NLAS4051DR2 [ONSEMI]

Analog Multiplexer/ Demultiplexer TTL Compatible, Single-Pole, 8-Position Plus Common Off; 模拟多路复用器/多路解复用器TTL电平兼容,单刀, 8位加共关闭
NLAS4051DR2
型号: NLAS4051DR2
厂家: ONSEMI    ONSEMI
描述:

Analog Multiplexer/ Demultiplexer TTL Compatible, Single-Pole, 8-Position Plus Common Off
模拟多路复用器/多路解复用器TTL电平兼容,单刀, 8位加共关闭

解复用器 开关 复用器或开关 信号电路 光电二极管
文件: 总11页 (文件大小:135K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NLAS4051  
Analog Multiplexer/  
Demultiplexer  
TTL Compatible, Single−Pole, 8−Position  
Plus Common Off  
http://onsemi.com  
The NLAS4051 is an improved version of the MC14051 and  
MC74HC4051 fabricated in sub−micron Silicon Gate CMOS  
MARKING  
DIAGRAMS  
technology for lower R  
resistance and improved linearity with  
DS(on)  
low current. This device may be operated either with a single supply or  
16  
dual supply up to 3.0 V to pass a 6.0 V signal without coupling  
PP  
SOIC−16  
NLAS4051G  
AWLYWW  
capacitors.  
D SUFFIX  
CASE 751B  
When operating in single supply mode, it is only necessary to tie  
1
1
V
EE  
, pin 7 to ground. For dual supply operation, V is tied to a  
EE  
negative voltage, not to exceed maximum ratings.  
16  
Features  
NLAS  
4051  
ALYWG  
G
TSSOP−16  
DT SUFFIX  
CASE 948F  
Improved R  
Specifications  
DS(on)  
Pin for Pin Replacement for MAX4051 and MAX4051A  
One Half the Resistance Operating at 5.0 V  
Single or Dual Supply Operation  
1
1
Single 2.5−5.0 V Operation, or Dual 3.0 V Operation  
16  
With V of 3.0 to 3.3 V, Device Can Interface with 1.8 V  
Logic, No Translators Needed  
Address and Inhibit Logic are Over−Voltage Tolerant and May  
CC  
QSOP−16  
QS SUFFIX  
CASE 492  
S4051  
ALYW  
1
Be Driven Up +6.0 V Regardless of V  
CC  
1
Improved Linearity Over Standard HC4051 Devices  
Popular SOIC, and Space Saving TSSOP, and QSOP 16 Pin  
A
= Assembly Location  
WL, L = Wafer Lot  
= Year  
Packages  
Y
Pb−Free Packages are Available*  
WW, W = Work Week  
G or G = Pb−Free Package  
ORDERING INFORMATION  
V
NO  
15  
NO  
NO  
13  
NO ADD ADD ADD  
6 C B A  
CC  
2
4
0
Shipping  
Device  
Package  
16  
14  
12  
11  
10  
9
NLAS4051DR2  
SOIC−16 2500/Tape & Reel  
NLAS4051DR2G  
SOIC−16 2500/Tape & Reel  
(Pb−Free)  
NLAS4051DTR2  
TSSOP−16 2500/Tape & Reel  
NLAS4051DTR2G TSSOP−16 2500/Tape & Reel  
(Pb−Free)  
1
2
3
4
5
6
7
8
NO  
NO COM NO  
NO Inhibit  
V
EE  
GND  
1
3
7
5
NLAS4051QSR  
QSOP−16 2500/Tape & Reel  
Figure 1. Pin Connection  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
(Top View)  
*For additional information on our Pb−Free strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
May, 2006 − Rev. 3  
NLAS4051/D  
NLAS4051  
NO  
NO  
NO  
TRUTH TABLE  
0
1
2
Address  
B
C
A
Inhibit  
ON SWITCHES*  
1
X
X
X
don’t care  
don’t care  
don’t care  
All switches open  
NO  
NO  
3
4
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
COM−NO  
COM  
0
COM−NO  
COM−NO  
COM−NO  
COM−NO  
COM−NO  
COM−NO  
COM−NO  
1
2
3
4
5
6
7
NO  
NO  
5
6
NO  
7
ADD  
ADD  
ADD  
C
LOGIC  
Inhibit  
B
A
*NO and COM pins are identical and interchangeable. Either may be considered  
an input or output; signals pass equally well in either direction.  
Figure 2. Logic Diagram  
MAXIMUM RATINGS  
Parameter  
Symbol  
Value  
Unit  
Negative DC Supply Voltage  
(Referenced to GND)  
(Referenced to GND)  
V
−7.0 to )0.5  
V
V
EE  
CC  
Positive DC Supply Voltage (Note 1)  
V
−0.5 to )7.0  
−0.5 to )7.0  
(Referenced to V  
)
EE  
Analog Input Voltage  
V
V
−0.5 to V )0.5  
V
V
IS  
EE  
CC  
Digital Input Voltage  
(Referenced to GND)  
V
−0.5 to 7.0  
$50  
IN  
DC Current, Into or Out of Any Pin  
Storage Temperature Range  
I
mA  
_C  
−65 to )150  
T
STG  
Lead Temperature, 1 mm from Case for 10 Seconds  
Junction Temperature under Bias  
Thermal Resistance  
T
260  
_C  
_C  
L
T
)150  
J
SOIC  
TSSOP  
QSOP  
143  
164  
164  
°C/W  
JA  
Power Dissipation in Still Air,  
SOIC  
TSSOP  
QSOP  
P
500  
450  
450  
mW  
D
Moisture Sensitivity  
Flammability Rating  
ESD Withstand Voltage  
MSL  
Level 1  
Oxygen Index: 30% − 35%  
F
UL 94 V−0 @ 0.125 in  
R
Human Body Model (Note 2)  
Machine Model (Note 3)  
V
u2000  
u200  
V
ESD  
Charged Device Model (Note 4)  
u1000  
Latchup Performance  
Above V and Below GND at 125°C (Note 5)  
I
$300  
mA  
CC  
LATCHUP  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. The absolute value of V $|V | 7.0.  
CC  
EE  
2. Tested to EIA/JESD22−A114−A.  
3. Tested to EIA/JESD22−A115−A.  
4. Tested to JESD22−C101−A.  
5. Tested to EIA/JESD78.  
http://onsemi.com  
2
 
NLAS4051  
RECOMMENDED OPERATING CONDITIONS  
Parameter  
Symbol  
Min  
Max  
Unit  
V
Negative DC Supply Voltage  
Positive DC Supply Voltage  
(Referenced to GND)  
(Referenced to GND)  
V
−5.5  
GND  
EE  
CC  
V
2.5  
2.5  
5.5  
6.6  
V
(Referenced to V  
)
EE  
Analog Input Voltage  
V
V
V
CC  
V
V
IS  
EE  
Digital Input Voltage  
(Note 6) (Referenced to GND)  
V
0
5.5  
IN  
Operating Temperature Range, All Package Types  
T
−55  
125  
_C  
ns/V  
A
Input Rise/Fall Time  
(Channel Select or Enable Inputs)  
V
V
= 3.0 V $ 0.3 V  
= 5.0 V $ 0.5 V  
t , t  
r f  
0
0
100  
20  
CC  
CC  
6. Unused digital inputs may not be left open. All digital inputs must be tied to a high−logic voltage level or a low−logic input voltage level.  
DC CHARACTERISTICS − Digital Section (Voltages Referenced to GND)  
Guaranteed Limit  
V
CC  
Symbol  
55 to 25°C v85°C v125°C  
V
Parameter  
Condition  
Unit  
Minimum High−Level Input Voltage,  
Address and Inhibit Inputs  
V
2.5  
3.0  
4.5  
5.5  
1.75  
2.1  
1.75  
2.1  
1.75  
2.1  
V
IH  
3.15  
3.85  
3.15  
3.85  
3.15  
3.85  
Maximum Low−Level Input Voltage,  
Address and Inhibit Inputs  
V
2.5  
3.0  
4.5  
5.5  
.45  
0.9  
1.35  
1.65  
.45  
0.9  
1.35  
1.65  
.45  
0.9  
1.35  
1.65  
V
IL  
Maximum Input Leakage Current,  
Address or Inhibit Inputs  
V
= 6.0 or GND  
I
0 V to 6.0 V  
$0.1  
$1.0  
$1.0  
A  
A  
IN  
IN  
Maximum Quiescent Supply Current  
(per Package)  
Address, Inhibit and  
= V or GND  
I
6.0  
4.0  
40  
80  
CC  
V
IS  
CC  
DC ELECTRICAL CHARACTERISTICS − Analog Section  
Guaranteed Limit  
Symbol  
V
V
EE  
CC  
−55 to 25°C v85_C v125_C  
V
V
Parameter  
Test Conditions  
= V or V  
Unit  
Maximum “ON” Resistance  
(Note 7)  
V
V
S
R
ON  
3.0  
4.5  
3.0  
0
0
−3.0  
86  
37  
26  
108  
46  
120  
55  
IN  
IS  
IL  
IH  
= (V to V  
)
CC  
EE  
|I | = 10 mA  
(Figures 4 thru 9)  
33  
37  
Maximum Difference in “ON”  
Resistance Between Any Two  
Channels in the Same Package |I | = 10 mA, V = 2.0 V  
V
V
S
= V or V V = 2.0 V  
R  
ON  
3.0  
4.5  
3.0  
0
0
−3.0  
15  
13  
10  
20  
18  
15  
20  
18  
15  
IN  
IS  
IL  
IH, IS  
= ½ (V − V ), V = 3.0 V  
CC  
EE  
IS  
IS  
ON Resistance Flatness  
|I | = 10 mA V  
= 1, 2, 3.5 V Rflat(ON) 4.5  
4
2
4
2
5
3
S
COM  
V
= 2, 0, 2 V  
3.0  
3.0  
COM  
Maximum Off−Channel  
Leakage Current  
Switch Off  
I
6.0  
3.0  
0
−3.0  
0.1  
0.1  
5.0  
5.0  
100  
100  
nA  
NC(OFF)  
V
V
= V or V  
IN  
IO  
IL IH  
I
NO(OFF)  
= V −1.0 V or V +1.0 V  
CC  
EE  
(Figure 17)  
Maximum On−Channel  
Leakage Current,  
Channel− to−Channel  
Switch On  
I
6.0  
3.0  
0
−3.0  
0.1  
0.1  
5.0  
5.0  
100  
100  
nA  
COM(ON)  
V
IO  
= V −1.0 V or V +1.0 V  
CC EE  
(Figure 17)  
7. At supply voltage (V ) approaching 2.5 V the analog switch on−resistance becomes extremely non−linear. Therefore, for low voltage  
CC  
operation it is recommended that these devices only be used to control digital signals.  
http://onsemi.com  
3
 
NLAS4051  
AC CHARACTERISTICS (Input t = t = 3 ns)  
r
f
Guaranteed Limit  
−55 to 25_C  
V
V
V
EE  
V
CC  
Min  
Typ*  
Symbol  
Parameter  
Test Conditions  
v85_C v125_C Unit  
Minimum Break−Before−  
Make Time  
V
V
= V or V  
t
BBM  
3.0  
4.5  
3.0  
0.0  
0.0  
−3.0  
1.0  
1.0  
1.0  
6.5  
5.0  
3.5  
ns  
IN  
IS  
IL  
IH  
= V  
CC  
R = 300  
C = 35 pF  
L
L
(Figure 19)  
*Typical Characteristics are at 25_C.  
AC CHARACTERISTICS (C = 35 pF, Input t = t = 3 ns)  
L
r
f
Guaranteed Limit  
−55 to 25°C  
v85°C  
v125°C  
V
V
V
EE  
V
CC  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Parameter  
Unit  
Transition Time  
(Address Selection Time)  
(Figure 18)  
t
2.5  
3.0  
4.5  
3.0  
0
0
0
22  
20  
16  
16  
40  
28  
23  
23  
45  
30  
25  
25  
50  
35  
30  
28  
ns  
TRANS  
−3.0  
Turn−on Time  
(Figures 14, 15, 20, and 21)  
t
2.5  
3.0  
4.5  
3.0  
0
0
0
22  
18  
16  
16  
40  
28  
23  
23  
45  
30  
25  
25  
50  
35  
30  
28  
ns  
ns  
ON  
Inhibit to N or N  
O
C
−3.0  
Turn−off Time  
t
2.5  
3.0  
4.5  
3.0  
0
0
0
22  
18  
16  
16  
40  
28  
23  
23  
45  
30  
25  
25  
50  
35  
30  
28  
OFF  
(Figures 14, 15, 20, and 21)  
Inhibit to N or N  
O
C
−3.0  
Typical @ 25°C, V = 5.0 V  
CC  
Maximum Input Capacitance, Select Inputs  
C
IN  
8
pF  
Analog I/O  
C
or C  
10  
10  
1.0  
NO  
NC  
Common I/O  
Feedthrough  
C
COM  
C
(ON)  
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)  
Typ  
V
V
EE  
CC  
Symbol  
V
V
25°C  
Parameter  
Condition  
= ½ (V − V  
Source Amplitude = 0 dBm  
(Figures 10 and 22)  
Unit  
Maximum On−Channel Bandwidth or  
Minimum Frequency Response  
V
)
EE  
BW  
3.0  
4.5  
6.0  
3.0  
0.0  
0.0  
0.0  
80  
90  
95  
95  
MHz  
IS  
CC  
−3.0  
Off−Channel Feedthrough Isolation  
Maximum Feedthrough On Loss  
f =100 kHz; V = ½ (V − V  
Source = 0 dBm  
(Figures 12 and 22)  
)
EE  
V
3.0  
4.5  
6.0  
3.0  
0.0  
0.0  
0.0  
−93  
−93  
−93  
−93  
dB  
dB  
IS  
CC  
ISO  
−3.0  
V
= ½ (V − V  
)
EE  
V
3.0  
4.5  
6.0  
3.0  
0.0  
0.0  
0.0  
−2  
−2  
−2  
−2  
IS  
CC  
ONL  
Source = 0 dBm  
(Figures 10 and 22)  
−3.0  
Charge Injection  
V
R
= V to V  
f
= 1 kHz, t = t = 3 ns  
Q
5.0  
3.0  
0.0  
−3.0  
9.0  
12  
pC  
%
IN  
CC  
EE, IS  
r
f
= 0 , C = 1000 pF, Q = C * V  
IS  
L
L
OUT  
(Figures 16 and 23)  
Total Harmonic Distortion THD + Noise  
f
= 1 MHz, R = 10 K, C = 50 pF,  
THD  
IS  
L
L
V
V
= 5.0 V sine wave  
6.0  
3.0  
0.0  
−3.0  
0.10  
0.05  
IS  
IS  
PP  
= 6.0 V sine wave  
PP  
(Figure 13)  
http://onsemi.com  
4
NLAS4051  
100  
10  
100  
80  
60  
40  
2.0 V  
1
0.1  
0.01  
V
= 3.0 V  
CC  
3.0 V  
4.5 V  
5.5 V  
0.001  
0.0001  
20  
0
V
= 5.0 V  
CC  
0.00001  
−40  
−20  
0
20  
60  
80  
100  
120  
−4.0  
−2.0  
0
2.0  
(VDC)  
4.0  
6.0  
Temperature (°C)  
V
IS  
Figure 3. ICC versus Temp, VCC = 3 V and 5 V  
Figure 4. RON versus VCC, Temp = 255C  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
125°C  
85°C  
125°C  
25°C  
40  
30  
25°C  
85°C  
20  
10  
−55°C  
−55°C  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
VCom (V)  
VCom (V)  
Figure 5. Typical On Resistance  
VCC = 2.0 V, VEE = 0 V  
Figure 6. Typical On Resistance  
VCC = 3.0 V, VEE = 0 V  
25  
20  
15  
10  
25  
125°C  
125°C  
85°C  
85°C  
20  
15  
25°C  
−55°C  
10  
5
25°C  
−55°C  
5
0
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0  
VCom (V)  
3.5 4.0 4.5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCom (V)  
Figure 7. Typical On Resistance  
CC = 4.5 V, VEE = 0 V  
Figure 8. Typical On Resistance  
VCC = 5.5 V, VEE = 0 V  
V
http://onsemi.com  
5
NLAS4051  
25  
20  
15  
10  
5
125°C  
85°C  
−55°C  
25°C  
0
−4  
−2  
0
2
4
VCom (V)  
Figure 9. Typical On Resistance  
VCC = 3.3 V, VEE = −3.3 V  
90  
50  
40  
30  
20  
10  
0
72  
54  
36  
18  
0
BANDWIDTH (ON−RESPONSE)  
PHASE SHIFT  
−10  
−20  
−18  
−36  
−30  
−40  
−50  
−54  
−72  
−90  
0.1  
1.0  
10  
100  
0.1  
1.0  
10  
100  
FREQUENCY (mHz)  
FREQUENCY (mHz)  
Figure 10. Bandwidth, VCC = 5.0 V  
Figure 11. Phase Shift, VCC = 5.0 V  
0
0
−10  
−20  
3.0  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
5.5  
4.5  
0.1  
$3.3  
0.01  
0.1  
1.0  
10  
100  
10  
100  
1000  
10000  
10000  
FREQUENCY (mHz)  
FREQUENCY (mHz)  
Figure 12. Off Isolation, VCC = 5.0 V  
Figure 13. Total Harmonic Distortion  
http://onsemi.com  
6
NLAS4051  
30  
25  
30  
25  
20  
15  
10  
5
T = 25_C  
V
= 4.5 V  
A
CC  
20  
15  
10  
t
(ns)  
ON  
t
ON  
t
t
(ns)  
OFF  
OFF  
5
0
0
−55  
2.5  
3
3.5  
V
4
4.5  
5
−40  
25  
Temperature (°C)  
85  
125  
(VOLTS)  
CC  
Figure 14. tON and tOFF versus VCC  
Figure 15. tON and tOFF versus Temp  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
100  
10  
1
V
= 5 V  
CC  
I
COM(ON)  
0.1  
I
COM(OFF)  
V
= 3 V  
CC  
0.01  
0
V
= 5.0 V  
85  
CC  
I
NO(OFF)  
−0.5  
0.001  
0
1
2
3
4
5
−55  
−20  
25  
70  
125  
TEMPERATURE (°C)  
V
(V)  
COM  
Figure 16. Charge Injection versus COM Voltage  
Figure 17. Switch Leakage versus Temperature  
V
CC  
V
Output  
CC  
Input  
50%  
50%  
V
OUT  
0.1 F  
0 V  
V
EE  
300  
35 pF  
V
CC  
90%  
Output  
V
Address Select Pin  
10%  
EE  
t
t
trans  
trans  
Figure 18. Channel Selection Propagation Delay  
http://onsemi.com  
7
NLAS4051  
V
CC  
DUT  
Input  
GND  
V
Output  
CC  
V
OUT  
0.1 F  
t
BMM  
300  
35 pF  
90%  
90% of V  
OH  
Output  
Address Select Pin  
GND  
Figure 19. tBBM (Time Break−Before−Make)  
V
CC  
DUT  
Input  
50%  
50%  
90%  
V
0 V  
CC  
Output  
V
OUT  
0.1 F  
V
OH  
Open  
300  
35 pF  
90%  
Output  
GND  
Enable  
Input  
t
t
OFF  
ON  
Figure 20. tON/tOFF  
V
V
CC  
CC  
Input  
0 V  
50%  
50%  
DUT  
300  
Output  
V
OUT  
V
CC  
Open  
35 pF  
Output  
V
10%  
10%  
OL  
Enable  
Input  
t
t
ON  
OFF  
Figure 21. tON/tOFF  
http://onsemi.com  
8
NLAS4051  
50  
DUT  
Reference  
Input  
50 Generator  
Transmitted  
Output  
50  
Channel switch Address and Inhibit/s test socket is normalized. Off isolation is measured across an off  
channel. On loss is the bandwidth of an On switch. V , Bandwidth and V  
are independent of the input  
ISO  
ONL  
signal direction.  
V
OUT  
= Off Channel Isolation = 20 Log ǒ Ǔ  
V
V
for V at 100 kHz  
IN  
ISO  
V
IN  
OUT  
V
= On Channel Loss = 20 Log ǒ Ǔ for V at 100 kHz to 50 MHz  
ONL  
IN  
V
IN  
Bandwidth (BW) = the frequency 3 dB below V  
ONL  
Figure 22. Off Channel Isolation/On Channel Loss (BW)/Crosstalk  
(On Channel to Off Channel)/VONL  
DUT  
V
CC  
V
Output  
Open  
IN  
GND  
C
L
Output  
Off  
V  
OUT  
Off  
On  
V
IN  
Figure 23. Charge Injection: (Q)  
TYPICAL OPERATION  
+5.0 V  
+3.0 V  
V
V
CC  
CC  
16  
16  
V
V
EE  
EE  
7
7
8
GND  
GND  
8
−3.0 V  
Figure 24. 5.0 Volts Single Supply  
CC = 5.0 V, VEE = 0  
Figure 25. Dual Supply  
VCC = 3.0 V, VEE = −3.0 V  
V
http://onsemi.com  
9
NLAS4051  
PACKAGE DIMENSIONS  
SOIC−16  
D SUFFIX  
CASE 751B−05  
ISSUE J  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
−A−  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
16  
9
8
−B−  
P 8 PL  
M
S
B
0.25 (0.010)  
1
MILLIMETERS  
INCHES  
MIN  
G
DIM MIN  
MAX  
10.00  
4.00  
1.75  
0.49  
1.25  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
0.386  
0.150  
0.054  
0.014  
0.016  
F
R X 45  
K
_
G
J
1.27 BSC  
0.050 BSC  
C
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
−T−  
SEATING  
PLANE  
K
M
P
R
J
_
_
_
_
M
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
D
16 PL  
M
S
S
A
0.25 (0.010)  
T B  
TSSOP−16  
CASE 948F−01  
ISSUE A  
NOTES:  
16X KREF  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH. PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
M
S
S
V
0.10 (0.004)  
T U  
S
0.15 (0.006) T U  
K
K1  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL  
NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08  
(0.003) TOTAL IN EXCESS OF THE K  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
16  
9
2X L/2  
J1  
B
−U−  
SECTION N−N  
L
J
PIN 1  
IDENT.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
8
1
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE −W−.  
N
0.25 (0.010)  
S
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
0.15 (0.006) T U  
A
M
A
B
C
D
F
4.90  
4.30  
−−−  
0.05  
0.50  
5.10 0.193 0.200  
4.50 0.169 0.177  
−V−  
N
1.20  
−−− 0.047  
0.15 0.002 0.006  
0.75 0.020 0.030  
F
G
H
J
J1  
K
K1  
L
0.65 BSC  
0.026 BSC  
0.18  
0.09  
0.09  
0.19  
0.19  
0.28 0.007 0.011  
DETAIL E  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
−W−  
C
6.40 BSC  
0.252 BSC  
M
0
8
0
8
_
_
_
_
0.10 (0.004)  
DETAIL E  
H
SEATING  
PLANE  
−T−  
D
G
http://onsemi.com  
10  
NLAS4051  
PACKAGE DIMENSIONS  
QSOP−16  
QS SUFFIX  
CASE 492−01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. THE BOTTOM PACKAGE SHALL BE BIGGER THAN  
THE TOP PACKAGE BY 4 MILS (NOTE: LEAD SIDE  
ONLY). BOTTOM PACKAGE DIMENSION SHALL  
FOLLOW THE DIMENSION STATED IN THIS  
DRAWING.  
4. PLASTIC DIMENSIONS DOES NOT INCLUDE MOLD  
FLASH OR PROTRUSIONS. MOLD FLASH OR  
PROTRUSIONS SHALL NOT EXCEED 6 MILS PER  
SIDE.  
−A−  
Q
R
H x 45  
_
U
RAD.  
0.013 X 0.005  
DP. MAX  
5. BOTTOM EJECTOR PIN WILL INCLUDE THE  
COUNTRY OF ORIGIN (COO) AND MOLD CAVITY I.D.  
−B−  
MOLD PIN  
MARK  
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
MAX  
0.196  
0.157  
0.068  
0.012  
0.035  
MIN  
4.80  
3.81  
1.55  
0.20  
0.41  
MAX  
4.98  
3.99  
1.73  
0.31  
0.89  
0.189  
0.150  
0.061  
0.008  
0.016  
RAD.  
0.005−0.010  
TYP  
G
H
J
0.025 BSC  
0.64 BSC  
0.008 0.018  
0.0098 0.0075  
0.20  
0.249  
0.10  
5.84  
0
0.46  
0.191  
0.25  
6.20  
8
G
L
K
L
0.004  
0.230  
0
0.010  
0.244  
8
P
DETAIL E  
M
0.25 (0.010)  
T
M
N
P
_
_
_
_
0
0.007  
7
0.011  
0
0.18  
7
0.28  
_
_
_
_
Q
R
U
V
0.020 DIA  
0.51 DIA  
0.025  
0.025  
0
0.035  
0.035  
8
0.64  
0.64  
0
0.89  
0.89  
8
V
K
_
_
_
_
C
N 8 PL  
−T−  
D16 PL  
0.25 (0.010)  
SEATING  
PLANE  
M
S
S
A
T
B
J
M
F
DETAIL E  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5773−3850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NLAS4051/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY