TLV431B [ONSEMI]

Low Voltage Precision Adjustable Shunt Regulator;
TLV431B
型号: TLV431B
厂家: ONSEMI    ONSEMI
描述:

Low Voltage Precision Adjustable Shunt Regulator

文件: 总17页 (文件大小:167K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLV431A, TLV431B,  
TLV431C, SCV431B, NCV431  
Low Voltage Precision  
Adjustable Shunt Regulator  
The TLV431A, B and C series are precision low voltage shunt  
regulators that are programmable over a wide voltage range of 1.24 V to  
16 V. The TLV431A series features a guaranteed reference accuracy of  
1.0% at 25°C and 2.0% over the entire industrial temperature range of  
−40°C to 85°C. The TLV431B series features higher reference accuracy  
of 0.5% and 1.0% respectively. For the TLV431C series, the accuracy  
is even higher. It is 0.2% and 1.0% respectively. These devices exhibit  
a sharp low current turn−on characteristic with a low dynamic impedance  
of 0.20 W over an operating current range of 100 mA to 20 mA. This  
combination of features makes this series an excellent replacement for  
zener diodes in numerous applications circuits that require a precise  
reference voltage. When combined with an optocoupler, the  
TLV431A/B/C can be used as an error amplifier for controlling the  
feedback loop in isolated low output voltage (3.0 V to 3.3 V) switching  
power supplies. These devices are available in economical TO−92−3 and  
micro size TSOP−5 and SOT−23−3 packages.  
www.onsemi.com  
TO−92  
LP SUFFIX  
CASE 29  
1
1
2
2
3
3
STRAIGHT LEAD  
BULK PACK  
BENT LEAD  
TAPE & REEL  
AMMO PACK  
4
5
TSOP−5  
SN SUFFIX  
CASE 483  
3
Features  
2
3
1
Programmable Output Voltage Range of 1.24 V to 16 V  
Voltage Reference Tolerance 1.0% for A Series, 0.5% for B Series  
and 0.2% for C Series  
SOT−23−3  
SN1 SUFFIX  
CASE 318  
Sharp Low Current Turn−On Characteristic  
Low Dynamic Output Impedance of 0.20 W from 100 mA to 20 mA  
1
2
Wide Operating Current Range of 50 mA to 20 mA  
Micro Miniature TSOP−5, SOT−23−3 and TO−92−3 Packages  
These are Pb−Free and Halide−Free Devices  
SCV and NCV Prefix for Automotive and Other Applications  
Requiring Unique Site and Control Change Requirements;  
AEC−Q100 Qualified and PPAP Capable  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 14 of this data sheet.  
Applications  
DEVICE MARKING INFORMATION  
AND PIN CONNECTIONS  
See general marking information in the device marking  
section on page 13 of this data sheet.  
Low Output Voltage (3.0 V to 3.3 V) Switching Power Supply  
Error Amplifier  
Adjustable Voltage or Current Linear and Switching Power Supplies  
Voltage Monitoring  
Current Source and Sink Circuits  
Analog and Digital Circuits Requiring Precision References  
Low Voltage Zener Diode Replacements  
Cathode (K)  
Reference (R)  
+
-
1.24 V  
ref  
Anode (A)  
Figure 1. Representative Block Diagram  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
February, 2016 − Rev. 21  
TLV431A/D  
TLV431A, TLV431B, TLV431C, SCV431B, NCV431  
Cathode (K)  
Reference (R)  
Cathode (K)  
Reference (R)  
Anode (A)  
Device Symbol  
Anode (A)  
The device contains 13 active transistors.  
Figure 2. Representative Device Symbol and Schematic Diagram  
MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted)  
Rating Symbol  
Value  
18  
Unit  
V
Cathode to Anode Voltage  
V
KA  
Cathode Current Range, Continuous  
I
−20 to 25  
*0.05 to 10  
mA  
mA  
°C/W  
K
Reference Input Current Range, Continuous  
I
ref  
Thermal Characteristics  
LP Suffix Package, TO−92−3 Package  
Thermal Resistance, Junction−to−Ambient  
Thermal Resistance, Junction−to−Case  
SN Suffix Package, TSOP−5 Package  
Thermal Resistance, Junction−to−Ambient  
SN1 Suffix Package, SOT−23−3 Package  
Thermal Resistance, Junction−to−Ambient  
R
R
178  
83  
q
JA  
JC  
q
226  
R
R
q
JA  
491  
150  
q
JA  
J
Operating Junction Temperature  
T
T
°C  
°C  
Operating Ambient Temperature Range  
TLV431x  
*40 to 85  
A
NCV431, SCV431B  
*40 to 125  
Storage Temperature Range  
T
stg  
*65 to 150  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
NOTE: This device series contains ESD protection and exceeds the following tests:  
Human Body Model 2000 V per JEDEC JESD22−A114F, Machine Model Method 200 V per JEDEC JESD22−A115C,  
Charged Device Method 1000 V per JEDEC JESD22−C101E. This device contains latch−up protection and exceeds 100 mA per  
JEDEC standard JESD78.  
T
* T  
J(max)  
R
A
P
+
D
qJA  
RECOMMENDED OPERATING CONDITIONS  
Condition  
Symbol  
Min  
Max  
16  
Unit  
V
Cathode to Anode Voltage  
Cathode Current  
V
KA  
V
ref  
I
K
0.1  
20  
mA  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
2
TLV431A, TLV431B, TLV431C, SCV431B, NCV431  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
TLV431A  
Typ  
TLV431B  
Typ Max  
Min  
Max  
Min  
Characteristic  
Reference Voltage (Figure 3)  
Symbol  
Unit  
V
ref  
V
1.228 1.240 1.252 1.234 1.240 1.246  
(V = V , I = 10 mA, T = 25°C)  
KA  
ref  
K
A
1.215  
1.265 1.228  
1.252  
(T = T  
to T , Note 1)  
high  
A
low  
Reference Input Voltage Deviation Over Temperature (Figure 3)  
(V = V , I = 10 mA, T = T to T , Notes 1, 2, 3)  
DV  
mV  
ref  
7.2  
20  
7.2  
20  
KA  
ref  
K
A
low  
high  
Ration of Reference Input Voltage Change to Cathode Voltage  
Change (Figure 4)  
DVref  
DVKA  
mV  
V
−0.6  
0.15  
−1.5  
0.3  
−0.6  
0.15  
−1.5  
0.3  
(V = V to 16 V, I = 10 mA)  
KA  
ref  
K
Reference Terminal Current (Figure 4)  
(I = 10 mA, R1 = 10 kW, R2 = open)  
K
I
ref  
mA  
mA  
Reference Input Current Deviation Over Temperature (Figure 4)  
DI  
ref  
0.04  
30  
0.08  
80  
0.04  
30  
0.08  
80  
(I = 10 mA, R1 = 10 kW, R2 = open, Notes 1, 2, 3)  
K
Minimum Cathode Current for Regulation (Figure 3)  
Off−State Cathode Current (Figure 5)  
I
)
mA  
mA  
K(min  
I
K(off)  
0.01  
0.012 0.05  
0.04  
0.01  
0.012 0.05  
0.04  
(V = 6.0 V, V = 0)  
KA  
ref  
(V = 16 V, V = 0)  
KA  
ref  
Dynamic Impedance (Figure 3)  
|Z  
|
W
KA  
0.25  
0.4  
0.25  
0.4  
(V = V , I =0.1 mA to 20 mA, f 1.0 kHz, Note 4)  
KA  
ref  
K
1. Ambient temperature range: T = *40°C, T  
= 85°C.  
low  
high  
2. Guaranteed but not tested.  
3. The deviation parameters DV and DI are defined as the difference between the maximum value and minimum value obtained over the  
ref  
ref  
full operating ambient temperature range that applied.  
V
ref  
Max  
DV = V Max − V Min  
ref  
ref  
ref  
DT = T − T  
1
V
ref  
Min  
A
2
T
1
Ambient Temperature  
T
2
The average temperature coefficient of the reference input voltage, aV is defined as:  
ref  
(DV  
ref  
)
  106  
ǒ
Ǔ
V
(T + 25°C)  
A
ref  
ppm  
ref ǒ Ǔ+  
°C  
αV  
DT  
A
aV can be positive or negative depending on whether V Min or V Max occurs at the lower ambient temperature, refer to Figure 8.  
ref  
ref  
ref  
Example: DV = 7.2 mV and the slope is positive,  
ref  
Example: V @ 25°C = 1.241 V  
ref  
Example: DT = 125°C  
A
  106  
0.0072  
1.241  
ppm  
°C  
ref ǒ Ǔ+  
αV  
+ 46 ppmń°C  
125  
4. The dynamic impedance Z is defined as:  
KA  
DV  
KA  
DIK  
Z +  
KA  
When the device is operating with two external resistors, R1 and R2, (refer to Figure 4) the total dynamic impedance of the circuit is given by:  
R1  
  ǒ1 )  
Ǔ
Z ′⏐ + Z  
KA  
KA  
R2  
www.onsemi.com  
3
 
TLV431A, TLV431B, TLV431C, SCV431B, NCV431  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
TLV431C  
Typ  
Min  
Max  
Characteristic  
Symbol  
Unit  
Reference Voltage (Figure 3)  
V
ref  
V
(V = V , I = 10 mA, T = 25°C)  
1.237 1.240 1.243  
KA  
(T = T  
A
ref  
K
A
to T , Note 5)  
1.228  
1.252  
low  
high  
Reference Input Voltage Deviation Over Temperature (Figure 3)  
(V = V , I = 10 mA, T = T to T , Notes 5, 6, 7)  
DV  
mV  
ref  
7.2  
2.0  
KA  
ref  
K
A
low  
high  
Ration of Reference Input Voltage Change to Cathode Voltage Change (Figure 4)  
(V = V to 16 V, I = 10 mA)  
DVref  
DVKA  
mV  
V
−0.6  
0.15  
−1.5  
0.3  
KA  
ref  
K
Reference Terminal Current (Figure 4)  
(I = 10 mA, R1 = 10 kW, R2 = open)  
K
I
ref  
mA  
Reference Input Current Deviation Over Temperature (Figure 4)  
(I = 10 mA, R1 = 10 kW, R2 = open, Notes 5, 6, 7)  
K
DI  
ref  
mA  
0.04  
30  
0.08  
80  
Minimum Cathode Current for Regulation (Figure 3)  
Off−State Cathode Current (Figure 5)  
I
)
mA  
mA  
K(min  
I
K(off)  
0.01  
0.012 0.05  
0.04  
(V = 6.0 V, V = 0)  
KA  
ref  
(V = 16 V, V = 0)  
KA  
ref  
Dynamic Impedance (Figure 3)  
|Z  
|
W
KA  
0.25  
0.4  
(V = V , I = 0.1 mA to 20 mA, f 1.0 kHz, Note 8)  
KA  
ref  
K
5. Ambient temperature range: T = *40°C, T  
= 85°C.  
low  
high  
6. Guaranteed but not tested.  
7. The deviation parameters DV and DI are defined as the difference between the maximum value and minimum value obtained over the  
ref  
ref  
full operating ambient temperature range that applied.  
V
ref  
Max  
DV = V Max − V Min  
ref  
ref  
ref  
DT = T − T  
1
V
ref  
Min  
A
2
T
1
Ambient Temperature  
T
2
The average temperature coefficient of the reference input voltage, aV is defined as:  
ref  
(DV  
ref  
)
  106  
ǒ
Ǔ
V
(T + 25°C)  
A
ref  
ppm  
ref ǒ Ǔ+  
°C  
αV  
DT  
A
aV can be positive or negative depending on whether V Min or V Max occurs at the lower ambient temperature, refer to Figure 8.  
ref  
ref  
ref  
Example: DV = 7.2 mV and the slope is positive,  
ref  
Example: V @ 25°C = 1.241 V  
ref  
Example: DT = 125°C  
A
  106  
0.0072  
1.241  
ppm  
°C  
ref ǒ Ǔ+  
αV  
+ 46 ppmń°C  
125  
8. The dynamic impedance Z is defined as:  
KA  
DV  
KA  
DIK  
Z +  
KA  
When the device is operating with two external resistors, R1 and R2, (refer to Figure 4) the total dynamic impedance of the circuit is given by:  
R1  
  ǒ1 )  
Ǔ
Z ′⏐ + Z  
KA  
KA  
R2  
www.onsemi.com  
4
 
TLV431A, TLV431B, TLV431C, SCV431B, NCV431  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
NCV431A  
Typ  
Min  
Max  
Characteristic  
Symbol  
Unit  
Reference Voltage (Figure 3)  
V
ref  
V
1.228 1.240 1.252  
(V = V , I = 10 mA, T = 25°C)  
KA  
ref  
K
A
1.215  
1.211  
1.265  
1.265  
(T = *40°C to 85°C)  
A
(T = *40°C to 125°C)  
A
Reference Input Voltage Deviation Over Temperature (Figure 3)  
DV  
mV  
ref  
7.2  
7.2  
20  
24  
(V = V , I = 10 mA, T = *40°C to 85°C, Notes 9, 10)  
KA  
ref  
K
A
(V = V , I = 10 mA, T = *40°C to 125°C, Notes 9, 10)  
KA  
ref  
K
A
Ration of Reference Input Voltage Change to Cathode Voltage Change (Figure 4)  
(V = V to 16 V, I = 10 mA)  
DVref  
DVKA  
mV  
V
−0.6  
0.15  
−1.5  
0.3  
KA  
ref  
K
Reference Terminal Current (Figure 4)  
(I = 10 mA, R1 = 10 kW, R2 = open)  
K
I
ref  
mA  
Reference Input Current Deviation Over Temperature (Figure 4)  
DI  
ref  
mA  
0.04  
0.08  
0.10  
(I = 10 mA, R1 = 10 kW, R2 = open, T = *40°C to 85°C, Notes 9, 10)  
K
A
(I = 10 mA, R1 = 10 kW, R2 = open, T = *40°C to 125°C, Notes 9, 10)  
K
A
Minimum Cathode Current for Regulation (Figure 3)  
I
)
30  
80  
mA  
mA  
K(min  
Off−State Cathode Current (Figure 5)  
I
K(off)  
0.01  
0.012 0.05  
0.04  
(V = 6.0 V, V = 0)  
KA  
ref  
(V = 16 V, V = 0)  
KA  
ref  
Dynamic Impedance (Figure 3)  
|Z  
|
W
KA  
0.25  
0.4  
(V = V , I =0.1 mA to 20 mA, f 1.0 kHz, Note 11)  
KA  
ref  
K
9. Guaranteed but not tested.  
10.The deviation parameters DV and DI are defined as the difference between the maximum value and minimum value obtained over the  
ref  
ref  
full operating ambient temperature range that applied.  
V
ref  
Max  
DV = V Max − V Min  
ref  
ref  
ref  
DT = T − T  
1
V
ref  
Min  
A
2
T
1
Ambient Temperature  
T
2
The average temperature coefficient of the reference input voltage, aV is defined as:  
ref  
(DV  
ref  
)
  106  
ǒ
Ǔ
V
(T + 25°C)  
A
ref  
ppm  
ref ǒ Ǔ+  
°C  
αV  
DT  
A
aV can be positive or negative depending on whether V Min or V Max occurs at the lower ambient temperature, refer to Figure 8.  
ref  
ref  
ref  
Example: DV = 7.2 mV and the slope is positive,  
ref  
Example: V @ 25°C = 1.241 V  
ref  
Example: DT = 125°C  
A
  106  
0.0072  
1.241  
ppm  
°C  
ref ǒ Ǔ+  
αV  
+ 46 ppmń°C  
125  
11. The dynamic impedance Z is defined as:  
KA  
DV  
KA  
DIK  
Z +  
KA  
When the device is operating with two external resistors, R1 and R2, (refer to Figure 4) the total dynamic impedance of the circuit is given by:  
R1  
  ǒ1 )  
Ǔ
Z ′⏐ + Z  
KA  
KA  
R2  
www.onsemi.com  
5
 
TLV431A, TLV431B, TLV431C, SCV431B, NCV431  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
SCV431B, NCV431B  
Min Typ Max  
Characteristic  
Symbol  
Unit  
Reference Voltage (Figure 3)  
V
ref  
V
1.234 1.240 1.246  
(V = V , I = 10 mA, T = 25°C)  
KA  
ref  
K
A
1.228  
1.224  
1.252  
1.252  
(T = *40°C to 85°C)  
A
(T = *40°C to 125°C)  
A
Reference Input Voltage Deviation Over Temperature (Figure 3)  
DV  
mV  
ref  
7.2  
7.2  
20  
24  
(V = V , I = 10 mA, T = *40°C to 85°C, Notes 9, 10)  
KA  
ref  
K
A
(V = V , I = 10 mA, T = *40°C to 125°C, Notes 9, 10)  
KA  
ref  
K
A
Ration of Reference Input Voltage Change to Cathode Voltage Change (Figure 4)  
(V = V to 16 V, I = 10 mA)  
DVref  
DVKA  
mV  
V
−0.6  
0.15  
−1.5  
0.3  
KA  
ref  
K
Reference Terminal Current (Figure 4)  
(I = 10 mA, R1 = 10 kW, R2 = open)  
K
I
ref  
mA  
Reference Input Current Deviation Over Temperature (Figure 4)  
DI  
ref  
mA  
0.04  
0.08  
0.10  
(I = 10 mA, R1 = 10 kW, R2 = open, T = *40°C to 85°C, Notes 12, 13)  
K
A
(I = 10 mA, R1 = 10 kW, R2 = open, T = *40°C to 125°C, Notes 12, 13)  
K
A
Minimum Cathode Current for Regulation (Figure 3)  
I
)
30  
80  
mA  
mA  
K(min  
Off−State Cathode Current (Figure 5)  
I
K(off)  
0.01  
0.012 0.05  
0.04  
(V = 6.0 V, V = 0)  
KA  
ref  
(V = 16 V, V = 0)  
KA  
ref  
Dynamic Impedance (Figure 3)  
|Z  
|
W
KA  
0.25  
0.4  
(V = V , I =0.1 mA to 20 mA, f 1.0 kHz, Note 14)  
KA  
ref  
K
12.Guaranteed but not tested.  
13.The deviation parameters DV and DI are defined as the difference between the maximum value and minimum value obtained over the  
ref  
ref  
full operating ambient temperature range that applied.  
V
ref  
Max  
DV = V Max − V Min  
ref  
ref  
ref  
DT = T − T  
1
V
ref  
Min  
A
2
T
1
Ambient Temperature  
T
2
The average temperature coefficient of the reference input voltage, aV is defined as:  
ref  
(DV  
ref  
)
  106  
ǒ
Ǔ
V
(T + 25°C)  
A
ref  
ppm  
ref ǒ Ǔ+  
°C  
αV  
DT  
A
aV can be positive or negative depending on whether V Min or V Max occurs at the lower ambient temperature, refer to Figure 8.  
ref  
ref  
ref  
Example: DV = 7.2 mV and the slope is positive,  
ref  
Example: V @ 25°C = 1.241 V  
ref  
Example: DT = 125°C  
A
  106  
0.0072  
1.241  
ppm  
°C  
ref ǒ Ǔ+  
αV  
+ 46 ppmń°C  
125  
14.The dynamic impedance Z is defined as:  
KA  
DV  
KA  
DIK  
Z +  
KA  
When the device is operating with two external resistors, R1 and R2, (refer to Figure 4) the total dynamic impedance of the circuit is given by:  
R1  
  ǒ1 )  
Ǔ
Z ′⏐ + Z  
KA  
KA  
R2  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
6
 
TLV431A, TLV431B, TLV431C, SCV431B, NCV431  
Input  
V
KA  
Input  
V
KA  
Input  
V
KA  
I
K
I
K
I
K(off)  
I
R1  
R2  
ref  
V
ref  
V
ref  
R1  
R2  
ǒꢀ1 ) Ǔ) I  
V
+ V  
SꢀR1  
KA  
ref  
ref  
Figure 3. Test Circuit  
for VKA = Vref  
Figure 4. Test Circuit  
Figure 5. Test Circuit  
for IK(off)  
for VKA u Vref  
110  
90  
70  
50  
30  
10  
30  
Input  
V
KA  
I
K
Input  
V
KA  
20  
10  
I
K
I
K(min)  
V
T
= V  
KA  
= 25°C  
ref  
A
V
T
= V  
ref  
KA  
= 25°C  
A
0
−10  
−30  
−10  
−1.0  
−0.5  
0
0.5  
1.0  
1.5  
2.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
V
KA  
, CATHODE VOLTAGE (V)  
V
KA  
, CATHODE VOLTAGE (V)  
Figure 6. Cathode Current vs. Cathode Voltage  
Figure 7. Cathode Current vs. Cathode Voltage  
0.15  
0.14  
1.25  
1.24  
Vref  
(max)  
Input  
10 k  
V
KA  
I
K
I
ref  
Vref  
(typ)  
I
K
= 10 mA  
1.23  
1.22  
0.13  
0.12  
Input  
V
KA  
Vref  
(min)  
I
K
V
= V  
ref  
KA  
I
K
= 10 mA  
TLV431A Typ.  
60  
−40  
−15  
10  
35  
85  
−40  
−15  
10  
35  
60  
85  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 8. Reference Input Voltage versus  
Ambient Temperature  
Figure 9. Reference Input Current versus  
Ambient Temperature  
www.onsemi.com  
7
TLV431A, TLV431B, TLV431C, SCV431B, NCV431  
4.0  
0
−2.0  
−4.0  
−6.0  
Input  
V
KA  
I
= 10 mA  
K
I
off  
V
= 16 V  
= 0 V  
KA  
T = 25°C  
A
V
ref  
3.0  
2.0  
Input  
V
KA  
I
K
R1  
R2  
1.0  
0
V
ref  
T = 25°C  
−8.0  
−10  
A
0
4.0  
8.0  
12  
16  
0
4.0  
8.0  
12  
16  
20  
V
KA  
, CATHODE VOLTAGE (V)  
V
KA  
, CATHODE VOLTAGE (V)  
Figure 10. Reference Input Voltage Change  
versus Cathode Voltage  
Figure 11. Off−State Cathode Current  
versus Cathode Voltage  
0.4  
0.3  
0.2  
10  
Output  
I
K
Input  
V
KA  
50  
I
off  
V
= 16 V  
= 0 V  
KA  
+
V
ref  
1.0  
0.1  
0.1  
0
I
K
= 0.1 mA to 20 mA  
T = 25°C  
A
−40  
−15  
10  
35  
60  
85  
1.0 k  
10 k  
100 k  
f, FREQUENCY (Hz)  
1.0 M  
10 M  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 12. Off−State Cathode Current versus  
Ambient Temperature  
Figure 13. Dynamic Impedance versus  
Frequency  
0.24  
0.23  
0.22  
0.21  
60  
50  
40  
30  
20  
Output  
I
= 0.1 mA to 20 mA  
K
f = 1.0 kHz  
Output  
15 k  
I
K
I
K
9 m F  
230  
50  
+
+
8.25 k  
I
= 10 mA  
K
T = 25°C  
A
0.20  
0.19  
10  
0
−40  
−15  
10  
35  
60  
85  
100  
1.0 k  
10 k  
f, FREQUENCY (Hz)  
100 k  
1.0 M  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 14. Dynamic Impedance versus  
Ambient Temperature  
Figure 15. Open−Loop Voltage Gain  
versus Frequency  
www.onsemi.com  
8
TLV431A, TLV431B, TLV431C, SCV431B, NCV431  
350  
Output  
1.8 kW  
Input  
Input  
Output  
I
K
I
ref  
1.5  
1.0  
0.5  
0
325  
300  
V
I
T
A
= V  
ref  
= 10 mA  
= 25°C  
KA  
50  
Output  
Input  
K
T
A
= 25°C  
2.0  
0
275  
250  
10  
100  
1.0 k  
f, FREQUENCY (Hz)  
10 k  
100 k  
0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0  
t, TIME (ms)  
Figure 16. Spectral Noise Density  
Figure 17. Pulse Response  
1.0 k  
25  
20  
15  
T = 25°C  
A
I
K
R1  
R2  
A
Stable  
V+  
C
L
C
B
Stable  
10  
5.0  
0
Stable  
Unstable  
Regions  
V
(V)  
R1  
(kW)  
R2  
(kW)  
KA  
D
10  
100  
pF  
1.0  
nF  
0.01  
mF  
0.1  
mF  
1.0  
mF  
10  
mF  
100  
mF  
A, C  
B, D  
V
0
ref  
pF  
5.0  
30.4  
10  
C , LOAD CAPACITANCE  
L
Figure 18. Stability Boundary Conditions  
Figure 19. Test Circuit for Figure 18  
Stability  
Figures 18 and 19 show the stability boundaries and  
circuit configurations for the worst case conditions with the  
load capacitance mounted as close as possible to the device.  
The required load capacitance for stable operation can vary  
depending on the operating temperature and capacitor  
equivalent series resistance (ESR). Ceramic or tantalum  
surface mount capacitors are recommended for both  
temperature and ESR. The application circuit stability  
should be verified over the anticipated operating current and  
temperature ranges.  
www.onsemi.com  
9
 
TLV431A, TLV431B, TLV431C, SCV431B, NCV431  
TYPICAL APPLICATIONS  
V
in  
V
out  
V
in  
V
out  
R1  
R2  
R1  
R2  
R1  
R2  
R1  
R2  
+ ǒ1 ) ǓV  
V
+ ǒ1 ) ǓV  
V
out  
ref  
out  
ref  
Figure 20. Shunt Regulator  
Figure 21. High Current Shunt Regulator  
V
in  
V
out  
MC7805  
V
in  
Out  
Common  
In  
V
out  
R1  
R2  
R1  
R2  
R1  
R2  
R1  
R2  
+ ǒ1 ) ǓV  
+ ǒ1 ) ǓV  
out(min)  
V
V
out  
out  
ref  
ref  
V
+ V ) 5.0 V  
V
+ V ) V  
ref  
out  
in(min)  
V
be  
+ V  
out(min)  
ref  
Figure 22. Output Control for a Three Terminal  
Fixed Regulator  
Figure 23. Series Pass Regulator  
www.onsemi.com  
10  
TLV431A, TLV431B, TLV431C, SCV431B, NCV431  
I
V
in  
sink  
V
ref  
I
+
sink  
R
S
I
out  
R
CL  
V
in  
V
out  
R
S
V
R
ref  
I
+
out  
CL  
Figure 24. Constant Current Source  
Figure 25. Constant Current Sink  
V
in  
V
in  
V
out  
V
out  
R1  
R1  
R2  
R2  
R1  
R2  
R1  
R2  
+ ǒ1 ) ǓV  
+ ǒ1 ) ǓV  
V
V
out(trip)  
ref  
out(trip)  
ref  
Figure 26. TRIAC Crowbar  
Figure 27. SCR Crowbar  
www.onsemi.com  
11  
TLV431A, TLV431B, TLV431C, SCV431B, NCV431  
25 V  
V
in  
2.0 mA  
1N5305  
R1  
R3  
LED  
5 k  
1%  
50 k  
1%  
1.0 M  
1%  
500 k  
1%  
10 k  
Calibrate  
10 kW  
100 kW  
V
V
R2  
R4  
1.0 kW  
1.0 MW  
V
V
25 V  
-
+
L.E.D. indicator is ‘ON’ when V is  
between the upper and lower limits,  
in  
V
out  
Range  
R1  
R2  
Lower limit + ǒ1 ) ǓVref  
−5.0 V  
R
x
R3  
W
V
Upper limit + ǒ1 ) ǓVref  
R
+ V ꢀDꢀꢀ ꢀ Range  
x
R4  
out  
Figure 28. Voltage Monitor  
Figure 29. Linear Ohmmeter  
38 V  
T1 = 330 W to 8.0 W  
330  
T1  
+
470 mF  
8.0 W  
360 k  
1.0 mF  
Volume  
47 k  
*
0.05 mF  
25 k  
*Thermalloy  
*THM 6024  
*Heatsink on  
*LP Package.  
56 k  
Tone  
10 k  
Figure 30. Simple 400 mW Phono Amplifier  
www.onsemi.com  
12  
TLV431A, TLV431B, TLV431C, SCV431B, NCV431  
AC Input  
DC Output  
3.3 V  
Gate Drive  
100  
V
CC  
Controller  
R1  
3.0 k  
V
FB  
C1  
0.1 mF  
Current  
Sense  
R2  
1.8 k  
GND  
Figure 31. Isolated Output Line Powered Switching Power Supply  
The above circuit shows the TLV431A/B/C as a compensated amplifier controlling the feedback loop of an isolated output line  
powered switching regulator. The output voltage is programmed to 3.3 V by the resistors values selected for R1 and R2. The  
minimum output voltage that can be programmed with this circuit is 2.64 V, and is limited by the sum of the reference voltage  
(1.24 V) and the forward drop of the optocoupler light emitting diode (1.4 V). Capacitor C1 provides loop compensation.  
PIN CONNECTIONS AND DEVICE MARKING  
TO−92  
TSOP−5  
SOT−23−3  
TLV43  
1XXX  
ALYWWG  
G
1
2
3
5
4
Anode  
NC  
NC  
1
Reference  
Cathode  
Anode  
3
Reference  
Cathode  
2
1. Reference  
2. Anode  
(Top View)  
(Top View)  
3. Cathode  
XXX  
A
Y
= Specific Device Code  
= Assembly Location  
= Year  
XXX  
M
= Specific Device Code  
= Date Code  
= Pb−Free Package  
1
2 3  
G
L
= Wafer Lot  
(Note: Microdot may be in either location)  
WW, W = Work Week  
G
= Pb−Free Package  
(Note: Microdot may be in either location)  
www.onsemi.com  
13  
TLV431A, TLV431B, TLV431C, SCV431B, NCV431  
ORDERING INFORMATION  
Device  
Device Code  
Package  
Shipping  
TLV431ALPG  
ALP  
TO−92−3  
(Pb−Free)  
6000 / Box  
TLV431ALPRAG  
TLV431ALPREG  
TLV431ALPRMG  
TLV431ALPRPG  
TLV431ASNT1G  
TLV431ASN1T1G  
TLV431BLPG  
ALP  
ALP  
ALP  
ALP  
RAA  
RAF  
BLP  
BLP  
BLP  
BLP  
BLP  
RAH  
RAG  
AAN  
RAC  
ACH  
AD6  
TO−92−3  
(Pb−Free)  
2000 / Tape & Reel  
2000 / Tape & Reel  
2000 / Ammo Pack  
2000 / Ammo Pack  
3000 / Tape & Reel  
3000 / Tape & Reel  
6000 / Box  
TO−92−3  
(Pb−Free)  
TO−92−3  
(Pb−Free)  
TO−92−3  
(Pb−Free)  
TSOP−5  
(Pb−Free, Halide−Free)  
SOT−23−3  
(Pb−Free, Halide−Free)  
TO−92−3  
(Pb−Free)  
TLV431BLPRAG  
TLV431BLPREG  
TLV431BLPRMG  
TLV431BLPRPG  
TLV431BSNT1G  
TLV431BSN1T1G  
TLV431CSN1T1G  
SCV431BSN1T1G*  
NCV431ASNT1G*  
NCV431BSNT1G*  
TO−92−3  
(Pb−Free)  
2000 / Tape & Reel  
2000 / Tape & Reel  
2000 / Ammo Pack  
2000 / Ammo Pack  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
TO−92−3  
(Pb−Free)  
TO−92−3  
(Pb−Free)  
TO−92−3  
(Pb−Free)  
TSOP−5  
(Pb−Free, Halide−Free)  
SOT−23−3  
(Pb−Free, Halide−Free)  
SOT−23−3  
(Pb−Free, Halide−Free)  
SOT−23−3  
(Pb−Free, Halide−Free)  
TSOP−5  
(Pb−Free, Halide−Free)  
TSOP−5  
(Pb−Free, Halide−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*SCV, NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and  
PPAP Capable.  
www.onsemi.com  
14  
TLV431A, TLV431B, TLV431C, SCV431B, NCV431  
PACKAGE DIMENSIONS  
TO−92 (TO−226)  
LP SUFFIX  
CASE 29−11  
ISSUE AM  
NOTES:  
A
STRAIGHT LEAD  
BULK PACK  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. CONTOUR OF PACKAGE BEYOND DIMENSION R  
IS UNCONTROLLED.  
B
R
4. LEAD DIMENSION IS UNCONTROLLED IN P AND  
BEYOND DIMENSION K MINIMUM.  
P
L
INCHES  
DIM MIN MAX  
MILLIMETERS  
SEATING  
PLANE  
K
MIN  
4.45  
4.32  
3.18  
0.407  
1.15  
2.42  
0.39  
12.70  
6.35  
2.04  
---  
MAX  
5.20  
5.33  
4.19  
0.533  
1.39  
2.66  
0.50  
---  
A
B
C
D
G
H
J
0.175  
0.170  
0.125  
0.016  
0.045  
0.095  
0.015  
0.500  
0.250  
0.080  
---  
0.205  
0.210  
0.165  
0.021  
0.055  
0.105  
0.020  
---  
D
X X  
G
J
H
V
K
L
---  
---  
N
P
R
V
0.105  
0.100  
---  
2.66  
2.54  
---  
C
SECTION X−X  
0.115  
0.135  
2.93  
3.43  
1
N
---  
---  
N
NOTES:  
A
BENT LEAD  
TAPE & REEL  
AMMO PACK  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. CONTOUR OF PACKAGE BEYOND  
DIMENSION R IS UNCONTROLLED.  
B
R
4. LEAD DIMENSION IS UNCONTROLLED IN P  
AND BEYOND DIMENSION K MINIMUM.  
P
T
SEATING  
PLANE  
MILLIMETERS  
DIM MIN  
MAX  
5.20  
5.33  
4.19  
0.54  
2.80  
0.50  
---  
K
A
B
C
D
G
J
4.45  
4.32  
3.18  
0.40  
2.40  
0.39  
12.70  
2.04  
1.50  
2.93  
3.43  
D
X X  
G
K
N
P
R
V
J
2.66  
4.00  
---  
V
C
---  
SECTION X−X  
1
N
www.onsemi.com  
15  
TLV431A, TLV431B, TLV431C, SCV431B, NCV431  
PACKAGE DIMENSIONS  
SOT−23−3  
SN1 SUFFIX  
CASE 318−08  
ISSUE AP  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
D
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH  
THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM  
THICKNESS OF BASE MATERIAL.  
SEE VIEW C  
3
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,  
PROTRUSIONS, OR GATE BURRS.  
H
E
MILLIMETERS  
INCHES  
E
DIM  
A
A1  
b
c
D
E
e
L
L1  
MIN  
0.89  
0.01  
0.37  
0.09  
2.80  
1.20  
1.78  
0.10  
0.35  
2.10  
0°  
NOM  
1.00  
0.06  
0.44  
0.13  
2.90  
1.30  
1.90  
0.20  
0.54  
2.40  
−−−  
MAX  
MIN  
0.035  
0.001  
0.015  
0.003  
0.110  
0.047  
0.070  
0.004  
0.014  
0.083  
0°  
NOM  
0.040  
0.002  
0.018  
0.005  
0.114  
0.051  
0.075  
0.008  
0.021  
0.094  
−−−  
MAX  
0.044  
0.004  
0.020  
0.007  
0.120  
0.055  
0.081  
0.012  
0.029  
0.104  
10°  
1.11  
0.10  
0.50  
0.18  
3.04  
1.40  
2.04  
0.30  
0.69  
2.64  
10°  
c
1
2
b
0.25  
e
q
H
E
q
A
L
A1  
L1  
VIEW C  
SOLDERING FOOTPRINT  
0.95  
0.037  
0.95  
0.037  
2.0  
0.079  
0.9  
0.035  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
0.8  
0.031  
www.onsemi.com  
16  
TLV431A, TLV431B, TLV431C, SCV431B, NCV431  
PACKAGE DIMENSIONS  
TSOP−5  
SN SUFFIX  
CASE 483−02  
NOTES:  
ISSUE K  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
NOTE 5  
5X  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH  
THICKNESS. MINIMUM LEAD THICKNESS IS THE  
MINIMUM THICKNESS OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT  
EXCEED 0.15 PER SIDE. DIMENSION A.  
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL  
TRIMMED LEAD IS ALLOWED IN THIS LOCATION.  
TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2  
FROM BODY.  
0.20 C A B  
2X  
0.10  
T
M
5
4
3
2X  
0.20  
T
B
S
1
2
K
B
A
DETAIL Z  
G
A
MILLIMETERS  
TOP VIEW  
DIM  
A
B
MIN  
3.00 BSC  
1.50 BSC  
MAX  
DETAIL Z  
C
D
0.90  
0.25  
1.10  
0.50  
J
G
H
J
K
M
S
0.95 BSC  
C
0.01  
0.10  
0.20  
0
0.10  
0.26  
0.60  
0.05  
H
SEATING  
PLANE  
END VIEW  
C
10  
_
_
SIDE VIEW  
2.50  
3.00  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and the  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed  
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation  
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets  
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each  
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,  
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable  
copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
TLV431A/D  

相关型号:

TLV431B-Q1

汽车类低电压可调节精密并联稳压器
TI

TLV431BCDBVR

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDBVRE4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDBVRG4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDBVT

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDBVTE4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDBVTG4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATOR
TI

TLV431BCDBZR

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDBZRG4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDBZT

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDBZTG4

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI

TLV431BCDCKR

LOW-VOLTAGE ADJUSTABLE PRECISION SHUNT REGULATORS
TI