NLAST4051DTR2 [ONSEMI]

Analog Multiplexer/ Demultiplexer; 模拟多路复用器/多路解复用器
NLAST4051DTR2
型号: NLAST4051DTR2
厂家: ONSEMI    ONSEMI
描述:

Analog Multiplexer/ Demultiplexer
模拟多路复用器/多路解复用器

解复用器 开关 复用器或开关 信号电路 光电二极管
文件: 总16页 (文件大小:129K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NLAST4051  
Analog Multiplexer/  
Demultiplexer  
TTL Compatible, Single–Pole, 8–Position  
Plus Common Off  
http://onsemi.com  
MARKING DIAGRAMS  
The NLAST4051 is an improved version of the MC14051 and  
MC74HC4051 fabricated in sub–micron Silicon Gate CMOS  
technology for lower R  
resistance and improved linearity with  
DS(on)  
low current. This device may be operated either with a single supply or  
16  
9
dual supply up to ±3 V to pass a 6 V signal without coupling  
capacitors.  
When operating in single supply mode, it is only necessary to tie  
PP  
NLAST4051  
AWLYWW  
SO–16  
D SUFFIX  
CASE 751B  
1
8
V
EE  
, pin 7 to ground. For dual supply operation, V is tied to a  
EE  
negative voltage, not to exceed maximum ratings. Translation is  
provided in the device, the Address and Inhibit are standard TTL level  
compatible. For CMOS compatibility see NLAS4051. Pin for pin  
compatible with all industry standard versions of ‘4051.’  
16  
9
NLAST  
4051  
TSSOP–16  
DT SUFFIX  
CASE 948F  
ALYW  
Improved R  
Specifications  
DS(on)  
Pin for Pin Replacement for MAX4051 and MAX4051A  
1
8
9
– One Half the Resistance Operating at 5.0 Volts  
Single or Dual Supply Operation  
16  
– Single 3–5 Volt Operation, or Dual ±3 Volt Operation  
NLAST  
4051  
ALYW  
– With V of 3.0 to 3.3 V, Device Can Interface with 1.8 V Logic,  
CC  
No Translators Needed  
– Address and Inhibit Logic are Over–Voltage Tolerant and May Be  
Driven Up +6 V Regardless of V  
QSOP–16  
QS SUFFIX  
CASE 492  
CC  
1
8
Address and Inhibit Pins Standard TTL Compatible  
A
L, WL  
Y
= Assembly Location  
= Wafer Lot  
= Year  
– Greatly Improved Noise Margin Over MAX4051 and MAX4051A  
– True TTL Compatibility V = 0.8 V, V = 2.0 V  
IL  
IH  
Improved Linearity Over Standard HC4051 Devices  
W
= Work Week  
Popular SOIC, and Space Saving TSSOP, and QSOP 16 Pin  
Packages  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NLAST4051D  
SO–16  
SO–16  
48 Units/Rail  
NLAST4051DR2  
2500 Units/Reel  
NLAST4051DT  
NLAST4051DTR2  
NLAST4051QS  
NLAST4051QSR  
TSSOP–16  
96 Units/Rail  
TSSOP–16 2500 Units/Reel  
QSOP–16  
QSOP–16  
98 Units/Rail  
2500 Units/Reel  
Semiconductor Components Industries, LLC, 2002  
1
Publication Order Number:  
June, 2002 – Rev. 2  
NLAST4051/D  
NLAST4051  
V
NO  
15  
NO  
NO  
13  
NO ADD ADD ADD  
6 C B A  
CC  
2
4
0
NO  
NO  
NO  
0
1
2
16  
14  
12  
11  
10  
9
NO  
NO  
3
4
COM  
1
2
3
4
5
6
Inhibit  
7
8
NO  
NO COM NO  
NO  
V
EE  
GND  
1
3
7
5
NO  
NO  
5
6
Figure 1. Pin Connection  
(Top View)  
NO  
7
ADD  
C
LOGIC  
ADD  
ADD  
Inhibit  
B
A
Figure 2. Logic Diagram  
TRUTH TABLE  
Address  
B
Inhibit  
ON SWITCHES*  
C
A
1
X
X
X
All switches open  
don’t care  
don’t care  
don’t care  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
COM–NO  
COM–NO  
COM–NO  
COM–NO  
COM–NO  
COM–NO  
COM–NO  
COM–NO  
0
1
2
3
4
5
6
7
*NO and COM pins are identical and interchangeable. Either may be  
considered an input or output; signals pass equally well in either direction.  
http://onsemi.com  
2
NLAST4051  
MAXIMUM RATINGS (Note 1)  
Symbol  
Parameter  
Value  
Unit  
V
V
EE  
V
CC  
Negative DC Supply Voltage  
(Referenced to GND)  
(Referenced to GND)  
–7.0 to )0.5  
Positive DC Supply Voltage (Note 2)  
–0.5 to )7.0  
–0.5 to )7.0  
V
(Referenced to V  
)
EE  
V
V
I
Analog Input Voltage  
V
EE  
–0.5 to V )0.5  
V
V
IS  
CC  
Digital Input Voltage  
(Referenced to GND)  
–0.5 to 7.0  
$50  
IN  
DC Current, Into or Out of Any Pin  
Storage Temperature Range  
mA  
°C  
T
T
T
–65 to )150  
260  
STG  
L
Lead Temperature, 1 mm from Case for 10 Seconds  
Junction Temperature under Bias  
Thermal Resistance  
°C  
)150  
°C  
J
q
SOIC  
TSSOP  
QSOP  
143  
164  
164  
°C/W  
JA  
P
D
Power Dissipation in Still Air,  
SOIC  
TSSOP  
QSOP  
500  
450  
450  
mW  
MSL  
Moisture Sensitivity  
Flammability Rating  
ESD Withstand Voltage  
Level 1  
F
R
Oxygen Index: 30% – 35%  
UL 94 V–0 @ 0.125 in  
V
ESD  
Human Body Model (Note 3)  
Machine Model (Note 4)  
u2000  
u200  
V
Charged Device Model (Note 5)  
u1000  
I
Latch–Up Performance  
Above V and Below GND at 125°C (Note 6)  
$300  
mA  
LATCH–UP  
CC  
1. Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Extended exposure to these  
conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum–rated  
conditions is not implied.  
2. The absolute value of V $|V | 7.0.  
CC  
EE  
3. Tested to EIA/JESD22–A114–A.  
4. Tested to EIA/JESD22–A115–A.  
5. Tested to JESD22–C101–A.  
6. Tested to EIA/JESD78.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
Max  
Unit  
V
V
EE  
CC  
Negative DC Supply Voltage  
Positive DC Supply Voltage  
(Referenced to GND)  
(Referenced to GND)  
–5.5  
GND  
V
2.5  
2.5  
5.5  
6.6  
V
(Referenced to V  
)
EE  
V
V
Analog Input Voltage  
V
V
CC  
V
V
IS  
EE  
Digital Input Voltage  
(Note 7) (Referenced to GND)  
0
5.5  
IN  
T
A
Operating Temperature Range, All Package Types  
–55  
125  
°C  
t , t  
Input Rise/Fall Time  
(Channel Select or Enable Inputs)  
V
V
= 3.0 V $ 0.3 V  
= 5.0 V $ 0.5 V  
0
0
100  
20  
ns/V  
r
f
CC  
CC  
7. Unused digital inputs may not be left open. All digital inputs must be tied to a high–logic voltage level or a low–logic input voltage level.  
http://onsemi.com  
3
NLAST4051  
DC CHARACTERISTICS – Digital Section (Voltages Referenced to GND)  
Guaranteed Limit  
V
CC  
55 to 25°C v85°C v125°C  
V
Symbol  
Parameter  
Condition  
Unit  
V
IH  
Minimum High–Level Input Voltage,  
Address or Inhibit Inputs  
3.0  
4.5  
5.5  
1.6  
2.0  
2.0  
1.6  
2.0  
2.0  
1.6  
2.0  
2.0  
V
V
IL  
Maximum Low–Level Input Voltage,  
Address or Inhibit Inputs  
3.0  
4.5  
5.5  
0.5  
0.8  
0.8  
0.5  
0.8  
0.8  
0.5  
0.8  
0.8  
V
I
I
Maximum Input Leakage Current,  
Address or Inhibit Inputs  
V
= 6.0 or GND  
0 V to 6.0 V  
$0.1  
$1.0  
$1.0  
m A  
m A  
IN  
IN  
Maximum Quiescent Supply  
Current (per Package)  
Address or Inhibit and  
= V or GND  
6.0  
4.0  
40  
80  
CC  
V
IS  
CC  
DC ELECTRICAL CHARACTERISTICS – Analog Section  
Guaranteed Limit  
V
CC  
V
EE  
–55 to 25°C v85°C v125°C  
V
V
Symbol  
Parameter  
Test Conditions  
= V or V  
Unit  
R
Maximum “ON” Resistance  
V
V
S
3.0  
4.5  
3.0  
0
0
–3.0  
86  
37  
26  
108  
46  
120  
55  
W
ON  
IN  
IS  
IL  
IH  
= (V to V  
)
EE  
CC  
|I | = 10 mA  
(Figures 4 thru 9)  
33  
37  
D
R
Maximum Difference in “ON”  
Resistance Between Any Two  
Channels in the Same Package |I | = 10 mA,  
V
= V or V  
V = 2.0 V 3.0  
IS  
0
0
–3.0  
15  
13  
10  
20  
18  
15  
20  
18  
15  
W
ON  
IN  
IL  
IH,  
V = 3.0 V  
4.5  
3.0  
IS  
V = 2.0 V  
S
IS  
Rflat(ON) ON Resistance Flatness  
V
COM  
V
COM  
= 1, 2, 3.5 V  
= 2, 0, 2 V  
4.5  
3.0  
4
2
4
2
5
3
W
3.0  
I
I
Maximum Off–Channel  
Leakage Current  
Switch Off  
6.0  
3.0  
0
–3.0  
0.1  
0.1  
5.0  
5.0  
100  
100  
nA  
NC(OFF)  
V
V
= V or V  
IN  
IL IH  
NO(OFF)  
= V –1.0 V or V +1.0 V  
IO  
CC  
EE  
(Figure 17)  
I
Maximum On–Channel Leak-  
age Current, Channel– to–  
Channel  
Switch On  
6.0  
3.0  
0
–3.0  
0.1  
0.1  
5.0  
5.0  
100  
100  
nA  
COM(ON)  
V
IO  
= V –1.0 V or V +1.0 V  
CC EE  
(Figure 17)  
http://onsemi.com  
4
NLAST4051  
AC CHARACTERISTICS (Input t = t = 3 ns)  
r
f
Guaranteed Limit  
–55 to 25°C  
V
CC  
V
EE  
Min  
Typ*  
V
V
Symbol  
Parameter  
Minimum Break–Before–Make Time  
Test Conditions  
v85°C v125°C Unit  
t
V
V
= V or V  
3.0  
4.5  
3.0  
0.0  
0.0  
–3.0  
1.0  
1.0  
1.0  
6.5  
5.0  
3.5  
ns  
BBM  
IN  
IS  
IL  
IH  
= V  
CC  
R = 300 WC, = 35 pF  
L
L
(Figure 19)  
*Typical Characteristics are at 25°C.  
AC CHARACTERISTICS (C = 35 pF, Input t = t = 3 ns)  
L
r
f
Guaranteed Limit  
–55 to 25°C  
v85°C  
v125°C  
V
V
V
EE  
V
CC  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Parameter  
Transition Time  
(Address Selection Time)  
(Figure 18)  
Unit  
t
t
t
2.5  
3.0  
4.5  
3.0  
0
0
0
40  
28  
23  
23  
45  
30  
25  
25  
50  
35  
30  
28  
ns  
TRANS  
–3.0  
Turn–on Time  
(Figures 14, 15, 20, and 21)  
2.5  
3.0  
4.5  
3.0  
0
0
0
40  
28  
23  
23  
45  
30  
25  
25  
50  
35  
30  
28  
ns  
ns  
ON  
Enable to N or N  
O
C
–3.0  
Turn–off Time  
2.5  
3.0  
4.5  
3.0  
0
0
0
40  
28  
23  
23  
45  
30  
25  
25  
50  
35  
30  
28  
OFF  
(Figures 14, 15, 20, and 21)  
Enable to N or N  
O
C
–3.0  
Typical @ 25°C, V = 5.0 V  
CC  
pF  
C
C
C
C
Maximum Input Capacitance,Select Inputs  
8
IN  
or C  
Analog I/O  
10  
10  
1.0  
NO  
NC  
Common I/O  
Feedthrough  
COM  
(ON)  
http://onsemi.com  
5
NLAST4051  
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)  
Typ  
V
CC  
V
EE  
V
V
25°C  
Symbol  
Parameter  
Condition  
Unit  
BW  
Maximum On–Channel  
Bandwidth or Minimum  
Frequency Response  
V
= ½ (V – V )  
EE  
3.0  
4.5  
6.0  
3.0  
0.0  
0.0  
0.0  
80  
90  
95  
95  
MHz  
IS  
CC  
Source Amplitude = 0 dBm  
(Figures 10 and 22)  
–3.0  
V
Off–Channel Feedthrough  
Isolation  
f = 100 kHz; V = ½ (V – V  
Source = 0 dBm  
(Figures 12 and 22)  
)
3.0  
4.5  
6.0  
3.0  
0.0  
0.0  
0.0  
–93  
–93  
–93  
–93  
dB  
dB  
ISO  
IS  
CC  
EE  
–3.0  
V
ONL  
Maximum Feedthrough  
On Loss  
V
IS  
= ½ (V – V )  
EE  
3.0  
4.5  
6.0  
3.0  
0.0  
0.0  
0.0  
–2  
–2  
–2  
–2  
CC  
Source = 0 dBm  
(Figures 10 and 22)  
–3.0  
Q
Charge Injection  
V
R
= V to V  
f
= 1 kHz, t = t = 3 ns  
5.0  
3.0  
0.0  
–3.0  
9.0  
12  
pC  
%
IN  
CC  
EE, IS  
r
f
= 0 W, C = 1000 pF, Q = C * D V  
OUT  
IS  
L
L
(Figures 16 and 23)  
f = 1 MHz, R = 10 KW, C = 50 pF,  
IS  
THD  
Total Harmonic Distortion  
THD + Noise  
L
L
V
V
= 5.0 V sine wave  
6.0  
3.0  
0.0  
–3.0  
0.10  
0.05  
IS  
PP  
= 6.0 V sine wave  
IS  
PP  
(Figure 13)  
http://onsemi.com  
6
NLAST4051  
100  
10  
100  
80  
60  
2.0 V  
1
0.1  
0.01  
40  
20  
0
V
= 3.0 V  
CC  
3.0 V  
4.5 V  
5.5 V  
0.001  
0.0001  
$3.3 V  
V
CC  
= 5.0 V  
0.00001  
–40  
–20  
0
20  
60  
80  
100  
120  
–4.0  
–2.0  
0
2.0  
(VDC)  
4.0  
6.0  
Temperature (°C)  
V
IS  
Figure 3. ICC versus Temp, VCC = 3 V and 5 V  
Figure 4. RON versus VCC, Temp = 255C  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
125°C  
85°C  
125°C  
25°C  
40  
30  
25°C  
85°C  
20  
10  
–55°C  
–55°C  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
VCom (V)  
VCom (V)  
Figure 5. Typical On Resistance  
VCC = 2.0 V, VEE = 0 V  
Figure 6. Typical On Resistance  
VCC = 3.0 V, VEE = 0 V  
25  
20  
15  
10  
25  
125°C  
125°C  
85°C  
85°C  
20  
15  
25°C  
10  
5
25°C  
–55°C  
–55°C  
5
0
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0  
VCom (V)  
3.5 4.0 4.5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VCom (V)  
Figure 7. Typical On Resistance  
CC = 4.5 V, VEE = 0 V  
Figure 8. Typical On Resistance  
VCC = 5.5 V, VEE = 0 V  
V
http://onsemi.com  
7
NLAST4051  
25  
20  
15  
10  
5
125°C  
85°C  
–55°C  
25°C  
0
–4  
–2  
0
2
4
VCom (V)  
Figure 9. Typical On Resistance  
VCC = 3.3 V, VEE = –3.3 V  
90  
50  
40  
30  
20  
10  
0
72  
54  
36  
18  
0
BANDWIDTH (ON–RESPONSE)  
PHASE SHIFT  
–10  
–20  
–18  
–36  
–30  
–40  
–50  
–54  
–72  
–90  
0.1  
1.0  
10  
100  
0.1  
1.0  
10  
100  
FREQUENCY (mHz)  
FREQUENCY (mHz)  
Figure 10. Bandwidth  
Figure 11. Phase Shift  
0
0
–10  
–20  
3.0  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
5.5  
4.5  
0.1  
$3.3  
0.01  
0.1  
1.0  
10  
100  
10  
100  
1000  
10000  
10000  
FREQUENCY (mHz)  
FREQUENCY (mHz)  
Figure 12. Off Isolation  
Figure 13. Total Harmonic Distortion  
http://onsemi.com  
8
NLAST4051  
30  
25  
20  
15  
10  
30  
25  
20  
15  
10  
5
T
A
= 25°C  
V
CC  
= 4.5 V  
t
(ns)  
ON  
t
ON  
t
t
(ns)  
3.5  
OFF  
5
0
OFF  
0
–55  
2.5  
3
4
4.5  
5
–40  
25  
Temperature (°C)  
85  
125  
V
CC  
(VOLTS)  
Figure 14. tON and tOFF versus VCC  
Figure 15. tON and tOFF versus Temp  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
100  
10  
1
V
= 5 V  
CC  
I
COM(ON)  
0.1  
I
COM(OFF)  
V
CC  
= 3 V  
0.01  
0
V
CC  
= 5.0 V  
85  
I
NO(OFF)  
–0.5  
0.001  
0
1
2
3
4
5
–55  
–20  
25  
70  
125  
TEMPERATURE (°C)  
V
COM  
(V)  
Figure 16. Charge Injection versus COM Voltage  
Figure 17. Switch Leakage versus Temperature  
http://onsemi.com  
9
NLAST4051  
V
CC  
V
Output  
CC  
Input  
50%  
50%  
V
OUT  
0.1 m F  
0 V  
V
EE  
300 W  
35 pF  
V
CC  
90%  
Output  
Address Select Pin  
10%  
V
EE  
t
t
trans  
trans  
Figure 18. Channel Selection Propagation Delay  
V
CC  
DUT  
Input  
GND  
V
CC  
Output  
V
OUT  
0.1 m F  
t
BMM  
300 W  
35 pF  
90%  
90% of V  
OH  
Output  
Address Select Pin  
GND  
Figure 19. tBBM (Time Break–Before–Make)  
V
CC  
DUT  
Input  
50%  
50%  
V
CC  
0 V  
Output  
V
OUT  
0.1 m F  
V
OH  
Open  
300 W  
35 pF  
90%  
90%  
Output  
GND  
Enable  
Input  
t
t
OFF  
ON  
Figure 20. tON/tOFF  
http://onsemi.com  
10  
NLAST4051  
V
CC  
V
CC  
Input  
0 V  
50%  
50%  
DUT  
300 W  
Output  
V
OUT  
V
CC  
Open  
35 pF  
Output  
V
10%  
10%  
OL  
Enable  
Input  
t
t
ON  
OFF  
Figure 21. tON/tOFF  
50 W  
DUT  
Reference  
Input  
50 W Generator  
Transmitted  
Output  
50 W  
Channel switch Address and Inhibit/s test socket is normalized. Off isolation is measured across an off  
channel. On loss is the bandwidth of an On switch. V , Bandwidth and V  
are independent of the input  
ISO  
ONL  
signal direction.  
V
V
OUT  
IN  
= Off Channel Isolation = 20 Log ǒ Ǔ for V  
V
ISO  
at 100 kHz  
IN  
V
V
OUT  
IN  
= On Channel Loss = 20 Log ǒ Ǔ for V  
V
ONL  
at 100 kHz to 50 MHz  
IN  
Bandwidth (BW) = the frequency 3 dB below V  
ONL  
Figure 22. Off Channel Isolation/On Channel Loss (BW)/Crosstalk  
(On Channel to Off Channel)/VONL  
http://onsemi.com  
11  
NLAST4051  
DUT  
V
CC  
V
IN  
Output  
Open  
GND  
C
L
Output  
Off  
D V  
OUT  
Off  
On  
V
IN  
Figure 23. Charge Injection: (Q)  
TYPICAL OPERATION  
+5.0 V  
+3.0 V  
V
CC  
V
CC  
16  
16  
V
V
EE  
EE  
7
7
8
GND  
GND  
8
–3.0 V  
Figure 24. 5.0 Volts Single Supply  
CC = 5.0 V, VEE = 0  
Figure 25. Dual Supply  
VCC = 3.0 V, VEE = –3.0 V  
V
http://onsemi.com  
12  
NLAST4051  
PACKAGE DIMENSIONS  
SOIC–16  
D SUFFIX  
CASE 751B–05  
ISSUE J  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
16  
9
8
–B–  
P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
S
B
0.25 (0.010)  
1
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
G
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
10.00  
4.00  
1.75  
0.49  
1.25  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
F
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
0.386  
0.150  
0.054  
0.014  
0.016  
R X 45  
K
_
C
G
J
1.27 BSC  
0.050 BSC  
–T–  
SEATING  
PLANE  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
J
M
K
M
P
R
D
16 PL  
_
_
_
_
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
M
S
S
0.25 (0.010)  
T B  
A
http://onsemi.com  
13  
NLAST4051  
PACKAGE DIMENSIONS  
TSSOP–16  
DT SUFFIX  
CASE 948F–01  
ISSUE O  
16X KREF  
M
S
S
0.10 (0.004)  
T U  
V
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
S
0.15 (0.006) T U  
K
K1  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.  
PROTRUSIONS OR GATE BURRS. MOLD FLASH OR  
GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER  
SIDE.  
16  
9
2X L/2  
J1  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED  
0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
B
–U–  
SECTION N–N  
L
J
PIN 1  
IDENT.  
8
1
N
0.25 (0.010)  
7. DIMENSION A AND B ARE TO BE DETERMINED AT  
DATUM PLANE -W-.  
S
0.15 (0.006) T U  
A
M
MILLIMETERS  
INCHES  
MIN  
–V–  
DIM MIN  
MAX  
5.10  
4.50  
1.20  
0.15  
0.75  
MAX  
0.200  
0.177  
0.047  
0.006  
0.030  
N
A
B
4.90  
4.30  
---  
0.193  
0.169  
---  
F
C
D
0.05  
0.50  
0.002  
0.020  
F
DETAIL E  
G
H
0.65 BSC  
0.026 BSC  
0.18  
0.09  
0.09  
0.19  
0.19  
0.28  
0.20  
0.16  
0.30  
0.25  
0.007  
0.004  
0.004  
0.007  
0.007  
0.011  
0.008  
0.006  
0.012  
0.010  
J
J1  
K
–W–  
C
K1  
L
6.40 BSC  
0.252 BSC  
0
0.10 (0.004)  
M
0
8
8
_
_
_
_
H
DETAIL E  
SEATING  
PLANE  
–T–  
D
G
http://onsemi.com  
14  
NLAST4051  
PACKAGE DIMENSIONS  
QSOP–16  
QS SUFFIX  
CASE 492–01  
ISSUE O  
–A–  
Q
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
R
2. CONTROLLING DIMENSION: INCH.  
3. THE BOTTOM PACKAGE SHALL BE BIGGER THAN  
THE TOP PACKAGE BY 4 MILS (NOTE: LEAD SIDE  
ONLY). BOTTOM PACKAGE DIMENSION SHALL  
FOLLOW THE DIMENSION STATED IN THIS  
DRAWING.  
4. PLASTIC DIMENSIONS DOES NOT INCLUDE MOLD  
FLASH OR PROTRUSIONS. MOLD FLASH OR  
PROTRUSIONS SHALL NOT EXCEED 6 MILS PER  
SIDE.  
H x 45  
_
U
RAD.  
0.013 X 0.005  
DP. MAX  
–B–  
5. BOTTOM EJECTOR PIN WILL INCLUDE THE  
COUNTRY OF ORIGIN (COO) AND MOLD CAVITY I.D.  
MOLD PIN  
MARK  
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
MAX  
0.196  
0.157  
0.068  
0.012  
0.035  
MIN  
4.80  
3.81  
1.55  
0.20  
0.41  
MAX  
4.98  
3.99  
1.73  
0.31  
0.89  
0.189  
0.150  
0.061  
0.008  
0.016  
RAD.  
0.005–0.010  
TYP  
G
G
H
J
0.025 BSC  
0.64 BSC  
L
0.008 0.018  
0.0098 0.0075  
0.20  
0.249  
0.10  
5.84  
0
0.46  
0.191  
0.25  
6.20  
8
P
DETAIL E  
M
0.25 (0.010)  
T
K
L
0.004  
0.230  
0
0.010  
0.244  
8
M
N
P
_
_
_
_
0
0.007  
7
0.011  
0
0.18  
7
0.28  
_
_
_
_
Q
R
U
V
0.020 DIA  
0.51 DIA  
V
K
0.025  
0.025  
0
0.035  
0.035  
8
0.64  
0.64  
0
0.89  
0.89  
8
C
N 8 PL  
_
_
_
_
–T–  
D16 PL  
0.25 (0.010)  
SEATING  
PLANE  
M
S
S
A
T
B
J
M
F
DETAIL E  
http://onsemi.com  
15  
NLAST4051  
ON Semiconductor is a trademark and  
is a registered trademark of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right  
to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products  
for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets  
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must  
be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
NLAST4051/D  

相关型号:

NLAST4051DTR2G

Analog Multiplexer/ Demultiplexer
ONSEMI

NLAST4051QS

Analog Multiplexer/ Demultiplexer
ONSEMI

NLAST4051QSG

8-CHANNEL, SGL ENDED MULTIPLEXER, PDSO16, QSOP-16
ONSEMI

NLAST4051QSR

Analog Multiplexer/ Demultiplexer
ONSEMI

NLAST4051QSRG

8-CHANNEL, SGL ENDED MULTIPLEXER, PDSO16, QSOP-16
ONSEMI

NLAST4051_06

Analog Multiplexer/ Demultiplexer
ONSEMI

NLAST4052/D

Analog Multiplexer/ Demultiplexer
ETC

NLAST4052DG

IC 4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PDSO16, SOIC-16, Multiplexer or Switch
ONSEMI

NLAST4052DR2

4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PDSO16, SOIC-16
ROCHESTER

NLAST4052DR2

4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PDSO16, SOIC-16
ONSEMI

NLAST4052DT

4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PDSO16, TSSOP-16
ONSEMI

NLAST4052DT

4-CHANNEL, DIFFERENTIAL MULTIPLEXER, PDSO16, TSSOP-16
ROCHESTER