NGTB40N65IHRTG [ONSEMI]

IGBT, Monolithic with Reverse Conducting Diode, 650 V, 40 A;
NGTB40N65IHRTG
型号: NGTB40N65IHRTG
厂家: ONSEMI    ONSEMI
描述:

IGBT, Monolithic with Reverse Conducting Diode, 650 V, 40 A

双极性晶体管
文件: 总9页 (文件大小:225K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NGTB40N65IHRTG  
IGBT with Monolithic  
Reverse Conducting Diode  
This Insulated Gate Bipolar Transistor (IGBT) features robust and  
cost effective Field Stop (FS2) trench construction with a monolithic  
RC Diode. It provides a cost effective Solution for applications where  
diode losses are minimal. The IGBT is optimized for low conduction  
www.onsemi.com  
losses (low V ) and is well suited for resonant or soft switching  
CEsat  
applications.  
40 A, 650 V  
Features  
V
CEsat = 1.55 V  
Extremely Efficient Trench with Fieldstop Technology  
Low Conduction Design for Soft Switching Application  
Reduced Power Dissipation in Inducting Heating Application  
Reliable and Cost Effective Single Die Solution  
This is a Pb−Free Device  
Eoff = 0.42 mJ  
C
Typical Applications  
Inductive Heating  
Air Conditioning PFC  
Welding  
G
E
ABSOLUTE MAXIMUM RATINGS  
Rating  
Collector−emitter voltage  
Collector current  
Symbol  
Value  
Unit  
V
V
CES  
650  
I
C
A
@ T = 25°C  
80  
40  
C
G
C
E
@ T = 100°C  
C
TO−3P  
CASE 340AB  
Pulsed collector current, T  
limited  
I
160  
A
A
pulse  
CM  
by T  
, 10 ms pulse, V = 15 V  
Jmax  
GE  
Diode forward current  
I
F
@ T = 25°C  
80  
40  
C
MARKING DIAGRAM  
@ T = 100°C  
C
Diode pulsed current, T  
limited  
I
160  
A
pulse  
FM  
by T  
, 10 ms pulse, V = 0 V  
Jmax  
GE  
Power Dissipation  
P
D
W
40N65HG  
AYWW  
@ T = 25°C  
405  
202  
C
@ T = 100°C  
C
Operating junction temperature range  
Storage temperature range  
T
−40 to +175  
−55 to +175  
260  
°C  
°C  
°C  
J
T
stg  
40N65H = Specific Device Code  
Lead temperature for soldering, 1/8″  
from case for 5 seconds  
T
SLD  
G
A
Y
= Pb−Free Package  
= Assembly Location  
= Year  
Stresses exceeding those listed in the Maximum Ratings table may damage the  
device. If any of these limits are exceeded, device functionality should not be  
assumed, damage may occur and reliability may be affected.  
WW  
= Work Week  
ORDERING INFORMATION  
Device  
Package  
Shipping  
30 Units / Rail  
NGTB40N65IHRTG  
TO−3P  
(Pb−Free)  
© Semiconductor Components Industries, LLC, 2017  
1
Publication Order Number:  
May, 2017 − Rev. 1  
NGTB40N65IHRTG/D  
NGTB40N65IHRTG  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
0.37  
40  
Unit  
°C/W  
°C/W  
Thermal resistance junction−to−case  
Thermal resistance junction−to−ambient  
R
q
JC  
JA  
R
q
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise specified)  
J
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
STATIC CHARACTERISTIC  
Collector−emitter breakdown voltage,  
gate−emitter short−circuited  
V
= 0 V, I = 500 mA  
V
(BR)CES  
650  
V
V
GE  
C
Collector−emitter saturation voltage  
V
= 15 V, I = 40 A  
V
CEsat  
1.55  
1.95  
1.7  
GE  
C
V
GE  
= 15 V, I = 40 A, T = 175°C  
C J  
Gate−emitter threshold voltage  
V
V
= V , I = 350 mA  
V
4.5  
5.5  
6.5  
V
GE  
CE  
C
GE(th)  
Collector−emitter cut−off current, gate−  
emitter short−circuited  
= 0 V, V = 650 V  
I
1.0  
0.3  
mA  
GE  
CE  
CES  
V
GE  
= 0 V, V = 1200 V, T 175°C  
CE  
J =  
Gate leakage current, collector−emitter  
short−circuited  
V
= 20 V, V = 0 V  
I
100  
nA  
pF  
GE  
CE  
GES  
DYNAMIC CHARACTERISTIC  
Input capacitance  
C
4628  
148  
126  
190  
38  
ies  
Output capacitance  
C
oes  
V
= 20 V, V = 0 V, f = 1 MHz  
GE  
CE  
Reverse transfer capacitance  
Gate charge total  
C
res  
Q
nC  
g
Gate to emitter charge  
Gate to collector charge  
Q
Q
V
CE  
= 400 V, I = 40 A, V = 15 V  
ge  
gc  
C
GE  
90  
SWITCHING CHARACTERISTIC, INDUCTIVE LOAD  
Turn−off delay time  
t
197  
74  
ns  
d(off)  
T = 25°C  
J
V
= 400 V, I = 40 A  
CC  
C
Fall time  
t
f
R = 10 W  
g
V
= 0 V/ 15V  
Turn−off switching loss  
Turn−off delay time  
E
off  
0.42  
210  
106  
0.7  
mJ  
ns  
GE  
t
d(off)  
T = 175°C  
J
V
CC  
= 400 V, I = 40 A  
C
Fall time  
t
f
R = 10 W  
g
V
= 0 V/ 15V  
Turn−off switching loss  
E
off  
mJ  
V
GE  
DIODE CHARACTERISTIC  
Forward voltage  
V
= 0 V, I = 40 A  
V
F
1.50  
1.70  
1.80  
GE  
F
V
GE  
= 0 V, I = 40 A, T = 175°C  
F J  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
2
NGTB40N65IHRTG  
TYPICAL CHARACTERISTICS  
140  
140  
120  
100  
80  
T = 25°C  
V
= 13 V  
to 20 V  
V
= 13 V  
to 20 V  
J
T = 150°C  
GE  
GE  
J
11 V  
120  
100  
80  
11 V  
10 V  
9 V  
10 V  
9 V  
60  
60  
40  
40  
8 V  
7 V  
20  
0
20  
0
8 V  
7 V  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
Figure 1. Output Characteristics  
Figure 2. Output Characteristics  
140  
120  
100  
80  
140  
120  
100  
80  
T = −55°C  
J
V
= 13 V  
to 20 V  
T = 175°C  
GE  
V
= 13 V  
to 20 V  
J
GE  
11 V  
11 V  
10 V  
9 V  
10 V  
60  
60  
40  
40  
9 V  
8 V  
7 V  
20  
0
20  
0
7 V  
8 V  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
Figure 3. Output Characteristics  
Figure 4. Output Characteristics  
140  
2.6  
2.4  
120  
100  
80  
I
I
= 60 A  
= 40 A  
C
2.2  
2.0  
1.8  
1.6  
1.4  
C
60  
I
C
= 20 A  
40  
T = 175°C  
J
20  
0
1.2  
1.0  
T = 25°C  
J
0
2
4
6
8
10  
12  
14  
−75  
−25  
25  
75  
125  
175  
V
GE  
, GATE−EMITTER VOLTAGE (V)  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. Typical Transfer Characteristics  
Figure 6. VCE(sat) vs. TJ  
www.onsemi.com  
3
NGTB40N65IHRTG  
TYPICAL CHARACTERISTICS  
10K  
1K  
100  
90  
C
ies  
T = 25°C  
J
80  
T = 175°C  
J
70  
T = 25°C  
J
60  
50  
40  
30  
20  
10  
0
C
oes  
C
res  
100  
10  
0
0
0
10 20  
30 40 50  
60 70 80  
90 100  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
V , FORWARD VOLTAGE (V)  
F
Figure 7. Typical Capacitance  
Figure 8. Diode Forward Characteristics  
20  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
V
V
I
= 400 V  
= 15 V  
= 40 A  
CE  
18  
16  
14  
12  
10  
8
GE  
E
(off)  
C
V
V
= 400 V  
= 15 V  
= 40 A  
CE  
6
GE  
4
I
C
Rg = 10 W  
0.35  
0.30  
2
0
50  
100  
150  
200  
0
20 40 60 80 100 120 140 160 180 200  
Q , GATE CHARGE (nC)  
G
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. Typical Gate Charge  
Figure 10. Switching Loss vs. Temperature  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
1000  
100  
td  
off  
E
(off)  
t
f
10  
1
V
CE  
= 400 V  
= 15 V  
T = 175°C  
V
V
= 400 V  
= 15 V  
CE  
V
GE  
GE  
J
I
C
= 40 A  
Rg = 10 W  
0.2  
0
Rg = 10 W  
25  
50  
75  
100 125  
150 175  
200  
10  
20  
30  
40  
50  
60  
70  
80  
90  
T , JUNCTION TEMPERATURE (°C)  
J
I , COLLECTOR CURRENT (A)  
C
Figure 11. Switching Time vs. Temperature  
Figure 12. Switching Loss vs. IC  
www.onsemi.com  
4
NGTB40N65IHRTG  
TYPICAL CHARACTERISTICS  
2.0  
1000  
100  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
V
V
= 400 V  
= 15 V  
CE  
t
E
off  
GE  
d(off)  
I
C
= 40 A  
t
f
T = 175°C  
J
10  
1
V
V
= 400 V  
= 15 V  
CE  
GE  
T = 175°C  
J
Rg = 10 W  
0.2  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
10  
20  
30  
40  
50  
60  
70  
I , COLLECTOR CURRENT (A)  
C
Rg, GATE RESISTOR (W)  
Figure 13. Switching Time vs. IC  
Figure 14. Switching Loss vs. Rg  
10K  
1.2  
1.0  
0.8  
0.6  
0.4  
V
I
= 15 V  
= 40 A  
V
V
= 400 V  
= 15 V  
= 40 A  
GE  
CE  
C
GE  
Rg = 10 W  
T = 175°C  
J
I
C
E
off  
T = 175°C  
J
t
d(off)  
1K  
100  
10  
t
f
0.2  
0
0
10  
20  
30  
40  
50  
60  
70  
150 200 250 300 350 400 450 500 550 600  
R , GATE RESISTOR (W)  
G
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
Figure 15. Switching Time vs. Rg  
Figure 16. Switching Loss vs. VCE  
1000  
1000  
100  
10  
100 ms  
50 ms  
t
1 ms  
d(off)  
dc operation  
t
f
100  
Single Nonrepetitive  
V
= 15 V  
= 40 A  
GE  
Pulse T = 25°C  
C
1
I
C
Curves must be derated  
linearly with increase  
in temperature  
Rg = 10 W  
T = 175°C  
J
10  
0.1  
200  
300  
400  
500  
600  
1
10  
100  
1000  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
Figure 17. Switching Time vs. VCE  
Figure 18. Safe Operating Area  
www.onsemi.com  
5
NGTB40N65IHRTG  
TYPICAL CHARACTERISTICS  
2.75  
1K  
2.50  
2.25  
2.00  
1.75  
1.50  
100  
I
I
I
= 60 A  
= 40 A  
= 20 A  
C
C
10  
1
C
V
T
= 15 V  
= 175°C  
GE  
C
1.25  
1.00  
1
10  
100  
1K  
−75  
−25  
25  
75  
125  
175  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 19. Reverse Bias Safe Operating Area  
Figure 20. Forward Voltage vs. Junction  
Temperature  
NGTB40N65IHRTG IGBT die self-heating  
square-wave duty cycle transient thermal response  
1
R
= 0.371  
q
JC  
50% Duty Cycle  
0.1  
Duty Factor = t1/t2  
X Z  
20%  
10%  
5%  
Peak T = P  
+ T  
JC C  
q
J
DM  
Cauer RC network  
R (°C/W) C (J/W)  
i
i
0.082743  
0.068924  
0.100773  
0.067215  
0.043703  
0.007505  
0.00163  
0.00636  
0.01272  
0.03118  
0.15571  
3.90529  
IMPORTANT NOTES about Cauer ladders:  
Time constants are not simple RC products.  
2%  
0.01  
Amplitudes of mathematical solution (Foster R’s) are not the  
same as the Cauer R’s, although their sum is the same.  
The network CAN be extended by adding rungs to represent  
external system properties (PCB, external heatsinks, etc.)  
Foster RC model  
R (°C/W) C (J/W) tau (s)  
i
i
0.001  
0.0414 0.0024  
0.0001  
0.0388 0.0081 0.000316  
Single Pulse  
IMPORTANT NOTES about Foster ladders:  
0.001  
0.003162  
0.01  
0.0322 0.0310  
0.1010 0.0313  
0.1350 0.0741  
Each rung is exactly characterized by its RC−product time  
constant, t . The amplitudes of each term  
i
sum(R (1−exp(−t/t ))) are the resistances.  
i
i
This network CAN NOT be extended by adding more rungs!  
0.0225  
1.4067 0.031623  
0.0001  
0.000001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
on-pulse width [s]  
Figure 21. IGBT Transient Thermal Impedance  
www.onsemi.com  
6
NGTB40N65IHRTG  
Figure 22. Test Circuit for Switching Characteristics  
Figure 23. Definition of Turn Off Waveform  
www.onsemi.com  
7
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TO3P3LD  
CASE 340AB01  
ISSUE A  
DATE 30 OCT 2007  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.15 AND 0.30mm  
FROM THE TERMINAL TIP.  
SEATING  
A
PLANE  
B
B
C
U
Q
E
4
4. DIMENSION A AND B DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS.  
SCALE 1:1  
A
K
MILLIMETERS  
L
DIM MIN  
NOM  
19.90  
15.60  
4.80  
MAX  
20.10  
15.80  
5.00  
A
B
C
D
E
F
19.70  
15.40  
4.60  
0.80  
1.45  
1.80  
1.00  
1.20  
1.50  
1.65  
(3°)  
2.00  
2.20  
P
G
H
J
5.45 BSC  
1.40  
1.20  
0.55  
1.60  
0.75  
0.60  
K
L
19.80  
18.50  
3.30  
20.00  
18.70  
3.50  
20.20  
18.90  
3.70  
1
2
3
F
H
J
P
Q
U
W
3X D  
3.10  
3.20  
3.50  
W
M
S
A B  
0.25  
5.00 REF  
3.00  
2.80  
3.20  
G
G
GENERIC MARKING  
DIAGRAM*  
STYLE 1:  
PIN 1. BASE  
STYLE 2:  
STYLE 3:  
PIN 1. GATE  
2. DRAIN  
PIN 1. ANODE  
2. CATHODE  
3. ANODE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
3. SOURCE  
4. DRAIN  
4. CATHODE  
xxxxxG  
AYWW  
xxxxx = Specific Device Code  
G
A
Y
= PbFree Package  
= Assembly Location  
= Year  
WW  
= Work Week  
*This information is generic. Please refer  
to device data sheet for actual part  
marking. PbFree indicator, “G”, may  
or not be present.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON25095D  
TO3P3LD  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY