFOD  
VFO  
Capacitor for Fault Output Duration Selection  
Fault Output  
LIN(U)  
LIN(V)  
LIN(W)  
Signal Input for Low−Side U Phase  
Signal Input for Low−Side V Phase  
Signal Input for Low−Side W Phase  
www.onsemi.com  
3
NFAL5012L5B  
INTERNAL EQUIVALENT CIRCUIT AND INPUT/OUTPUT PINS  
P (7)  
(10) VB(U)  
VB  
OUT  
VS  
VDD  
VSS  
(9) VDD(UH)  
HVIC  
HVIC  
HVIC  
(8) HIN(U)  
(11) VS(U)  
IN  
U (6)  
(14) VB(V)  
VB  
OUT  
VS  
(13) VDD(VH)  
VDD  
VSS  
IN  
(12) HIN(V)  
(15) VS(V)  
V (5)  
(19) VB(W)  
VB  
OUT  
VS  
VDD  
VSS  
IN  
(17) VDD(WH)  
(18) VSS(H)  
(16) HIN(W)  
(20) VS(W)  
W (4)  
VTS  
(24) VTS  
OUT1  
OUT2  
(25) CIN  
(26) CFOD  
(27) VFO  
CIN  
NU (3)  
CFOD  
VFO  
LVIC  
(28) LIN(U)  
(29) LIN(V)  
(30) LIN(W)  
(22) VDD(L)  
(23) VSS(L)  
IN1  
IN2  
NV (2)  
IN3  
VDD  
OUT3  
VSS  
NW (1)  
(21) RSC  
NOTES:  
1. Inverter high−side is composed of three normal−IGBTs, freewheeling diodes, and one control IC for each IGBT.  
2. Inverter low−side is composed of three sense−IGBTs, freewheeling diodes, and one control IC for each IGBT. It has gate drive and  
protection functions.  
3. Inverter power side is composed of four inverter DC−link input terminals and three inverter output terminals.  
Figure 2. Internal Block Diagram  
www.onsemi.com  
4
NFAL5012L5B  
ABSOLUTE MAXIMUM RATINGS (Tj = 25°C unless otherwise noted)  
Symbol  
Rating  
Conditions  
Rating  
Unit  
INVERTER PART  
VPN  
VPN(surge)  
Vces  
Supply Voltage  
Applied between P − NU, NV, NW  
Applied between P − NU, NV, NW  
900  
1000  
1200  
50  
V
V
V
A
A
Supply Voltage (Surge)  
Collector−Emitter Voltage  
Ic  
Each IGBT Collector Current  
Each IGBT Collector Current (Peak)  
Tc = 25°C, Tj 150°C  
Icp  
Tc = 25°C, Tj 150°C, Under 1 ms  
Pulse Width (Note 4)  
100  
Pc  
Collector Dissipation  
Tc = 25°C per One Chip (Note 4)  
219  
W
Tj  
CONTROL PART  
VDD  
Operating Junction Temperature  
−40~150  
°C  
Control Supply Voltage  
Applied between VDD(H), VDD(L) − VSS  
20  
20  
V
V
VBS  
High−Side Control Bias Voltage  
Applied between VB(U) − VS(U),  
VB(V) − VS(V), VB(W) − VS(W)  
VIN  
Input Signal Voltage  
Applied between HIN(U), HIN(V), HIN(W),  
LIN(U), LIN(V), LIN(W) − VSS  
−0.5~VDD+0.5  
V
VFO  
IFO  
VCIN  
Tj  
Fault Output Supply Voltage  
Fault Output Current  
Applied between VFO − VSS  
Sink Current at VFO pin  
−0.5~VDD+0.5  
5
V
mA  
V
Current Sensing Input Voltage  
Operating Junction Temperature  
Applied between CIN − VSS  
−0.5~VDD+0.5  
−40~150  
°C  
BOOSTSTRAP DIODE PART  
VRRM  
Maximum Repetitive Reverse  
1200  
V
Voltage  
Tj  
Operating Junction Temperature  
−40~150  
°C  
TOTAL SYSTEM  
VPN(PROT)  
Self−Protection Supply Voltage Limit  
(Short−Circuit Protection Capability)  
VDD = VBS = 13.5~16.5 V, Tj = 150°C,  
Vces < 1200 V, Non-Repetitive, < 2 ms  
800  
V
Tc  
Module Case Operation  
Temperature  
See Figure 1  
−40~125  
°C  
Tstg  
Viso  
Storage Temperature  
Isolation Voltage  
−40~125  
2500  
°C  
60 Hz, Sinusoidal, AC 1 Minute, Connection  
Pins to Heat Sink Plate  
Vrms  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
4. These values had been made an acquisition by the calculation considered to design factor.  
THERMAL RESISTANCE  
Symbol  
Rth(j-c)Q  
Rth(j-c)F  
Parameter  
Conditions  
Min  
Typ  
Max  
0.57  
1.15  
Unit  
°C/W  
°C/W  
Junction−to−Case Thermal  
Resistance (Note 5)  
Inverter IGBT Part (per 1/6 module)  
Inverter FWDi Part (per 1/6 module)  
5. For the measurement point of case temperature (Tc), please refer to Figure 1. DBC discoloration and Picker Circle Printing allowed, please  
®
refer to application note AN−9190 (Impact of DBC Oxidation on SPM Module Performance).  
www.onsemi.com  
5
 
NFAL5012L5B  
ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
INVERTER PART  
VCE(sat)  
Collector−Emitter  
Saturation Voltage  
VDD = VBS = 15 V  
IN = 5 V  
Ic = 50 A, Tj = 25°C  
Ic = −50 A, Tj = 25°C  
2.00  
2.50  
V
VF  
FWDi Forward Voltage  
Switching Times  
IN = 0 V  
1.10  
2.30  
1.70  
0.25  
1.50  
0.15  
0.25  
1.60  
0.25  
1.40  
0.15  
0.25  
2.90  
2.30  
0.55  
2.10  
0.45  
V
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
mA  
HS  
ton  
tc(on)  
toff  
VPN = 600 V, VDD = 15 V, Ic = 50 A  
Tj = 25°C  
IN = 0 V ´ 5 V, Inductive Load  
See Figure 3  
(Note 6)  
tc(off)  
trr  
LS  
ton  
VPN = 600 V, VDD = 15 V, Ic = 50 A  
Tj = 25°C  
1.00  
2.20  
0.55  
2.00  
0.45  
tc(on)  
toff  
IN = 0 V ´ 5 V, Inductive Load  
See Figure 3  
(Note 6)  
tc(off)  
trr  
Ices  
Collector−Emitter Leakage  
Current  
Vce = Vces  
1
CONTROL PART  
IQDDH  
Quiescent VDD Supply  
Current  
VDD(UH,VH,WH) = 15 V,  
HIN(U,V,W) = 0 V  
VDD(UH) − VSS(H),  
VDD(VH) − VSS(H),  
VDD(WH) − VSS(H)  
0.30  
mA  
IQDDL  
IPDDH  
VDD(L) = 15 V,  
LIN(U,V,W) = 0 V  
VDD(L) − VSS(L)  
3.50  
0.40  
mA  
mA  
Operating VDD Supply  
Current  
VDD(UH,VH,WH) = 15 V,  
FPWM = 20 kHz,  
VDD(UH) − VSS(H),  
VDD(VH) − VSS(H),  
Duty = 50%, Applied to one VDD(WH) − VSS(H)  
PWM Signal  
Input for High−Side  
IPDDL  
VDD(L) = 15 V,  
VDD(L) − VSS(L)  
7.50  
mA  
FPWM = 20 kHz,  
Duty = 50%, Applied to one  
PWM Signal Input for  
Low−Side  
IQBS  
IPBS  
Quiescent VBS Supply  
Current  
VDD = VBS = 15 V,  
HIN(U,V,W) = 0 V  
VB(U) − VS(U),  
VB(V) − VS(V),  
VB(W) − VS(W)  
0.30  
6.50  
mA  
mA  
Operating VBS Supply  
Current  
VDD = VBS = 15 V,  
FPWM = 20 kHz,  
VB(U) − VS(U),  
VB(V) − VS(V),  
Duty = 50%, Applied to one VB(W) − VS(W)  
PWM Signal Input for  
High−Side  
VFOH  
Fault Output Voltage  
VDD = 15 V, CIN = 0 V,  
4.90  
V
VFO Circuit: 10 kW to 5 V Pull−up  
VFOL  
ISEN  
VDD = 15 V, CIN = 1 V, IFO = 1 mA  
0.95  
V
Sensing Current of Each  
Sense IGBT  
VDD = 15 V, LIN = 5 V,  
Rsc = 0 W,  
Ic = 50 A  
22  
mA  
No Connection of Shunt  
Resistor at NU, NV, NW  
Terminal  
VSC(ref)  
ISC  
Short Circuit Trip Level  
VDD = 15 V  
CIN − VSS(L)  
0.46  
75  
0.48  
0.50  
V
A
Short Circuit Current Level  
for Trip  
Rsc = 18 W ( 1%), No Connection of Shunt  
Resistor at NU, NV, NW Terminal (Note 7)  
www.onsemi.com  
6
NFAL5012L5B  
ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise specified.) (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CONTROL PART  
UVDDD  
UVDDR  
UVBSD  
UVBSR  
VIN(ON)  
VIN(OFF)  
VTS  
Supply Circuit Under−Voltage Detection Level  
10.3  
10.8  
10.0  
10.5  
12.5  
13.0  
12.0  
12.5  
2.6  
V
V
V
V
V
V
V
Protection  
Reset Level  
Detection Level  
Reset Level  
ON Threshold Voltage  
OFF Threshold Voltage  
Applied between HIN(U,V,W) − VSS(H),  
LIN(U,V,W) − VSS(L)  
0.8  
Voltage Output for LVIC  
Temperature Sensing Unit  
VDD(L) = 15 V, TLVIC = 25°C  
See Figure 6 and 7 (Note 8)  
0.909  
1.030  
1.151  
tFOD  
Fault-Out Pulse Width  
CFOD = 22 nF (Note 9)  
1.6  
ms  
BOOTSTRAP DIODE/RESISTOR PART  
VF  
Forward Voltage  
If = 0.1 A, Tj = 25°C  
See Figure 8  
2.1  
2.5  
2.9  
V
RBOOT  
Bootstrap Resistor  
12.5  
15.5  
18.5  
W
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. ton and toff include the propagation delay of the internal drive IC. tc(on) and tc(off) are the switching times of IGBT under the given gate-driving  
condition internally. For the detailed information, please see Figure 3.  
7. Short-circuit current protection functions only at the low-sides because the sense current is divided from main current at low-side IGBTs.  
Inserting the shunt resistor for monitoring the phase current at NU, NV, NW terminal, the trip level of the short-circuit current is changed.  
8. TLVIC is the temperature of LVIC itself. VTS is only for sensing temperature of LVIC and cannot shutdown IGBTs automatically. The  
relationship between VTS voltage output and LVIC temperature is described in Figure 6. It is recommended to add a ceramic capacitor of  
10 nF or more between VTS and VSS (Signal Ground) to make the VTS more stable as described in Figure 7. Refer to the application note  
for this products about usage of VTS.  
9. The fault-out pulse width tFOD depends on the capacitance value of CFOD according to the following approximate equation:  
6
tFOD = 0.1 × 10 × CFOD [s].  
100% Ic 100% Ic  
trr  
Vce  
Ic  
Ic  
Vce  
VIN  
VIN  
ton  
toff  
tc(on)  
tc(off)  
10% Ic  
VIN(ON)  
VIN(OFF)  
10% Vce  
10% Ic  
90% Ic 10% Vce  
(a) turn-on  
(b) turn-off  
Figure 3. Switching Time Definition  
www.onsemi.com  
7
 
NFAL5012L5B  
One−Leg Diagram of SPM  
IC  
P
CBS  
VB  
OUT  
VS  
VDD  
VSS  
IN  
LS Switching  
VPN  
HS Switching  
U,V,W  
V
Inductor  
600V  
LS Switching  
IN  
VDD  
VFO  
CFOD  
CIN  
VIN  
HS Switching  
OUT  
5 V  
0 V  
VDD  
V
10 kΩ  
VSS  
NU, NV, NW  
15 V  
V
RSC  
5 V  
Figure 4. Example Circuit of Switching Test  
Inductive Load, VPN = 600 V, VDD = 15 V, T = 1505C  
Inductive Load, VPN = 600 V, VDD = 15 V, T = 255C  
j
j
9000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
IGBT Turn−on, Eon  
IGBT Turn−off, Eoff  
FWD Turn−off, Erec  
IGBT Turn−on, Eon  
IGBT Turn−off, Eoff  
FWD Turn−off, Erec  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
Collector Current, Ic [A]  
Collector Current, Ic [A]  
Figure 5. Switching Loss Characteristics  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
2.687  
2.566  
2.445  
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
90  
95 100 105 110 115 120 125 130  
LVIC Temperature (5C)  
Figure 6. Temperature Profile of VTS  
www.onsemi.com  
8
NFAL5012L5B  
VDD  
VDD  
A/D  
Temperature  
Sensing  
Voltage  
2.5 kW  
VTS  
+
> 10 nF is  
recommended  
MCU  
100 kW  
5.2 V  
2.5 kW  
GND  
SPM  
VSS  
Figure 7. Internal Block Diagram and Interface Circuit of VTS  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
VF [V]  
VF [V]  
Figure 8. Characteristics of Bootstrap Diode/Resistor (Right Figure is Enlarged Figure)  
RECOMMENDED OPERATING RANGES  
Symbol  
VPN  
Parameter  
Supply Voltage  
Conditions  
Applied between P−NU, NV, NW  
Min  
Typ  
600  
Max  
800  
Unit  
350  
V
V
V
VDD  
Control Supply Voltage Applied between VDD(UH,VH,WH)−VSS(H), VDD(L)−VSS(L) 13.5  
15.0  
15.0  
16.5  
18.5  
VBS  
High−Side Control Bias Applied between VB(U)−VS(U), VB(V)−VS(V), VB(W)−VS(W) 13.0  
Voltage  
dVDD/dt, Control Supply Variation  
dVBS/dt  
−1  
+1  
V/ms  
ms  
tdead  
Blanking Time for  
For Each Input Signal  
2.0  
Preventing Arm − Short  
FPWM  
Io  
PWM Input Signal  
−40°C Tc 125°C, −40°C Tj 150°C  
20  
25  
kHz  
Allowable r.m.s.  
Output Current  
VPN = 600 V, VDD = VBS = 15 V,  
P.F = 0.8, Sinusoidal PWM  
Tc 125°C, Tj 150°C (Note 10)  
FPWM = 5 kHz  
FPWM = 15 kHz  
Arms  
14  
VSEN  
Voltage for Current  
Sensing  
Applied between NU, NV, NW − VSS  
(Including Surge Voltage)  
−5.0  
+5.0  
V
PWIN(ON) Minimum Input Pulse  
(Note 11)  
1.5  
2.0  
ms  
Width  
PWIN(OFF)  
VDD = VBS = 15 V, Ic 100 A, Wiring Inductance between  
NU, NV, NW and DC Link N < 10 nH (Note 11)  
Tj  
Junction Temperature  
−40  
+150  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
10.This allowable output current value is the reference data for the safe operation of this product. This may be different from the actual application  
and operating condition.  
11. This product might not make output response if input pulse width is less than the recommended value.  
www.onsemi.com  
9
 
NFAL5012L5B  
PACKAGE MARKING AND ORDERING INFORMATION  
Device  
Device Marking  
NFAL5012L5B  
Package  
Shipping  
NFAL5012L5B  
SPM49−CAA  
6 Units/Tube  
MECHANICAL CHARACTERISTICS AND RATINGS  
Parameter  
Device Flatness  
Conditions  
Min  
−50  
0.98  
10.00  
10  
Typ  
Max  
100  
1.47  
14.98  
Unit  
mm  
See Figure 9  
1.18  
12.03  
Mounting Torque  
Mounting Screw: M4  
See Figure 10  
Recommended 1.18 N m  
N m  
kg cm  
s
Recommended 12.03 kg cm  
Terminal Pulling Strength  
Terminal Bending Strength  
Weight  
Load 19.6 N  
Load 9.8 N, 90 degrees Bend  
2
times  
g
44.5  
Figure 9. Flatness Measurement Position  
NOTES:  
12.Do not over torque when mounting screws. Too much mounting torque may cause DBC cracks, as well as bolts and Al heat−sink  
destruction.  
13.Avoid one−sided tightening stress. Figure 10 shows the recommended torque order for the mounting screws. Uneven mounting can cause  
the DBC substrate of package to be damaged. The pre−screwing torque is set to 20~30% of maximum torque rating.  
Figure 10. Mounting Screws Torque Order  
www.onsemi.com  
10  
 
NFAL5012L5B  
TIME CHARTS OF SPMs PROTECTIVE FUNCTION  
Input Signal  
Protection  
Circuit State  
RESET  
a1  
SET  
RESET  
UVDDR  
a6  
UVDDD  
Control  
Supply Voltage  
a3  
a4  
a2  
a7  
Output Current  
a5  
Fault Output Signal  
a1: Control supply voltage rises: after the voltage rises UVDDR, the circuits start to operate when the next input is applied.  
a2: Normal operation: IGBT ON and carrying current.  
a3: Under−voltage detection (UVDDD).  
a4: IGBT OFF in spite of control input condition.  
a5: Fault output operation starts with a fixed pulse width according to the condition of the external capacitor CFOD.  
a6: Under−voltage reset (UVDDR).  
a7: Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.  
Figure 11. Under-voltage Protection (Low-side)  
Input Signal  
Protection  
RESET  
b1  
SET  
RESET  
Circuit State  
UVBSR  
b5  
UVBSD  
Control  
Supply Voltage  
b3  
b4  
b6  
b2  
Output Current  
High−level (no fault output)  
Fault Output Signal  
b1: Control supply voltage rises: after the voltage reaches UVBSR, the circuits start to operate when the next input is applied.  
b2: Normal operation: IGBT ON and carrying current.  
b3: Under−voltage detection (UVBSD).  
b4: IGBT OFF in spite of control input condition, but there is no fault output signal.  
b5: Under−voltage reset (UVBSR).  
b6: Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.  
Figure 12. Under-voltage Protection (High-side)  
www.onsemi.com  
11  
NFAL5012L5B  
Lower Arms  
Control Input  
c6  
c7  
Protection  
Circuit state  
SET  
RESET  
c4  
Internal IGBT  
Gate−Emitter  
Input Voltage  
c3  
c2  
Internal delay  
at protection circuit  
SC current trip level  
c1  
c8  
Output Current  
SC reference voltage  
Sensing Voltage  
of Sense Resistor  
RC filter circuit  
time constant  
delay  
c5  
Fault Output Signal  
(With the external sense resistance and RC filter connection)  
c1: Normal operation: IGBT ON and carrying current.  
c2: Short−circuit current detection (SC trigger).  
c3: All low−side IGBTs gate are hard interrupted.  
c4: All low−side IGBTs turn OFF.  
c5: Fault output operation starts with a fixed pulse width according to the condition of the external capacitor CFOD.  
c6: Input HIGH − IGBT ON state, but during the active period of fault output, the IGBT doesn’t turn ON.  
c7: Fault output operation finishes, but IGBT doesn’t turn on until triggering the next signal from LOW to HIGH.  
c8: Normal operation: IGBT ON and carrying current.  
Figure 13. Short-circuit Current Protection (Low-side Operation Only)  
INPUT/OUTPUT INTERFACE CIRCUIT  
+5V (MCU or control power)  
10 kW  
SPM  
HIN(U), HIN(V), HIN(W)  
LIN(U), LIN(V), LIN(W)  
MCU  
VFO  
VSS  
NOTE:  
14.RC coupling at each input might change depending on the PWM control scheme used in the application and the wiring impedance of the  
application’s printed circuit board. The input signal section of the SPM49 product integrates 5 kW (typ.) pull−down resistor. Therefore, when  
using an external filtering resistor, please pay attention to the signal voltage drop at input terminal.  
Figure 14. Recommended MCU I/O Interface Circuit  
www.onsemi.com  
12  
 
NFAL5012L5B  
P (7)  
R1  
R1  
R1  
(8) HIN(U)  
(9) VDD(UH)  
IN  
VDD  
VSS  
Gating UH  
Gating VH  
Gating WH  
C4  
C4  
OUT  
VS  
HVIC  
HVIC  
(10) VB(U)  
(11) VS(U)  
VB  
U (6)  
C3  
(12) HIN(V)  
(13) VDD(VH)  
IN  
VDD  
VSS  
C4  
C4  
OUT  
VS  
(14) VB(V)  
(15) VS(V)  
VB  
V (5)  
C3  
M
(16) HIN(W)  
(17) VDD(WH)  
(18) VSS(H)  
VDC  
IN  
VDD  
VSS  
C8  
C4  
C4  
OUT  
VS  
HVIC  
C1 C1 C1  
M
C
U
(19) VB(W)  
(20) VS(W)  
VB  
W (4)  
C3  
5V line  
R1  
R2  
C6  
(26) CFOD  
(27) VFO  
OUT1  
CFOD  
VFO  
IN1  
Fault  
A
R3  
NU (3)  
NV (2)  
C1  
C1  
R1  
R1  
(28) LIN(U)  
(29) LIN(V)  
(30) LIN(W)  
(22) VDD(L)  
Gating UL  
Gating VL  
Gating WL  
IN2  
OUT2  
OUT3  
LVIC  
R1  
R3  
IN3  
E
15V line  
VDD  
Shunt  
Resistor  
C1 C1  
C1  
Power  
GND Line  
(23) VSS(L)  
(24) VTS  
C4  
C2  
VSS  
VTS  
Temp.  
Monitoring  
R3  
NW (1)  
C7  
CIN  
R4  
RSC (21)  
(25) CIN  
Sense  
Resistor  
D
B
C
R5  
Control  
GND Line  
U−Phase Current  
V−Phase Current  
W−Phase Current  
C5  
NOTES:  
15.To avoid malfunction, the wiring of each input should be as short as possible (less than 2−3 cm).  
16.VFO output is an open−drain type. This signal line should be pulled up to the positive side of the MCU or control power supply with a resistor  
that makes IFO up to 1 mA. Please refer to Figure 14.  
17.Fault out pulse width can be adjusted by capacitor C6 connected to the CFOD terminal.  
18.Input signal is active−HIGH type. There is a 5 kW resistor inside the IC to pull−down each input signal line to GND. RC coupling circuits  
should be adopted for the prevention of input signal oscillation. R1C1 time constant should be selected in the range 50~150 ns  
(recommended R1 = 100 W, C1 = 1 nF).  
19.Each wiring pattern inductance of point A should be minimized (recommend less than 10 nH). Use the shunt resistor R3 of surface mounted  
(SMD) type to reduce wiring inductance. To prevent malfunction, wiring of point E should be connected to the terminal of the shunt resistor  
R3 as close as possible.  
20.To insert the shunt resistor to measure each phase current at NU, NV, NW terminal, it makes to change the trip level ISC about the  
short-circuit current.  
21.To prevent errors of the protection function, the wiring of points B, C, and D should be as short as possible. The wiring of B between CIN  
filter and RSC terminal should be divided at the point that is close to the terminal of sense resistor R4.  
22.For stable protection function, use the sense resistor R4 with resistance variation within 1% and low inductance value.  
23.In the short−circuit protection circuit, select the R5C5 time constant in the range 1.5~2.0 ms. R5 should be selected with a minimum of  
10 times larger resistance than sense resistor R4. Do enough evaluation on the real system because short-circuit protection time may  
vary wiring pattern layout and value of the R5C5 time constant.  
24.Each capacitor should be mounted as close to the pins of the SPM product as possible.  
25.To prevent surge destruction, the wiring between the smoothing capacitor C8 and the P & GND pins should be as short as possible. The  
use of a high−frequency non−inductive capacitor of around 0.1~0.22 mF between the P & GND pins is recommended.  
26.Relays are used in most systems of electrical equipment in industrial application. In these cases, there should be sufficient distance  
between the MCU and the relays.  
27.The Zener diode or transient voltage suppressor should be adopted for the protection of ICs from the surge destruction between each  
pair of control supply terminals (recommended Zener diode is 20~22 V/1 W, which has the lower Zener impedance characteristic than  
about 15 W).  
28.C2 of around seven times larger than bootstrap capacitor C3 is recommended.  
29.Please choose the electrolytic capacitor with good temperature characteristic in C3. Choose 0.1~0.2 mF R−category ceramic capacitors  
with good temperature and frequency characteristics in C4.  
Figure 15. Typical Application Circuit  
SPM is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
www.onsemi.com  
13  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
DIP30, 79x30/SPM49 CAA  
CASE MODGR  
ISSUE A  
DATE 27 JUN 2019  
GENERIC  
MARKING DIAGRAM*  
XXXX = Specific Device Code  
ZZZ = Assembly Lot Code  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
XXXXXXXXXXX  
ZZZ ATYWW  
NNNNNNN  
AT  
Y
= Assembly & Test Location  
= Year  
W
= Work Week  
NNN = Serial Number  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON98537G  
DIP30, 79x30/SPM49 CAA  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NFAL5012L5BT

Intelligent Power Module, SPM49, 1200 V, 50A (NTC option)
ONSEMI

NFAL5065L4B

智能功率模块,SPM49,600V,50A
ONSEMI

NFAL5065L4BT

智能功率模块,SPM49,650 V,50A(NTC 选项)
ONSEMI

NFAL7565L4B

智能功率模块,SPM49,650V,75A
ONSEMI

NFAL7565L4BT

Intelligent Power Module, SPM49, 650 V, 75A (NTC option)
ONSEMI

NFAM0512L5B

Intelligent Power Module, SPM31, 1200V, 5A
ONSEMI

NFAM0512L5BT

Motion Control Electronic
ONSEMI

NFAM1012L5B

Intelligent Power Module, SPM31, 1200V, 10A
ONSEMI

NFAM1012L5BT

Intelligent Power Module, SPM31, 1200V, 10A (NTC option)
ONSEMI

NFAM2012L5B

Intelligent Power Module, SPM31, 1200V, 20A
ONSEMI

NFAM2012L5BT

Intelligent Power Module, SPM31, 1200 V, 20A (NTC option)
ONSEMI

NFAM2065L4B

Intelligent Power Module, SPM31, 650 V, 20 A
ONSEMI