NTD20N06LT4G [ONSEMI]

Power MOSFET 20 Amps, 60 Volts Logic Level, N−Channel DPAK; 功率MOSFET 20安培, 60伏逻辑电平, NA ????频道DPAK
NTD20N06LT4G
型号: NTD20N06LT4G
厂家: ONSEMI    ONSEMI
描述:

Power MOSFET 20 Amps, 60 Volts Logic Level, N−Channel DPAK
功率MOSFET 20安培, 60伏逻辑电平, NA ????频道DPAK

文件: 总8页 (文件大小:128K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NTD20N06L, NTDV20N06L  
Power MOSFET  
20 Amps, 60 Volts  
Logic Level, NChannel DPAK  
Designed for low voltage, high speed switching applications in  
power supplies, converters and power motor controls and bridge  
circuits.  
http://onsemi.com  
V
R
DS(on)  
TYP  
I MAX  
D
(BR)DSS  
Features  
20 A  
(Note 1)  
60 V  
39 mW@5.0 V  
AEC Q101 Qualified NTDV20N06L  
These Devices are PbFree and are RoHS Compliant  
NChannel  
Typical Applications  
Power Supplies  
Converters  
Power Motor Controls  
Bridge Circuits  
D
G
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
J
S
Rating  
Symbol Value  
Unit  
Vdc  
Vdc  
Vdc  
MARKING DIAGRAMS  
& PIN ASSIGNMENTS  
DraintoSource Voltage  
V
60  
60  
DSS  
DGR  
DraintoGate Voltage (R = 10 MW)  
V
GS  
GatetoSource Voltage  
Continuous  
4
V
V
"15  
"20  
Drain  
GS  
GS  
Nonrepetitive (t v10 ms)  
p
4
DPAK  
Drain Current  
CASE 369C  
(Surface Mount)  
STYLE 2  
Continuous @ T = 25°C  
I
I
20  
10  
60  
Adc  
Apk  
A
D
D
2
Continuous @ T = 100°C  
1
A
Single Pulse (t v10 ms)  
3
p
I
DM  
2
1
Gate  
3
Total Power Dissipation @ T = 25°C  
P
D
60  
W
W/°C  
W
A
Drain  
Derate above 25°C  
Source  
0.40  
1.88  
1.36  
Total Power Dissipation @ T = 25°C (Note 1)  
A
Total Power Dissipation @ T = 25°C (Note 2)  
A
W
4
Operating and Storage Temperature Range  
T , T  
55 to  
+175  
°C  
Drain  
J
stg  
4
DPAK  
CASE 369D  
(Straight Lead)  
STYLE 2  
Single Pulse DraintoSource Avalanche  
E
128  
mJ  
AS  
Energy Starting T = 25°C  
J
(V = 25 Vdc, V = 5.0 Vdc,  
DD  
GS  
L = 1.0 mH, I (pk) = 16 A, V = 60 Vdc)  
L
DS  
1
2
3
Thermal Resistance  
°C/W  
JunctiontoCase  
JunctiontoAmbient (Note 1)  
JunctiontoAmbient (Note 2)  
R
R
R
2.5  
80  
110  
q
JC  
JA  
JA  
1
2
3
q
q
Gate Drain Source  
Maximum Lead Temperature for Soldering  
Purposes, 1/8 in from case for 10 seconds  
T
260  
°C  
L
Y
= Year  
= Work Week  
= Device Code  
= PbFree Package  
WW  
20N6L  
G
Stresses exceeding Maximum Ratings may damage the device. Maximum  
Ratings are stress ratings only. Functional operation above the Recommended  
Operating Conditions is not implied. Extended exposure to stresses above the  
Recommended Operating Conditions may affect device reliability.  
2
1. When surface mounted to an FR4 board using 1 in pad size, (Cu Area 1.127 in ).  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 2 of this data sheet.  
2. When surface mounted to an FR4 board using recommended pad size,  
2
(Cu Area 0.412 in ).  
©
Semiconductor Components Industries, LLC, 2011  
1
Publication Order Number:  
October, 2011 Rev. 3  
NTD20N06L/D  
 
NTD20N06L, NTDV20N06L  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
DraintoSource Breakdown Voltage (Note 3)  
(V = 0 Vdc, I = 250 mAdc)  
V
Vdc  
(BR)DSS  
60  
71.3  
71.2  
GS  
D
Temperature Coefficient (Positive)  
mV/°C  
mAdc  
Zero Gate Voltage Drain Current  
I
DSS  
(V = 60 Vdc, V = 0 Vdc)  
1.0  
10  
DS  
GS  
(V = 60 Vdc, V = 0 Vdc, T = 150°C)  
DS  
GS  
J
GateBody Leakage Current (V  
=
15 Vdc, V = 0 Vdc)  
I
100  
nAdc  
Vdc  
GS  
DS  
GSS  
ON CHARACTERISTICS (Note 3)  
Gate Threshold Voltage (Note 3)  
V
GS(th)  
(V = V , I = 250 mAdc)  
1.0  
1.6  
4.6  
2.0  
DS  
GS  
D
Threshold Temperature Coefficient (Negative)  
mV/°C  
mW  
Static DraintoSource OnResistance (Note 3)  
R
DS(on)  
(V = 5.0 Vdc, I = 10 Adc)  
39  
48  
GS  
D
Static DraintoSource OnResistance (Note 3)  
(V = 5.0 Vdc, I = 20 Adc)  
V
DS(on)  
Vdc  
0.81  
0.72  
1.66  
GS  
D
(V = 5.0 Vdc, I = 10 Adc, T = 150°C)  
GS  
D
J
Forward Transconductance (Note 3) (V = 4.0 Vdc, I = 10 Adc)  
g
FS  
17.5  
mhos  
pF  
DS  
D
DYNAMIC CHARACTERISTICS  
Input Capacitance  
C
iss  
707  
224  
72  
990  
320  
105  
(V = 25 Vdc, V = 0 Vdc,  
DS  
GS  
Output Capacitance  
Transfer Capacitance  
SWITCHING CHARACTERISTICS (Note 4)  
TurnOn Delay Time  
Rise Time  
C
oss  
f = 1.0 MHz)  
C
rss  
t
9.6  
98  
20  
200  
50  
120  
32  
ns  
d(on)  
(V = 30 Vdc, I = 20 Adc,  
DD  
D
t
r
V
GS  
= 5.0 Vdc,  
TurnOff Delay Time  
Fall Time  
t
25  
d(off)  
R
G
= 9.1 W) (Note 3)  
t
f
62  
Q
T
Q
1
Q
2
16.6  
5.5  
8.5  
nC  
Gate Charge  
(V = 48 Vdc, I = 20 Adc,  
DS  
V
D
= 5.0 Vdc) (Note 3)  
GS  
SOURCEDRAIN DIODE CHARACTERISTICS  
Forward OnVoltage  
(I = 20 Adc, V = 0 Vdc) (Note 3)  
V
SD  
0.97  
0.85  
1.2  
Vdc  
ns  
S
GS  
(I = 20 Adc, V = 0 Vdc, T = 150°C)  
S
GS  
J
t
rr  
42  
30  
Reverse Recovery Time  
(I = 20 Adc, V = 0 Vdc,  
S
GS  
t
a
dI /dt = 100 A/ms) (Note 3)  
S
t
b
12  
Reverse Recovery Stored Charge  
Q
0.066  
mC  
RR  
3. Pulse Test: Pulse Width 300 ms, Duty Cycle 2%.  
4. Switching characteristics are independent of operating junction temperatures.  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NTD20N06LG  
DPAK  
75 Units / Rail  
75 Units / Rail  
(PbFree)  
NTD20N06L1G  
NTD20N06LT4G  
NTDV20N06LT4G  
DPAK (Straight Lead)  
(PbFree)  
DPAK  
(PbFree)  
2500 / Tape & Reel  
2500 / Tape & Reel  
DPAK  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
2
 
NTD20N06L, NTDV20N06L  
40  
30  
20  
10  
40  
V
= 10 V  
GS  
V
10 V  
DS  
4.5 V  
4 V  
8 V  
5 V  
30  
6 V  
20  
10  
3.5 V  
3 V  
T = 25°C  
J
T = 100°C  
J
T = 55°C  
J
0
0
0
1
2
3
4
5
1.6  
2.4  
3.2  
4
4.8  
5.6  
V , DRAINTOSOURCE VOLTAGE (VOLTS)  
DS  
V , GATETOSOURCE VOLTAGE (VOLTS)  
GS  
Figure 1. OnRegion Characteristics  
Figure 2. Transfer Characteristics  
0.085  
0.075  
0.065  
0.055  
0.045  
0.035  
0.025  
0.015  
0.085  
0.075  
0.065  
0.055  
V
GS  
= 5 V  
V
GS  
= 10 V  
T = 100°C  
J
T = 100°C  
J
T = 25°C  
J
0.045  
0.035  
0.025  
0.015  
T = 25°C  
J
T = 55°C  
J
T = 55°C  
J
0
10  
20  
30  
40  
0
10  
20  
30  
40  
I , DRAIN CURRENT (AMPS)  
D
I , DRAIN CURRENT (AMPS)  
D
Figure 3. OnResistance versus  
GatetoSource Voltage  
Figure 4. OnResistance versus Drain Current  
and Gate Voltage  
10000  
1000  
2
1.8  
1.6  
V
GS  
= 0 V  
I
V
= 10 A  
D
= 5 V  
GS  
T = 150°C  
J
1.4  
1.2  
1
100  
10  
T = 100°C  
J
0.8  
0.6  
50 25  
0
25  
50  
75 100 125 150 175  
0
10  
20  
30  
40  
50  
60  
T , JUNCTION TEMPERATURE (°C)  
J
V , DRAINTOSOURCE VOLTAGE (VOLTS)  
DS  
Figure 5. OnResistance Variation with  
Figure 6. DraintoSource Leakage Current  
Temperature  
versus Voltage  
http://onsemi.com  
3
NTD20N06L, NTDV20N06L  
POWER MOSFET SWITCHING  
Switching behavior is most easily modeled and predicted  
by recognizing that the power MOSFET is charge  
controlled. The lengths of various switching intervals (Dt)  
are determined by how fast the FET input capacitance can  
be charged by current from the generator.  
The capacitance (C ) is read from the capacitance curve at  
a voltage corresponding to the offstate condition when  
iss  
calculating t  
and is read at a voltage corresponding to the  
d(on)  
onstate when calculating t  
.
d(off)  
At high switching speeds, parasitic circuit elements  
complicate the analysis. The inductance of the MOSFET  
source lead, inside the package and in the circuit wiring  
which is common to both the drain and gate current paths,  
produces a voltage at the source which reduces the gate drive  
current. The voltage is determined by Ldi/dt, but since di/dt  
is a function of drain current, the mathematical solution is  
complex. The MOSFET output capacitance also  
complicates the mathematics. And finally, MOSFETs have  
finite internal gate resistance which effectively adds to the  
resistance of the driving source, but the internal resistance  
is difficult to measure and, consequently, is not specified.  
The resistive switching time variation versus gate  
resistance (Figure 9) shows how typical switching  
performance is affected by the parasitic circuit elements. If  
the parasitics were not present, the slope of the curves would  
maintain a value of unity regardless of the switching speed.  
The circuit used to obtain the data is constructed to minimize  
common inductance in the drain and gate circuit loops and  
is believed readily achievable with board mounted  
components. Most power electronic loads are inductive; the  
data in the figure is taken with a resistive load, which  
approximates an optimally snubbed inductive load. Power  
MOSFETs may be safely operated into an inductive load;  
however, snubbing reduces switching losses.  
The published capacitance data is difficult to use for  
calculating rise and fall because draingate capacitance  
varies greatly with applied voltage. Accordingly, gate  
charge data is used. In most cases, a satisfactory estimate of  
average input current (I ) can be made from a  
G(AV)  
rudimentary analysis of the drive circuit so that  
t = Q/I  
G(AV)  
During the rise and fall time interval when switching a  
resistive load, V remains virtually constant at a level  
GS  
known as the plateau voltage, V . Therefore, rise and fall  
SGP  
times may be approximated by the following:  
t = Q x R /(V V )  
GSP  
r
2
G
GG  
t = Q x R /V  
f
2
G
GSP  
where  
= the gate drive voltage, which varies from zero to V  
V
GG  
GG  
R = the gate drive resistance  
G
and Q and V  
are read from the gate charge curve.  
2
GSP  
During the turnon and turnoff delay times, gate current is  
not constant. The simplest calculation uses appropriate  
values from the capacitance curves in a standard equation for  
voltage change in an RC network. The equations are:  
t
t
= R C In [V /(V V )]  
G iss GG GG GSP  
d(on)  
d(off)  
= R C In (V /V )  
GG GSP  
G
iss  
2400  
V
DS  
= 0 V  
V
GS  
= 0 V  
T = 25°C  
J
2000  
1600  
1200  
800  
C
iss  
C
rss  
C
iss  
400  
0
C
oss  
C
rss  
10  
5
0
5
10  
15  
20  
25  
V
GS  
V
DS  
GATETOSOURCE OR DRAINTOSOURCE VOLTAGE (VOLTS)  
Figure 7. Capacitance Variation  
http://onsemi.com  
4
NTD20N06L, NTDV20N06L  
1000  
6
5
4
3
2
V
I
= 30 V  
= 20 A  
DS  
Q
D
T
V
GS  
= 5 V  
V
100  
GS  
Q
t
r
Q
2
1
t
f
t
d(off)  
10  
1
t
d(on)  
1
0
I
= 20 A  
D
T = 25°C  
J
0
4
8
12  
16  
20  
1
10  
R , GATE RESISTANCE (OHMS)  
100  
Q , TOTAL GATE CHARGE (nC)  
G
G
Figure 8. GateToSource and DrainToSource  
Figure 9. Resistive Switching Time  
Variation versus Gate Resistance  
Voltage versus Total Charge  
DRAINTOSOURCE DIODE CHARACTERISTICS  
20  
V
GS  
= 0 V  
T = 25°C  
J
16  
12  
8
4
0
0.6  
0.68  
0.76  
0.84  
0.92  
1
V , SOURCETODRAIN VOLTAGE (VOLTS)  
SD  
Figure 10. Diode Forward Voltage versus Current  
SAFE OPERATING AREA  
The Forward Biased Safe Operating Area curves define  
the maximum simultaneous draintosource voltage and  
drain current that a transistor can handle safely when it is  
forward biased. Curves are based upon maximum peak  
reliable operation, the stored energy from circuit inductance  
dissipated in the transistor while in avalanche must be less  
than the rated limit and adjusted for operating conditions  
differing from those specified. Although industry practice is  
to rate in terms of energy, avalanche energy capability is not  
a constant. The energy rating decreases nonlinearly with an  
increase of peak current in avalanche and peak junction  
temperature.  
junction temperature and a case temperature (T ) of 25°C.  
C
Peak repetitive pulsed power limits are determined by using  
the thermal response data in conjunction with the procedures  
discussed in AN569, “Transient Thermal Resistance −  
General Data and Its Use.”  
Although many EFETs can withstand the stress of  
draintosource avalanche at currents up to rated pulsed  
Switching between the offstate and the onstate may  
traverse any load line provided neither rated peak current  
current (I ), the energy rating is specified at rated  
DM  
(I ) nor rated voltage (V ) is exceeded and the  
continuous current (I ), in accordance with industry custom.  
DM  
DSS  
D
transition time (t ,t ) do not exceed 10 ms. In addition the total  
power averaged over a complete switching cycle must not  
The energy rating must be derated for temperature as shown  
in the accompanying graph (Figure 12). Maximum energy at  
r f  
currents below rated continuous I can safely be assumed to  
exceed (T  
T )/(R ).  
D
J(MAX)  
C qJC  
equal the values indicated.  
A Power MOSFET designated EFET can be safely used  
in switching circuits with unclamped inductive loads. For  
http://onsemi.com  
5
NTD20N06L, NTDV20N06L  
SAFE OPERATING AREA  
100  
10  
140  
V
= 15 V  
I
D
= 16 A  
GS  
SINGLE PULSE  
120  
100  
80  
10 ms  
T
= 25°C  
C
100 ms  
1 ms  
60  
10 ms  
1
dc  
40  
R
DS(on)  
LIMIT  
THERMAL LIMIT  
PACKAGE LIMIT  
20  
0
0.1  
0.1  
1
10  
100  
25  
50  
75  
100  
125  
150  
175  
V , DRAINTOSOURCE VOLTAGE (VOLTS)  
DS  
T , STARTING JUNCTION TEMPERATURE (°C)  
J
Figure 11. Maximum Rated Forward Biased  
Safe Operating Area  
Figure 12. Maximum Avalanche Energy versus  
Starting Junction Temperature  
1.0  
D = 0.5  
0.2  
0.1  
0.05  
0.02  
P
(pk)  
0.1  
R
(t) = r(t) R  
q
JC  
q
JC  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
0.01  
SINGLE PULSE  
t
1
1
t
2
T
T = P  
R (t)  
q
JC  
J(pk)  
C
(pk)  
DUTY CYCLE, D = t /t  
1
2
0.01  
0.00001  
0.0001  
0.001  
0.01  
t, TIME (s)  
0.1  
1
10  
Figure 13. Thermal Response  
di/dt  
I
S
t
rr  
t
a
t
b
TIME  
0.25 I  
t
p
S
I
S
Figure 14. Diode Reverse Recovery Waveform  
http://onsemi.com  
6
NTD20N06L, NTDV20N06L  
PACKAGE DIMENSIONS  
DPAK (SINGLE GAUGE)  
CASE 369C01  
ISSUE D  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: INCHES.  
3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-  
MENSIONS b3, L3 and Z.  
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL  
NOT EXCEED 0.006 INCHES PER SIDE.  
5. DIMENSIONS D AND E ARE DETERMINED AT THE  
OUTERMOST EXTREMES OF THE PLASTIC BODY.  
6. DATUMS A AND B ARE DETERMINED AT DATUM  
PLANE H.  
C
A
D
A
E
c2  
b3  
B
4
2
L3  
L4  
Z
H
DETAIL A  
1
3
INCHES  
DIM MIN MAX  
0.086 0.094  
A1 0.000 0.005  
0.025 0.035  
MILLIMETERS  
MIN  
2.18  
0.00  
0.63  
0.76  
4.57  
0.46  
0.46  
5.97  
6.35  
MAX  
2.38  
0.13  
0.89  
1.14  
5.46  
0.61  
0.61  
6.22  
6.73  
A
b2  
c
b
b
b2 0.030 0.045  
b3 0.180 0.215  
M
0.005 (0.13)  
C
H
e
c
0.018 0.024  
c2 0.018 0.024  
GAUGE  
SEATING  
PLANE  
L2  
PLANE  
C
D
E
e
0.235 0.245  
0.250 0.265  
0.090 BSC  
2.29 BSC  
9.40 10.41  
1.40 1.78  
2.74 REF  
0.51 BSC  
0.89 1.27  
H
L
L1  
L2  
0.370 0.410  
0.055 0.070  
0.108 REF  
L
A1  
L1  
0.020 BSC  
DETAIL A  
L3 0.035 0.050  
ROTATED 905 CW  
L4  
Z
−−− 0.040  
0.155 −−−  
−−−  
3.93  
1.01  
−−−  
STYLE 2:  
PIN 1. GATE  
2. DRAIN  
SOLDERING FOOTPRINT*  
3. SOURCE  
4. DRAIN  
6.20  
0.244  
3.00  
0.118  
2.58  
0.102  
5.80  
0.228  
1.60  
0.063  
6.17  
0.243  
mm  
inches  
ǒ
Ǔ
SCALE 3:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
7
NTD20N06L, NTDV20N06L  
PACKAGE DIMENSIONS  
IPAK  
CASE 369D01  
ISSUE C  
C
B
R
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
V
S
E
2. CONTROLLING DIMENSION: INCH.  
INCHES  
DIM MIN MAX  
MILLIMETERS  
4
2
MIN  
5.97  
6.35  
2.19  
0.69  
0.46  
0.94  
MAX  
6.35  
6.73  
2.38  
0.88  
0.58  
1.14  
Z
A
B
C
D
E
F
G
H
J
K
R
S
V
Z
0.235 0.245  
0.250 0.265  
0.086 0.094  
0.027 0.035  
0.018 0.023  
0.037 0.045  
0.090 BSC  
0.034 0.040  
0.018 0.023  
0.350 0.380  
0.180 0.215  
0.025 0.040  
0.035 0.050  
A
K
1
3
T−  
SEATING  
PLANE  
2.29 BSC  
0.87  
0.46  
8.89  
4.45  
0.63  
0.89  
3.93  
1.01  
0.58  
9.65  
5.45  
1.01  
1.27  
−−−  
J
F
H
0.155  
−−−  
D 3 PL  
STYLE 2:  
PIN 1. GATE  
2. DRAIN  
G
M
T
0.13 (0.005)  
3. SOURCE  
4. DRAIN  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NTD20N06L/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY