NGTB50N120FL2WAG [ONSEMI]

IGBT, 1200 V Field Stop II, 50 A;
NGTB50N120FL2WAG
型号: NGTB50N120FL2WAG
厂家: ONSEMI    ONSEMI
描述:

IGBT, 1200 V Field Stop II, 50 A

双极性晶体管
文件: 总11页 (文件大小:225K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NGTB50N120FL2WAG  
IGBT - Field Stop II / 4 Lead  
This Insulated Gate Bipolar Transistor (IGBT) features a robust and  
cost effective Field Stop II Trench construction, and provides superior  
performance in demanding switching applications, offering both low  
on state voltage and minimal switching loss. In addition, this new  
device is packaged in a TO−247−4L package that provides significant  
www.onsemi.com  
reduction in E Losses compared to standard TO−247−3L package.  
on  
The IGBT is well suited for UPS and solar applications. Incorporated  
into the device is a soft and fast co−packaged free wheeling diode with  
a low forward voltage.  
50 A, 1200 V  
VCEsat = 2.25 V  
Features  
Eon = 2.15 mJ  
Extremely Efficient Trench with Field Stop Technology  
C
T  
= 175°C  
Jmax  
Improved Gate Control Lowers Switching Losses  
Separate Emitter Drive Pin  
TO−247−4L for Minimal E Losses  
Optimized for High Speed Switching  
These are Pb−Free Devices  
on  
G
E1  
E
Typical Applications  
Solar Inverter  
Uninterruptible Power Inverter Supplies (UPS)  
Neutral Point Clamp Topology  
TO−247  
CASE 340AR  
4 LEAD  
ABSOLUTE MAXIMUM RATINGS  
C
E
E1  
Rating  
Symbol  
Value  
Unit  
V
G
Collector−emitter voltage  
V
CES  
1200  
Collector current  
@ TC = 25°C  
@ TC = 100°C  
I
C
200  
50  
A
MARKING DIAGRAM  
Pulsed collector current, T  
I
200  
A
A
A
V
pulse  
CM  
limited by T  
Jmax  
Diode forward current @ TC = 25°C  
@ TC = 100°C  
I
F
200  
50  
50N120FL2  
AYWWG  
Diode pulsed current, T  
limited  
I
200  
pulse  
FM  
by T  
Jmax  
Gate−emitter voltage  
Transient gate−emitter voltage  
(T = 5 ms, D < 0.10)  
V
20  
30  
GE  
pulse  
Power Dissipation  
@ TC = 25°C  
@ TC = 100°C  
P
536  
268  
W
D
50N120FL2 = Specific Device Code  
A
Y
= Assembly Location  
= Year  
Operating junction temperature range  
Storage temperature range  
T
−55 to +175  
−55 to +175  
260  
°C  
°C  
°C  
J
WW  
G
= Work Week  
= Pb−Free Package  
T
stg  
Lead temperature for soldering, 1/8″  
from case for 5 seconds  
T
SLD  
ORDERING INFORMATION  
Stresses exceeding those listed in the Maximum Ratings table may damage the  
device. If any of these limits are exceeded, device functionality should not be  
assumed, damage may occur and reliability may be affected.  
Device  
Package  
Shipping  
NGTB50N120FL2WAG TO−247 30 Units / Rail  
(Pb−Free)  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
May, 2016 − Rev. 0  
NGTB50N120FL2WA/D  
NGTB50N120FL2WAG  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
0.28  
0.50  
40  
Unit  
°C/W  
°C/W  
°C/W  
Thermal resistance junction−to−case, for IGBT  
Thermal resistance junction−to−case, for Diode  
Thermal resistance junction−to−ambient  
R
q
JC  
R
q
JC  
R
q
JA  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise specified)  
J
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
STATIC CHARACTERISTIC  
Collector−emitter breakdown voltage,  
gate−emitter short−circuited  
V
= 0 V, I = 500 mA  
V
(BR)CES  
1200  
V
V
GE  
C
Collector−emitter saturation voltage  
V
= 15 V, I = 50 A  
V
CEsat  
2.25  
2.80  
2.60  
GE  
C
V
GE  
= 15 V, I = 50 A, T = 175°C  
C J  
Gate−emitter threshold voltage  
V
GE  
= V , I = 400 mA  
V
GE(th)  
4.5  
5.5  
6.5  
V
CE  
C
Collector−emitter cut−off current, gate−  
emitter short−circuited  
V
= 0 V, V = 1200 V  
I
4.0  
0.4  
mA  
GE  
CE  
CES  
V
GE  
= 0 V, V = 1200 V, T 175°C  
CE  
J =  
Gate leakage current, collector−emitter  
short−circuited  
V
= 20 V, V = 0 V  
I
200  
nA  
pF  
GE  
CE  
GES  
Input capacitance  
C
7500  
136  
230  
313  
73  
ies  
Output capacitance  
C
oes  
V
= 20 V, V = 0 V, f = 1 MHz  
GE  
CE  
Reverse transfer capacitance  
Gate charge total  
C
res  
nC  
ns  
Q
g
Gate to emitter charge  
Gate to collector charge  
Q
Q
V
CE  
= 600 V, I = 50 A, V = 15 V  
ge  
gc  
C
GE  
146  
SWITCHING CHARACTERISTIC, INDUCTIVE LOAD  
Turn−on delay time  
Rise time  
t
28  
39  
d(on)  
t
r
Turn−off delay time  
t
150  
95  
T = 25°C  
d(off)  
J
V
CC  
= 600 V, I = 50 A  
C
Fall time  
t
f
R = 10 W  
g
mJ  
ns  
Turn−on switching loss  
Turn−off switching loss  
Total switching loss  
Turn−on delay time  
Rise time  
E
E
2.15  
1.4  
3.45  
28  
V
= 15V  
on  
off  
GE  
E
ts  
t
t
d(on)  
t
r
40  
Turn−off delay time  
165  
195  
2.8  
3.0  
5.8  
T = 175°C  
d(off)  
J
V
CC  
= 600 V, I = 50 A  
C
Fall time  
t
f
R = 10 W  
g
mJ  
Turn−on switching loss  
Turn−off switching loss  
Total switching loss  
E
E
V
= 15V  
on  
off  
GE  
E
ts  
DIODE CHARACTERISTIC  
Forward voltage  
V
= 0 V, I = 50 A  
V
F
2.18  
2.55  
2.50  
V
GE  
F
V
GE  
= 0 V, I = 50 A, T = 175°C  
F
J
Reverse recovery time  
Reverse recovery charge  
Reverse recovery current  
Reverse recovery time  
Reverse recovery charge  
Reverse recovery current  
t
281  
2.6  
17  
ns  
mc  
A
rr  
T = 25°C  
J
Q
I = 50 A, V = 400 V  
rr  
F
R
di /dt = 200 A/ms  
F
I
rrm  
t
rr  
420  
5.4  
23  
ns  
mc  
A
T = 175°C  
J
Q
I = 50 A, V = 400 V  
rr  
F
R
di /dt = 200 A/ms  
F
I
rrm  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
2
NGTB50N120FL2WAG  
TYPICAL CHARACTERISTICS  
200  
180  
160  
140  
120  
100  
80  
200  
V
= 20 V − 15 V  
V
GE  
= 20 V − 15 V  
GE  
180  
13 V  
160  
140  
13 V  
T = 25°C  
T = 150°C  
J
J
120  
100  
80  
11 V  
10 V  
11 V  
10 V  
60  
60  
9 V  
8 V  
40  
40  
9 V  
8 V  
7 V  
6
20  
0
20  
0
7 V  
5
0
0
0
1
2
3
4
6
7
8
0
1
2
3
4
5
7
8
V
, COLLECTOR−EMITTER VOLTAGE (V)  
V
, COLLECTOR−EMITTER VOLTAGE (V)  
CE  
CE  
Figure 1. Output Characteristics  
Figure 2. Output Characteristics  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
V
GE  
=
V
GE  
= 20 V − 15 V  
T = −55°C  
J
20 V − 13 V  
13 V  
T = 175°C  
J
11 V  
10 V  
11 V  
10 V  
60  
60  
9 V  
8 V  
40  
40  
7 V  
6
9 V  
20  
0
20  
0
7 V and 8 V  
1
2
3
4
5
6
7
8
0
1
2
3
4
5
7
8
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
Figure 3. Output Characteristics  
Figure 4. Output Characteristics  
200  
180  
160  
140  
120  
4.0  
3.5  
3.0  
2.5  
2.0  
I
C
= 75 A  
100  
80  
60  
40  
20  
0
I
I
= 50 A  
= 25 A  
C
C
1.5  
1.0  
T = 175°C  
J
T = 25°C  
J
2
4
6
8
10  
12  
14  
16  
18  
−75 −50 −25  
0
25 50 75 100 125 150 175 200  
V
GE  
, GATE−EMITTER VOLTAGE (V)  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. Typical Transfer Characteristics  
Figure 6. VCE(sat) vs. TJ  
www.onsemi.com  
3
NGTB50N120FL2WAG  
TYPICAL CHARACTERISTICS  
1M  
100K  
10K  
1K  
100  
T = 25°C  
J
T = 25°C  
J
T = 175°C  
J
90  
80  
70  
60  
50  
40  
30  
20  
C
C
ies  
oes  
100  
10  
C
res  
10  
0
0
0
0
10 20 30 40 50 60 70 80 90 100  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
V , FORWARD VOLTAGE (V)  
F
Figure 7. Typical Capacitance  
Figure 8. Diode Forward Characteristics  
16  
14  
12  
10  
3.5  
3.0  
2.5  
2.0  
V
V
I
= 600 V  
= 15 V  
CE  
GE  
= 40 A  
C
Rg = 10 W  
E
E
on  
8
6
4
off  
V
V
= 600 V  
= 15 V  
CE  
1.5  
1.0  
GE  
2
0
I
C
= 50 A  
50  
100  
150  
200  
250  
300  
350  
0
20 40  
60 80 100 120 140 160 180 200  
Q , GATE CHARGE (nC)  
G
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. Typical Gate Charge  
Figure 10. Switching Loss vs. Temperature  
1000  
100  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
V
V
= 600 V  
= 15 V  
E
off  
CE  
GE  
T = 175°C  
J
t
d(off)  
Rg = 10 W  
t
f
E
on  
t
r
t
d(on)  
10  
1
V
V
= 600 V  
= 15 V  
CE  
GE  
I
C
= 50 A  
Rg = 10 W  
0.5  
0
20 40  
60 80 100 120 140 160 180 200  
10  
20  
30  
40  
50  
60  
70  
80  
90  
T , JUNCTION TEMPERATURE (°C)  
J
I , COLLECTOR CURRENT (A)  
C
Figure 11. Switching Time vs. Temperature  
Figure 12. Switching Loss vs. IC  
www.onsemi.com  
4
NGTB50N120FL2WAG  
TYPICAL CHARACTERISTICS  
16  
1000  
100  
V
V
= 600 V  
= 15 V  
CE  
14  
12  
10  
8
GE  
E
on  
t
f
T = 175°C  
J
I
C
= 50 A  
t
d(off)  
t
r
t
d(on)  
6
10  
1
V
V
= 600 V  
= 15 V  
E
off  
CE  
4
GE  
T = 175°C  
J
2
0
Rg = 10 W  
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
10  
20  
30  
40  
50  
60  
70  
I , COLLECTOR CURRENT (A)  
C
R , GATE RESISTOR (W)  
G
Figure 13. Switching Time vs. IC  
Figure 14. Switching Loss vs. RG  
4.5  
4.0  
3.5  
3.0  
1000  
V
= 15 V  
GE  
E
E
on  
T = 175°C  
J
t
d(off)  
I
C
= 50 A  
Rg = 10 W  
t
f
off  
2.5  
2.0  
1.5  
1.0  
100  
t
r
V
V
= 600 V  
= 15 V  
CE  
t
d(on)  
GE  
T = 175°C  
J
0.5  
0
I
C
= 50 A  
10  
0
10  
20  
30  
40  
50  
60  
70  
350 400 450 500 550 600 650 700 750 800  
, COLLECTOR−EMITTER VOLTAGE (V)  
R , GATE RESISTOR (W)  
G
V
CE  
Figure 15. Switching Time vs. RG  
Figure 16. Switching Loss vs. VCE  
1000  
1000  
100  
10  
V
= 15 V  
GE  
T = 175°C  
J
I
C
= 50 A  
Rg = 10 W  
t
f
dc operation  
t
d(off)  
50 ms  
100  
100 ms  
Single Nonrepetitive  
t
r
Pulse T = 25°C  
C
1 ms  
1
Curves must be derated  
linearly with increase  
in temperature  
t
d(on)  
10  
0.1  
350 400 450 500 550 600 650 700 750 800  
, COLLECTOR−EMITTER VOLTAGE (V)  
1
10  
100  
1K  
10K  
V
CE  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
Figure 17. Switching Time vs. VCE  
Figure 18. Safe Operating Area  
www.onsemi.com  
5
NGTB50N120FL2WAG  
TYPICAL CHARACTERISTICS  
450  
400  
350  
300  
250  
200  
1000  
100  
V
R
= 400 V  
T = 175°C, I = 50 A  
J
F
10  
1
T = 25°C, I = 50 A  
J
F
150  
100  
50  
V
GE  
= 15 V, T = 175°C  
C
1
10  
100  
1K  
10K  
100  
300  
500  
700  
900  
1100 1300  
V
CE  
, COLLECTOR−EMITTER VOLTAGE (V)  
di /dt, DIODE CURRENT SLOPE (A/ms)  
F
Figure 19. Reverse Bias Safe Operating Area  
Figure 20. trr vs. diF/dt  
7
6
70  
60  
50  
40  
30  
V
R
= 400 V  
T = 175°C, I = 50 A  
J
F
T = 175°C, I = 50 A  
J
F
5
4
V
R
= 400 V  
T = 25°C, I = 50 A  
J
F
T = 25°C, I = 50 A  
J
F
3
2
20  
10  
100  
300  
500  
700  
900  
1100  
1300  
100  
300  
500  
700  
900  
1100 1300  
di /dt, DIODE CURRENT SLOPE (A/ms)  
F
di /dt, DIODE CURRENT SLOPE (A/ms)  
F
Figure 21. Qrr vs. diF/dt  
Figure 22. Irm vs. diF/dt  
3.5  
3.0  
2.5  
2.0  
I = 75 A  
F
I = 50 A  
F
I = 25 A  
F
1.5  
1.0  
−75 −50 −25  
0
25 50 75 100 125 150 175 200  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 23. VF vs. TJ  
www.onsemi.com  
6
NGTB50N120FL2WAG  
TYPICAL CHARACTERISTICS  
225  
200  
175  
150  
Ramp, T = 110°C  
C
125  
100  
75  
Square, T = 80°C  
Ramp, T = 80°C  
C
C
Square, T = 110°C  
C
50  
25  
0
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 24. Collector Current vs. Switching Frequency  
1
R
= 0.28  
q
JC  
50% Duty Cycle  
0.1  
20%  
10%  
5%  
R (°C/W) C (J/W)  
i
i
R
C
R
C
R
Case  
Junction  
1
1
2
2
n
0.0000  
0.0536  
0.0340  
0.0558  
0.1059  
0.0262  
0.0000  
0.0059  
0.0294  
0.0567  
0.0944  
1.2083  
0.01  
0.001  
2%  
C
n
Duty Factor = t /t  
1
2
Peak T = P  
x Z  
+ T  
C
q
J
DM  
JC  
Single Pulse  
0.000001 0.00001  
0.0001  
0.0001  
0.001  
PULSE TIME (sec)  
0.01  
0.1  
1
Figure 25. IGBT Transient Thermal Impedance  
1
R
= 0.50  
q
JC  
50% Duty Cycle  
R (°C/W) C (J/W)  
i
i
0.017265 0.000058  
0.023397 0.000427  
0.025095 0.001260  
0.073345 0.001363  
0.093146 0.003395  
0.043705 0.022881  
0.060153 0.052571  
0.127694 0.078312  
0.246682 0.128193  
0.070293 1.422617  
20%  
10%  
5%  
0.1  
R
C
R
R
n
Case  
Junction  
1
2
2%  
0.01  
Single Pulse  
C
C
n
1
2
Duty Factor = t /t  
1
2
Peak T = P  
x Z  
+ T  
JC C  
q
J
DM  
0.001  
0.000001  
0.00001  
0.0001  
0.001  
PULSE TIME (sec)  
0.01  
0.1  
1
Figure 26. Diode Transient Thermal Impedance  
www.onsemi.com  
7
NGTB50N120FL2WAG  
Figure 27. Test Circuit for Switching Characteristics  
Figure 28. Definition of Turn On Waveform  
www.onsemi.com  
8
NGTB50N120FL2WAG  
Figure 29. Definition of Turn Off Waveform  
www.onsemi.com  
9
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TO247 4LEAD  
CASE 340AR  
ISSUE A  
DATE 07 MAY 2020  
SCALE 1:1  
GENERIC  
MARKING DIAGRAM*  
XXXXXXXXX  
AYWWG  
XXXXX = Specific Device Code  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
A
Y
= Assembly Location  
= Year  
WW  
G
= Work Week  
= PbFree Package  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON97044F  
TO247 4LEAD  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY