NLSX4401DFT2G [ONSEMI]

1-Bit 20 Mb/s Dual-SupplyLevel Translator;
NLSX4401DFT2G
型号: NLSX4401DFT2G
厂家: ONSEMI    ONSEMI
描述:

1-Bit 20 Mb/s Dual-SupplyLevel Translator

文件: 总15页 (文件大小:206K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NLSX4401DFT2G  
1-Bit 20 Mb/s Dual-Supply  
Level Translator  
The NLSX4401DFT2G is a 1−bit configurable dual−supply  
bidirectional auto sensing translator that does not require a  
directional control pin. The I/O V and I/O V ports are designed to  
CC  
L
www.onsemi.com  
track two different power supply rails, V  
and V respectively.  
CC  
L
Both the V and V supply rails are configurable from 1.65 V to  
CC  
L
5.5 V. This allows voltage logic signals on the V side to be  
translated into lower, higher or equal value voltage logic signals on  
L
MARKING  
DIAGRAM  
the V side, and vice−versa.  
CC  
The NLSX4401DFT2G translator has integrated 10 kW pull−up  
6
resistors on the I/O lines. The integrated pull−up resistors are used to  
SC−88  
2.10 x 2.0  
CASE 419B  
XXXMG  
pull up the I/O lines to either V or V . The NLSX4401 is an  
L
CC  
G
2
excellent match for open−drain applications such as the I C  
communication bus.  
1
1
XXX = Specific Device Code  
M
G
= Date Code*  
= Pb−Free Package  
Features  
V can be Less than, Greater than or Equal to V  
L
CC  
(Note: Microdot may be in either location)  
Wide V Operating Range: 1.65 V to 5.5 V  
CC  
*Date Code orientation and/or position may vary  
dependingupon manufacturing location.  
Wide V Operating Range: 1.65 V to 5.5 V  
L
High Speed with 24 Mb/s Guaranteed Date Rate  
Low Bit−to−Bit Skew  
LOGIC DIAGRAM  
Enable Input and I/O Pins are Overvoltage Tolerant (OVT) to 5.5 V  
Non−preferential Powerup Sequencing  
V
V
CC  
GND  
L
EN  
Partial Power−Off Protection − I/Os at High Impedance with Either  
Supply at 0 V  
Integrated 10 kW Pull−up Resistors  
Small Space Saving Packages:  
I/O V  
I/O V  
CC  
L
SC−88/SC70−6/SOT−363 Package  
These Devices are Pb−Free and are RoHS Compliant  
Typical Applications  
ORDERING INFORMATION  
2
I C, SMBus, PMBus  
Device  
NLSX4401DFT2G  
Package  
Shipping  
Low Voltage ASIC Level Translation  
Mobile Phones, PDAs, Cameras  
SC−88  
3000 / Tape  
& Reel  
(Pb−Free)  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
Important Information  
ESD Protection for All Pins  
− Human Body Model (HBM) > 5000 V  
©
Semiconductor Components Industries, LLC, 2018  
1
Publication Order Number:  
September, 2018 − Rev. 0  
NLSX4401/D  
NLSX4401DFT2G  
Figure 1. Block Diagram (1 I/O Line)  
V
6
V
CC  
L
1
2
EN  
GND  
5
4
3
I/O V  
I/O V  
L
CC  
SC−88 / SC70−6 / SOT−363  
(Top Through View)  
Figure 2. Pinout Diagram  
PIN ASSIGNMENT  
Pins  
FUNCTION TABLE  
Description  
Supply Voltage  
EN  
L
Operating Mode  
Hi−Z  
V
V
CC  
CC  
L
V
V Supply Voltage  
L
H
I/O Buses Connected  
GND  
EN  
Ground  
Output Enable, Referenced to V  
L
I/O V  
I/O Port, Referenced to V  
CC  
L
CC  
L
I/O V  
I/O Port, Referenced to V  
www.onsemi.com  
2
NLSX4401DFT2G  
MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Condition  
Unit  
V
V
DC Supply Voltage  
DC Supply Voltage  
−0.5 to +7.0  
−0.5 to +7.0  
−0.5 to +7.0  
−0.5 to +7.0  
−0.5 to +7.0  
50  
CC  
L
V
V
I/O V  
I/O V  
V
−Referenced DC Input/Output Voltage  
V
CC  
CC  
V −Referenced DC Input/Output Voltage  
L
V
L
V
EN  
Enable Control Pin DC Input Voltage  
V
I
I
Short−Circuit Duration (I/O V and I/O V to GND)  
Continuous  
V < 0  
I/O  
mA  
mA  
°C  
I/O_SC  
I/OK  
L
CC  
Input/Output Clamping Current (I/O V and I/O V  
)
CC  
−50  
L
T
STG  
Storage Temperature  
−65 to +150  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
1.5  
Max  
5.5  
5.5  
5.5  
5.5  
5.5  
Unit  
V
V
CC  
Positive DC Supply Voltage  
Positive DC Supply Voltage  
Enable Control Pin Voltage  
I/O Pin Voltage (Side referred to V  
V
L
1.5  
V
V
EN  
GND  
GND  
GND  
V
V
)
CC  
V
IO_VCC  
V
IO_VL  
I/O Pin Voltage (Side referred to V )  
V
L
Dt/DV  
Input Transition Rise and Fall Rate  
A− or B−Ports, Push−Pull Driving  
Control Input  
10  
10  
ns/V  
T
A
Operating Temperature Range  
−55  
+125  
°C  
Functionaloperation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the  
RecommendedOperating Ranges limits may affect device reliability.  
www.onsemi.com  
3
NLSX4401DFT2G  
DC ELECTRICAL CHARACTERISTICS (V = 1.65 V to 5.5 V and V = 1.65 V to 5.5 V, unless otherwise specified) (Note 1)  
L
CC  
−555C to +1255C  
Min  
V – 0.4  
CC  
Typ  
Max  
Symbol  
Parameter  
I/O V Input HIGH Voltage  
Test Conditions (Note 2)  
Unit  
V
V
IHC  
CC  
V
V
I/O V Input LOW Voltage  
0.15  
V
ILC  
CC  
I/O VL Input HIGH Voltage  
I/O VL Input LOW Voltage  
V – 0.4  
V
IHL  
L
V
ILL  
0.15  
V
V
Control Pin Input HIGH Voltage  
Control Pin Input LOW Voltage  
0.65 * V  
V
IH  
L
V
V = 1.65 V to 1.95 V  
0.25 * V  
0.35 * V  
V
IL  
L
L
L
V = 2.3 V to 5.5 V  
L
V
I/O VCC Output HIGH Voltage  
I/O VCC Output LOW Voltage  
I/O V source current = 20 mA  
2/3 * V  
V
V
OHC  
CC  
CC  
V
I/O V sink current = 1 mA  
0.4  
OLC  
CC  
V
I/O V  
I/O VL Output LOW Voltage  
Supply Current  
L
Output HIGH Voltage  
I/O V source current = 20 mA  
2/3 * V  
V
OHL  
L
L
V
I/O V sink current = 1 mA  
0.4  
V
OLL  
L
I
V
CC  
I/O V and I/O V unconnected, V = V  
L
0.5  
3.0  
−1.0  
1.0  
mA  
QVCC  
CC  
L
EN  
CC  
CC  
V = 5.5 V, V = 0 V  
L
V = 0 V, V = 5.5 V  
L
I
VL Supply Current  
I/O V and I/O V unconnected, V = V  
L
0.3  
3.0  
1.0  
−1.0  
mA  
QVL  
CC  
L
EN  
V = 5.5 V, V = 0 V  
L
L
CC  
V
V
= 0 V,  
= 5.5 V  
CC  
I
V
Tristate Output Mode  
I/O V and I/O V unconnected, V = GND  
0.1  
0.1  
1.5  
1.5  
mA  
mA  
TS−VCC  
CC  
CC  
L
EN  
I
V Tristate Output Mode Supply  
L
I/O V and I/O V unconnected, V = GND  
CC L EN  
TS−VL  
Current  
I
Enable Pin Input Leakage Current  
I/O Power-Off Leakage Current  
1.0  
1.0  
1.0  
1.0  
mA  
mA  
I
I
I/O V Port, V = 0 V, V = 0 to 5.5 V  
CC CC L  
OFF  
I/O VL Port, VCC = 0 to 5.5 V, V = 0 V  
L
I
I/O Tristate Output Mode  
Leakage Current  
0.1  
mA  
kΩ  
OZ  
R
PU  
Pull−Up Resistors  
10  
I/O V and V  
L
C
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performancemay not be indicated by the Electrical Characteristics if operated under different conditions.  
1. Typical values are for V = +1.8 V, V = +3.3 V and T = +25°C.  
L
CC  
A
2. All units are production tested at T = +25°C. Limits over the operating temperature range are guaranteed by design.  
A
www.onsemi.com  
4
 
NLSX4401DFT2G  
TIMING CHARACTERISTICS − RAIL−TO−RAIL DRIVING CONFIGURATIONS  
(I/O test circuit of Figures 3 and 4, C  
= 15 pF, driver output impedance 50 W, R  
= 1 MW)  
LOAD  
LOAD  
−405C to +855C  
(Notes 3 & 4)  
Min  
Typ  
Max  
Symbol  
Parameter  
Test Conditions  
Unit  
V = 1.65 V, V = 1.65 V  
L
CC  
t
I/O V Rise Time  
9
32  
20  
30  
13  
16  
15  
269  
300  
2
ns  
ns  
RVCC  
CC  
t
I/O V Fall Time  
11  
20  
10  
7
FVCC  
CC  
t
I/O V Rise Time  
ns  
RVL  
L
t
I/O V Fall Time  
ns  
FVL  
L
t
t
Propagation Delay (Driving I/O V , V to V )  
CC  
ns  
PDVL−VCC  
PDVCC−VL  
L
L
Propagation Delay (Driving I/O V , V to V )  
12  
ns  
CC CC  
L
t
, t  
Enable Time  
ns  
PZL PZH  
t
, t  
Disable Time  
ns  
PLZ PHZ  
t
Part−to−Part Skew  
Maximum Data Rate  
ns  
PPSKEW  
MDR  
15  
Mbps  
V = 1.65 V, V = 5.5 V  
L
CC  
t
I/O V Rise Time  
9
17  
8
12  
30  
10  
9
ns  
ns  
RVCC  
CC  
t
I/O V Fall Time  
CC  
FVCC  
t
I/O V Rise Time  
ns  
RVL  
L
t
I/O V Fall Time  
5
ns  
FVL  
L
t
t
Propagation Delay (Driving I/O V , V to V )  
CC  
14  
4
24  
6
ns  
PDVL−VCC  
PDVCC−VL  
L
L
Propagation Delay (Driving I/O V , V to V )  
ns  
CC CC  
L
t
, t  
Enable Time  
66  
250  
2
ns  
PZL PZH  
t
, t  
Disable Time  
ns  
PLZ PHZ  
t
Part−to−Part Skew  
Maximum Data Rate  
ns  
PPSKEW  
MDR  
20  
Mbps  
V = 1.8 V, V = 2.8 V  
L
CC  
t
I/O V Rise Time  
11  
10  
12  
5
18  
15  
15  
8
ns  
ns  
RVCC  
CC  
t
I/O V Fall Time  
CC  
FVCC  
t
I/O V Rise Time  
ns  
RVL  
L
t
I/O V Fall Time  
ns  
FVL  
L
t
t
Propagation Delay (Driving I/O V , V to V )  
CC  
7
10  
12  
100  
300  
2
ns  
PDVL−VCC  
PDVCC−VL  
L
L
Propagation Delay (Driving I/O V , V to V )  
1
ns  
CC CC  
L
t
, t  
Enable Time  
ns  
PZL PZH  
t
, t  
Disable Time  
ns  
PLZ PHZ  
t
Part−to−Part Skew  
Maximum Data Rate  
ns  
PPSKEW  
MDR  
20  
Mbps  
V = 2.5 V, V = 3.6 V  
L
CC  
t
I/O V Rise Time  
8
12  
ns  
RVCC  
CC  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product perfor-  
mance may not be indicated by the Electrical Characteristics if operated under different conditions.  
3. Typical values are for the specified V and V at T = +25°C. All units are production tested at T = +25°C.  
L
CC  
A
A
4. Limits over the operating temperature range are guaranteed by design.  
5. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (I/O_VLn or I/O_VCCn)  
and switching with the same polarity (LOW−to−HIGH or HIGH−to−LOW). Skew is defined by applying a single input to the two input channels  
and measuring the difference in propagation delays between the output channels.  
www.onsemi.com  
5
NLSX4401DFT2G  
TIMING CHARACTERISTICS − RAIL−TO−RAIL DRIVING CONFIGURATIONS (continued)  
(I/O test circuit of Figures 3 and 4, C  
= 15 pF, driver output impedance 50 W, R  
= 1 MW)  
LOAD  
LOAD  
−405C to +855C  
(Notes 3 & 4)  
Min  
Typ  
Max  
Symbol  
Parameter  
Test Conditions  
Unit  
V = 2.5 V, V = 3.6 V  
L
CC  
t
I/O V Fall Time  
8
7
5
7
5
12  
10  
7
ns  
ns  
FVCC  
CC  
t
I/O V Rise Time  
L
RVL  
t
I/O V Fall Time  
ns  
FVL  
L
t
t
Propagation Delay (Driving I/O V , V to V )  
CC  
10  
8
ns  
PDVL−VCC  
PDVCC−VL  
L
L
Propagation Delay (Driving I/O V , V to V )  
ns  
CC CC  
L
t
, t  
Enable Time  
74  
225  
2
ns  
PZL PZH  
t
, t  
Disable Time  
ns  
PLZ PHZ  
t
Part−to−Part Skew  
Maximum Data Rate  
ns  
PPSKEW  
MDR  
24  
Mbps  
V = 2.8 V, V = 1.8 V  
L
CC  
t
I/O V Rise Time  
13  
7
20  
10  
13  
15  
9
ns  
ns  
RVCC  
CC  
t
I/O V Fall Time  
CC  
FVCC  
t
I/O V Rise Time  
8
ns  
RVL  
L
t
I/O V Fall Time  
9
ns  
FVL  
L
t
t
Propagation Delay (Driving I/O V , V to V )  
CC  
6
ns  
PDVL−VCC  
PDVCC−VL  
L
L
Propagation Delay (Driving I/O V , V to V )  
7
12  
103  
250  
2
ns  
CC CC  
L
t
, t  
Enable Time  
ns  
PZL PZH  
t
, t  
Disable Time  
ns  
PLZ PHZ  
t
Part−to−Part Skew  
Maximum Data Rate  
ns  
PPSKEW  
MDR  
24  
Mbps  
V = 3.6 V, V = 2.5 V  
L
CC  
t
I/O V Rise Time  
9
6
6
7
5
6
12  
9
ns  
ns  
RVCC  
CC  
t
I/O V Fall Time  
CC  
FVCC  
t
I/O V Rise Time  
12  
12  
7
ns  
RVL  
L
t
I/O V Fall Time  
ns  
FVL  
L
t
t
Propagation Delay (Driving I/O V , V to V )  
CC  
ns  
PDVL−VCC  
PDVCC−VL  
L
L
Propagation Delay (Driving I/O V , V to V )  
9
ns  
CC CC  
L
t
, t  
Enable Time  
77  
250  
2
ns  
PZL PZH  
t
, t  
Disable Time  
ns  
PLZ PHZ  
t
Part−to−Part Skew  
Maximum Data Rate  
ns  
PPSKEW  
MDR  
24  
Mbps  
V = 5.5 V, V = 1.65 V  
L
CC  
t
I/O V Rise Time  
13  
6
20  
9
ns  
ns  
RVCC  
CC  
t
I/O V Fall Time  
CC  
FVCC  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product perfor-  
mance may not be indicated by the Electrical Characteristics if operated under different conditions.  
3. Typical values are for the specified V and V at T = +25°C. All units are production tested at T = +25°C.  
L
CC  
A
A
4. Limits over the operating temperature range are guaranteed by design.  
5. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (I/O_VLn or I/O_VCCn)  
and switching with the same polarity (LOW−to−HIGH or HIGH−to−LOW). Skew is defined by applying a single input to the two input channels  
and measuring the difference in propagation delays between the output channels.  
www.onsemi.com  
6
NLSX4401DFT2G  
TIMING CHARACTERISTICS − RAIL−TO−RAIL DRIVING CONFIGURATIONS (continued)  
(I/O test circuit of Figures 3 and 4, C  
= 15 pF, driver output impedance 50 W, R  
= 1 MW)  
LOAD  
LOAD  
−405C to +855C  
(Notes 3 & 4)  
Min  
Typ  
Max  
Symbol  
Parameter  
Test Conditions  
Unit  
V = 5.5 V, V = 1.65 V  
L
CC  
t
I/O V Rise Time  
8
22  
9
10  
37  
13  
25  
ns  
ns  
RVL  
L
t
I/O V Fall Time  
L
FVL  
t
t
Propagation Delay (Driving I/O V , V to V )  
CC  
ns  
PDVL−VCC  
PDVCC−VL  
L
L
Propagation Delay (Driving I/O V , V to V )  
13  
ns  
CC CC  
L
t
, t  
Enable Time  
ns  
PZL PZH  
t
, t  
Disable Time  
ns  
PLZ PHZ  
t
Part−to−Part Skew  
Maximum Data Rate  
2
ns  
PPSKEW  
MDR  
20  
Mbps  
V = 5.5 V, V = 5.5 V  
L
CC  
t
I/O V Rise Time  
5
6
5
5
4
4
7
8
ns  
ns  
RVCC  
CC  
t
I/O V Fall Time  
CC  
FVCC  
t
I/O V Rise Time  
7
ns  
RVL  
L
t
I/O V Fall Time  
8
ns  
FVL  
L
t
t
Propagation Delay (Driving I/O V , V to V )  
CC  
6
ns  
PDVL−VCC  
PDVCC−VL  
L
L
Propagation Delay (Driving I/O V , V to V )  
6
ns  
CC CC  
L
t
, t  
Enable Time  
30  
225  
2
ns  
PZL PZH  
t
, t  
Disable Time  
ns  
PLZ PHZ  
t
Part−to−Part Skew  
Maximum Data Rate  
ns  
PPSKEW  
MDR  
24  
Mbps  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product perfor-  
mance may not be indicated by the Electrical Characteristics if operated under different conditions.  
3. Typical values are for the specified V and V at T = +25°C. All units are production tested at T = +25°C.  
L
CC  
A
A
4. Limits over the operating temperature range are guaranteed by design.  
5. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (I/O_VLn or I/O_VCCn)  
and switching with the same polarity (LOW−to−HIGH or HIGH−to−LOW). Skew is defined by applying a single input to the two input channels  
and measuring the difference in propagation delays between the output channels.  
TIMING CHARACTERISTICS − OPEN DRAIN DRIVING CONFIGURATIONS  
(I/O test circuit of Figures 5 and 6, C  
= 15 pF, driver output impedance 50 W, R  
= 1 MW)  
LOAD  
LOAD  
−405C to +855C  
(Notes 6 & 7)  
Min  
Typ  
Max  
Symbol  
V = 1.65 V, V = 1.65 V  
Parameter  
Test Conditions  
Unit  
L
CC  
t
I/O V Rise Time  
55  
7
70  
14  
65  
12  
ns  
ns  
ns  
ns  
RVCC  
CC  
t
I/O V Fall Time  
CC  
FVCC  
t
I/O V Rise Time  
50  
7
RVL  
L
t
I/O V Fall Time  
L
FVL  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product perfor-  
mance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. Typical values are for the specified V and V at T = +25°C. All units are production tested at T = +25°C.  
L
CC  
A
A
7. Limits over the operating temperature range are guaranteed by design.  
8. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (I/O_VLn or I/O_VCCn)  
and switching with the same polarity (LOW−to−HIGH or HIGH−to−LOW). Skew is defined by applying a single input to the two input channels  
and measuring the difference in propagation delays between the output channels.  
www.onsemi.com  
7
 
NLSX4401DFT2G  
TIMING CHARACTERISTICS − OPEN DRAIN DRIVING CONFIGURATIONS (continued)  
(I/O test circuit of Figures 5 and 6, C  
= 15 pF, driver output impedance 50 W, R  
= 1 MW)  
LOAD  
LOAD  
−405C to +855C  
(Notes 6 & 7)  
Min  
Typ  
Max  
Symbol  
Parameter  
Test Conditions  
Unit  
V = 1.65 V, V = 1.65 V  
L
CC  
t
t
Propagation Delay (Driving I/O V , V to V )  
CC  
20  
19  
34  
34  
ns  
ns  
PDVL−VCC  
PDVCC−VL  
L
L
Propagation Delay (Driving I/O V , V to V )  
CC CC  
L
t
, t  
Enable Time  
100  
300  
2
ns  
PZL PZH  
t
, t  
Disable Time  
ns  
PLZ PHZ  
t
Part−to−Part Skew  
Maximum Data Rate  
ns  
PPSKEW  
MDR  
3
Mbps  
V = 1.65 V, V = 5.5 V  
L
CC  
t
I/O V Rise Time  
22  
20  
43  
6
34  
27  
55  
12  
26  
24  
80  
250  
2
ns  
ns  
RVCC  
CC  
t
I/O V Fall Time  
CC  
FVCC  
t
I/O V Rise Time  
ns  
RVL  
L
t
I/O V Fall Time  
ns  
FVL  
L
t
t
Propagation Delay (Driving I/O V , V to V )  
CC  
13  
19  
ns  
PDVL−VCC  
PDVCC−VL  
L
L
Propagation Delay (Driving I/O V , V to V )  
ns  
CC CC  
L
t
, t  
Enable Time  
ns  
PZL PZH  
t
, t  
Disable Time  
ns  
PLZ PHZ  
t
Part−to−Part Skew  
Maximum Data Rate  
ns  
PPSKEW  
MDR  
3
Mbps  
V = 1.8 V, V = 3.3 V  
L
CC  
t
I/O V Rise Time  
34  
1
40  
15  
48  
2
ns  
ns  
RVCC  
CC  
t
I/O V Fall Time  
CC  
FVCC  
t
I/O V Rise Time  
40  
1
ns  
RVL  
L
t
I/O V Fall Time  
ns  
FVL  
L
t
t
Propagation Delay (Driving I/O V , V to V )  
CC  
9
15  
11  
70  
300  
2
ns  
PDVL−VCC  
PDVCC−VL  
L
L
Propagation Delay (Driving I/O V , V to V )  
6
ns  
CC CC  
L
t
, t  
Enable Time  
ns  
PZL PZH  
t
, t  
Disable Time  
ns  
PLZ PHZ  
t
Part−to−Part Skew  
Maximum Data Rate  
ns  
PPSKEW  
MDR  
7
Mbps  
V = 5.5 V, V = 1.65 V  
L
CC  
t
I/O V Rise Time  
44  
1
52  
2
ns  
ns  
ns  
ns  
ns  
RVCC  
CC  
t
I/O V Fall Time  
CC  
FVCC  
t
I/O V Rise Time  
7
30  
23  
17  
RVL  
L
t
I/O V Fall Time  
17  
10  
FVL  
PDVL−VCC  
L
t
Propagation Delay (Driving I/O V , V to V  
)
CC  
L
L
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product perfor-  
mance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. Typical values are for the specified V and V at T = +25°C. All units are production tested at T = +25°C.  
L
CC  
A
A
7. Limits over the operating temperature range are guaranteed by design.  
8. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (I/O_VLn or I/O_VCCn)  
and switching with the same polarity (LOW−to−HIGH or HIGH−to−LOW). Skew is defined by applying a single input to the two input channels  
and measuring the difference in propagation delays between the output channels.  
www.onsemi.com  
8
NLSX4401DFT2G  
TIMING CHARACTERISTICS − OPEN DRAIN DRIVING CONFIGURATIONS (continued)  
(I/O test circuit of Figures 5 and 6, C  
= 15 pF, driver output impedance 50 W, R  
= 1 MW)  
LOAD  
LOAD  
−405C to +855C  
(Notes 6 & 7)  
Min  
Typ  
Max  
Symbol  
Parameter  
Test Conditions  
Unit  
V = 5.5 V, V = 1.65 V  
L
CC  
t
Propagation Delay (Driving I/O V , V to V )  
12  
24  
100  
300  
2
ns  
ns  
PDVCC−VL  
CC CC  
L
t
, t  
Enable Time  
PZL PZH  
t
, t  
Disable Time  
ns  
PLZ PHZ  
t
Part−to−Part Skew  
Maximum Data Rate  
ns  
PPSKEW  
MDR  
3
Mbps  
V = 5.5 V, V = 5.5 V  
L
CC  
t
I/O V Rise Time  
42  
2
50  
3
ns  
ns  
RVCC  
CC  
t
I/O V Fall Time  
CC  
FVCC  
t
I/O V Rise Time  
44  
2
48  
3
ns  
RVL  
L
t
I/O V Fall Time  
ns  
FVL  
L
t
t
Propagation Delay (Driving I/O V , V to V )  
CC  
4
6
ns  
PDVL−VCC  
PDVCC−VL  
L
L
Propagation Delay (Driving I/O V , V to V )  
6
9
ns  
CC CC  
L
t
, t  
Enable Time  
60  
225  
2
ns  
PZL PZH  
t
, t  
Disable Time  
ns  
PLZ PHZ  
t
Part−to−Part Skew  
Maximum Data Rate  
ns  
PPSKEW  
MDR  
7
Mbps  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product perfor-  
mance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. Typical values are for the specified V and V at T = +25°C. All units are production tested at T = +25°C.  
L
CC  
A
A
7. Limits over the operating temperature range are guaranteed by design.  
8. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (I/O_VLn or I/O_VCCn)  
and switching with the same polarity (LOW−to−HIGH or HIGH−to−LOW). Skew is defined by applying a single input to the two input channels  
and measuring the difference in propagation delays between the output channels.  
www.onsemi.com  
9
 
NLSX4401DFT2G  
TEST SETUP  
NLSX4401  
NLSX4401  
V
L
V
CC  
V
L
V
CC  
EN  
EN  
I/O V  
I/O V  
L
I/O V  
L
I/O V  
CC  
CC  
Source  
C
LOAD  
C
LOAD  
Source  
R
LOAD  
R
LOAD  
Figure 3. Rail−to−Rail Driving I/O VL  
Figure 4. Rail−to−Rail Driving I/O VCC  
NLSX4401  
NLSX4401  
V
L
V
L
V
CC  
V
CC  
EN  
EN  
I/O V  
CC  
I/O V  
L
I/O V  
CC  
V
CC  
C
LOAD  
C
LOAD  
R
LOAD  
R
LOAD  
Figure 5. Open−Drain Driving I/O VL  
Figure 6. Open−Drain Driving I/O VCC  
t
v
I/O V  
t
v 3 ns  
RISE/FALL  
I/O V  
CC  
RISE/FALL  
L
3 ns  
90%  
50%  
10%  
90%  
50%  
10%  
t
L
t
t
t
PD_VCC−VL  
PD_VL−VCC  
PD_VL−VCC  
PD_VCC−VL  
I/O V  
I/O V  
CC  
90%  
50%  
10%  
90%  
10%  
90%  
10%  
90%  
50%  
10%  
t
t
R−VCC  
t
t
R−VL  
F−VCC  
F−VL  
Figure 7. Definition of Timing Specification Parameters  
www.onsemi.com  
10  
NLSX4401DFT2G  
V
CC  
2xV  
CC  
OPEN  
R
1
DUT  
EN  
C
L
R
L
Test  
Switch  
t
t
, t  
Open  
PZH PHZ  
, t  
2 x V  
CC  
PZL PLZ  
C = 15 pF or equivalent (Includes jig and probe capacitance)  
L
R = R = 50 kW or equivalent  
L
1
Figure 8. Test Circuit for Enable/Disable Time Measurement  
V
L
50%  
EN  
GND  
t
t
PLZ  
PZL  
HIGH  
IMPEDANCE  
50%  
Output  
10%  
90%  
V
V
OL  
t
t
PHZ  
PZH  
OH  
50%  
Output  
HIGH  
IMPEDANCE  
Figure 9. Timing Definitions for Propagation Delays and Enable/Disable Measurement  
www.onsemi.com  
11  
NLSX4401DFT2G  
APPLICATIONS INFORMATION  
Level Translator Architecture  
impedance of the device that is connected to the translator.  
The timing parameters listed in the data sheet assume that  
the output impedance of the drivers connected to the  
translator is less than 50 kW.  
The NLSX4401 auto sense translator provides  
bi−directional voltage level shifting to transfer data in  
multiple supply voltage systems. This device has two  
supply voltages, V and V , which set the logic levels on  
L
CC  
Enable Input (EN)  
the input and output sides of the translator. When used to  
transfer data from the I/O V to the I/O V ports, input  
The NLSX4401 has an Enable pin (EN) that provides  
tri−state operation at the I/O pins. Driving the Enable pin  
to a low logic level minimizes the power consumption of  
the device and drives the I/O V and I/O V pins to a high  
impedance state. Normal translation operation occurs  
when the EN pin is equal to a logic high signal. The EN pin  
L
CC  
signals referenced to the V supply are translated to output  
L
signals with a logic level matched to V . In a similar  
CC  
CC  
L
manner, the I/O V to I/O V translation shifts input  
CC  
L
signals with a logic level compatible to V to an output  
CC  
signal matched to V .  
L
is referenced to the V supply and has Overvoltage  
Tolerant (OVT) protection.  
L
The NLSX4401 consists of a bi−directional channels that  
independently determines the direction of the data flow  
without requiring a directional pin. The one−shot circuits  
are used to detect the rising input signals. In addition, the  
one shots decrease the rise time of the output signal for  
low−to−high transitions.  
Each input/output channel has an internal 10 kW  
pull−up. The magnitude of the pull−up resistors can be  
reduced by connecting external resistors in parallel to the  
internal 10 kW resistors.  
Power Supply Guidelines  
During normal operation, supply voltage V can be  
greater than, less than or equal to V . The sequencing of  
the power supplies will not damage the device during the  
power up operation.  
L
CC  
For optimal performance, 0.01 mF to 0.1 mF decoupling  
capacitors should be used on the V  
and V  
power  
CCA  
CCB  
supply pins. Ceramic capacitors are a good design choice  
to filter and bypass any noise signals on the voltage lines  
to the ground plane of the PCB. The noise immunity will  
be maximized by placing the capacitors as close as possible  
to the supply and ground pins, along with minimizing the  
PCB connection traces.  
Input Driver Requirements  
The rise (t ) and fall (t ) timing parameters of the open  
R
F
drain outputs depend on the magnitude of the pull−up  
resistors. In addition, the propagation times (t / t ),  
PHL PLH  
skew (t  
) and maximum data rate depend on the  
PSKEW  
www.onsemi.com  
12  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SC88/SC706/SOT363  
CASE 419B02  
ISSUE Y  
1
DATE 11 DEC 2012  
SCALE 2:1  
2X  
aaa H  
D
NOTES:  
D
H
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
A
3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,  
PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRU-  
SIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.  
4. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF  
THE PLASTIC BODY AND DATUM H.  
5. DATUMS A AND B ARE DETERMINED AT DATUM H.  
6. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE  
LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.  
7. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.  
ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN  
EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDI-  
TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OF THE FOOT.  
D
GAGE  
PLANE  
6
1
5
2
4
3
L
L2  
E1  
E
DETAIL A  
aaa  
C
2X  
2X 3 TIPS  
bbb H  
D
e
MILLIMETERS  
DIM MIN NOM MAX  
−−−  
INCHES  
MIN  
−−−  
NOM MAX  
−−− 0.043  
−−− 0.004  
6X b  
B
TOP VIEW  
A
−−−  
−−−  
1.10  
A1 0.00  
A2 0.70  
0.10 0.000  
M
ddd  
C A-B D  
0.90  
0.20  
0.15  
2.00  
2.10  
1.25  
0.65 BSC  
0.36  
1.00 0.027 0.035 0.039  
0.25 0.006 0.008 0.010  
0.22 0.003 0.006 0.009  
2.20 0.070 0.078 0.086  
2.20 0.078 0.082 0.086  
1.35 0.045 0.049 0.053  
0.026 BSC  
b
C
D
E
0.15  
0.08  
1.80  
2.00  
A2  
DETAIL A  
A
E1 1.15  
e
L
0.26  
0.46 0.010 0.014 0.018  
0.006 BSC  
L2  
0.15 BSC  
0.15  
aaa  
bbb  
ccc  
ddd  
0.006  
0.012  
0.004  
0.004  
0.30  
0.10  
0.10  
6X  
ccc C  
A1  
SEATING  
PLANE  
c
C
SIDE VIEW  
END VIEW  
GENERIC  
MARKING DIAGRAM*  
RECOMMENDED  
SOLDERING FOOTPRINT*  
6
6X  
0.30  
XXXMG  
6X  
0.66  
G
1
2.50  
XXX = Specific Device Code  
M
= Date Code*  
G
= PbFree Package  
0.65  
(Note: Microdot may be in either location)  
PITCH  
*Date Code orientation and/or position may  
vary depending upon manufacturing location.  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
STYLES ON PAGE 2  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42985B  
SC88/SC706/SOT363  
PAGE 1 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
SC88/SC706/SOT363  
CASE 419B02  
ISSUE Y  
DATE 11 DEC 2012  
STYLE 1:  
PIN 1. EMITTER 2  
2. BASE 2  
STYLE 2:  
CANCELLED  
STYLE 3:  
CANCELLED  
STYLE 4:  
STYLE 5:  
STYLE 6:  
PIN 1. ANODE 2  
2. N/C  
PIN 1. CATHODE  
2. CATHODE  
3. COLLECTOR  
4. EMITTER  
5. BASE  
PIN 1. ANODE  
2. ANODE  
3. COLLECTOR 1  
4. EMITTER 1  
5. BASE 1  
3. COLLECTOR  
3. CATHODE 1  
4. ANODE 1  
5. N/C  
4. EMITTER  
5. BASE  
6. COLLECTOR 2  
6. ANODE  
6. CATHODE  
6. CATHODE 2  
STYLE 7:  
STYLE 8:  
CANCELLED  
STYLE 9:  
STYLE 10:  
STYLE 11:  
STYLE 12:  
PIN 1. SOURCE 2  
2. DRAIN 2  
3. GATE 1  
PIN 1. EMITTER 2  
2. EMITTER 1  
3. COLLECTOR 1  
4. BASE 1  
PIN 1. SOURCE 2  
2. SOURCE 1  
3. GATE 1  
PIN 1. CATHODE 2  
2. CATHODE 2  
3. ANODE 1  
PIN 1. ANODE 2  
2. ANODE 2  
3. CATHODE 1  
4. ANODE 1  
5. ANODE 1  
6. CATHODE 2  
4. SOURCE 1  
5. DRAIN 1  
6. GATE 2  
4. DRAIN 1  
5. DRAIN 2  
6. GATE 2  
4. CATHODE 1  
5. CATHODE 1  
6. ANODE 2  
5. BASE 2  
6. COLLECTOR 2  
STYLE 13:  
PIN 1. ANODE  
2. N/C  
STYLE 14:  
PIN 1. VREF  
2. GND  
STYLE 15:  
STYLE 16:  
STYLE 17:  
STYLE 18:  
PIN 1. VIN1  
2. VCC  
PIN 1. ANODE 1  
2. ANODE 2  
PIN 1. BASE 1  
2. EMITTER 2  
3. COLLECTOR 2  
4. BASE 2  
PIN 1. BASE 1  
2. EMITTER 1  
3. COLLECTOR 2  
4. BASE 2  
3. COLLECTOR  
4. EMITTER  
5. BASE  
3. GND  
3. ANODE 3  
3. VOUT2  
4. VIN2  
5. GND  
6. VOUT1  
4. IOUT  
5. VEN  
6. VCC  
4. CATHODE 3  
5. CATHODE 2  
6. CATHODE 1  
5. EMITTER 1  
6. COLLECTOR 1  
5. EMITTER 2  
6. COLLECTOR 1  
6. CATHODE  
STYLE 19:  
PIN 1. I OUT  
2. GND  
STYLE 20:  
STYLE 21:  
PIN 1. ANODE 1  
2. N/C  
STYLE 22:  
PIN 1. D1 (i)  
2. GND  
STYLE 23:  
PIN 1. Vn  
2. CH1  
3. Vp  
STYLE 24:  
PIN 1. CATHODE  
2. ANODE  
PIN 1. COLLECTOR  
2. COLLECTOR  
3. BASE  
3. GND  
3. ANODE 2  
4. CATHODE 2  
5. N/C  
3. D2 (i)  
3. CATHODE  
4. CATHODE  
5. CATHODE  
6. CATHODE  
4. V CC  
4. EMITTER  
5. COLLECTOR  
6. COLLECTOR  
4. D2 (c)  
5. VBUS  
6. D1 (c)  
4. N/C  
5. V EN  
5. CH2  
6. N/C  
6. V REF  
6. CATHODE 1  
STYLE 30:  
STYLE 25:  
STYLE 26:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 27:  
PIN 1. BASE 2  
2. BASE 1  
STYLE 28:  
PIN 1. DRAIN  
2. DRAIN  
3. GATE  
STYLE 29:  
PIN 1. ANODE  
2. ANODE  
PIN 1. SOURCE 1  
2. DRAIN 2  
3. DRAIN 2  
4. SOURCE 2  
5. GATE 1  
PIN 1. BASE 1  
2. CATHODE  
3. COLLECTOR 2  
4. BASE 2  
3. DRAIN 2  
4. SOURCE 2  
5. GATE 2  
3. COLLECTOR 1  
4. EMITTER 1  
5. EMITTER 2  
6. COLLECTOR 2  
3. COLLECTOR  
4. EMITTER  
5. BASE/ANODE  
6. CATHODE  
4. SOURCE  
5. DRAIN  
6. DRAIN  
5. EMITTER  
6. COLLECTOR 1  
6. DRAIN 1  
6. DRAIN 1  
Note: Please refer to datasheet for  
style callout. If style type is not called  
out in the datasheet refer to the device  
datasheet pinout or pin assignment.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42985B  
SC88/SC706/SOT363  
PAGE 2 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NLSX4401MU1TCG

Dual-Supply Level Translator
ONSEMI

NLSX4401_18

1-Bit 20 Mb/s Dual-Supply Level Translator
ONSEMI

NLSX4402

2-Bit 20 Mb/s Dual-Supply Level Translator
ONSEMI

NLSX4402FMUTAG

2-BIT 20 MB/S DUAL-SUPPLY Level Translator
ONSEMI

NLSX4402FMUTCG

2-Bit 20 Mb/s Dual-Supply Level Translator
ONSEMI

NLSX4402MX2ATAG

2-Bit 20 Mb/s Dual-Supply Level Translator
ONSEMI

NLSX4402_17

2-Bit 20 Mb/s Dual-Supply Level Translator
ONSEMI

NLSX5002

2-Bit 100 Mbs Configurable Dual-Supply Level Translator
ONSEMI

NLSX5002BMUTCG

2-Bit 100 Mbs Configurable Dual-Supply Level Translator
ONSEMI

NLSX5004

4-Bit 100 Mb/s Configurable Dual-Supply Level Translator
ONSEMI

NLSX5004DR2G

4-Bit 100 Mb/s Configurable Dual-Supply Level Translator
ONSEMI

NLSX5004DTR2G

4-Bit 100 Mb/s Configurable Dual-Supply Level Translator
ONSEMI