STK531U394C-E [ONSEMI]

智能功率模块 (IPM),600V,15A;
STK531U394C-E
型号: STK531U394C-E
厂家: ONSEMI    ONSEMI
描述:

智能功率模块 (IPM),600V,15A

局域网 电动机控制
文件: 总14页 (文件大小:431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intelligent Power Module  
(IPM)  
600 V, 15 A  
STK531U394C-E  
The STK531U394C−E is a fully−integrated inverter power stage  
consisting of a high−voltage driver, six IGBT’s and a thermistor,  
suitable for driving permanent magnet synchronous (PMSM) motors,  
brushless−DC (BLDC) motors and AC asynchronous motors. The  
IGBT’s are configured in a 3−phase bridge with separate emitter  
connections for the lower legs for maximum flexibility in the choice of  
control algorithm.  
www.onsemi.com  
The power stage has a full range of protection functions including  
cross−conduction protection, external shutdown and under−voltage  
lockout functions. Output stage uses IGBT/FRD technology and  
implements Under Voltage Protection (UVP) and Over Current  
Protection (OCP: Shunt Resistor internal) with a Fault Detection  
output flag. Internal Boost diodes are provided for high side gate boost  
drive.  
SIP29 44x26.5  
CASE 127ET  
MARKING DIAGRAM  
Features  
Three−phase 15 A / 600 V IGBT Module with Integrated Drivers  
Typical Values (Upper Side at 15 A) : V (sat) = 1.8 V, V = 2.0 V  
STK531U394C  
ABCDD  
CE  
F
44.0 mm × 26.5 mm Single In−line Package with Vertical LF Type  
Cross−conduction Protection  
Adjustable Over−current Protection Level  
Integrated Bootstrap Diodes and Resistors  
These Devices are Pb−Free and are RoHS Compliant  
STK531U394C = Specific Device Code  
A
B
= Year  
= Month  
Certification  
C
DD  
= Production Site  
= Factory Lot code  
UL1557 (File number : E339285)  
Device marking is on package underside  
Typical Applications  
Industrial Pumps  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 12 of this data sheet.  
Industrial Fans  
Industrial Automation  
Heat Pumps, Home Appliances  
HS1  
HS2  
HS3  
HS1  
LS1  
HS2  
LS2  
HS3  
LS3  
HIN1  
LIN1  
HIN2  
LIN2  
HIN3  
LIN3  
IC Driver  
Pre driver  
+
Level Shifter  
LS1  
LS2  
LS3  
with  
protection  
Circuits  
Figure 1. Functional Diagram  
1
© Semiconductor Components Industries, LLC, 2018  
Publication Order Number:  
June, 2021 − Rev. 3  
STK531U394C−E/D  
STK531U394C−E  
STK531U394C  
VB1 (9)  
VCC  
+
+
+
CB  
CB  
CB  
P(13)  
VS1(10)  
VB2 (5)  
CS1  
CS2  
+
V2 (6)  
VB3 (1)  
N(16)  
VS3 (2)  
RCIN(28)  
HIN1(17)  
HIN2(18)  
HIN3(19)  
LIN1(20)  
LIN2(21)  
LIN3(22)  
U, VS1(10)  
V, VS2(6)  
W, VS3(2)  
Control  
Circuit  
(5V)  
ISO(24)  
FAULT(23)  
Motor  
RP  
CD  
RP  
TH(29)  
VDD=15V  
From external regulator  
VDD(25)  
+
VSS(26)  
ISD(27)  
LV Ground  
RSD  
Figure 2. Application Schematic  
Usage Precaution  
4. Pull down resistor of 33 kW is provided internally  
at the signal input terminals. An external resistor  
of 2.2 k to 3.3 kW should be added to reduce the  
influence of external wiring noise.  
1. It is essential that wiring length between terminals  
in the snubber circuit be kept as short as possible  
to reduce the effect of surge voltages.  
Recommended value of “CS” is in the range of 0.1  
to 10 mF.  
2. “ISO” (pin24) is terminal for current monitor.  
High current may flow into that course when  
short−circuiting the “ISO” terminal and “VSS”  
terminal. Please do not connect them.  
5. The level of the over current protection might be  
changed from IPM design value when “ISD”  
terminal and “VSS” terminal are shorted at  
external. Be confirm with actual application (“N”  
terminal and “VSS” terminal are shorted at  
internal).  
3. Inside the IPM, a thermistor used as the  
temperature monitor for internal substrate is  
connected between VSS terminal and TH terminal  
therefore, an external pull up resistor connected  
between the TH terminal and an external power  
supply should be used.  
6. The level of the over current protection is  
adjustable with the external resistor “RSD”  
between “ISD” terminal and “VSS” terminal.  
This data shows the example of the application circuit,  
does not guarantee a design as the mass production set.  
The temperature monitor example application is as  
follows, please refer the Fig.5, and Fig.6 below.  
www.onsemi.com  
2
STK531U394C−E  
P (13 )  
VB3 (1)  
W,VS3 (2)  
VB2 (5)  
V,VS2 (6)  
VB1 (9)  
U,VS1 (10 )  
BD  
BD BD  
RB  
Shunt  
Resistor  
N (16 )  
Level  
Level  
Level  
Shifter  
Shifter  
Shifter  
HIN1 (17 )  
HIN2 (18 )  
HIN3 (19 )  
LIN1 (20 )  
LIN2 (21 )  
LIN3 (22 )  
Logic  
Logic  
Logic  
Latch time  
Thermistor  
RCIN (28 )  
TH (29 )  
FAULT (23 )  
ISO (24 )  
Latch  
Latch time is 18ms to 80ms.  
(Automatic Reset)  
Over−Current  
VDD (25 )  
VDD−UnderVoltage  
VSS (26 )  
ISD (27 )  
Figure 3. Simplified Block Diagram  
Table 1. PIN FUNCTION DESCRIPTION  
Pin  
1
Name  
Description  
VB3  
High Side Floating Supply Voltage 3  
2
W, VS3  
VB2  
Output 3 − High Side Floating Supply Offset Voltage  
High Side Floating Supply voltage 2  
5
6
V,VS2  
Output 2 − High Side Floating Supply Offset Voltage  
www.onsemi.com  
3
 
STK531U394C−E  
Table 1. PIN FUNCTION DESCRIPTION (continued)  
Pin  
9
Name  
Description  
VB1  
U,VS1  
P
High Side Floating Supply voltage 1  
10  
13  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
Output 1 − High Side Floating Supply Offset Voltage  
Positive Bus Input Voltage  
N
Negative Bus Input Voltage  
HIN1  
HIN2  
HIN3  
LIN1  
LIN2  
LIN3  
Logic Input High Side Gate Driver − Phase U  
Logic Input High Side Gate Driver − Phase V  
Logic Input High Side Gate Driver − Phase W  
Logic Input Low Side Gate Driver − Phase U  
Logic Input Low Side Gate Driver − Phase V  
Logic Input Low Side Gate Driver − Phase W  
Fault output  
FAULT  
ISO  
Current monitor output  
VDD  
VSS  
ISD  
+15V Main Supply  
Negative Main Supply  
Over current detection and setting  
Fault clear time setting output  
RCIN  
TH  
Thermistor output  
NOTE: Pins 3, 4, 7, 8, 11, 12, 14, 15 are not present.  
Table 2. ABSOLUTE MAXIMUM RATINGS at T = 25°C (Note 1)  
C
Rating  
Supply voltage  
Symbol  
Conditions  
P to N, surge < 500 V (Note 2)  
P to U,V,W or U, V, W, to N  
Value  
450  
Unit  
V
V
V
CC  
CE  
Collector−emitter voltage  
Output current  
600  
V
Io  
P, N, U, V, W terminal current  
15  
A
P, N, U, V, W terminal current at Tc = 100_C  
P, N, U, V, W terminal current, PW=1ms  
7
A
Output peak current  
Iop  
30  
A
Pre−driver supply voltages  
Input signal voltage  
VD1,2,3,4  
VIN  
VB1 to U, VB2 to V, VB3 to W, V to V  
(Note 3)  
+20  
V
DD  
SS  
HIN1, 2, 3, LIN1, 2, 3  
FAULT terminal  
IGBT per 1 channel  
IGBT, FRD  
0.3 to V  
0.3 to V  
35  
V
DD  
FAULT terminal voltage  
Maximum power dissipation  
Junction temperature  
Storage temperature  
VFAULT  
Pd  
V
DD  
W
Tj  
150  
_C  
_C  
_C  
Nm  
Vrms  
Tstg  
Tc  
−40 to +125  
−20 to +100  
0.9  
Operating case temperature  
Package mounting torque  
Isolation voltage  
IPM case temperature  
Case mounting screw  
Vis  
50 Hz sine wave AC 1 minute (Note 4)  
2000  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters  
2. This surge voltage developed by the switching operation due to the wiring inductance between P and N terminals.  
3. VD1=VB1 to U, VD2 = VB2 to V, VD3 = VB3 to W, VD4 = VDD to VSS terminal voltage.  
4. Test conditions: AC 2500 V, 1 s.  
www.onsemi.com  
4
 
STK531U394C−E  
Table 3. RECOMMENDED OPERATING RANGES (Note 5)  
Rating Symbol  
Supply voltage  
Conditions  
Min  
0
Typ  
280  
15  
15  
Max  
450  
17.5  
16.5  
20  
Unit  
V
V
CC  
P to N  
VB1 to U, VB2 to V, VB3 to W  
to V (Note 5)  
Pre−driver supply voltage  
VD1, 2, 3  
VD4  
12.5  
13.5  
1
V
V
DD  
V
SS  
PWM frequency  
f
kHz  
ms  
PWM  
Dead time  
DT  
Turn−off to turn−on (external)  
ON and OFF  
2
Allowable input pulse width  
Package mounting torque  
PWIN  
1
ms  
‘M3’ type screw  
0.6  
0.9  
Nm  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
5. Pre−drive power supply (VD4 = 15 1.5 V) must have the capacity of Io = 20 mA (DC), 0.5 A (Peak).  
Table 4. ELECTRICAL CHARACTERISTICS at Tc = 25_C, VD1, VD2, VD3, VD4 = 15 V  
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Power Output Section  
Collector−emitter leakage current  
Bootstrap diode reverse current  
Collector to emitter saturation voltage  
V
= 600 V  
I
100  
100  
2.3  
2.7  
mA  
mA  
V
CE  
CE  
VR(BD) = 600 V  
IR(BD)  
(sat)  
Ic = 15 A, Tj = 25_C Upper side  
V
1.8  
2.2  
1.5  
1.7  
2.0  
2.2  
1.6  
1.8  
CE  
Lower side (Note 6)  
V
Ic = 7 A, Tj = 100_C Upper side  
V
Lower side (Note 6)  
V
Diode forward voltage  
IF = 15 A,  
Upper side  
VF  
3.2  
3.4  
V
Tj = 25_C  
IF = 7 A,  
Lower side (Note 6)  
Upper side  
V
V
Tj = 100_C  
IGBT  
Lower side (Note 6)  
V
Junction to case thermal resistance  
Switching time  
3.8  
6.0  
1.2  
1.5  
_C/W  
qj−c(T)  
qj−c(D)  
FRD  
Io = 15 A, V = 300 V, L = 3.9 mH,  
t
0.3  
0.5  
0.6  
160  
200  
360  
200  
250  
450  
25  
ms  
ms  
mJ  
mJ  
mJ  
mJ  
mJ  
mJ  
mJ  
ns  
CC  
ON  
t
OFF  
Turn−on switching loss  
Turn−off switching loss  
Total switching loss  
Io = 7 A, V = 300 V, L = 3.9 mH  
E
CC  
ON  
E
OFF  
E
TOT  
Turn−on switching loss  
Turn−off switching loss  
Total switching loss  
Io = 7 A, V = 300 V, Tc = 100_C  
E
CC  
ON  
E
OFF  
E
TOT  
Diode reverse recovery energy  
Diode reverse recovery time  
Reverse bias safe operating area  
Short circuit safe operating area  
Driver Section  
Io = 7 A, V = 400 V, TC = 100_C  
E
CC  
REC  
(di/dt set by internal driver)  
trr  
80  
Io = 30 A, V = 450 V  
RBSOA  
SCSOA  
Full Square  
CE  
V
CE  
= 400 V, Tc = 100_C  
4
ms  
Pre−driver consumption current  
VD1,2,3 = 15 V (Note 3)  
VD4 = 15 V  
ID  
0.08  
1.6  
0.4  
4.0  
mA  
mA  
V
High level Input voltage  
HIN1, HIN2, HIN3,  
Vin H  
2.5  
LIN1, LIN2, LIN3 to VSS  
Low level Input voltage  
Vin L  
0.8  
V
Input threshold voltage hysteresis (Note 7)  
Vinth(hys)  
0.5  
0.8  
V
www.onsemi.com  
5
 
STK531U394C−E  
Table 4. ELECTRICAL CHARACTERISTICS at Tc = 25_C, VD1, VD2, VD3, VD4 = 15 V (continued)  
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
100  
Max  
143  
2
Unit  
mA  
mA  
mA  
ms  
V
Logic 1 input current  
VIN = +3.3 V  
VIN = 0 V  
I
I
IN+  
IN−  
Logic 0 input current  
FAULT terminal sink current  
FAULT clearance delay time  
FAULT : ON / VFAULT = 0.1 V  
Fault output latch time  
IoSD  
2
FLTCLR  
18  
10.5  
80  
VCC and VS undervoltage positive going  
threshold  
V
V
11.1  
11.7  
CCUV+  
SUV+  
VCC and VS undervoltage negative going  
threshold  
V
V
10.3  
0.14  
10.9  
0.2  
11.5  
V
V
CCUV−  
SUV−  
VCC and VS undervoltage hysteresis  
V
V
CCUVH  
SUVH−  
Over current protection level  
PW=100 ms, RSD = 0 W  
ISD  
ISO  
22.0  
0.36  
27.8  
0.40  
A
V
Electric current output signal level  
Io = 15 A  
0.38  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. The lower side’s VCE(SAT) and VF include a loss by the shunt resistance.  
7. Input threshold voltage hysteresis indicates a reference value based on the design value of built−in pre−driver IC.  
www.onsemi.com  
6
STK531U394C−E  
APPLICATIONS INFORMATION  
Input / Output Timing Chart  
VBS under voltage protection reset signal  
ON  
HIN1, 2, 3  
OFF  
LIN1, 2, 3  
VDD under voltage protection reset signal (Note 2)  
VDD  
VBS under voltage protection reset signal (Note 3)  
(Note 4)  
VB1, 2, 3  
N terminal  
ISD operation current level  
(BUS line )  
current  
FAULT terminal  
voltage  
(at pulled up)  
Crossconduction prevention period (Note 1)  
Crossconduction prevention period (Note 1)  
ON  
U pper  
U, V, W  
OFF  
L pper  
U, V, W  
Utmatically reset after protection  
(18msec to 80msec)  
Figure 4. Input / Output Timing Chart  
Notes:  
output is turned off.  
1. Diagram shows the prevention of shoot−through  
via control logic. More dead time to account for  
switching delay needs to be added externally.  
2. When VDD decreases all gate output signals will  
go low and cut off all of 6 IGBT outputs. When  
VDD rises the operation will resume immediately.  
3. When the upper side gate voltage at VB1, VB2  
and VB3 drops only, the corresponding upper side  
The outputs return to normal operation  
immediately after the upper side gate voltage rises.  
4. In case of over current detection, all IGBT’s are  
turned off and the FAULT output is asserted.  
Normal operation resumes in 18 to 80 ms after the  
over current condition is removed.  
www.onsemi.com  
7
STK531U394C−E  
Table 5. INPUT / OUTPUT LOGIC TABLE  
INPUT  
OUTPUT  
HIN  
H
LIN  
L
OCP  
OFF  
OFF  
OFF  
OFF  
ON  
Upper side IGBT  
Lower side IGBT  
U,V,W  
P
FAULT  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
OFF  
ON  
L
H
OFF  
OFF  
OFF  
OFF  
N
L
L
OFF  
OFF  
OFF  
High Impedance  
High Impedance  
High Impedance  
H
H
X
X
Table 6. THERMISTOR CHARACTERISTICS  
Parameter  
Resistance  
Symbol  
Condition  
Tc = 25°C  
Tc = 100°C  
Min  
99  
Typ  
100  
5.38  
4250  
Max  
101  
Unit  
R
kW  
kW  
K
25  
R
5.18  
4208  
40  
5.60  
4293  
+125  
100  
B−Constant (25 to 50°C)  
B
Temperature Range  
°C  
Figure 5. Thermistor Resistance versus Case Temperature  
www.onsemi.com  
8
STK531U394C−E  
Conditions: RTH = 39 kW, pull−up voltage 5.0 V  
Figure 6. Thermistor Voltage versus Case Temperature  
FAULT Output  
Capacitors on High Voltage and VDD Supplies  
The FAULT terminal is an open drain output requiring a  
pull−up resistor. If the pull−up voltage is 5 V, use a pull−up  
resistor with a value of 6.8 kW or higher. If the pull−up  
voltage is 15 V, use a pull−up resistor with a value of 20 kW  
Both the high voltage and V  
electrolytic capacitor and an additional high frequency  
capacitor.  
supplies require an  
DD  
Minimum Input Pulse Width  
When input pulse width is less than 1.0 ms, an output may  
not react to the pulse. (Both ON signal and OFF signal)  
or higher. The FAULT output is triggered if there is a V  
undervoltage or an overcurrent condition.  
DD  
The terminal has a function of enable output, this pin is  
used to enable or shut down the built−in driver. If the voltage  
on the FAULT pin rises above the ENABLE ON−state  
voltage, the output drivers are enabled. If the voltage on the  
ELTEN pin falls below the ENABLE OFF−state voltage, the  
drivers are disabled.  
Calculation of Bootstrap Capacitor Value  
The bootstrap capacitor value CB is calculated using the  
following approach. The following parameters influence the  
choice of bootstrap capacitor:  
VBS: Bootstrap power supply.  
15 V is recommended.  
Undervoltage Lockout Protection  
QG: Total gate charge of IGBT at VBS = 15 V.  
132 nC  
If V goes below the V supply undervoltage lockout  
DD  
DD  
falling threshold, the FAULT output is switched on. The  
FAULT output stays on until V rises above the V  
DD  
DD  
UVLO: Falling threshold for UVLO.  
Specified as 12 V.  
supply undervoltage lockout rising threshold.After V has  
DD  
risen above the threshold to enable normal operation, the  
driver waits to receive an input signal on the LIN input  
before enabling the driver for the HIN signal.  
ID  
: High side drive consumption current.  
Specified as 0.4 mA  
MAX  
t  
: Maximum ON pulse width of high side IGBT.  
ONMAX  
Overcurrent protection  
Capacitance calculation formula:  
The over current protection feature is not intended to  
protect in exceptional fault condition. An external fuse is  
recommended for safety.  
CB = (QG + ID  
* t ) / (VBS − UVLO)  
ONMAX  
MAX  
CB is recommended to be approximately 3 times the value  
calculated above. The recommended value of CB is in the  
An additional fuse is recommended to protect against  
system level or abnormal over−current fault conditions.  
www.onsemi.com  
9
STK531U394C−E  
100  
range of 1 to 47 mF, however, the value needs to be verified  
prior to production. When not using the bootstrap circuit,  
each high side driver power supply requires an external  
independent power supply.  
The internal bootstrap circuit uses a MOSFET. The turn  
on time of this MOSFET is synchronized with the turn on of  
the low side IGBT. The bootstrap capacitor is charged by  
turning on the low side IGBT.  
If the low side IGBT is held on for a long period of time  
(more than one second for example), the bootstrap voltage  
on the high side MOSFET will slowly discharge.  
10  
1
0.1  
0.01  
0.1  
1
10  
tONMAX [ms]  
100  
1000  
Figure 7. Bootstrap Capacitance versus tONMAX  
Table 7. MOUNTING INSTRUCTIONS  
Item  
Recommended Condition  
Pitch  
40.6 0.1 mm (Please refer to Package Outline Diagram)  
Diameter: M3  
Screw  
Screw head types: pan head, truss head, binding head  
Plane washer  
Washer  
The size is D = 7 mm, d = 3.2 mm and t = 0.5 mm JIS B 1256  
Material: Aluminum or Copper  
Warpage (the surface that contacts IPM ): 50 to 100 mm  
Screw holes must be countersunk.  
Heat sink  
No contamination on the heat sink surface that contacts IPM.  
Temporary tightening: 20 to 30 % of final tightening on first screw  
Temporary tightening: 20 to 30 % of final tightening on second screw  
Final tightening: 0.6 to 0.9 Nm on first screw  
Torque  
Grease  
Final tightening: 0.6 to 0.9 Nm on second screw  
Silicone grease.  
Thickness: 100 to 200 mm  
Uniformly apply silicone grease to whole back.  
Thermal foils are only recommended after careful evaluation.  
Thickness, stiffness and compressibility parameters have a strong influence on performance.  
Figure 8. Module Mounting Details: Components; Washer Drawing; Need for Even Spreading of Thermal Grease  
www.onsemi.com  
10  
STK531U394C−E  
TEST CIRCUITS  
ICE  
I  
CE  
M
9
A
VS1=15 V  
U+  
13  
10  
V+  
13  
6
W+  
13  
2
U−  
10  
16  
V−  
6
W−  
2
10  
5
M
N
VS2=15 V  
VS3=15 V  
VDD=15 V  
16  
16  
VCE=15 V  
6
1
U(DB)  
9
V(DB)  
W(DB)  
2
M
N
5
1
25  
26  
26  
26  
N
26 ,N  
NOTE: U+,V+,W+ : High side phase  
U−, V−, W− : Low side phase  
Figure 9. Test Circuit for ICE  
V (sat) (Test by pulse)  
CE  
M
9
VS1=15 V  
VS2=15 V  
U+  
13  
10  
17  
V+  
13  
6
W+  
13  
2
U−  
10  
16  
20  
V−  
6
W−  
2
10  
5
M
N
16  
21  
16  
22  
6
1
V
VCE  
(sat)  
m
18  
19  
IC  
VS3=15 V  
2
m
5V  
25  
VDD=15 V  
N
26 , N  
27  
Figure 10. Test Circuit for VCE(sat)  
V (Test by pulse)  
F
M
U+  
V+  
13  
6
W+  
13  
2
U−  
10  
16  
V−  
6
W−  
2
M
N
13  
10  
16  
16  
V
IF  
VF  
N
Figure 11. Test Circuit for VF  
www.onsemi.com  
11  
STK531U394C−E  
ID  
ID  
M
A
VD1  
9
VD2  
5
VD3  
1
VD4  
25  
M
N
10  
6
2
26  
VD  
N
Figure 12. Test Circuit for ID  
ISD  
M
9
VS1=15 V  
VS2=15 V  
10  
5
Input signal  
(0 to 5V)  
IO  
6
1
VS3=15 V  
Input signal  
VDD=15 V  
2
20  
25  
ISD  
IO  
26  
27  
N
Figure 13. Test Circuit for ISD  
100usec  
Switching time  
(The circuit is a representative example of the low side U phase.)  
13  
10  
9
VS1=15 V  
VS2=15 V  
Input signal  
(0 to 5V)  
10  
5
VCC  
6
1
90%  
CS  
VS3=15 V  
Input signal  
VDD=15 V  
2
IO  
25  
10%  
20  
IC  
26  
27  
16  
tOFF  
tON  
A
Figure 14. Switching Time Test Circuit  
ORDERING INFORMATION  
Device  
Marking  
STK531U394C  
Package  
Shipping  
STK531U394C−E  
SIP29 44x26.5  
(Pb−Free)  
11 Units / Tube  
www.onsemi.com  
12  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SIP29 44x26.5  
CASE 127ET  
ISSUE O  
DATE 18 AUG 2017  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON73701G  
SIP29 44X26.5  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

STK5320

2-CHANNEL 10 TO 50W MIN AF POWER AMP.(DUAL-SUPPLY)
ETC

STK5321

Analog IC
ETC

STK5322

Analog IC
ETC

STK5324

Analog IC
ETC

STK5325

Analog IC
ETC

STK5326

Analog IC
ETC

STK5327

Analog IC
ETC

STK5346

2-CHANNEL 10 TO 50W MIN AF POWER AMP.(DUAL-SUPPLY)
ETC

STK534U362C-E

智能功率模块 (IPM),600 V,10 A
ONSEMI

STK5352

Analog IC
ETC

STK5353

Analog IC
ETC

STK5361L

Analog IC
ETC