PCF8896W [ONSEMI]

N 沟道,PowerTrench® MOSFET,30V,15A,6.0mΩ;
PCF8896W
型号: PCF8896W
厂家: ONSEMI    ONSEMI
描述:

N 沟道,PowerTrench® MOSFET,30V,15A,6.0mΩ

文件: 总13页 (文件大小:801K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductor  
Is Now  
To learn more about onsemi™, please visit our website at  
www.onsemi.com  
onsemi andꢀꢀꢀꢀꢀꢀꢀand other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or  
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi  
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without  
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,  
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,  
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/  
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application  
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized  
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for  
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and holdonsemi and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative  
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.  
FDS8896  
N-Channel PowerTrench® MOSFET  
30V, 15A, 6.0mΩ  
Features  
General Description  
„ rDS(on) = 6.0m, VGS = 10V, ID = 15A  
This N-Channel MOSFET has been designed specifically to  
improve the overall efficiency of DC/DC converters using  
either synchronous or conventional switching PWM  
controllers. It has been optimized for low gate charge, low  
„ rDS(on) = 7.3m, VGS = 4.5V, ID = 14A  
„ High performance trench technology for extremely low  
rDS(on)  
rDS(on) and fast switching speed.  
Applications  
„ Low gate charge  
„ DC/DC converters  
„ High power and current handling capability  
„ RoHS Compliant  
Branding Dash  
5
6
7
8
4
3
2
1
5
1
2
3
4
SO-8  
©2007 Semiconductor Components Industries, LLC.  
October-2017, Rev. 2  
1
Publication Order Number:  
FDS8896/D  
MOSFET Maximum Ratings TA = 25°C unless otherwise noted  
Symbol  
VDSS  
VGS  
Parameter  
Ratings  
30  
Units  
Drain to Source Voltage  
Gate to Source Voltage  
Drain Current  
V
V
±20  
Continuous (TA = 25oC, VGS = 10V, RθJA = 50oC/W)  
Continuous (TA = 25oC, VGS = 4.5V, RθJA = 50oC/W)  
Pulsed  
15  
14  
A
A
ID  
110  
A
EAS  
Single Pulse Avalanche Energy (Note 1)  
196  
mJ  
Power dissipation  
Derate above 25oC  
2.5  
W
PD  
20  
mW/oC  
oC  
TJ, TSTG  
Operating and Storage Temperature  
-55 to 150  
Thermal Characteristics  
RθJC  
RθJA  
RθJA  
Thermal Resistance, Junction to Case (Note 2)  
25  
50  
oC/W  
oC/W  
oC/W  
Thermal Resistance, Junction to Ambient (Note 2a)  
Thermal Resistance, Junction to Ambient (Note 2b)  
125  
Package Marking and Ordering Information  
Device Marking  
Device  
Package  
Reel Size  
Tape Width  
12mm  
Quantity  
2500 units  
FDS8896  
FDS8896  
SO-8  
330mm  
Electrical Characteristics TJ = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
BVDSS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
ID = 250µA, VGS = 0V  
30  
-
-
-
-
-
-
V
V
DS = 24V  
1
IDSS  
µA  
VGS = 0V  
TJ = 150oC  
-
250  
±100  
IGSS  
VGS = ±20V  
-
nA  
On Characteristics  
VGS(TH)  
Gate to Source Threshold Voltage  
VGS = VDS, ID = 250µA  
D = 15A, VGS = 10V  
1.2  
-
2.5  
6.0  
7.3  
V
I
-
-
4.9  
5.8  
ID = 14A, VGS = 4.5V  
rDS(on)  
Drain to Source On Resistance  
mΩ  
ID = 15A, VGS = 10V,  
TJ = 150oC  
-
7.8  
10.1  
Dynamic Characteristics  
CISS  
COSS  
CRSS  
RG  
Input Capacitance  
-
2525  
490  
300  
2.4  
50  
-
-
pF  
pF  
pF  
VDS = 15V, VGS = 0V,  
f = 1MHz  
Output Capacitance  
-
Reverse Transfer Capacitance  
Gate Resistance  
-
-
VGS = 0.5V, f = 1MHz  
VGS = 0V to 10V  
0.6  
4.2  
67  
36  
3.2  
-
Qg(TOT)  
Qg(5)  
Qg(TH)  
Qgs  
Total Gate Charge at 10V  
Total Gate Charge at 5V  
Threshold Gate Charge  
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain “Miller” Charge  
-
-
-
-
-
-
nC  
nC  
nC  
nC  
nC  
nC  
VDD = 15V  
D = 15A  
Ig = 1.0mA  
VGS = 0V to 5V  
VGS = 0V to 1V  
28  
I
2.5  
7.0  
4.5  
11  
Qgs2  
Qgd  
-
-
www.onsemi.com  
2
Switching Characteristics (VGS = 10V)  
tON  
td(ON)  
tr  
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
68  
ns  
ns  
ns  
ns  
ns  
ns  
8
-
37  
60  
24  
-
-
VDD = 15V, ID = 14A  
VGS = 10V, RGS = 6.2Ω  
td(OFF)  
tf  
Turn-Off Delay Time  
Fall Time  
-
-
tOFF  
Turn-Off Time  
126  
Drain-Source Diode Characteristics  
I
SD = 15A  
-
-
-
-
-
-
-
-
1.25  
1.0  
29  
V
V
VSD  
Source to Drain Diode Voltage  
ISD = 2.1A  
trr  
Reverse Recovery Time  
ISD = 15A, dISD/dt = 100A/µs  
ISD = 15A, dISD/dt = 100A/µs  
ns  
nC  
QRR  
Reverse Recovered Charge  
15  
Notes:  
1: Starting T = 25°C, L = 1mH, I = 19.8A, V = 30V, V = 10V.  
J
AS  
DD  
GS  
2:  
R
is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the  
θJA  
drain pins. R  
is guaranteed by design while R  
2
is determined by the user’s board design.  
θJA  
θJC  
a) 50°C/W when mounted on a 1in pad of 2 oz copper.  
b) 125°C/W when mounted on a minimum pad.  
www.onsemi.com  
3
Typical Characteristics TJ = 25°C unless otherwise noted  
20  
15  
10  
5
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 10V  
GS  
V
= 4.5V  
GS  
o
R
=50 C/W  
θJA  
0
0
25  
50  
75  
100  
125  
150  
25  
50  
T
75  
100  
125  
150  
o
o
, AMBIENT TEMPERATURE ( C)  
T
, AMBIENT TEMPERATURE ( C)  
A
A
Figure 1. Normalized Power Dissipation vs  
Ambient Temperature  
Figure 2. Maximum Continuous Drain Current vs  
Ambient Temperature  
2
1
DUTY CYCLE-DESCENDING ORDER  
D = 0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
0.01  
0.01  
SINGLE PULSE  
R
θJA = 125oC/W  
0.001  
0.0005  
10-4  
10-3  
10-2  
10-1  
100  
101  
102  
103  
t, RECTANGULAR PULSE DURATION (s)  
Figure 3. Normalized Maximum Transient Thermal Impedance  
2000  
1000  
VGS = 10V  
SINGLE PULSE  
RθJA = 125oC/W  
TA = 25oC  
100  
10  
1
0.5  
10-4  
10-3  
10-2  
10-1  
100  
101  
102  
103  
t, PULSE WIDTH (s)  
Figure 4. Single Pulse Maximum Power Dissipation  
www.onsemi.com  
4
Typical Characteristics TJ = 25°C unless otherwise noted  
100  
50  
40  
30  
20  
10  
0
If R = 0  
= (L)(I )/(1.3*RATED BV  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5%MAX  
t
AV  
- V  
)
AS  
DSS  
DD  
If R 0  
t
= (L/R)ln[(I *R)/(1.3*RATED BV  
- V ) +1]  
DD  
AV  
AS  
DSS  
VDS = 5V  
o
STARTING T = 25 C  
J
10  
TJ = 25oC  
TJ = 150oC  
o
STARTING T = 150 C  
J
TJ = -55oC  
1
1.5  
2.0  
2.5  
3.0  
3.5  
0.1  
1
10  
100  
VGS, GATE TO SOURCE VOLTAGE (V)  
t
, TIME IN AVALANCHE (ms)  
AV  
NOTE: Refer to ON Semiconductor Application Notes AN7514 and AN7515  
Figure 5. Unclamped Inductive Switching  
Capability  
Figure 6. Transfer Characteristics  
50  
14  
12  
10  
8
V
= 5V  
V
= 10V  
GS  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
GS  
I
= 15A  
D
V
= 4V  
GS  
40  
30  
20  
10  
0
V
= 3V  
GS  
o
T
= 25 C  
A
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
6
V
= 2.5V  
GS  
4
0
0.1  
0.2  
0.3  
0.4  
0.5  
2
4
V , GATE TO SOURCE VOLTAGE (V)  
GS  
6
8
10  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
Figure 7. Saturation Characteristics  
Figure 8. Drain to Source On Resistance vs Gate  
Voltage and Drain Current  
1.2  
1.6  
PULSE DURATION = 80µs  
V
= V , I = 250µA  
GS  
DS  
D
DUTY CYCLE = 0.5% MAX  
1.4  
1.2  
1.0  
0.8  
0.6  
1.0  
0.8  
0.6  
V
= 10V, I = 15A  
D
GS  
-80  
-40  
0
40  
80  
120  
160  
-80  
-40  
0
40  
80  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 9. Normalized Drain to Source On  
Resistance vs Junction Temperature  
Figure 10. Normalized Gate Threshold Voltage vs  
Junction Temperature  
www.onsemi.com  
5
Typical Characteristics TJ = 25°C unless otherwise noted  
1.10  
1.05  
1.00  
0.95  
0.90  
5000  
I
= 250µA  
C
= C + C  
GS GD  
D
ISS  
C
C + C  
DS GD  
OSS  
1000  
C
= C  
GD  
RSS  
V
= 0V, f = 1MHz  
GS  
100  
-80  
-40  
0
40  
80  
120  
160  
0.1  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
30  
o
T , JUNCTION TEMPERATURE ( C)  
V
J
Figure 11. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
Figure 12. Capacitance vs Drain to Source  
Voltage  
10  
200  
100  
V
= 15V  
DD  
100us  
8
6
4
2
0
10  
1
1ms  
10ms  
THIS AREA IS  
LIMITED BY r  
100ms  
1s  
DS(on)  
SINGLE PULSE  
J = MAX RATED  
RθJA = 125oC/W  
T
0.1  
WAVEFORMS IN  
10s  
DC  
DESCENDING ORDER:  
I
I
= 15A  
= 1A  
D
T
A = 25oC  
D
0.01  
0.01  
0.1  
1
10  
100  
0
10  
20  
30  
40  
50  
VDS, DRAIN to SOURCE VOLTAGE (V)  
Q , GATE CHARGE (nC)  
g
Figure 13. Gate Charge Waveforms for Constant  
Gate Currents  
Figure 14. Forward Bias Safe Operating Area  
www.onsemi.com  
6
Test Circuits and Waveforms  
V
BV  
DSS  
DS  
t
P
V
DS  
L
I
AS  
V
DD  
VARY t TO OBTAIN  
P
+
-
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
Figure 15. Unclamped Energy Test Circuit  
Figure 16. Unclamped Energy Waveforms  
V
DS  
V
Q
DD  
g(TOT)  
V
V
GS  
DS  
L
V
= 10V  
GS  
Q
g(5)  
V
GS  
+
-
Q
gs2  
V
= 5V  
GS  
V
DD  
DUT  
V
= 1V  
GS  
I
g(REF)  
0
Q
g(TH)  
Q
Q
gs  
gd  
I
g(REF)  
0
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
V
DS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
R
t
t
f
L
r
V
DS  
90%  
90%  
+
-
V
GS  
V
DD  
10%  
10%  
0
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
www.onsemi.com  
7
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, TJM, and the  
thermal resistance of the heat dissipating path determines  
the maximum allowable device power dissipation, PDM, in an  
thermal impedance curve.  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 21 or by calculation using  
Equation 2. The area, in square inches is the top copper  
area including the gate and source pads.  
application.  
Therefore the application’s ambient  
temperature, TA (oC), and thermal resistance RθJA (oC/W)  
must be reviewed to ensure that TJM is never exceeded.  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
26  
R
= 64 +  
-------------------------------  
(EQ. 2)  
θJA  
0.23 + Area  
(T  
T )  
A
JM  
(EQ. 1)  
P
= ------------------------------  
DM  
RθJA  
The transient thermal impedance (ZθJA) is also effected by  
varied top copper board area. Figure 22 shows the effect of  
copper pad area on single pulse transient thermal imped-  
ance. Each trace represents a copper pad area in square  
inches corresponding to the descending list in the graph.  
Spice and SABER thermal models are provided for each of  
the listed pad areas.  
In using surface mount devices such as the SO8 package,  
the environment in which it is applied will have a significant  
influence on the part’s current and maximum power  
dissipation ratings. Precise determination of PDM is complex  
and influenced by many factors:  
Copper pad area has no perceivable effect on transient  
thermal impedance for pulse widths less than 100ms. For  
pulse widths less than 100ms the transient thermal  
impedance is determined by the die and package.  
Therefore, CTHERM1 through CTHERM5 and RTHERM1  
through RTHERM5 remain constant for each of the thermal  
models. A listing of the model component values is available  
in Table 1.  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
2. The number of copper layers and the thickness of the  
board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
200  
5. Air flow and board orientation.  
R
= 64 + 26/(0.23+Area)  
θJA  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
150  
ON Semiconductor provides thermal information to assist  
the design-er’s preliminary application evaluation. Figure  
21 defines the RθJA for the device as a function of the top  
copper (compo-nent side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
of steady state power with no air flow. This graph provides  
the necessary in-formation for calculation of the steady  
state junction temper-ature or power dissipation. Pulse  
applications can be evaluated using the ON Semiconductor  
device Spice thermal model or manually utilizing the  
normalized maximum transient  
100  
50  
0.001  
0.01  
0.1  
1
2
10  
AREA, TOP COPPER AREA (in )  
Figure 21. Thermal Resistance vs Mounting  
Pad Area  
150  
COPPER BOARD AREA - DESCENDING ORDER  
2
0.04 in  
2
0.28 in  
0.52 in  
0.76 in  
1.00 in  
120  
90  
60  
30  
0
2
2
2
-1  
0
1
2
3
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
Figure 22. Thermal Impedance vs Mounting Pad Area  
www.onsemi.com  
8
PSPICE Electrical Model  
.SUBCKT FDS8896 2 1 3 ;  
Ca 12 8 1.8e-9  
rev February 2004  
Cb 15 14 1.8e-9  
Cin 6 8 2.2e-9  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
Ebreak 11 7 17 18 33.1  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
Evtemp 20 6 18 22 1  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
-
+
50  
-
17  
18  
-
DBODY  
RDRAIN  
6
8
EBREAK  
MWEAK  
ESG  
It 8 17 1  
EVTHRES  
+
16  
21  
+
-
19  
8
Lgate 1 9 1.5e-9  
Ldrain 2 5 1.0e-9  
Lsource 3 7 1e-9  
LGATE  
EVTEMP  
RGATE  
GATE  
1
+
6
-
18  
22  
MMED  
9
20  
MSTRO  
8
RLGATE  
RLgate 1 9 15  
RLdrain 2 5 10  
RLsource 3 7 10  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 2.52e-3  
Rgate 9 20 2.4  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
Rsource 8 7 RsourceMOD 2e-3  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
13  
CB  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),10))}  
.MODEL DbodyMOD D (IS=4E-12 IKF=10 N=1.01 RS=2.6e-3 TRS1=8e-4 TRS2=2e-7  
+ CJO=8.8e-10 M=0.57 TT=1e-12 XTI=2.2)  
.MODEL DbreakMOD D (RS=8e-2 TRS1=1e-3 TRS2=-8.9e-6)  
.MODEL DplcapMOD D (CJO=9e-10 IS=1e-30 N=10 M=0.39)  
.MODEL MmedMOD NMOS (VTO=1.98 KP=10 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.4)  
.MODEL MstroMOD NMOS (VTO=2.4 KP=350 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MweakMOD NMOS (VTO=1.63 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=24 RS=0.1)  
.MODEL RbreakMOD RES (TC1=8.3e-4 TC2=-1e-6)  
.MODEL RdrainMOD RES (TC1=1e-4 TC2=8e-6)  
.MODEL RSLCMOD RES (TC1=9e-4 TC2=1e-6)  
.MODEL RsourceMOD RES (TC1=7e-3 TC2=1e-6)  
.MODEL RvthresMOD RES (TC1=-1.3e-3 TC2=-7e-6)  
.MODEL RvtempMOD RES (TC1=-2.6e-3 TC2=2e-7)  
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3)  
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3 VOFF=-4)  
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-0.5)  
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-2)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
www.onsemi.com  
9
SABER Electrical Model  
REV February 2004  
template FDS8896 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=4e-12,ikf=10,nl=1.01,rs=2.6e-3,trs1=8e-4,trs2=2e-7,cjo=8.8e-10,m=0.57,tt=1e-12,xti=2.2)  
dp..model dbreakmod = (rs=8e-2,trs1=1e-3,trs2=-8.9e-6)  
dp..model dplcapmod = (cjo=9e-10,isl=10e-30,nl=10,m=0.39)  
m..model mmedmod = (type=_n,vto=1.98,kp=10,is=1e-30, tox=1)  
m..model mstrongmod = (type=_n,vto=2.4,kp=350,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=1.63,kp=0.05,is=1e-30, tox=1,rs=0.1)  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3)  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3,voff=-4)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-0.5)  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-2)  
c.ca n12 n8 = 1.8e-9  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
c.cb n15 n14 = 1.8e-9  
c.cin n6 n8 = 2.2e-9  
RSLC2  
ISCL  
DBREAK  
11  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
50  
-
RDRAIN  
6
8
ESG  
DBODY  
EVTHRES  
+
16  
21  
+
-
19  
8
spe.ebreak n11 n7 n17 n18 = 33.1  
MWEAK  
LGATE  
EVTEMP  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
RGATE  
GATE  
1
+
6
-
18  
22  
EBREAK  
+
MMED  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
i.it n8 n17 = 1  
RLSOURCE  
S1A  
S2A  
RBREAK  
l.lgate n1 n9 = 1.5e-9  
l.ldrain n2 n5 = 1.0e-9  
l.lsource n3 n7 = 1e-9  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
res.rlgate n1 n9 = 15  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 10  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
22  
RVTHRES  
res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-1e-6  
res.rdrain n50 n16 = 2.52e-3, tc1=1e-4,tc2=8e-6  
res.rgate n9 n20 = 2.4  
res.rslc1 n5 n51 = 1e-6, tc1=9e-4,tc2=1e-6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 2e-3, tc1=7e-3,tc2=1e-6  
res.rvthres n22 n8 = 1, tc1=-1.3e-3,tc2=-7e-6  
res.rvtemp n18 n19 = 1, tc1=-2.6e-3,tc2=2e-7  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 10))  
}
}
www.onsemi.com  
10  
SPICE Thermal Model  
JUNCTION  
th  
REV February 2004  
FDS8896T  
Copper Area =1.0 in2  
CTHERM1 TH 8 2.0e-3  
CTHERM2 8 7 5.0e-3  
CTHERM3 7 6 1.0e-2  
CTHERM4 6 5 4.0e-2  
CTHERM5 5 4 9.0e-2  
CTHERM6 4 3 2e-1  
CTHERM7 3 2 1  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
RTHERM7  
RTHERM8  
CTHERM1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
CTHERM7  
CTHERM8  
8
7
CTHERM8 2 TL 3  
RTHERM1 TH 8 1e-1  
RTHERM2 8 7 5e-1  
RTHERM3 7 6 1  
RTHERM4 6 5 5  
RTHERM5 5 4 8  
RTHERM6 4 3 12  
RTHERM7 3 2 18  
RTHERM8 2 TL 25  
6
5
SABER Thermal Model  
Copper Area = 1.0 in2  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 8 =2.0e-3  
ctherm.ctherm2 8 7 =5.0e-3  
ctherm.ctherm3 7 6 =1.0e-2  
ctherm.ctherm4 6 5 =4.0e-2  
ctherm.ctherm5 5 4 =9.0e-2  
ctherm.ctherm6 4 3 =2e-1  
ctherm.ctherm7 3 2 1  
ctherm.ctherm8 2 tl 3  
4
3
2
rtherm.rtherm1 th 8 =1e-1  
rtherm.rtherm2 8 7 =5e-1  
rtherm.rtherm3 7 6 =1  
rtherm.rtherm4 6 5 =5  
rtherm.rtherm5 5 4 =8  
rtherm.rtherm6 4 3 =12  
rtherm.rtherm7 3 2 =18  
rtherm.rtherm8 2 tl =25  
}
tl  
CASE  
TABLE 1. THERMAL MODELS  
COMPONANT  
CTHERM6  
CTHERM7  
CTHERM8  
RTHERM6  
RTHERM7  
RTHERM8  
0.04 in2  
1.2e-1  
0.5  
0.28 in2  
1.5e-1  
1.0  
0.52 in2  
2.0e-1  
1.0  
0.76 in2  
2.0e-1  
1.0  
1.0 in2  
2.0e-1  
1.0  
3.0  
12  
1.3  
2.8  
3.0  
3.0  
26  
20  
15  
13  
39  
24  
21  
19  
18  
55  
38.7  
31.3  
29.7  
25  
www.onsemi.com  
11  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
© Semiconductor Components Industries, LLC  
www.onsemi.com  

相关型号:

PCF93C110

32-Bit Microcontroller
ETC

PCFA86062F

Power MOSFET, N-Channel, 100 V, 1.8 mΩ, Bare Die
ONSEMI

PCFA86062WA

Power MOSFET, N-Channel, 100 V, 1.8 mΩ, Bare Die
ONSEMI

PCFA86210F

Power MOSFET, N-Channel, 150 V, 6.1 mΩ, Bare Die
ONSEMI

PCFA86361F

Power MOSFET, N-Channel, 80 V, 1.25 mΩ, Bare Die
ONSEMI

PCFA86561F

Power MOSFET, N-Channel, 60 V, 0.95 mΩ, Bare Die
ONSEMI

PCFAZH-AC012

Ceramic BPF, 0.45MHz, ROHS COMPLIANT PACKAGE
TOKO

PCFC47N60FW

DESIGN/PROCESS CHANGE NOTIFICATION
FAIRCHILD

PCFC47N60FW-SN00201

DESIGN/PROCESS CHANGE NOTIFICATION
FAIRCHILD

PCFF100H120SWF

Power Diode Bare Die
ONSEMI

PCFF30H120SWF

Power Diode Bare Die
ONSEMI

PCFF45H120SWF

Power Diode Bare Die
ONSEMI