NFVA25012NP2T [ONSEMI]

Intelligent Power Module (IPM), AEC-Q & AQG324, Automotive, Inverter 1200V, 50A;
NFVA25012NP2T
型号: NFVA25012NP2T
厂家: ONSEMI    ONSEMI
描述:

Intelligent Power Module (IPM), AEC-Q & AQG324, Automotive, Inverter 1200V, 50A

文件: 总16页 (文件大小:811K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ASPM34 Series  
Automotive 3-Phase 1200 V  
50 A IGBT Intelligent Power  
Module  
NFVA25012NP2T  
General Description  
www.onsemi.com  
NFVA25012NP2T is an advanced Auto IPM module providing a  
fullyfeatured, highperformance inverter output stage for hybrid and  
electric vehicles. These modules integrate optimized gate drive of the  
builtin IGBTs to minimize EMI and losses, while also providing  
multiple onmodule protection features including undervoltage  
lockouts, overcurrent shutdown, thermal monitoring of drive IC, and  
fault reporting. The builtin, highspeed HVIC requires only a single  
supply voltage and translates the incoming logiclevel gate inputs to  
the highvoltage, highcurrent drive signals required to properly drive  
the module’s internal IGBTs. Separate negative IGBT terminals are  
available for each phase to support the widest variety of control  
algorithms.  
Features  
®
Automotive SPM in 34 Pin DIP Package  
AEC & AQG324 Qualified and PPAP Capable  
1200 V 50 A 3Phase IGBT Inverter with Integral Gate Drivers  
and Protection  
3D Package Drawing  
(Click to Activate 3D Content)  
LowLoss, ShortCircuit Rated IGBTs  
DIP34 80x33, AUTOMOTIVE MODULE  
CASE MODGL  
Very Low Thermal Resistance Using AlN DBC Substrate  
BuiltIn Bootstrap Diodes and Dedicated Vs Pins Simplify PCB  
MARKING DIAGRAM  
Layout  
Separate OpenEmitter Pins from LowSide IGBTs for ThreePhase  
Current Sensing  
SingleGrounded Power Supply Supported  
BuiltIn NTC Thermistor for Temperature Monitoring and  
Management  
Adjustable OverCurrent Protection via Integrated SenseIGBTs  
Isolation Rating of 2500 Vrms / 1 min  
This is a PbFree Device  
XXXXXXXXXXXX = Specific Device Code  
Applications  
ZZZ  
AT  
Y
= Lot ID  
= Assembly & Test Location  
= Year  
Automotive High Voltage Auxiliary Motors  
Climate ECompressors  
Oil / Water Pumps  
W
NNN  
= Work Week  
= Serial Number  
Super / Turbo Chargers  
Variety Fans  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 14 of  
this data sheet.  
Motion Control  
Industrial Motor  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
May, 2020 Rev. 0  
NFVA25012NP2T/D  
NFVA25012NP2T  
Related Resources  
Integrated Drive, Protection and System Control  
Functions  
For inverter highside IGBTs: gate drive circuit,  
highvoltage isolated highspeed level shifting  
control circuit UnderVoltage LockOut Protection  
(UVLO)  
®
AN9075 Users Guide for 1200V SPM 2 Series  
®
AN9076 Mounting Guide for New SPM 2 Package  
AN9079 Thermal Performance of 1200 V Motion  
®
SPM 2 Series by Mounting Torque  
Integrated Power Functions  
For inverter lowside IGBTs: gate drive circuit,  
Integrated Drive, Protection, and System Control  
ShortCircuit Protection (SCP)  
Functions  
control supply circuit UnderVoltage LockOut  
Protection (UVLO)  
Integrated Power Functions  
Fault signaling: corresponding to UVLO (lowside  
supply) and SC faults  
1200 V - 50 A IGBT inverter for threephase DC / AC  
power conversion (Please refer to Figure 1)  
Input interface: activeHIGH interface, works with 3.3 /  
5 V logic, Schmitttrigger input  
PIN CONFIGURATION  
(34) VS(W)  
(33) VB(W)  
(32) VBD(W)  
(31) VDD(WH)  
(30) IN(WH)  
(1) P  
(29) VS(V)  
(28) VB(V)  
(2) W  
(3) V  
(27) VBD(V)  
(26) VDD(VH)  
(25) IN(VH)  
(24) VS(U)  
(23) VB(U)  
Case Temperature (TC)  
Detecting Point  
(22) VBD(U)  
(21) VDD(UH)  
(20) COM(H)  
(19) IN(UH)  
(4) U  
(18) RSC  
(17) CSC  
(5) N W  
(6) N V  
(7) N U  
(16) CFOD  
(15) VFO  
(14) IN (WL)  
(13) IN (VL)  
(12) IN (UL)  
(11) COM (L)  
(10) VDD(L)  
(8) RTH  
(9) VTH  
Figure 1. Pin Configuration Top View  
www.onsemi.com  
2
 
NFVA25012NP2T  
PIN DESCRIPTION  
Pin Number  
Pin Name  
Pin Description  
1
2
P
W
V
Positive DCLink Input  
Output for W Phase  
3
Output for V Phase  
4
U
Output for U Phase  
5
N
Negative DCLink Input for W Phase  
Negative DCLink Input for V Phase  
Negative DCLink Input for U Phase  
W
6
N
N
V
U
7
8
R
TH  
V
TH  
Series Resistor for Thermistor (Temperature Detection)  
Thermistor Bias Voltage  
9
10  
11  
12  
13  
V
LowSide Bias Voltage for IC and IGBTs Driving  
LowSide Common Supply Ground  
Signal Input for LowSide U Phase  
DD(L)  
COM  
(L)  
(UL)  
IN  
IN  
Signal Input for LowSide V Phase  
(VL)  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
IN  
Signal Input for LowSide W Phase  
(WL)  
V
Fault Output  
FO  
C
Capacitor for Fault Output Duration Selection  
Shut Down Input for ShortCircuit Current Detection Input  
Resistor for ShortCircuit Current Detection  
Signal Input for HighSide U Phase  
FOD  
C
SC  
SC  
R
IN  
(UH)  
COM  
HighSide Common Supply Ground  
(H)  
V
HighSide Bias Voltage for U Phase IC  
DD(UH)  
V
BD(U)  
Anode of Bootstrap Diode for U Phase HighSide Bootstrap Circuit  
HighSide Bias Voltage for U Phase IGBT Driving  
HighSide Bias Voltage Ground for U Phase IGBT Driving  
Signal Input for HighSide V Phase  
V
B(U)  
V
S(U)  
IN  
(VH)  
V
HighSide Bias Voltage for V Phase IC  
DD(VH)  
V
BD(V)  
Anode of Bootstrap Diode for V Phase HighSide Bootstrap Circuit  
HighSide Bias Voltage for V Phase IGBT Driving  
HighSide Bias Voltage Ground for V Phase IGBT Driving  
Signal Input for HighSide W Phase  
V
B(V)  
S(V)  
(WH)  
V
IN  
V
HighSide Bias Voltage for W Phase IC  
DD(WH)  
V
BD(W)  
Anode of Bootstrap Diode for W Phase HighSide Bootstrap Circuit  
HighSide Bias Voltage for W Phase IGBT Driving  
HighSide Bias Voltage Ground for W Phase IGBT Driving  
V
B(W)  
V
S(W)  
www.onsemi.com  
3
NFVA25012NP2T  
INTERNAL EQUIVALENT CIRCUIT AND INPUT/OUTPUT PINS  
P (1)  
(33) VB(W)  
VB  
(32) VBD(W)  
(31) VDD(WH)  
OUT  
VS  
VDD  
COM  
IN  
HVIC  
HVIC  
HVIC  
(30) IN(WH)  
(34) VS(W)  
W (2)  
(28) VB(V)  
(27) VBD(V)  
(26) VDD(VH)  
VB  
VDD  
COM  
IN  
OUT  
VS  
(25) IN(VH)  
(29) VS(V)  
V (3)  
(23) VB(U)  
(22) VBD(U)  
(21) VDD(UH)  
(20) COM (H)  
(19) IN(UH)  
(24) VS(U)  
VB  
VDD  
COM  
IN  
OUT  
VS  
U (4)  
CSC  
CFOD  
VFO  
IN  
OUT  
OUT  
OUT  
(17) CSC  
(16) CFOD  
(15) VFO  
NW (5)  
NV (6)  
(14) IN(WL)  
(13) IN(VL)  
(12) IN(UL)  
(11) COM (L)  
(10) VDD(L)  
LVIC  
IN  
IN  
COM  
VDD  
NU (7)  
RTH (8)  
VTH (9)  
Thermistor  
(18) R  
SC  
NOTES:  
1. nverter lowside is composed of three IGBTs, freewheeling diodes for each IGBT, and one control IC. It has gate drive and protection  
functions.  
2. nverter power side is composed of four inverter DClink input terminals and three inverter output terminals.  
3. Inverter highside is composed of three IGBTs, freewheeling diodes, and three drive ICs for each IGBT.  
Figure 2. Internal Block Diagram  
www.onsemi.com  
4
NFVA25012NP2T  
ABSOLUTE MAXIMUM RATINGS (Tj = 25°C unless otherwise noted)  
Symbol  
Rating  
Conditions  
Rating  
Unit  
INVERTER PART  
V
Supply Voltage  
Applied between P N , N , N  
900  
1000  
1200  
50  
V
V
V
A
A
PN  
PN(Surge)  
U
V
W
V
Supply Voltage (Surge)  
Applied between P N , N , N  
U V  
W
V
CES  
Collector Emitter Voltage  
Each IGBT Collector Current  
Each IGBT Collector Current (Peak)  
I
C
T
T
= 100°C, T 150°C, V 15 V (Note 4)  
J DD  
C
I
= 25°C, T 150°C, Under 1 ms Pulse Width  
75  
CP  
C
J
(Note 4)  
P
Collector Dissipation  
T
= 25°C per One Chip (Note 4)  
347  
W
°C  
°C  
C
C
T
Operating Junction Temperature  
V
= 960 V  
40~150  
40~125  
J
CES  
CES  
V
= 1200 V  
CONTROL PART  
V
Control Supply Voltage  
Applied between V  
, V COM  
DD(H) DD(L)  
20  
20  
V
V
DD  
V
HighSide Control Bias Voltage  
Applied between V  
V , V  
S(U) B(V)  
V  
,
BS  
B(U)  
S(V)  
V
V  
S(W)  
B(W)  
V
IN  
Input Signal Voltage  
Applied between IN  
, IN  
, IN  
, IN  
,
0.3~V + 0.3  
V
(UH)  
(VH)  
(WH)  
(UL)  
DD  
IN  
, IN  
COM  
(VL)  
(WL)  
V
Fault Output Supply Voltage  
Fault Output Current  
Applied between V COM  
0.3~V + 0.3  
V
mA  
V
FO  
FO  
DD  
I
Sink Current at V pin  
2
FO  
FO  
V
SC  
Current Sensing Input Voltage  
Applied between C COM  
0.3~V + 0.3  
SC  
DD  
BOOSTSTRAP DIODE PART  
V
Maximum Repetitive Reverse Voltage  
Forward Current  
1200  
1.0  
V
A
A
RRM  
I
F
T
T
= 25°C, T 150°C (Note 4)  
J
C
I
Forward Current (Peak)  
= 25°C, T 150°C, Under 1 ms Pulse Width  
2.0  
FP  
C
J
(Note 4)  
T
Operating Junction Temperature (Note 6)  
40~150  
°C  
ms  
J
TOTAL SYSTEM  
t
Short Circuit Withstand Time  
V
J
= V 16.5 V, V 800 V,  
3
SC  
DD  
BS  
PN  
T = 150°C  
Nonrepetitive  
T
Storage Temperature  
Isolation Voltage  
40~150  
°C  
STG  
V
60 Hz, Sinusoidal, AC 1 minute, Connection Pins  
to Heat Sink Plate  
2500  
V
rms  
ISO  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
4. These values had been made an acquisition by the calculation considered to design factor.  
THERMAL RESISTANCE  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
0.36  
0.66  
Unit  
°C/W  
°C/W  
nH  
R
Junction to Case Thermal  
Resistance (Note 5)  
Inverter IGBT part (per 1 / 6 module)  
Inverter FWD part (per 1 / 6 module)  
th(jc)Q  
R
th(jc)F  
L
s
Package Stray Inductance  
P to N , N , N (Note 6)  
32  
U
V
W
5. For the measurement point of case temperature (T ), please refer to Figure 1. DBC discoloration and Picker Circle Printing allowed, please  
C
refer to application note AN9190 (Impact of DBC Oxidation on SPM Module Performance).  
6. Stray inductance per phase measured per IEC 6074715.  
www.onsemi.com  
5
 
NFVA25012NP2T  
ELECTRICAL CHARACTERISTICS  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
INVERTER PART (Tj as specified)  
V
Collector Emitter Saturation V = V = 15 V, V = 5 V, I = 50 A, T = 25°C  
2.20  
2.75  
2.40  
2.25  
1.40  
0.50  
1.10  
0.15  
0.20  
1.00  
0.50  
1.10  
0.15  
0.25  
2.80  
3.25  
3.00  
2.85  
2.00  
0.95  
1.70  
0.55  
V
V
CE(SAT)  
DD  
BS  
IN  
C
J
Voltage  
V
V
V
= V = 15 V, V = 5 V, I = 50 A, T = 150°C  
BS IN C J  
DD  
V
F
FWDi Forward Voltage  
= 0 V, I = 50 A, T = 25°C  
V
IN  
F
J
= 0 V, I = 50 A, T = 150°C  
V
IN  
F
J
HS  
t
High Side Switching Times  
Low Side Switching Times  
V
V
= 600 V, V = 15 V, I = 50 A, T = 25°C  
0.90  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
mA  
ON  
PN  
IN  
DD  
C
J
= 0 V 5 V, Inductive Load  
t
C(ON)  
See Figure 4  
(Note 7)  
t
OFF  
t
C(OFF)  
t
rr  
LS  
t
V
V
= 600 V, V = 15 V, I = 50 A, T = 25°C  
0.50  
1.60  
0.95  
1.70  
0.55  
ON  
PN  
IN  
DD  
C
J
= 0 V 5 V, Inductive Load  
t
C(ON)  
See Figure 4  
(Note 7)  
t
OFF  
t
C(OFF)  
t
rr  
I
Collector Emitter Leakage Tj = 25°C, V = V  
CES  
3
CES  
CE  
Current  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
7. t and t  
include the propagation delay time of the internal drive IC. t  
and t  
are the switching time of IGBT itself under the given  
ON  
OFF  
C(ON)  
C(OFF)  
gate driving condition internally. For the detailed information, please see Figure 3.  
100% IC 100% IC  
trr  
VCE  
IC  
IC  
VCE  
VIN  
VIN  
tON  
tOFF  
tC(ON)  
tC(OFF)  
10% IC  
VIN(ON)  
VIN(OFF)  
10% V  
10% IC  
CE  
90% IC 10% V  
CE  
(a) turn-on  
(b) turn-off  
Figure 3. Switching Time Definition  
www.onsemi.com  
6
 
NFVA25012NP2T  
OneLeg Diagram of ASPM34  
IC  
RBS  
P
CBS  
VDD  
VB  
OUT  
VS  
COM  
LS Switching  
IN  
VPN  
HS Switching  
U,V,W  
V
Inductor  
600 V  
IN  
LS Switching  
VDD  
VDD  
VFO  
CFOD  
V
IN  
HS Switching  
OUT  
5 V  
0 V  
4.7 kΩ  
CSC  
V
COM  
NU,V,W  
15 V  
V
RSC  
5 V  
Figure 4. Example Circuit of Switching Test  
Inductive Load, V = 600 V, V = 15 V, T = 1505C  
Inductive Load, V = 600 V, V = 15 V, T = 255C  
PN  
CC  
j
PN  
CC  
j
Collector Current, I [A]  
Collector Current, I [A]  
C
C
Figure 5. Switching Loss Characteristics  
RT Curve  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
RT Curve in 505C ~ 1255C  
20  
16  
12  
8
4
0
50  
60  
70  
80  
90 100 110 120  
Temperature [°C]  
0
20 10  
0
10 20 30 40 50 60 70 80 90 100 110 120  
Temperature [°C]  
Figure 6. RT Curve of Builtin Thermistor  
www.onsemi.com  
7
 
NFVA25012NP2T  
ELECTRICAL CHARACTERISTICS  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
BOOTSTRAP DIODE PART (Tj as specified)  
V
Forward Voltage  
I = 1.0 A, T = 25°C  
2.2  
80  
V
F
F
J
t
rr  
ReverseRecovery Time  
I = 1.0 A, dI / dt = 50 A/ms, T = 25°C  
ns  
F
F
J
CONTROL PART (Tj = 25°C unless otherwise noted)  
I
Quiescent V Supply  
V
= 15 V,  
V
V
V
COM  
COM  
,
0.15  
mA  
QDDH  
DD  
DD(UH,VH,WH)  
(UH,VH,WH)  
DD(UH)  
DD(VH)  
DD(WH)  
(H)  
(H)  
COM  
Current  
IN  
= 0 V  
,
(H)  
I
V
V
= 15 V, IN  
= 0 V  
V
COM  
(L)  
4.80  
0.30  
mA  
mA  
QDDL  
DD(L)  
(UL,VL, WL)  
DD(L)  
I
Operating V Supply  
= 15 V,  
V
V
V
COM  
(H)  
COM  
,
,
PDDH  
DD  
DD(UH,VH,WH)  
DD(UH)  
DD(VH)  
DD(WH)  
(H)  
Current  
f
= 20 kHz, Duty = 50%,  
COM  
PWM  
Applied to one PWM Signal Input  
(H)  
for HighSide  
I
V
= 15V, f  
= 20 kHz,  
V
COM  
(L)  
15.5  
0.30  
12.0  
mA  
mA  
mA  
PDDL  
DD(L)  
PWM  
DD(L)  
Duty = 50%, Applied to one PWM  
Signal Input for LowSide  
I
Quiescent V Supply  
V
BS  
= 15 V, IN  
= 0 V  
V
B(U)  
V
B(V)  
V
B(W)  
V  
S(V)  
V  
,
QBS  
BS  
(UH,VH,WH)  
S(U)  
Current  
V  
,
S(W)  
I
Operating V Supply  
V
DD  
= V = 15 V, f  
= 20 kHz,  
V
B(U)  
V
B(V)  
V
B(W)  
V  
V  
,
PBS  
BS  
BS  
PWM  
S(U)  
S(V)  
V  
Current  
Duty = 50%, Applied to one PWM  
,
Signal Input for HighSide  
S(W)  
V
Fault Output Voltage  
V
V
V
= 15 V, V = 0 V, V Circuit: 4.7 kW to 5 V Pullup  
4.5  
0.5  
V
V
FOH  
DD  
DD  
DD  
SC  
FO  
V
= 15 V, V = 1 V, V Circuit: 4.7 kW to 5 V Pullup  
SC FO  
FOL  
SEN  
I
Sensing Current of Each  
Sense IGBT  
= 15 V, V = 5 V, R = 0 W,  
I = 50 A  
C
43  
mA  
IN  
SC  
No Connection of Shunt Resistor  
at N Terminal  
U,V,W  
V
Short Circuit Trip Level  
V
= 15 V (Note 8)  
C
COM  
(L)  
0.43  
0.50  
75  
0.57  
V
A
SC(ref)  
DD  
SC  
I
Short Circuit Current Level  
for Trip  
R
at N  
= 13 W ( 1%), No Connection of Shunt Resistor  
SC  
SC  
Terminal (Note 8)  
U,V,W  
UV  
UV  
UV  
UV  
t
Supply Circuit  
Detection Level  
Reset Level  
10.3  
10.8  
9.5  
10.0  
50  
12.8  
13.3  
12.0  
12.5  
V
V
DDD  
DDR  
BSD  
BSR  
UnderVoltage Protection  
Detection Level  
Reset Level  
V
V
FaultOut Pulse Width  
C
FOD  
C
FOD  
= Open  
(Note 9)  
ms  
ms  
V
FOD  
= 2.2 nF  
1.7  
V
IN(ON)  
ON Threshold Voltage  
OFF Threshold Voltage  
Resistance of Thermistor  
Applied between IN  
COM ,  
(H)  
2.6  
(UH,VH,WH)  
COM  
(L)  
IN  
(UL,VL,WL)  
V
0.8  
V
IN(OFF)  
R
TH  
at T = 25°C  
See Figure 6  
(Note 10)  
47  
2.9  
kW  
kW  
TH  
at T = 100°C  
TH  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
8. Shortcircuit current protection functions only at the lowsides because the sense current is divided from main current at lowside IGBTs.  
Inserting the shunt resistor for monitoring the phase current at N , N , N terminal, the trip level of the shortcircuit current is changed.  
U
V
W
FOD  
9. The faultout pulse width t  
depends on the capacitance value of C  
according to the following approximate equation:  
FOD  
[s].  
6
t
= 0.8 x 10 x C  
FOD  
FOD  
10.T is the temperature of thermistor itself. To know case temperature (T ), conduct experiments considering the application.  
TH  
C
www.onsemi.com  
8
 
NFVA25012NP2T  
RECOMMENDED OPERATING RANGES  
Symbol  
Parameter  
Conditions  
Min  
300  
14.0  
Typ  
600  
15.0  
Max  
800  
Unit  
V
V
PN  
DD  
Supply Voltage  
Applied between P N , N , N  
U V W  
V
Control Supply Voltage  
Applied between V  
16.5  
V
DD(UH,VH,WH)  
COM , V  
COM  
(H) DD(L)  
(L)  
V
HighSide Bias Voltage  
Applied between V  
V , V −  
S(U) B(V)  
13.0  
15.0  
18.5  
1
V
BS  
B(U)  
S(V) B(W) S(W)  
V
V
, V  
dV / dt, Control Supply Variation  
1  
V/ms  
DD  
dV / dt  
BS  
t
Blanking Time for Preventing Arm Short For Each Input Signal  
2.0  
20  
5
ms  
kHz  
V
dead  
f
PWM Input Signal  
40°C T 125°C, 40°C T 150°C  
C J  
PWM  
V
Voltage for Current Sensing  
Applied between N , N , N COM  
5  
SEN  
U
V
W
(H, L)  
(Including Surge Voltage)  
PW  
PW  
Minimum Input Pulse Width  
Junction Temperature  
V
= V = 15 V, I 75 A, Wiring  
2.5  
2.5  
40  
ms  
IN(ON)  
DD  
BS  
C
Inductance between N  
N < 10 nH (Note 11)  
and DC Link  
U,V,W  
IN(OFF)  
T
150  
°C  
J
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
11. This product might not make output response if input pulse width is less than the recommended value.  
MECHANICAL CHARACTERISTICS AND RATINGS  
Parameter  
Device Flatness  
Conditions  
Min  
0
Typ  
Max  
+200  
1.5  
15.1  
Unit  
mm  
See Figure 7  
Mounting Torque  
Mounting Screw: M4  
See Figure 8  
Recommended 1.0 N m  
Recommended 10.1 kg cm  
0.9  
9.1  
10  
2
1.0  
10.1  
N m  
kg cm  
s
Terminal Pulling Strength  
Terminal Bending Strength  
Weight  
Load 19.6 N  
Load 9.8 N, 90 degrees Bend  
times  
g
50  
(+)  
(+)  
Figure 7. Flatness Measurement Position  
www.onsemi.com  
9
 
NFVA25012NP2T  
2
Pre Screwing: 1 2  
Final Screwing: 2 1  
1
NOTES:  
12.Do not over torque when mounting screws. Too much mounting torque may cause DBC cracks, as well as bolts and Al heatsink  
destruction.  
13.Avoid onesided tightening stress. Figure 8 shows the recommended torque order for the mounting screws. Uneven mounting can cause  
the DBC substrate of package to be damaged. The prescrewing torque is set to 20~30% of maximum torque rating.  
Figure 8. Mounting Screws Torque Order  
TIME CHARTS OF SPMs PROTECTIVE FUNCTION  
Input Signal  
Protection  
RESET  
a1  
SET  
RESET  
Circuit State  
UVDDR  
a6  
UV  
Control  
Supply Voltage  
DDD  
a3  
a4  
a2  
a7  
Output Current  
a5  
Fault Output Signal  
a1: Control supply voltage rises: after the voltage rises UV  
a2: Normal operation: IGBT ON and carrying current.  
, the circuits start to operate when the next input is applied.  
DDR  
a3: Under-voltage detection (UV  
).  
DDD  
a4: IGBT OFF in spite of control input condition.  
a5: Fault output operation starts with a fixed pulse width according to the condition of the external capacitor C  
.
FOD  
a6: Under-voltage reset (UVDDR).  
a7: Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.  
Figure 9. Under-Voltage Protection (Low-Side)  
www.onsemi.com  
10  
 
NFVA25012NP2T  
Input Signal  
Protection  
RESET  
SET  
RESET  
Circuit State  
UVBSR  
b5  
b1  
UVBSD  
b2  
Control  
b3  
b4  
Supply Voltage  
b6  
Output Current  
Highlevel (no fault output)  
Fault Output Signal  
b1: Control supply voltage rises: after the voltage reaches UV  
b2: Normal operation: IGBT ON and carrying current.  
, the circuits start to operate when the next input is applied.  
BSR  
b3: Under-voltage detection (UV  
).  
BSD  
b4: IGBT OFF in spite of control input condition, but there is no fault output signal.  
b5: Under-voltage reset (UV ).  
BSR  
b6: Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.  
Figure 10. Under-Voltage Protection (High-Side)  
www.onsemi.com  
11  
NFVA25012NP2T  
Lower Arms  
Control Input  
c6  
c7  
Protection  
SET  
c2  
Circuit state  
RESET  
c4  
Internal IGBT  
GateEmitter  
Input Voltage  
c3  
Internal delay  
at protection circuit  
SC current trip level  
c1  
c8  
Output Current  
SC reference voltage  
Sensing Voltage  
of Sense Resistor  
RC filter circuit  
time constant  
delay  
c5  
Fault Output Signal  
(With the external sense resistance and RC filter connection)  
c1: Normal operation: IGBT ON and carrying current.  
c2: Short-circuit current detection (SC trigger).  
c3: All low-side IGBTs gate are hard interrupted.  
c4: All low-side IGBTs turn OFF.  
c5: Fault output operation starts with a fixed pulse width according to the condition of the external capacitor C  
c6: Input HIGH: IGBT ON state, but during the active period of fault output, the IGBT doesn’t turn ON.  
.
FOD  
c7: Fault output operation finishes, but IGBT doesn’t turn on until triggering the next signal from LOW to HIGH.  
c8: Normal operation: IGBT ON and carrying current.  
Figure 11. Short-Circuit Current Protection (Low-Side Operation Only)  
INPUT/OUTPUT INTERFACE CIRCUIT  
+5 V (MCU or control power)  
ASPM  
4.7 kW  
IN  
IN  
, IN  
, IN  
(UH)  
(VH)  
(WH)  
(WL)  
, IN  
, IN  
(UL)  
(VL)  
MCU  
VFO  
COM  
NOTE:  
14.RC coupling at each input might change depending on the PWM control scheme used in the application and the wiring impedance of the  
application’s printed circuit board. The input signal section of the Motion SPM 2 product integrates 5 kW (typ.) pulldown resistor. Therefore,  
when using an external filtering resistor, please pay attention to the signal voltage drop at input terminal.  
Figure 12. Recommended MCU I/O Interface Circuit  
www.onsemi.com  
12  
NFVA25012NP2T  
P (1)  
R1  
R1  
R1  
(30) IN  
(WH)  
IN  
Gating WH  
Gating VH  
Gating UH  
(31) V DD(WH)  
VDD  
COM  
C4  
C4  
OUT  
VS  
R2  
(32) V  
HVIC  
HVIC  
BD(W)  
(33) V  
B(W)  
VB  
W (2)  
(34) V  
S(W)  
C3  
(25) IN  
(VH)  
IN  
(26) V  
DD(VH)  
VDD  
COM  
C4  
C4  
R2  
OUT  
VS  
(27) V  
BD(V)  
(28) V  
B(V)  
VB  
V (3)  
(29) V  
S(V)  
C3  
M
(19) IN  
(UH)  
VDC  
IN  
VDD  
C7  
(21) V  
DD(UH)  
(20) COM  
C4  
(H)  
COM  
OUT  
VS  
R2  
HVIC  
(22) V  
BD(U)  
C1 C1 C1  
M
C
U
(23) V B(U)  
VB  
U (4)  
(24) V  
S(U)  
C3  
C4  
5V line  
R3  
C5  
R1  
(16) C  
FOD  
FO  
OUT  
CFOD  
VFO  
IN  
Fault  
A
R4  
(15) V  
NW (5)  
NV (6)  
NU (7)  
C1  
C1  
(14) IN  
(WL)  
R1  
R1  
Gating WL  
Gating VL  
Gating UL  
(13) IN  
(12) IN  
(10) V  
(VL)  
(UL)  
IN  
OUT  
OUT  
LVIC  
R1  
R4  
IN  
E
15V line  
DD(L)  
VDD  
Shunt  
Resistor  
C1 C1  
5V line  
C1  
Power  
GND Line  
(11) COM  
C2  
C4  
(L)  
COM  
(9) V TH  
(8) R TH  
R4  
CSC  
Temp.  
Monitoring  
RSC (18)  
Thermistor  
R5  
R7  
(17) C  
Sense  
SC  
Resistor  
D
B
C
R6  
Control  
GND Line  
C6  
WPhase Current  
VPhase Current  
UPhase Current  
NOTES:  
15.To avoid malfunction, the wiring of each input should be as short as possible (less than 2 3 cm).  
16.V output is an opendrain type. This signal line should be pulled up to the positive side of the MCU or control power supply with a resistor  
FO  
that makes I up to 2 mA. Please refer to Figure 13.  
FO  
17.Fault out pulse width can be adjust by capacitor C connected to the C  
terminal.  
FOD  
5
18.Input signal is activeHIGH type. There is a 5 kW resistor inside the IC to pulldown each input signal line to GND. RC coupling circuits  
should be adopted for the prevention of input signal oscillation. R C time constant should be selected in the range 50~ 50 ns  
1
1
(recommended R = 100 W, C = 1 nF).  
1
1
19.Each wiring pattern inductance of point A should be minimized (recommend less than 10 nH). Use the shunt resistor R of surface mounted  
4
(SMD) type to reduce wiring inductance. To prevent malfunction, wiring of point E should be connected to the terminal of the shunt resistor  
R as close as possible.  
4
20.To insert the shunt resistor to measure each phase current at N , N , N terminal, it makes to change the trip level I about the  
U
V
W
SC  
shortcircuit current.  
21.To prevent errors of the protection function, the wiring of points B, C, and D should be as short as possible. The wiring of B between C  
SC  
filter and R terminal should be divided at the point that is close to the terminal of sense resistor R .  
SC  
5
22.For stable protection function, use the sense resistor R with resistance variation within 1% and low inductance value.  
5
23.In the shortcircuit protection circuit, select the R C time constant in the range 1.0~1.5 ms. R should be selected with a minimum of  
6
6
6
10 times larger resistance than sense resistor R . Do enough evaluaiton on the real system because shortcircuit protection time may  
5
vary wiring pattern layout and value of the R C time constant.  
6
6
24.Each capacitor should be mounted as close to the pins of the ASPM34 product as possible.  
25.To prevent surge destruction, the wiring between the smoothing capacitor C and the P & GND pins should be as short as possible. The  
7
use of a highfrequency noninductive capacitor of around 0.1~0.22 mF between the P & GND pins is recommended.  
26.Relays are used in most systems of electrical equipments in industrial application. In these cases, there should be sufficient distance  
between the MCU and the relays.  
27.The Zener diode or transient voltage suppressor should be adapted for the protection of ICs from the surge destruction between each pair  
of control supply terminals (recommended Zener diode is 22 V / 1 W, which has the lower Zener impedance characteristic than about 15 W).  
28.C of around seven times larger than bootstrap capacitor C is recommended.  
2
3
29.Please choose the electrolytic capacitor with good temperature characteristic in C . Choose 0.1~0.2 mF Rcategory ceramic capacitors  
3
with good temperature and frequency characteristics in C .  
4
Figure 13. Typical Application Circuit  
www.onsemi.com  
13  
 
NFVA25012NP2T  
PACKAGE MARKING AND ORDERING INFORMATION  
Device  
Device Marking  
NFVA25012NP2T  
Package  
Shipping  
NFVA25012NP2T  
ASPM34CAA  
(PbFree)  
6 Units/Tube  
SPM is registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
www.onsemi.com  
14  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
DIP34 80x33, AUTOMOTIVE MODULE  
CASE MODGL  
ISSUE O  
DATE 19 OCT 2018  
GENERIC  
MARKING DIAGRAM*  
XXXX = Specific Device Code  
ZZZ = Lot ID  
*This information is generic. Please refer to  
AT  
Y
W
= Assembly & Test Location  
= Year  
= Work Week  
XXXXXXXXXXX  
ZZZ ATYWW  
NNNNNNN  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
NNN = Serial Number  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON97156G  
DIP34 80x33, AUTOMOTIVE MODULE  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NFVA33065L32

Intelligent Power Module (IPM), AEC-Q & AQG324, Automotive, Inverter, 650V,30A
ONSEMI

NFVA33065L42

Intelligent Power Module (IPM), ASPM27-V3, AEC-Q & AQG324, Automotive, Inverter 650V,30A
ONSEMI

NFVA34065L32

智能功率模块 (IPM),AEC-Q 和 AQG324,汽车,逆变器 650V,40A
ONSEMI

NFVA35065L32

智能功率模块 (IPM),AEC-Q 和 AQG324,汽车,逆变器,650V,50A
ONSEMI

NFVA35065L42

Intelligent Power Module (IPM), ASPM27-V3, AEC-Q & AQG324, Automotive, Inverter 650V,50A, Fast Switching
ONSEMI

NFVA36065L42

Intelligent Power Module (IPM), ASPM27-V3, AEC-Q & AQG324, Automotive, Inverter 650V,60A, Fast Switching 
ONSEMI

NFVC6125F10R0TRF

Surface Mount Fuse
NIC

NFVC6125F12R0TRF

Surface Mount Fuse
NIC

NFVC6125F15R0TRF

Surface Mount Fuse
NIC

NFVC6125F1R00TRF

Surface Mount Fuse
NIC

NFVC6125F1R25TRF

Surface Mount Fuse
NIC

NFVC6125F1R60TRF

Surface Mount Fuse
NIC