PZT3904 [ONSEMI]

NPN General Purpose Amplifier;
PZT3904
型号: PZT3904
厂家: ONSEMI    ONSEMI
描述:

NPN General Purpose Amplifier

开关 光电二极管 小信号双极晶体管
文件: 总12页 (文件大小:299K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
MMBT3904WT1/D  
SEMICONDUCTOR TECHNICAL DATA  
NPN and PNP Silicon  
These transistors are designed for general purpose amplifier applications. They are  
housed in the SOT–323/SC–70 which is designed for low power surface mount  
applications.  
MAXIMUM RATINGS  
Rating  
CollectorEmitter Voltage  
Symbol  
Value  
Unit  
GENERAL PURPOSE  
AMPLIFIER TRANSISTORS  
SURFACE MOUNT  
MMBT3904WT1  
MMBT3906WT1  
V
CEO  
V
CBO  
V
EBO  
40  
–40  
Vdc  
CollectorBase Voltage  
EmitterBase Voltage  
MMBT3904WT1  
MMBT3906WT1  
60  
–40  
Vdc  
Vdc  
MMBT3904WT1  
MMBT3906WT1  
6.0  
–5.0  
3
Collector Current — Continuous MMBT3904WT1  
MMBT3906WT1  
I
200  
–200  
mAdc  
C
1
2
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Max  
Unit  
CASE 419–02, STYLE 3  
SOT–323/SC–70  
(1)  
Total Device Dissipation  
P
D
150  
mW  
T
= 25°C  
A
Thermal Resistance, Junction to Ambient  
Junction and Storage Temperature  
DEVICE MARKING  
R
833  
°C/W  
°C  
JA  
T , T  
J stg  
55 to +150  
MMBT3904WT1 = AM  
MMBT3906WT1 = 2A  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Max  
Unit  
OFF CHARACTERISTICS  
(2)  
CollectorEmitter Breakdown Voltage  
V
Vdc  
(BR)CEO  
(I = 1.0 mAdc, I = 0)  
MMBT3904WT1  
MMBT3906WT1  
40  
–40  
C
C
B
B
(I = –1.0 mAdc, I = 0)  
CollectorBase Breakdown Voltage  
(I = 10 Adc, I = 0)  
V
Vdc  
Vdc  
(BR)CBO  
MMBT3904WT1  
MMBT3906WT1  
60  
–40  
C
E
(I = –10 Adc, I = 0)  
C
E
EmitterBase Breakdown Voltage  
(I = 10 Adc, I = 0)  
V
(BR)EBO  
MMBT3904WT1  
MMBT3906WT1  
6.0  
–5.0  
E
E
C
C
(I = –10 Adc, I = 0)  
Base Cutoff Current  
I
nAdc  
nAdc  
BL  
(V  
CE  
(V  
CE  
= 30 Vdc, V  
EB  
= –30 Vdc, V  
= 3.0 Vdc)  
MMBT3904WT1  
MMBT3906WT1  
50  
–50  
= –3.0 Vdc)  
EB  
Collector Cutoff Current  
I
CEX  
(V  
CE  
(V  
CE  
= 30 Vdc, V  
EB  
= –30 Vdc, V  
= 3.0 Vdc)  
MMBT3904WT1  
MMBT3906WT1  
50  
–50  
= –3.0 Vdc)  
EB  
1. Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint.  
2. Pulse Test: Pulse Width 300 s; Duty Cycle 2.0%.  
Thermal Clad is a trademark of the Bergquist Company.  
Motorola, Inc. 1996
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (Continued)  
A
Characteristic  
Symbol  
Min  
Max  
Unit  
(2)  
ON CHARACTERISTICS  
DC Current Gain  
h
FE  
(I = 0.1 mAdc, V  
= 1.0 Vdc)  
= 1.0 Vdc)  
= 1.0 Vdc)  
= 1.0 Vdc)  
MMBT3904WT1  
MMBT3906WT1  
40  
70  
100  
60  
300  
C
CE  
CE  
CE  
CE  
(I = 1.0 mAdc, V  
C
(I = 10 mAdc, V  
C
(I = 50 mAdc, V  
C
(I = 100 mAdc, V  
= 1.0 Vdc)  
CE  
30  
C
(I = –0.1 mAdc, V  
= –1.0 Vdc)  
= –1.0 Vdc)  
= –1.0 Vdc)  
= –1.0 Vdc)  
60  
80  
100  
60  
300  
C
CE  
CE  
CE  
CE  
(I = –1.0 mAdc, V  
C
(I = –10 mAdc, V  
C
(I = –50 mAdc, V  
C
(I = –100 mAdc, V  
CE  
= –1.0 Vdc)  
30  
C
CollectorEmitter Saturation Voltage  
(I = 10 mAdc, I = 1.0 mAdc)  
V
V
Vdc  
Vdc  
CE(sat)  
MMBT3904WT1  
MMBT3906WT1  
0.2  
0.3  
C
B
(I = 50 mAdc, I = 5.0 mAdc)  
C
B
(I = –10 mAdc, I = –1.0 mAdc)  
–0.25  
–0.4  
C
C
B
B
(I = –50 mAdc, I = –5.0 mAdc)  
BaseEmitter Saturation Voltage  
(I = 10 mAdc, I = 1.0 mAdc)  
BE(sat)  
MMBT3904WT1  
MMBT3906WT1  
0.65  
0.85  
0.95  
C
C
B
B
(I = 50 mAdc, I = 5.0 mAdc)  
(I = –10 mAdc, I = –1.0 mAdc)  
–0.65  
–0.85  
–0.95  
C
C
B
B
(I = –50 mAdc, I = –5.0 mAdc)  
SMALLSIGNAL CHARACTERISTICS  
CurrentGain — Bandwidth Product  
f
MHz  
pF  
T
(I = 10 mAdc, V  
(I = –10 mAdc, V  
C
= 20 Vdc, f = 100 MHz)  
CE  
CE  
MMBT3904WT1  
MMBT3906WT1  
300  
250  
C
= –20 Vdc, f = 100 MHz)  
Output Capacitance  
C
obo  
(V  
CB  
(V  
CB  
= 5.0 Vdc, I = 0, f = 1.0 MHz)  
MMBT3904WT1  
MMBT3906WT1  
4.0  
4.5  
E
= –5.0 Vdc, I = 0, f = 1.0 MHz)  
E
Input Capacitance  
C
pF  
ibo  
(V  
EB  
(V  
EB  
= 0.5 Vdc, I = 0, f = 1.0 MHz)  
= –0.5 Vdc, I = 0, f = 1.0 MHz)  
MMBT3904WT1  
MMBT3906WT1  
8.0  
10.0  
C
C
Input Impedance  
h
k  
ie  
re  
fe  
(V  
CE  
(V  
CE  
= 10 Vdc, I = 1.0 mAdc, f = 1.0 kHz)  
= –10 Vdc, I = –1.0 mAdc, f = 1.0 kHz)  
MMBT3904WT1  
MMBT3906WT1  
1.0  
2.0  
10  
12  
C
C
–4  
X 10  
Voltage Feedback Ratio  
h
h
(V  
CE  
(V  
CE  
= 10 Vdc, I = 1.0 mAdc, f = 1.0 kHz)  
= –10 Vdc, I = –1.0 mAdc, f = 1.0 kHz)  
MMBT3904WT1  
MMBT3906WT1  
0.5  
0.1  
8.0  
10  
C
C
SmallSignal Current Gain  
(V  
CE  
(V  
CE  
= 10 Vdc, I = 1.0 mAdc, f = 1.0 kHz)  
= –10 Vdc, I = –1.0 mAdc, f = 1.0 kHz)  
MMBT3904WT1  
MMBT3906WT1  
100  
100  
400  
400  
C
C
Output Admittance  
h
mhos  
dB  
oe  
(V  
CE  
(V  
CE  
= 10 Vdc, I = 1.0 mAdc, f = 1.0 kHz)  
= –10 Vdc, I = –1.0 mAdc, f = 1.0 kHz)  
MMBT3904WT1  
MMBT3906WT1  
1.0  
3.0  
40  
60  
C
C
Noise Figure  
NF  
(V  
CE  
(V  
CE  
= 5.0 Vdc, I = 100 Adc, R = 1.0 k , f = 1.0 kHz)  
MMBT3904WT1  
MMBT3906WT1  
5.0  
4.0  
C
S
= –5.0 Vdc, I = –100 Adc, R = 1.0 k , f = 1.0 kHz)  
C
S
SWITCHING CHARACTERISTICS  
(V  
(V  
= 3.0 Vdc, V  
BE  
= 0.5 Vdc)  
= 0.5 Vdc)  
MMBT3904WT1  
MMBT3906WT1  
Delay Time  
t
35  
35  
CC  
CC  
d
= –3.0 Vdc, V  
BE  
ns  
ns  
(I = 10 mAdc, I = 1.0 mAdc)  
B1  
MMBT3904WT1  
MMBT3906WT1  
Rise Time  
t
35  
35  
C
r
(I = –10 mAdc, I = –1.0 mAdc)  
C
B1  
(V  
(V  
= 3.0 Vdc, I = 10 mAdc)  
C
MMBT3904WT1  
MMBT3906WT1  
Storage Time  
Fall Time  
t
200  
225  
CC  
CC  
s
= –3.0 Vdc, I = –10 mAdc)  
C
(I = I = 1.0 mAdc)  
B1 B2  
MMBT3904WT1  
MMBT3906WT1  
t
f
50  
75  
(I = I = –1.0 mAdc)  
B1 B2  
2. Pulse Test: Pulse Width  
300 s, Duty Cycle  
2.0%.  
2
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
MMBT3904WT1  
+3 V  
+3 V  
DUTY CYCLE = 2%  
300 ns  
t
10 < t < 500  
s
1
1
+10.9 V  
DUTY CYCLE = 2%  
+10.9 V  
< 1 ns  
275  
275  
10 k  
10 k  
0
0.5 V  
C
< 4 pF*  
C < 4 pF*  
S
S
1N916  
9.1 V  
< 1 ns  
* Total shunt capacitance of test jig and connectors  
Figure 1. Delay and Rise Time  
Equivalent Test Circuit  
Figure 2. Storage and Fall Time  
Equivalent Test Circuit  
TYPICAL TRANSIENT CHARACTERISTICS  
T
T
= 25°C  
= 125°C  
J
J
10  
5000  
V
= 40 V  
MMBT3904WT1  
CC  
/I = 10  
MMBT3904WT1  
3000  
2000  
7.0  
I
C B  
5.0  
1000  
700  
C
ibo  
500  
3.0  
2.0  
Q
T
300  
200  
C
obo  
Q
A
100  
70  
1.0  
0.1  
50  
0.2 0.3 0.5 0.7 1.0  
2.0 3.0 5.0 7.0 10  
20 30 40  
1.0  
2.0 3.0  
5.0 7.0 10  
I , COLLECTOR CURRENT (mA)  
C
20 30  
50 70 100  
200  
REVERSE BIAS VOLTAGE (VOLTS)  
Figure 3. Capacitance  
Figure 4. Charge Data  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
3
MMBT3904WT1  
500  
500  
I
/I = 10  
V
= 40 V  
C B  
CC  
/I = 10  
300  
200  
300  
200  
I
C B  
100  
70  
100  
70  
t @ V  
= 3.0 V  
CC  
r
50  
50  
30  
20  
30  
20  
40 V  
15 V  
10  
7
MMBT3904WT1  
10  
7
MMBT3904WT1  
2.0 V  
50 70 100  
t
@ V  
= 0 V  
d
OB  
20 30  
, COLLECTOR CURRENT (mA)  
5
5
1.0  
2.0 3.0 5.0 7.0 10  
200  
1.0  
2.0 3.0  
5.0 7.0 10  
20 30  
50 70 100  
200  
I
I
, COLLECTOR CURRENT (mA)  
C
C
Figure 5. TurnOn Time  
Figure 6. Rise Time  
500  
500  
1
= t – / t  
s s 8 f  
B1 B2  
t
I
V
I
= 40 V  
CC  
300  
200  
300  
200  
= I  
= I  
I
/I = 20  
I
/I = 10  
B1 B2  
C B  
C B  
I
/I = 20  
C B  
100  
70  
100  
70  
I
/I = 20  
50  
50  
C B  
I
/I = 10  
I
/I = 10  
C B  
30  
20  
30  
20  
C B  
10  
7
10  
7
MMBT3904WT1  
2.0 3.0  
MMBT3904WT1  
5
5
1.0  
5.0 7.0 10  
20 30  
50 70 100  
200  
1.0  
2.0 3.0  
5.0 7.0 10  
20 30  
50 70 100  
200  
I
, COLLECTOR CURRENT (mA)  
I
, COLLECTOR CURRENT (mA)  
C
C
Figure 7. Storage Time  
Figure 8. Fall Time  
TYPICAL AUDIO SMALLSIGNAL CHARACTERISTICS  
NOISE FIGURE VARIATIONS  
(V  
= 5.0 Vdc, T = 25°C, Bandwidth = 1.0 Hz)  
CE  
A
12  
10  
8
14  
SOURCE RESISTANCE = 200  
f = 1.0 kHz  
I
= 1.0 mA  
C
12  
I
= 1.0 mA  
C
I
= 0.5 mA  
C
10  
8
SOURCE RESISTANCE = 200  
= 0.5 mA  
I
= 50  
A
A
C
I
C
6
I
= 100  
SOURCE RESISTANCE = 1.0 k  
= 50  
C
6
4
2
0
I
A
C
4
2
0
SOURCE RESISTANCE = 500  
I
= 100  
A
C
MMBT3904WT1  
20  
40  
MMBT3904WT1  
20  
40  
0.1  
0.2  
0.4  
1.0  
2.0  
4.0  
10  
100  
0.1  
0.2  
0.4  
1.0  
R , SOURCE RESISTANCE (k OHMS)  
S
2.0  
4.0  
10  
100  
f, FREQUENCY (kHz)  
Figure 9. Noise Figure  
Figure 10. Noise Figure  
4
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
MMBT3904WT1  
h PARAMETERS  
(V  
= 10 Vdc, f = 1.0 kHz, T = 25°C)  
CE  
A
300  
200  
100  
50  
MMBT3904WT1  
MMBT3904WT1  
20  
10  
5
100  
70  
50  
2
1
30  
0.1  
0.2 0.3  
0.5  
1.0  
2.0 3.0  
5.0  
10  
0.1  
0.2 0.3  
0.5  
I , COLLECTOR CURRENT (mA)  
C
1.0  
2.0 3.0  
5.0  
10  
I
, COLLECTOR CURRENT (mA)  
C
Figure 11. Current Gain  
Figure 12. Output Admittance  
20  
10  
10  
7.0  
5.0  
MMBT3904WT1  
MMBT3904WT1  
5.0  
2.0  
3.0  
2.0  
1.0  
0.5  
1.0  
0.7  
0.5  
0.2  
0.1  
0.2 0.3  
I
0.5  
1.0  
2.0 3.0  
5.0  
10  
0.1  
0.2 0.3  
0.5  
, COLLECTOR CURRENT (mA)  
C
1.0  
2.0 3.0  
5.0  
10  
, COLLECTOR CURRENT (mA)  
I
C
Figure 13. Input Impedance  
Figure 14. Voltage Feedback Ratio  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
5
MMBT3904WT1  
TYPICAL STATIC CHARACTERISTICS  
2.0  
1.0  
T
= +125°C  
J
V
= 1.0 V  
MMBT3904WT1  
CE  
+25  
°
C
C
0.7  
0.5  
55  
°
0.3  
0.2  
0.1  
0.1  
0.2  
0.3  
0.5  
0.7  
1.0  
2.0  
3.0  
5.0  
7.0  
10  
20  
30  
50  
70  
100  
200  
I
, COLLECTOR CURRENT (mA)  
C
Figure 15. DC Current Gain  
1.0  
0.8  
0.6  
0.4  
T
= 25°C  
J
MMBT3904WT1  
I
= 1.0 mA  
10 mA  
30 mA  
100 mA  
C
0.2  
0
0.01  
0.02  
0.03  
0.05  
0.07 0.1  
0.2  
0.3  
0.5  
0.7  
1.0  
2.0  
3.0  
5.0  
7.0  
10  
I
, BASE CURRENT (mA)  
B
Figure 16. Collector Saturation Region  
1.2  
1.0  
T
= 25°C  
MMBT3904WT1  
J
MMBT3904WT1  
V
@ I /I =10  
C B  
BE(sat)  
+25°C TO +125°C  
1.0  
0.8  
0.5  
0
FOR V  
VC  
CE(sat)  
55°C TO +25  
°C  
V
@ V  
=1.0 V  
CE  
BE  
0.6  
0.4  
0.5  
1.0  
55  
°
C TO +25  
°
C
V
@ I /I =10  
C B  
CE(sat)  
+25°C TO +125°C  
FOR V  
BE(sat)  
0.2  
0
1.5  
2.0  
VB  
1.0  
2.0  
5.0  
10  
20  
50  
100  
200  
0
20  
40  
60  
I , COLLECTOR CURRENT (mA)  
C
80  
100 120 140  
160 180 200  
I
, COLLECTOR CURRENT (mA)  
C
Figure 17. “ON” Voltages  
Figure 18. Temperature Coefficients  
6
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
MMBT3906WT1  
3 V  
3 V  
< 1 ns  
+9.1 V  
275  
275  
< 1 ns  
10 k  
10 k  
0
C
< 4 pF*  
C < 4 pF*  
S
S
1N916  
+10.6 V  
300 ns  
10 < t < 500  
s
1
t
10.9 V  
1
DUTY CYCLE = 2%  
DUTY CYCLE = 2%  
* Total shunt capacitance of test jig and connectors  
Figure 19. Delay and Rise Time  
Equivalent Test Circuit  
Figure 20. Storage and Fall Time  
Equivalent Test Circuit  
TYPICAL TRANSIENT CHARACTERISTICS  
T
T
= 25°C  
= 125°C  
J
J
10  
5000  
MMBT3906WT1  
V
= 40 V  
MMBT3906WT1  
CC  
/I = 10  
3000  
2000  
7.0  
I
C B  
Q
T
5.0  
C
obo  
1000  
700  
C
ibo  
500  
3.0  
2.0  
300  
200  
Q
A
100  
70  
1.0  
0.1  
50  
0.2 0.3 0.5 0.7 1.0  
2.0 3.0 5.0 7.0 10  
20 30 40  
1.0  
2.0 3.0  
5.0 7.0 10  
20 30  
50 70 100  
200  
REVERSE BIAS VOLTAGE (VOLTS)  
I , COLLECTOR CURRENT (mA)  
C
Figure 21. Capacitance  
Figure 22. Charge Data  
500  
500  
MMBT3906WT1  
I
/I = 10  
V
= 40 V  
C B  
CC  
= I  
300  
200  
300  
200  
MMBT3906WT1  
I
B1 B2  
I
/I = 20  
C B  
100  
100  
70  
50  
70  
50  
t @ V  
r
= 3.0 V  
CC  
I
/I = 10  
C B  
30  
20  
15 V  
30  
20  
40 V  
2.0 V  
10  
7
10  
7
t
@ V  
= 0 V  
OB  
d
5
5
1.0  
2.0 3.0  
5.0 7.0 10  
, COLLECTOR CURRENT (mA)  
20 30  
50 70 100  
200  
1.0  
2.0 3.0  
5.0 7.0  
10  
20  
30  
50 70 100  
200  
I
I
, COLLECTOR CURRENT (mA)  
C
C
Figure 23. TurnOn Time  
Figure 24. Fall Time  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
7
MMBT3906WT1  
TYPICAL AUDIO SMALLSIGNAL CHARACTERISTICS  
NOISE FIGURE VARIATIONS  
(V  
= –5.0 Vdc, T = 25°C, Bandwidth = 1.0 Hz)  
CE  
A
5.0  
4.0  
12  
SOURCE RESISTANCE = 200  
= 1.0 mA  
f = 1.0 kHz  
I
= 1.0 mA  
C
I
C
10  
I
= 0.5 mA  
C
SOURCE RESISTANCE = 200  
= 0.5 mA  
I
8.0  
C
3.0  
SOURCE RESISTANCE = 2.0 k  
6.0  
4.0  
2.0  
0
I
= 50  
A
C
2.0  
1.0  
0
I
= 50 A  
C
SOURCE RESISTANCE = 2.0 k  
I
= 100 A  
C
I
= 100  
A
C
MMBT3906WT1  
MMBT3906WT1  
20  
40  
0.1  
0.2  
0.4  
1.0  
2.0  
4.0  
10  
20  
40  
100  
0.1  
0.2  
0.4  
1.0  
2.0  
4.0  
10  
100  
f, FREQUENCY (kHz)  
R
, SOURCE RESISTANCE (k)  
S
Figure 25.  
Figure 26.  
h PARAMETERS  
(V  
= –10 Vdc, f = 1.0 kHz, T = 25°C)  
CE  
A
100  
70  
300  
200  
MMBT3906WT1  
MMBT3906WT1  
50  
30  
20  
100  
70  
10  
50  
7.0  
5.0  
30  
0.1  
0.2 0.3  
I
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
0.1  
0.2 0.3  
0.5 0.7 1.0  
, COLLECTOR CURRENT (mA)  
C
2.0 3.0  
5.0 7.0 10  
, COLLECTOR CURRENT (mA)  
I
C
Figure 27. Current Gain  
Figure 28. Output Admittance  
20  
10  
10  
7.0  
5.0  
MMBT3906WT1  
MMBT3906WT1  
7.0  
5.0  
3.0  
2.0  
3.0  
2.0  
1.0  
0.7  
0.5  
1.0  
0.7  
0.5  
0.3  
0.2  
0.1  
0.2 0.3  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
0.1  
0.2 0.3  
0.5 0.7 1.0 2.0 3.0  
, COLLECTOR CURRENT (mA)  
C
5.0 7.0 10  
I
, COLLECTOR CURRENT (mA)  
I
C
Figure 29. Input Impedance  
Figure 30. Voltage Feedback Ratio  
8
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
MMBT3906WT1  
STATIC CHARACTERISTICS  
2.0  
T
= +125°C  
J
V
= 1.0 V  
CE  
+25  
°
C
C
1.0  
0.7  
0.5  
55  
°
0.3  
0.2  
MMBT3906WT1  
0.1  
0.1  
0.2  
0.3  
0.5  
0.7  
1.0  
2.0  
3.0  
5.0  
7.0  
10  
20  
30  
50  
70  
100  
200  
I
, COLLECTOR CURRENT (mA)  
C
Figure 31. DC Current Gain  
1.0  
0.8  
T
= 25°C  
J
MMBT3906WT1  
I
= 1.0 mA  
10 mA  
30 mA  
100 mA  
C
0.6  
0.4  
0.2  
0
0.01  
0.02  
0.03  
0.05  
0.07 0.1  
0.2  
0.3  
0.5  
0.7  
1.0  
2.0  
3.0  
5.0  
7.0  
10  
I
, BASE CURRENT (mA)  
B
Figure 32. Collector Saturation Region  
1.0  
0.8  
1.0  
V
@ I /I = 10  
C B  
BE(sat)  
T
= 25°C  
J
0.5  
0
FOR V  
+25°C TO +125°C  
VC  
CE(sat)  
V
@ V  
= 1.0 V  
CE  
BE  
55  
°
C TO +25  
°
C
C
0.6  
0.4  
0.2  
0
–0.5  
–1.0  
–1.5  
–2.0  
MMBT3906WT1  
MMBT3906WT1  
+25°C TO +125°C  
FOR V  
VS  
BE(sat)  
55°C TO +25  
°
V
@ I /I = 10  
C B  
CE(sat)  
1.0  
2.0  
5.0 10  
20  
50  
100  
200  
0
20  
40  
60  
I , COLLECTOR CURRENT (mA)  
C
80  
100 120 140  
160 180 200  
I
, COLLECTOR CURRENT (mA)  
C
Figure 33. “ON” Voltages  
Figure 34. Temperature Coefficients  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
9
INFORMATION FOR USING THE SOT–323/SC–70 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.025  
0.65  
0.025  
0.65  
0.075  
1.9  
0.035  
0.9  
0.028  
0.7  
inches  
mm  
SOT–323/SC–70  
SOT–323/SC–70 POWER DISSIPATION  
The power dissipation of the SOT–323/SC–70 is a function  
SOLDERING PRECAUTIONS  
of the pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
values provided on the data sheet for the SOT–323/SC–70  
A
package, P can be calculated as follows:  
D
Always preheat the device.  
The delta temperature between the preheat and  
soldering should be 100°C or less.*  
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 150 milliwatts.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the  
maximum temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should  
be allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
150°C – 25°C  
833°C/W  
P
=
= 150 milliwatts  
D
The 833°C/W for the SOT–323/SC–70 package assumes  
the use of the recommended footprint on a glass epoxy  
printed circuit board to achieve a power dissipation of  
150 milliwatts. There are other alternatives to achieving  
higher power dissipation from the SOT–323/SC–70  
package. Another alternative would be to use a ceramic  
substrate or an aluminum core board such as Thermal  
Clad . Using a board material such as Thermal Clad, an  
aluminum core board, the power dissipation can be doubled  
using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
10  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
PACKAGE DIMENSIONS  
A
NOTES:  
L
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3
INCHES  
MILLIMETERS  
B
S
DIM  
A
B
C
D
G
H
J
MIN  
MAX  
0.087  
0.053  
0.049  
0.016  
0.055  
0.004  
0.010  
MIN  
1.80  
1.15  
0.90  
0.30  
1.20  
0.00  
0.10  
MAX  
2.20  
1.35  
1.25  
0.40  
1.40  
0.10  
0.25  
1
2
0.071  
0.045  
0.035  
0.012  
0.047  
0.000  
0.004  
D
V
G
K
L
N
R
S
0.017 REF  
0.026 BSC  
0.028 REF  
0.425 REF  
0.650 BSC  
0.700 REF  
R
N
J
0.031  
0.079  
0.012  
0.039  
0.087  
0.016  
0.80  
2.00  
0.30  
1.00  
2.20  
0.40  
C
V
0.05 (0.002)  
K
H
STYLE 3:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
CASE 419–02  
ISSUE G  
SOT–323/SC–70  
Motorola Small–Signal Transistors, FETs and Diodes Device Data  
11  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecificallydisclaimsanyandallliability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MMBT3904WT1/D  

相关型号:

PZT3904,115

TRANSISTOR 200 mA, 40 V, NPN, Si, SMALL SIGNAL TRANSISTOR, PLASTIC, SC-73, 4 PIN, BIP General Purpose Small Signal
NXP

PZT3904,135

TRANSISTOR 200 mA, 40 V, NPN, Si, SMALL SIGNAL TRANSISTOR, PLASTIC, SC-73, 4 PIN, BIP General Purpose Small Signal
NXP

PZT3904-TP

Small Signal Bipolar Transistor,
MCC

PZT3904-TP-HF

Small Signal Bipolar Transistor,
MCC

PZT3904/S62Z

0.2A, 40V, NPN, Si, POWER TRANSISTOR
TI

PZT3904/T3

TRANSISTOR 200 mA, 40 V, NPN, Si, SMALL SIGNAL TRANSISTOR, PLASTIC, SC-73, 4 PIN, BIP General Purpose Small Signal
NXP

PZT3904D84Z

Small Signal Bipolar Transistor, 0.2A I(C), 40V V(BR)CEO, 1-Element, NPN, Silicon, SOT-223, 4 PIN
FAIRCHILD

PZT3904E6327

Small Signal Bipolar Transistor, 0.2A I(C), 40V V(BR)CEO, 1-Element, NPN, Silicon
INFINEON

PZT3904T/R

TRANSISTOR | BJT | NPN | 40V V(BR)CEO | 200MA I(C) | SOT-223
ETC

PZT3904T1

General Purpose Transistor
ONSEMI

PZT3904T1/D

PZT3904T1 Data Sheet
ETC

PZT3904T1G

General Purpose Transistor
ONSEMI