UAA2016/D [ONSEMI]

Zero Voltage Switch Power Controller ; 零电压开关电源控制器\n
UAA2016/D
型号: UAA2016/D
厂家: ONSEMI    ONSEMI
描述:

Zero Voltage Switch Power Controller
零电压开关电源控制器\n

开关 控制器
文件: 总8页 (文件大小:132K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by UAA2016/D  
ZERO VOLTAGE SWITCH  
POWER CONTROLLER  
The UAA2016 is designed to drive triacs with the Zero Voltage technique  
which allows RFI–free power regulation of resistive loads. Operating directly  
on the AC power line, its main application is the precision regulation of  
electrical heating systems such as panel heaters or irons.  
SEMICONDUCTOR  
TECHNICAL DATA  
A built–in digital sawtooth waveform permits proportional temperature  
regulation action over a ±1°C band around the set point. For energy savings  
there is a programmable temperature reduction function, and for security a  
sensor failsafe inhibits output pulses when the sensor connection is broken.  
Preset temperature (i.e. defrost) application is also possible. In applications  
where high hysteresis is needed, its value can be adjusted up to 5°C around  
the set point. All these features are implemented with a very low external  
component count.  
8
Zero Voltage Switch for Triacs, up to 2.0 kW (MAC212A8)  
Direct AC Line Operation  
Proportional Regulation of Temperature over a 1°C Band  
Programmable Temperature Reduction  
Preset Temperature (i.e. Defrost)  
Sensor Failsafe  
1
P SUFFIX  
PLASTIC PACKAGE  
CASE 626  
8
1
Adjustable Hysteresis  
Low External Component Count  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751  
(SO–8)  
PIN CONNECTIONS  
V
1
2
Sync  
8
7
6
5
ref  
Representative Block Diagram  
V
Hys. Adj.  
Sensor  
CC  
3
4
Output  
UAA2016  
Failsafe  
V
Temp. Reduc.  
EE  
3
4
Sampling  
Full Wave  
Logic  
6
7
Pulse  
Amplifier  
+
Sense Input  
(Top View)  
Output  
Internal  
Reference  
+
+
1/2  
+V  
Temperature  
Reduction  
CC  
+
Synchronization  
4–Bit DAC  
2
1
Hysteresis  
Adjust  
Supply  
Voltage  
ORDERING INFORMATION  
Operating  
11–Bit Counter  
Temperature Range  
Device  
Package  
Voltage  
Reference  
UAA2016D  
UAA2016P  
SO–8  
8
5
T
A
= – 20° to +85°C  
Plastic DIP  
Sync  
V
EE  
Motorola, Inc. 1999  
Rev 6  
UAA2016  
MAXIMUM RATINGS (Voltages referenced to Pin 7)  
Rating  
Symbol  
Value  
Unit  
mA  
mA  
Supply Current (I  
)
I
15  
Pin 5  
CC  
Non–Repetitive Supply Current  
(Pulse Width = 1.0 µs)  
I
200  
CCP  
AC Synchronization Current  
Pin Voltages  
I
3.0  
mA  
V
sync  
V
V
V
V
0; V  
Pin 2  
Pin 3  
Pin 4  
Pin 6  
ref  
ref  
ref  
EE  
0; V  
0; V  
0; V  
V
Current Sink  
I
1.0  
mA  
mA  
ref  
Pin 1  
Output Current (Pin 6)  
I
O
150  
(Pulse Width < 400 µs)  
Power Dissipation  
P
625  
100  
mW  
°C/W  
°C  
D
Thermal Resistance, Junction–to–Air  
Operating Temperature Range  
R
θJA  
T
A
– 20 to + 85  
ELECTRICAL CHARACTERISTICS (T = 25°C, V  
= –7.0 V, voltages referred to Pin 7, unless otherwise noted.)  
EE  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Supply Current (Pins 6, 8 not connected)  
(T = – 20° to + 85°C)  
A
I
mA  
CC  
0.9  
1.5  
Stabilized Supply Voltage (Pin 5) (I  
Reference Voltage (Pin 1)  
= 2.0 mA)  
V
–10  
– 6.5  
– 9.0  
– 5.5  
– 8.0  
– 4.5  
V
V
CC  
EE  
V
ref  
Output Pulse Current (T = – 20° to + 85°C)  
I
mA  
A
O
(R  
= 60 W, V  
= – 8.0 V)  
EE  
90  
100  
130  
10  
out  
Output Leakage Current (V  
= 0 V)  
I
µA  
µs  
out  
OL  
Output Pulse Width (T = – 20° to + 85°C) (Note 1)  
T
A
P
(Mains = 220 Vrms, R  
sync  
= 220 k)  
50  
–10  
100  
+10  
0.1  
Comparator Offset (Note 5)  
Sensor Input Bias Current  
Sawtooth Period (Note 2)  
Sawtooth Amplitude (Note 6)  
V
mV  
µA  
off  
I
IB  
T
40.96  
70  
sec  
mV  
mV  
S
S
A
50  
90  
Temperature Reduction Voltage (Note 3)  
(Pin 4 Connected to V  
V
TR  
)
280  
350  
10  
420  
CC  
Internal Hysteresis Voltage  
(Pin 2 Not Connected)  
V
mV  
mV  
mV  
IH  
Additional Hysteresis (Note 4)  
(Pin 2 Connected to V  
V
H
)
280  
180  
350  
420  
300  
CC  
Failsafe Threshold (T = – 20° to + 85°C) (Note 7)  
V
A
FSth  
NOTES: 1. Output pulses are centered with respect to zero crossing point. Pulse width is adjusted by the value of R  
. Refer to application curves.  
sync  
2. The actual sawtooth period depends on the AC power line frequency. It is exactly 2048 times the corresponding period. For the 50 Hz case it is 40.96  
sec. For the 60 Hz case it is 34.13 sec. This is to comply with the European standard, namely that 2.0 kW loads cannot be connected or removed  
from the line more than once every 30 sec.  
3. 350 mV corresponds to 5°C temperature reduction. This is tested at probe using internal test pad. Smaller temperature reduction can be obtained by  
adding an external resistor between Pin 4 and V . Refer to application curves.  
CC  
4. 350 mV corresponds to a hysteresis of 5°C. This is tested at probe using internal test pad. Smaller additional hysteresis can be obtained by adding  
an external resistor between Pin 2 and V . Refer to application curves.  
CC  
5. Parameter guaranteed but not tested. Worst case 10 mV corresponds to 0.15°C shift on set point.  
6. Measured at probe by internal test pad. 70 mV corresponds to 1°C. Note that the proportional band is independent of the NTC value.  
7. At very low temperature the NTC resistor increases quickly. This can cause the sensor input voltage to reach the failsafe threshold, thus inhibiting  
output pulses; refer to application schematics. The corresponding temperature is the limit at which the circuit works in the typical application. By  
setting this threshold at 0.05 V , the NTC value can increase up to 20 times its nominal value, thus the application works below – 20°C.  
ref  
2
MOTOROLA ANALOG IC DEVICE DATA  
UAA2016  
Figure 1. Application Schematic  
S2  
S1  
R
S
UAA2016  
Failsafe  
R
R
R
R
3
def  
2
1
MAC212A8  
3
Sampling  
Full Wave  
Logic  
R
6
7
out  
+
Pulse  
Amplifier  
Sense Input  
Output  
4
2
Internal  
Reference  
+V  
+
+
+
1/2  
CC  
Temp. Red.  
C
F
4–Bit DAC  
Supply  
Voltage  
Hys  
Adj  
Load  
11–Bit Counter  
Synchronization  
1
V
ref  
5
8
Sync  
sync  
V
EE  
R
R
S
APPLICATION INFORMATION  
(For simplicity, the LED in series with R  
out  
is omitted in the  
The load current is then:  
following calculations.)  
I
(Vrms  
2
sin(2 ft)–V ) R  
TM  
Load  
L
Triac Choice and R  
Determination  
out  
Depending on the power in the load, choose the triac that  
has the lowest peak gate trigger current. This will limit the  
output current of the UAA2016 and thus its power  
where V  
the line frequency.  
is the maximum on state voltage of the triac, f is  
TM  
Set I = I  
for t = T /2 to calculate T .  
Load Latch  
P
P
consumption. Use Figure 4 to determine R  
according to  
out  
the triac maximum gate current (I ) and the application low  
Figures 6 and 7 give the value of T which corresponds to  
GT  
P
and I  
temperature limit. For a 2.0 kW load at 220 Vrms, a good triac  
choice is the Motorola MAC212A8. Its maximum peak gate  
trigger current at 25°C is 50 mA.  
the higher of the values of I  
Hold  
, assuming that  
Latch  
V
= 1.6 V. Figure 8 gives the R that produces the  
sync  
TM  
corresponding T .  
P
For an application to work down to – 20°C, R  
should be  
out  
R
and Filter Capacitor  
Supply  
With the output current and the pulse width determined as  
above, use Figures 9 and 10 to determine R , assuming  
60 . It is assumed that: I (T) = I (25°C) exp (–T/125)  
GT GT  
with T in °C, which applies to the MAC212A8.  
Output Pulse Width, R  
Supply  
pin (including NTC bridge  
sync  
The pulse with T is determined by the triac’s I  
together with the load value and working conditions  
(frequency and voltage):  
that the sinking current at V  
current) is less than 0.5 mA. Then use Figure 11 and 12 to  
determine the filter capacitor (C ) according to the ripple  
desired on supply voltage. The maximum ripple allowed is  
1.0 V.  
ref  
, I  
Hold Latch  
P
F
Given the RMS AC voltage and the load power, the load  
value is:  
2
Temperature Reduction Determined by R  
1
R = V rms/POWER  
L
(Refer to Figures 13 and 14.)  
3
MOTOROLA ANALOG IC DEVICE DATA  
UAA2016  
Figure 2. Comparison Between Proportional Control and ON/OFF Control  
Overshoot  
Proportional Band  
Room  
Temperature  
T (°C)  
Time (minutes, Typ.)  
Time (minutes, Typ.)  
Heating  
Power  
P(W)  
Time (minutes, Typ.)  
Time (minutes, Typ.)  
Proportional Temperature Control  
Reduced Overshoot  
Good Stability  
ON/OFF Temperature Control  
Large Overshoot  
Marginal Stability  
Figure 3. Zero Voltage Technique  
T
is centered on the zero–crossing.  
P
T
P
AC Line  
Waveform  
I
Hold  
I
Latch  
Gate Current  
Pulse  
f = AC Line Frequency (Hz)  
Vrms = AC Line RMS Voltage (V)  
= Synchronization Resistor ()  
5
10  
14 x R  
7
sync  
T
(µs)  
P
Vrms  
2 x  
f
R
sync  
4
MOTOROLA ANALOG IC DEVICE DATA  
UAA2016  
CIRCUIT FUNCTIONAL DESCRIPTION  
Power Supply (Pin 5 and Pin 7)  
case the level is set at 5°C. This configuration can be useful  
for low temperature inertia systems.  
The application uses a current source supplied by a single  
high voltage rectifier in series with a power dropping resistor.  
Sawtooth Generator  
An integrated shunt regulator delivers a V  
voltage of  
EE  
In order to comply with European norms, the ON/OFF  
period on the load must exceed 30 seconds. This is achieved  
by an internal digital sawtooth which performs the  
proportional regulation without any additional component.  
The sawtooth signal is added to the reference applied to the  
comparator negative input. Figure 2 shows the regulation  
improvement using the proportional band action.  
– 8.6 V with respect to Pin 7. The current used by the total  
regulating system can be shared in four functional blocks: IC  
supply, sensing bridge, triac gate firing pulses and zener  
current. The integrated zener, as in any shunt regulator,  
absorbs the excess supply current. The 50 Hz pulsed supply  
current is smoothed by the large value capacitor connected  
between Pins 5 and 7.  
Noise Immunity  
Temperature Sensing (Pin 3)  
The noisy environment requires good immunity. Both the  
voltage reference and the comparator hysteresis minimize  
the noise effect on the comparator input. In addition the  
effective triac triggering is enabled every 1/3 sec.  
The actual temperature is sensed by a negative  
temperature coefficient element connected in a resistor  
divider fashion. This two element network is connected  
between the ground terminal Pin 5 and the reference voltage  
– 5.5 V available on Pin 1. The resulting voltage, a function of  
the measured temperature, is applied to Pin 3 and internally  
compared to a control voltage whose value depends on  
several elements: Sawtooth, Temperature Reduction and  
Hysteresis Adjust. (Refer to Application Information.)  
Failsafe  
Output pulses are inhibited by the “failsafe” circuit if the  
comparator input voltage exceeds the specified threshold  
voltage. This would occur if the temperature sensor circuit is  
open.  
Temperature Reduction  
Sampling Full Wave Logic  
For energy saving, a remotely programmable temperature  
Two consecutive zero–crossing trigger pulses are  
generated at every positive mains half–cycle. This ensures  
that the number of delivered pulses is even in every case.  
reduction is available on Pin 4. The choice of resistor R  
1
connected between Pin 4 and V  
reduction level.  
sets the temperature  
CC  
The pulse length is selectable by R  
connected on Pin 8.  
sync  
The pulse is centered on the zero–crossing mains waveform.  
Comparator  
When the positive input (Pin 3) receives a voltage greater  
than the internal reference value, the comparator allows the  
triggering logic to deliver pulses to the triac gate. To improve  
the noise immunity, the comparator has an adjustable  
Pulse Amplifier  
The pulse amplifier circuit sinks current pulses from Pin 6  
to V . The minimum amplitude is 70 mA. The triac is then  
EE  
triggered in quadrants II and III. The effective output current  
hysteresis. The external resistor R connected to Pin 2 sets  
3
amplitude is given by the external resistor R . Eventually,  
an LED can be inserted in series with the Triac gate (see  
Figure 1).  
out  
the hysteresis level. Setting Pin 2 open makes a 10 mV  
hysteresis level, corresponding to 0.15°C. Maximum  
hysteresis is obtained by connecting Pin 2 to V . In that  
CC  
Figure 5. Minimum Output Current  
Figure 4. Output Resistor versus  
versus Output Resistor  
Triac Gate Current  
200  
100  
180  
160  
140  
80  
60  
40  
T
= +10°C  
A
120  
100  
80  
T
= 0°C  
A
T
= + 85°C  
A
T
= – 20  
°C  
A
T
= – 20  
140  
°C  
A
20  
0
60  
T
= –10°C  
A
40  
20  
30  
40  
50  
60  
40  
60  
80  
100  
120  
160  
180  
200  
I
, TRIAC GATE CURRENT SPECIFIED AT 25°C (mA)  
R
, OUTPUT RESISTOR ()  
GT  
out  
5
MOTOROLA ANALOG IC DEVICE DATA  
UAA2016  
Figure 6. Output Pulse Width versus  
Maximum Triac Latch Current  
Figure 7. Output Pulse Width versus  
Maximum Triac Latch Current  
120  
100  
120  
100  
80  
F = 50 Hz  
2.0 kW Loads  
= 1.6 V  
V
TM  
= 25°C  
T
A
110 Vrms  
80  
60  
110 Vrms  
220 Vrms  
60  
220 Vrms  
F = 50 Hz  
1.0 kW Loads  
40  
40  
20  
V
= 1.6 V  
TM  
= 25  
T
°C  
A
20  
0
10  
20  
30  
40  
50  
60  
0
10  
Latch(max)  
20  
30  
40  
50  
60  
I
, MAXIMUM TRIAC LATCH CURRENT (mA)  
I
, MAXIMUM TRIAC LATCH CURRENT (mA)  
Latch(max)  
Figure 8. Synchronization Resistor  
versus Output Pulse Width  
Figure 9. Maximum Supply Resistor  
versus Output Current  
400  
60  
50  
40  
30  
20  
F = 50 Hz  
V = 220 Vrms  
F = 50 Hz  
300  
200  
100  
0
220 Vrms  
110 Vrms  
80  
T
= 50 µs  
P
100  
150  
µ
s
µs  
200 µs  
20  
40  
60  
100  
0
25  
50  
75  
100  
T , OUTPUT PULSE WIDTH (  
µs)  
I
, OUTPUT CURRENT (mA)  
P
O
Figure 10. Maximum Supply Resistor  
versus Output Current  
Figure 11. Minimum Filter Capacitor  
versus Output Current  
30  
90  
80  
70  
60  
Ripple = 1.0 Vp–p  
F = 50 Hz  
V = 110 Vrms  
F = 50 Hz  
25  
20  
200  
µ
s
T
= 50 µs  
P
150  
100  
µ
s
s
100  
150  
µ
s
s
µ
µ
15  
10  
50  
40  
T
= 50 µs  
P
200  
µs  
0
25  
50  
75  
100  
0
20  
40  
I , OUTPUT CURRENT (mA)  
O
60  
80  
100  
I
, OUTPUT CURRENT (mA)  
O
6
MOTOROLA ANALOG IC DEVICE DATA  
UAA2016  
Figure 12. Minimum Filter Capacitor  
versus Output Current  
Figure 13. Temperature Reduction versus R  
1
7.0  
6.0  
5.0  
180  
Setpoint = 20°C  
Ripple = 0.5 V  
F = 50 Hz  
p–p  
160  
140  
200  
µs  
4.0  
3.0  
2.0  
150  
100  
µ
s
s
120  
10 k  
NTC  
NTC  
µ
100  
80  
1.0  
0
100 k  
T
= 50 µs  
P
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
I
, OUTPUT CURRENT (mA)  
R , TEMPERATURE REDUCTION RESISTOR (k)  
1
O
Figure 14. Temperature Reduction versus  
Temperature Setpoint  
Figure 15. R  
versus Preset Temperature  
DEF  
4
3
2
6.0  
5.6  
5.2  
R
= 0  
1
100 k  
NTC  
10 kNTC  
10 k  
NTC  
4.8  
100 k  
NTC  
1
0
4.4  
4.0  
10  
14  
18  
22  
26  
30  
0
5
10  
15  
20  
25  
C)  
30  
T
, TEMPERATURE SETPOINT (  
°C)  
T
, PRESET TEMPERATURE (°  
DEF  
S
Figure 16. R + R versus Preset Setpoint  
Figure 17. Comparator Hysteresis versus R  
3
S
2
8
6
4
2
0
0.5  
T
= 4°C  
DEF  
0.4  
0.3  
0.2  
0.1  
10 k  
NTC  
R
= 29 k  
DEF  
100 k  
NTC  
R
= 310 kΩ  
DEF  
0
0
100  
200  
300  
400  
10  
14  
18  
22  
26  
30  
34  
R , HYSTERESIS ADJUST RESISTOR (k  
)  
T
, TEMPERATURE SETPOINT (°C)  
3
S
7
MOTOROLA ANALOG IC DEVICE DATA  
UAA2016  
OUTLINE DIMENSIONS  
P SUFFIX  
PLASTIC PACKAGE  
CASE 626–05  
ISSUE K  
8
5
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
–B–  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
1
4
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
F
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
MIN  
9.40  
6.10  
3.94  
0.38  
1.02  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
–A–  
NOTE 2  
0.370  
0.240  
0.155  
0.015  
0.040  
L
C
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
7.62 BSC  
–––  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.300 BSC  
–––  
0.050  
0.012  
0.135  
J
–T–  
SEATING  
PLANE  
N
10  
1.01  
10  
0.040  
M
0.76  
0.030  
D
K
G
H
M
M
M
0.13 (0.005)  
T
A
B
D SUFFIX  
PLASTIC PACKAGE  
CASE 751–05  
ISSUE N  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
(SO–8)  
8
1
5
4
4X P  
–B–  
M
M
0.25 (0.010)  
B
G
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
G
J
K
M
P
MIN  
4.80  
3.80  
1.35  
0.35  
0.40  
MAX  
5.00  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.196  
0.157  
0.068  
0.019  
0.049  
0.189  
0.150  
0.054  
0.014  
0.016  
R X 45  
F
C
SEATING  
PLANE  
–T–  
1.27 BSC  
0.050 BSC  
K
J
M
0.18  
0.10  
0
0.25  
0.25  
7
0.007  
0.004  
0
0.009  
0.009  
7
8X D  
0.25 (0.010)  
M
S
S
T
B
A
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
R
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141,  
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488  
Customer Focus Center: 1–800–521–6274  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1–602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,  
Motorola Fax Back System  
– US & Canada ONLY 1–800–774–1848 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.  
– http://sps.motorola.com/mfax/  
852–26629298  
HOME PAGE: http://motorola.com/sps/  
UAA2016/D  

相关型号:

UAA2016AD

Zero Voltage Switch Power Controller
ONSEMI

UAA2016ADG

Zero Voltage Switch Power Controller
ONSEMI

UAA2016D

ZERO VOLTAGE SWITCH POWER CONTROLLER
ONSEMI

UAA2016DG

Zero Voltage Switch Power Controller
ONSEMI

UAA2016DR2

Analog Circuit, 1 Func, PDSO8, PLASTIC, SOP-8
MOTOROLA

UAA2016DR2

SPECIALTY ANALOG CIRCUIT, PDSO8, SOIC-8
ONSEMI

UAA2016P

ZERO VOLTAGE SWITCH POWER CONTROLLER
ONSEMI

UAA2016PG

Zero Voltage Switch Power Controller
ONSEMI

UAA2016_06

Zero Voltage Switch Power Controller
ONSEMI

UAA2050T

IC TELECOM, PAGING RECEIVER, PDSO28, Paging Circuit
NXP