PFS172-2J16A [PADAUK]

8bit MTP Type MCU with 8-bit ADC;
PFS172-2J16A
型号: PFS172-2J16A
厂家: PADAUK Technology    PADAUK Technology
描述:

8bit MTP Type MCU with 8-bit ADC

文件: 总92页 (文件大小:1831K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PFS172  
8bit MTP Type MCU with 8-bit ADC  
Data Sheet  
Version 0.01  
May 8, 2020  
Copyright 2020 by PADAUK Technology Co., Ltd., all rights reserved.  
6F-6, No.1, Sec. 3, Gongdao 5th Rd., Hsinchu City 30069, Taiwan, R.O.C.  
TEL: 886-3-572-8688 www.padauk.com.tw  
PFS172  
8bit MTP MCU with 8-bit ADC  
IMPORTANT NOTICE  
PADAUK Technology reserves the right to make changes to its products or to terminate  
production of its products at any time without notice. Customers are strongly  
recommended to contact PADAUK Technology for the latest information and verify  
whether the information is correct and complete before placing orders.  
PADAUK Technology products are not warranted to be suitable for use in life-support  
applications or other critical applications. PADAUK Technology assumes no liability for  
such applications. Critical applications include, but are not limited to, those which may  
involve potential risks of death, personal injury, fire or severe property damage.  
PADAUK Technology assumes no responsibility for any issue caused by a customer’s  
product design. Customers should design and verify their products within the ranges  
guaranteed by PADAUK Technology. In order to minimize the risks in customers’ products,  
customers should design a product with adequate operating safeguards.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 2 of 92  
PDK-DS-PFS172-EN_V001-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
Table of Contents  
1. Features.................................................................................................................................8  
1.1.  
1.2.  
1.3.  
1.4.  
Special Features.....................................................................................................................8  
System Features.....................................................................................................................8  
CPU Features .........................................................................................................................8  
Package Information ...............................................................................................................8  
2. General Description and Block Diagram ............................................................................9  
3. Pin Assignment and Description.......................................................................................10  
4. Device Characteristics .......................................................................................................16  
4.1.  
4.2.  
4.3.  
4.4.  
4.5.  
4.6.  
4.7.  
4.8.  
4.9.  
AC/DC Device Characteristics...............................................................................................16  
Absolute Maximum Ratings...................................................................................................18  
Typical ILRC frequency vs. VDD...........................................................................................18  
Typical IHRC frequency deviation vs. VDD (calibrated to 16MHz).........................................18  
Typical ILRC Frequency vs. Temperature .............................................................................19  
Typical IHRC Frequency vs. Temperature (calibrated to 16MHz)..........................................19  
Typical operating current vs. VDD @ system clock = ILRC/n................................................20  
Typical operating current vs. VDD @ system clock = IHRC/n................................................20  
Typical operating current vs. VDD @ system clock = 4MHz EOSC / n..................................21  
4.10. Typical operating current vs. VDD @ system clock = 32KHz EOSC / n.................................21  
4.11. Typical operating current vs. VDD @ system clock = 1MHz EOSC / n..................................22  
4.12. Typical IO driving current (IOH) and sink current (IOL) .............................................................22  
4.13. Typical IO input high/low threshold voltage (VIH/VIL) ..............................................................24  
4.14. Typical resistance of IO pull high/low device .........................................................................25  
4.15. Typical power down current (IPD) and power save current (IPS)..............................................26  
5. Functional Description.......................................................................................................27  
5.1.  
5.2.  
Program Memory - MTP........................................................................................................27  
Boot Procedure.....................................................................................................................27  
5.2.1. Timing charts for reset conditions..............................................................................28  
Data Memory - SRAM...........................................................................................................29  
Oscillator and clock...............................................................................................................29  
5.4.1. Internal High RC oscillator and Internal Low RC oscillator.........................................29  
5.4.2. Chip calibration..........................................................................................................29  
5.4.3. IHRC Frequency Calibration and System Clock.........................................................30  
5.4.4. External Crystal Oscillator .........................................................................................31  
5.3.  
5.4.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 3 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
5.4.5. System Clock and LVR level......................................................................................33  
5.4.6. System Clock Switching ............................................................................................34  
Comparator...........................................................................................................................35  
5.5.1 Internal reference voltage (Vinternal R)...........................................................................36  
5.5.2 Using the comparator ................................................................................................38  
5.5.3 Using the comparator and bandgap 1.20V.................................................................39  
16-bit Timer (Timer16) ..........................................................................................................40  
8-bit Timer (Timer2/Timer3) with PWM generation................................................................42  
5.7.1 Using the Timer2 to generate periodical waveform....................................................43  
5.7.2 Using the Timer2 to generate 8-bit PWM waveform...................................................45  
5.7.3 Using the Timer2 to generate 6-bit PWM waveform...................................................46  
5.7.4 Complementary PWM with Dead Zones....................................................................47  
WatchDog Timer...................................................................................................................50  
Interrupt ................................................................................................................................50  
5.5.  
5.6  
5.7  
5.8  
5.9  
5.10 Power-Save and Power-Down ..............................................................................................53  
5.10.1 Power-Save mode (“stopexe)...................................................................................53  
5.10.2 Power-Down mode (“stopsys”) ..................................................................................54  
5.10.3 Wake-up....................................................................................................................55  
5.11 IO Pins..................................................................................................................................56  
5.12 Reset and LVR......................................................................................................................57  
5.12.1 Reset.........................................................................................................................57  
5.12.2 LVR reset ..................................................................................................................57  
5.13 Analog-to-Digital Conversion (ADC) module .........................................................................57  
5.13.1 The input requirement for AD conversion...................................................................58  
5.13.2 ADC clock selection...................................................................................................59  
5.13.3 Configure the analog pins..........................................................................................59  
5.13.4 Using the ADC...........................................................................................................59  
6. IO Registers ........................................................................................................................60  
6.1.  
6.2.  
6.3.  
6.4.  
6.5.  
6.6.  
6.7.  
6.8.  
6.9.  
ACC Status Flag Register (flag), IO address = 0x00 .............................................................60  
Stack Pointer Register (sp), IO address = 0x02.....................................................................60  
Clock Mode Register (clkmd), IO address = 0x03 .................................................................60  
Interrupt Enable Register (inten), IO address = 0x04.............................................................61  
Interrupt Request Register (intrq), IO address = 0x05 ...........................................................61  
Timer16 mode Register (t16m), IO address = 0x06...............................................................62  
External Oscillator setting Register (eoscr), IO address = 0x0a.............................................62  
Interrupt Edge Select Register (integs), IO address = 0x0c...................................................63  
Port A Digital Input Enable Register (padier), IO address = 0x0d..........................................63  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 4 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
6.10. Port B Digital Input Enable Register (pbdier), IO address = 0x0e..........................................64  
6.11. Port A Data Register (pa), IO address = 0x10.......................................................................64  
6.12. Port A Control Register (pac), IO address = 0x11 .................................................................64  
6.13. Port A Pull-High Register (paph), IO address = 0x12 ............................................................64  
6.14. Port A Pull-Low Register (papl), IO address = 0x13 ..............................................................64  
6.15. Port B Data Register (pb), IO address = 0x15.......................................................................64  
6.16. Port B Control Register (pbc), IO address = 0x16 .................................................................65  
6.17. Port B Pull-High Register (pbph), IO address = 0x17 ............................................................65  
6.18. Port B Pull-Low Register (pbpl), IO address = 0x18 ..............................................................65  
6.19. ADC Control Register (adcc), IO address = 0x20..................................................................65  
6.20. ADC Mode Register (adcm), IO address = 0x21 ...................................................................66  
6.21. ADC Result Register (adcr), IO address = 0x22....................................................................66  
6.22. MISC Register (misc), IO address = 0x26 .............................................................................66  
6.23. Comparator Control Register (gpcc), IO address = 0x2b.......................................................67  
6.24. Comparator Selection Register (gpcs), IO address = 0x2c....................................................67  
6.25. Timer2 Control Register (tm2c), IO address = 0x30 ..............................................................68  
6.26. Timer2 Counter Register (tm2ct), IO address = 0x31 ............................................................68  
6.27. Timer2 Scalar Register (tm2s), IO address = 0x32................................................................68  
6.28. Timer2 Bound Register (tm2b), IO address = 0x33 ...............................................................69  
6.29. Timer3 Control Register (tm3c), IO address = 0x34 ..............................................................69  
6.30. Timer3 Counter Register (tm3ct), IO address = 0x35 ............................................................69  
6.31. Timer3 Scalar Register (tm3s), IO address = 0x36................................................................70  
6.32. Timer3 Bound Register (tm3b), IO address = 0x37 ...............................................................70  
7. Instructions.........................................................................................................................71  
7.1.  
7.2.  
7.3.  
7.4.  
7.5.  
7.6.  
7.7.  
7.8.  
7.9.  
Data Transfer Instructions.....................................................................................................72  
Arithmetic Operation Instructions ..........................................................................................75  
Shift Operation Instructions...................................................................................................77  
Logic Operation Instructions..................................................................................................78  
Bit Operation Instructions......................................................................................................81  
Conditional Operation Instructions ........................................................................................82  
System control Instructions ...................................................................................................83  
Summary of Instructions Execution Cycle .............................................................................84  
Summary of affected flags by Instructions.............................................................................85  
7.10. BIT definition.........................................................................................................................85  
8. Code Options......................................................................................................................86  
9. Special Notes......................................................................................................................87  
9.1.  
Warning.................................................................................................................................87  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 5 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
9.2.  
Using IC................................................................................................................................87  
9.2.1. IO pin usage and setting............................................................................................87  
9.2.2. Interrupt.....................................................................................................................88  
9.2.3. System clock switching..............................................................................................88  
9.2.4. Watchdog ..................................................................................................................88  
9.2.5. TIMER time out..........................................................................................................89  
9.2.6. IHRC .........................................................................................................................89  
9.2.7. LVR ...........................................................................................................................89  
9.2.8. Programming Writing.................................................................................................90  
Using ICE..............................................................................................................................92  
9.3.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 6 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
Revision History:  
Revision  
Date  
Description  
0.00  
2019/08/23  
Preliminary version  
1. Amend Chapter 3, Chapter 8  
2. Update AC/DC Device Characteristics: Pcycle, IOL, IOH, tWUP, tSBP  
3. Amend 5.2.1, 5.7.1, 5.7.2, 5.7.3, 5.10.1, 5.10.3, 5.13.4, 6.3, 6.9, 6.10, 6.29, 9.3  
4. Amend Table 5, Fig.19  
0.01  
2020/05/08  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 7 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
1. Features  
1.1. Special Features  
General purpose series  
Not supposed to use in AC RC step-down powered or high EFT requirement applications.  
PADAUK assumes no liability if such kind of applications can not pass the safety regulation tests.  
Operating temperature range: -20°C ~ 70°C  
1.2. System Features  
2KW MTP program memory (programming cycle at least 1,000 times)  
128 Bytes data SRAM  
One hardware 16-bit timer  
Two hardware 8-bit timers with PWM generation  
One hardware comparator  
Bandgap circuit to provide 1.20V reference voltage  
Up to 12-channel 8-bit resolution ADC with one channel comes from intermal bandgap voltage  
Max. 14 IO pins with optional pull-high / pull-low resistor  
Every IO pin can be configured to enable wake-up function  
Clock sources: IHRC, ILRC and EOSC (XTAL)  
For every wake-up enabled IO, two optional wake-up speed are supported: normal and fast  
8 selectable levels of LVR reset from 1.8V to 4.5V  
Two selectable external interrupt pins by code option  
1.3. CPU Features  
8-bit high performance RISC CPU  
86 powerful instructions  
Most instructions are 1T execution cycle  
Programmable stack pointer to provide adjustable stack level  
Direct and indirect addressing modes for data access. Data memories are available for use as an index  
pointer of Indirect addressing mode  
IO register space and memory space are independent  
1.4. Package Information  
PFS172-U06: SOT23-6 (60mil)  
PFS172-S08: SOP8 (150mil)  
PFS172-M10: MSOP10 (118mil)  
PFS172-EY10: ESSOP10 (150mil)  
PFS172-4N10: DFN3*3-10pin (0.5pitch)  
PFS172-S14: SOP14 (150mil)  
PFS172-S16A: SOP16 (150mil)  
PFS172-1J16A: QFN3*3-16pin (0.5pitch)  
PFS172-2J16A: QFN4*4-16pin (0.65pitch)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 8 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
 
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
2. General Description and Block Diagram  
The PFS172 is an MTP-based CMOS 8-bit microcontroller with 8-bit ADC. It employs RISC architecture and all  
the instructions are executed in one cycle except that some instructions are two cycles that handle indirect  
memory access.  
Up to 2KW MTP program memory and 128 bytes data SRAM are inside. One up to 12 channels 8-bit ADC is  
built inside the chip. PFS172 also provides three hardware timers: one is 16-bit timer and two are 8-bit timers  
which PWM generation are included. PFS172 also supports one hardware comparator.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 9 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
3. Pin Assignment and Description  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 10 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 11 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
Pin Type &  
Buffer Type  
Pin Name  
Description  
The functions of this pin can be:  
(1) Bit 7 of port A. It can be configured as digital input or two-state output, with  
pull-high / pull-low resistor.  
IO  
PA7 /  
X1  
ST /  
(2) X1 is Crystal XIN(X1) when crystal oscillator is used.  
CMOS  
If this pin is used for crystal oscillator, bit 7 of padier register must be programmed “0”  
to avoid leakage current. This pin can be used to wake-up system during sleep mode;  
however, wake-up function is also disabled if bit 7 of padier register is “0”.  
The functions of this pin can be:  
(1) Bit 6 of port A. It can be configured as digital input or two-state output, with  
pull-high / pull-low resistor.  
IO  
PA6 /  
X2  
ST /  
(2) X2 is Crystal XOUT(X2) when crystal oscillator is used.  
If this pin is used for crystal oscillator, bit 6 of padier register must be programmed “0”  
to avoid leakage current. This pin can be used to wake-up system during sleep mode;  
however, wake-up function is also disabled if bit 6 of padier register is “0”.  
CMOS  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 12 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
Pin Type &  
Buffer Type  
Pin Name  
Description  
The functions of this pin can be:  
(1) Bit 5 of port A. It can be configured as digital input, two-state output with pull-high  
/ pull-low resistor by software independently.  
IO  
PA5 /  
ST /  
PRSTB  
(2) Hardware reset.  
CMOS  
This pin can be used to wake-up system during sleep mode; however, wake-up  
function is also disabled if bit 5 of padier register is “0”.  
The functions of this pin can be:  
(1) Bit 4 of port A. It can be configured as digital input, two-state output with pull-high  
/ pull-low resistor by software independently.  
(2) Channel 9 of ADC analog input.  
PA4 /  
AD9 /  
CIN+ /  
CIN1- /  
INT1  
(3) Plus input source of comparator  
IO  
(4) Minus input source 1 of comparator  
ST /  
(5) External interrupt line 1. It can be used as an external interrupt line 1. Both rising  
edge and falling edge are accepted to request interrupt service and configurable  
by register setting.  
CMOS /  
Analog  
When this pin is configured as analog input, please use bit 4 of register padier to  
disable the digital input to prevent current leakage. The bit 4 of padier register can be  
set to “0” to disable digital input; wake-up from power-down by toggling this pin is also  
disabled.  
The functions of this pin can be:  
(1) Bit 3 of port A. It can be configured as digital input, two-state output with pull-high  
/ pull-low resistor by software independently.  
PA3 /  
AD8 /  
IO  
(2) Channel 8 of ADC analog input  
ST /  
(3) Minus input source 0 of comparator  
CIN0- /  
TM2PWM  
CMOS /  
Analog  
(4) PWM output from Timer2  
When this pin is configured as analog input, please use bit 3 of register padier to  
disable the digital input to prevent current leakage. The bit 3 of padier register can be  
set to “0” to disable digital input; wake-up from power-down by toggling this pin is also  
disabled.  
The functions of this pin can be:  
(1) Bit 0 of port A. It can be configured as digital input, two-state output with pull-high  
/ pull-low resistor by software independently.  
(2) Channel 10 of ADC analog input  
PA0 /  
AD10 /  
CO /  
(3) Output of comparator  
IO  
ST /  
(4) External interrupt line 0. It can be used as an external interrupt line 0. Both rising  
edge and falling edge are accepted to request interrupt service and configurable  
by register setting.  
CMOS /  
Analog  
INT0  
When this pin is configured as analog input, please use bit 0 of register padier to  
disable the digital input to prevent current leakage. The bit 0 of padier register can be  
set to “0” to disable digital input; wake-up from power-down by toggling this pin is also  
disabled.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 13 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
Pin Type &  
Buffer Type  
Pin Name  
Description  
The functions of this pin can be:  
(1) Bit 7 of port B. It can be configured as digital input, two-state output with pull-high  
/ pull-low resistor by software independently.  
PB7 /  
AD7 /  
(2) Channel 7 of ADC analog input  
IO  
ST /  
(3) Minus input source 5 of comparator  
CIN5- /  
TM3PWM  
CMOS /  
Analog  
(4) PWM output from Timer3  
When this pin is configured as analog input, please use bit 7 of register pbdier to  
disable the digital input to prevent current leakage. The bit 7 of pbdier register can  
be set to “0” to disable digital input; wake-up from power-down by toggling this pin is  
also disabled.  
The functions of this pin can be:  
(1) Bit 6 of port B. It can be configured as digital input, two-state output with pull-high  
/ pull-low resistor by software independently.  
(2) Channel 6 of ADC analog input  
PB6 /  
AD6 /  
IO  
ST /  
(3) Minus input source 4 of comparator  
CIN4- /  
TM3PWM  
CMOS /  
Analog  
(4) PWM output from Timer3  
When this pin is configured as analog input, please use bit 6 of register pbdier to  
disable the digital input to prevent current leakage. The bit 6 of pbdier register can  
be set to “0” to disable digital input; wake-up from power-down by toggling this pin is  
also disabled.  
The functions of this pin can be:  
(1) Bit 5 of port B. It can be configured as digital input, two-state output with pull-high  
/ pull-low resistor by software independently.  
(2) Channel 5 of ADC analog input  
PB5 /  
AD5 /  
IO  
(3) External interrupt line 0. It can be used as an external interrupt line 0. Both rising  
edge and falling edge are accepted to request interrupt service and configurable  
by register setting.  
ST /  
INT0 /  
CMOS /  
Analog  
(4) PWM output from Timer3  
TM3PWM  
When this pin is configured as analog input, please use bit 5 of register pbdier to  
disable the digital input to prevent current leakage. The bit 5 of pbdier register can  
be set to “0” to disable digital input; wake-up from power-down by toggling this pin is  
also disabled.  
The functions of this pin can be:  
(1) Bit 4 of port B. It can be configured as digital input, two-state output with pull-high  
/ pull-low resistor by software independently.  
IO  
PB4 /  
AD4 /  
(2) Channel 4 of ADC analog input  
ST /  
(3) PWM output from Timer2  
CMOS /  
Analog  
When this pin is configured as analog input, please use bit 4 of register pbdier to  
disable the digital input to prevent current leakage. The bit 4 of pbdier register can  
be set to “0” to disable digital input; wake-up from power-down by toggling this pin is  
also disabled.  
TM2PWM  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 14 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
Pin Type &  
Buffer Type  
Pin Name  
Description  
The functions of this pin can be:  
(1) Bit 3 of port B. It can be configured as digital input, two-state output with pull-high  
/ pull-low resistor by software independently.  
IO  
PB3 /  
AD3  
ST /  
(2) Channel 3 of ADC analog input  
When this pin is configured as analog input, please use bit 3 of register pbdier to  
disable the digital input to prevent current leakage. The bit 3 of pbdier register can  
be set to “0” to disable digital input; wake-up from power-down by toggling this pin is  
also disabled.  
CMOS /  
Analog  
The functions of this pin can be:  
(1) Bit 2 of port B. It can be configured as digital input, two-state output with pull-high  
/ pull-low resistor by software independently.  
IO  
PB2 /  
AD2 /  
(2) Channel 2 of ADC analog input  
ST /  
(3) PWM output from Timer2  
CMOS /  
Analog  
When this pin is configured as analog input, please use bit 2 of register pbdier to  
disable the digital input to prevent current leakage. The bit 2 of pbdier register can  
be set to “0” to disable digital input; wake-up from power-down by toggling this pin is  
also disabled.  
TM2PWM  
The functions of this pin can be:  
(1) Bit 1 of port B. It can be configured as digital input, two-state output with pull-high  
/ pull-low resistor by software independently.  
IO  
PB1 /  
AD1  
ST /  
(2) Channel 1 of ADC analog input  
When this pin is configured as analog input, please use bit 1 of register pbdier to  
disable the digital input to prevent current leakage. The bit 1 of pbdier register can  
be set to “0” to disable digital input; wake-up from power-down by toggling this pin is  
also disabled.  
CMOS /  
Analog  
The functions of this pin can be:  
(1) Bit 0 of port B. It can be configured as digital input, two-state output with pull-high  
/ pull-low resistor by software independently.  
(2) Channel 0 of ADC analog input  
IO  
PB0 /  
AD0 /  
INT1  
(3) External interrupt line 1. It can be used as an external interrupt line 1. Both rising  
edge and falling edge are accepted to request interrupt service and configurable  
by register setting.  
ST /  
CMOS /  
Analog  
When this pin is configured as analog input, please use bit 0 of register pbdier to  
disable the digital input to prevent current leakage. The bit 0 of pbdier register can be  
set to “0” to disable digital input; wake-up from power-down by toggling this pin is also  
disabled.  
VDD: Digital positive power  
VDD /  
AVDD  
VDD /  
AVDD  
AVDD: Analog positive power  
VDD is the IC power supply while AVDD is the ADC power supply. AVDD and VDD  
are double bonding internally and they have the same external pin.  
GND: Digital negative power  
GND /  
AGND  
GND /  
AGND  
AGND: Analog negative power  
GND is the IC ground pin while AGND is the ADC ground pin. AGND and GND are  
double bonding internally and they have the same external pin.  
Notes: IO: Input/Output; ST: Schmitt Trigger input; Analog: Analog input pin; CMOS: CMOS voltage level  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 15 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
4. Device Characteristics  
4.1. AC/DC Device Characteristics  
All data are acquired under the conditions of VDD=5.0V, fSYS =2MHz unless noted.  
Symbol  
Description  
Operating Voltage  
Min  
1.8*  
-5  
Typ  
Max  
5.5  
5
Unit  
V
Conditions (Ta=25oC)  
VDD  
5.0  
* Subject to LVR tolerance  
LVR% Low Voltage Reset Tolerance  
System clock (CLK)* =  
IHRC/2  
%
0
0
0
8M  
4M  
2M  
V
V
V
DD 3.0V  
DD 2.2V  
DD 1.8V  
fSYS  
IHRC/4  
IHRC/8  
Hz  
ILRC  
56K  
VDD = 5.0V  
Pcycle  
IOP  
IPD  
IPS  
Program cycle  
1000  
cycles  
0.6  
76  
mA fSYS=IHRC/16=1MIPS@5.0V  
Operating Current  
uA  
uA  
uA  
fSYS=ILRC  
Power Down Current  
0.9  
0.6  
fSYS= 0Hz,VDD=5.0V  
fSYS= 0Hz,VDD=3.3V  
(by stopsys command)  
Power Save Current  
VDD =5.0V; fSYS= ILRC  
3.1  
uA  
(by stopexe command)  
Input low voltage for IO lines  
Only ILRC module is enabled.  
VIL  
VIH  
0
0.2 VDD  
VDD  
V
V
Input high voltage for IO lines  
0.7 VDD  
IO lines Sink current  
PB4, PB7 (Strong)  
PB4, PB7 (Normal)  
Other IOs  
35  
21  
22  
IOL  
mA VDD=5.0V, VOL=0.5V  
IO lines Drive current  
PB4, PB7 (Strong)  
PB4, PB7 (Normal)  
PA5  
23  
IOH  
11  
mA VDD=5.0V, VOH=4.5V  
12  
Other IOs  
11  
VIN  
Input voltage  
-0.3  
VDD+0.3  
1
V
IINJ (PIN) Injected current on pin  
mA VDD +0.3VIN-0.3  
PB1/PB4 @VDD =5.0V  
45  
86  
71  
RPH  
Pull-high Resistance  
KΩ  
PB7@VDD =5.0V  
Other IO  
45  
86  
71  
PB1/PB4 @VDD =5.0V  
PB7 @VDD =5.0V  
Other IO  
RPL  
Pull-low Resistance  
KΩ  
V
DD =1.8V ~ 5.5V  
VBG  
Bandgap Reference Voltage  
1.145*  
1.20*  
1.255*  
V
-20oC <Ta<70oC*  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 16 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
Symbol  
Description  
Min  
Typ  
Max  
Unit  
Conditions (Ta=25oC)  
15.76*  
16.24*  
25oC, VDD =2.0V~5.5V  
VDD =2.0V~5.5V,  
-20oC <Ta<70oC*  
VDD =1.8V~5.5V,  
15.20*  
13.60*  
16.80*  
18.40*  
Frequency of IHRC after  
fIHRC  
16*  
MHz  
calibration *  
-20oC <Ta<70oC*  
tINT  
VAD  
Interrupt pulse width  
AD Input Voltage  
ADC resolution  
30  
0
ns  
V
VDD = 5.0V  
VDD  
ADrs  
8
bit  
0.9  
0.8  
2
@5V  
ADcs  
ADclk  
ADC current consumption  
mA  
us  
@3V  
ADC clock period  
1.8V ~ 5.5V  
ADC conversion time  
tADCONV (tADCLK is the period of the  
selected AD conversion clock)  
16  
tADCLK 8-bit resolution  
AD DNL ADC Differential Non-Linearity  
±2*  
±4*  
5*  
LSB  
LSB  
AD INL ADC Integral Non-Linearity  
ADos  
VDR  
ADC offset  
mV  
V
@ VDD =3V  
RAM data retention voltage*  
1.5  
in stop mode  
8k  
misc[1:0]=00 (default)  
misc[1:0]=01  
16k  
tWDT  
Watchdog timeout period  
TILRC  
64k  
256k  
45  
misc[1:0]=10  
misc[1:0]=11  
Wake-up time period (fast)  
Wake-up time period (slow)  
Where TILRC is the time  
period of ILRC  
tWUP  
TILRC  
3000  
System boot-up period from  
power-on for Slow boot-up  
System boot-up period from  
power-on for Fast boot-up  
External reset pulse width  
50  
ms  
us  
VDD =5V  
tSBP  
750  
VDD =5V  
tRST  
120  
-
us  
@ VDD =5V  
CPos  
CPcm  
Comparator offset*  
Comparator input common  
mode*  
±10  
±20  
VDD -1.5  
500  
mV  
0
V
CPspt  
CPmc  
Comparator response time*  
Stable time to change  
comparator mode  
Comparator current  
consumption  
100  
2.5  
ns  
us  
Both Rising and Falling  
7.5  
CPcs  
20  
uA  
VDD = 3.3V  
*These parameters are for design reference, not tested for each chip.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 17 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
4.2. Absolute Maximum Ratings  
Supply Voltage ……………………………......  
*If VDD is over the maximum rating, it may lead to a permanent damage of IC.  
Input Voltage ………………………………….. -0.3V ~ VDD + 0.3V  
Operating Temperature .................................. -20oC ~ 70oC  
Junction Temperature ………………………… 150°C  
Storage Temperature ………………………… -50°C ~ 125°C  
1.8V ~ 5.5V  
4.3. Typical ILRC frequency vs. VDD  
4.4. Typical IHRC frequency deviation vs. VDD (calibrated to 16MHz)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 18 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
4.5. Typical ILRC Frequency vs. Temperature  
4.6. Typical IHRC Frequency vs. Temperature (calibrated to 16MHz)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 19 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
4.7. Typical operating current vs. VDD @ system clock = ILRC/n  
Conditions:  
ON: ILRC, Bandgap, LVR; OFF: IHRC, EOSC, T16, TM2, TM3, ADC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
4.8. Typical operating current vs. VDD @ system clock = IHRC/n  
Conditions:  
ON: IHRC, Bandgap, LVR; OFF: ILRC, EOSC, T16, TM2, TM3, ADC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 20 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
4.9. Typical operating current vs. VDD @ system clock = 4MHz EOSC / n  
Conditions:  
ON: EOSC[6,5] = [1,1], Bandgap, LVR; OFF: IHRC, ILRC, T16, TM2, TM3, ADC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
4.10.Typical operating current vs. VDD @ system clock = 32KHz EOSC / n  
Conditions:  
ON: EOSC[6,5] = [0,1], Bandgap, LVR; OFF: IHRC, ILRC, T16, TM2, TM3, ADC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 21 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
4.11.Typical operating current vs. VDD @ system clock = 1MHz EOSC / n  
Conditions:  
ON: EOSC[6,5] = [1,0], Bandgap, LVR; OFF: IHRC, ILRC, T16, TM2, TM3, ADC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
4.12.Typical IO driving current (IOH) and sink current (IOL)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 22 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 23 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
4.13. Typical IO input high/low threshold voltage (VIH/VIL)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 24 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
4.14. Typical resistance of IO pull high/low device  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 25 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
4.15. Typical power down current (IPD) and power save current (IPS)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 26 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
5. Functional Description  
5.1. Program Memory - MTP  
The MTP (Multiple Time Programmable) program memory is used to store the program instructions to be  
executed. The MTP program memory may contains the data, tables and interrupt entry. After reset, the  
program will start from the initial address 0x000 which is GOTO FPPA0 instruction usually. The interrupt entry  
is 0x10 if used, the last 32 addresses are reserved for system using, like checksum, serial number, etc. The  
MTP program memory for PFS172 is 2KW that is partitioned as Table 1. The MTP memory from address  
0X7E0 to 0x7FF is for system using, address space from 0x001 to 0x00F and from 0x011 to 0X7DF are user  
program spaces.  
Address  
0x000  
0x001  
Function  
GOTO FPPA0 instruction  
User program  
0x00F  
0x010  
0x011  
User program  
Interrupt entry address  
User program  
0x7DF  
0X7E0  
User program  
System Using  
0x7FF  
System Using  
Table 1: Program Memory Organization  
5.2. Boot Procedure  
POR (Power-On-Reset) is used to reset PFS172 when power up. The boot up time can be optional fast or  
normal. Customer must ensure the stability of supply voltage after power up no matter which option is chosen,  
the power up sequence is shown in the Fig. 1 and tSBP is the boot up time.  
Fig.1: Power-Up Sequence  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 27 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
5.2.1. Timing charts for reset conditions  
LVR level  
VDD  
LVR  
SBP  
t
Program  
Execution  
Boot up from LVR detection  
VDD  
t
SBP  
WD  
Time Out  
Program  
Execution  
Boot up from Watch Dog Time Out  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 28 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
5.3. Data Memory - SRAM  
The access of data memory can be byte or bit operation. Besides data storage, the SRAM data memory is  
also served as data pointer of indirect access method and the stack memory.  
The stack memory is defined in the data memory. The stack pointer is defined in the stack pointer register; the  
depth of stack memory of each processing unit is defined by the user. The arrangement of stack memory fully  
flexible and can be dynamically adjusted by the user.  
For indirect memory access mechanism, the data memory is used as the data pointer to address the data  
byte. All the data memory could be the data pointer; it’s quite flexible and useful to do the indirect memory  
access. Since the data width is 8-bit, all the 128 bytes data memory of PFS172 can be accessed by indirect  
access mechanism.  
5.4. Oscillator and clock  
There are three oscillator circuits provided by PFS172: external crystal oscillator (EOSC), internal high RC  
oscillator (IHRC) and internal low RC oscillator (ILRC), and these three oscillators are enabled or disabled by  
registers eoscr.7, clkmd.4 and clkmd.2 independently. User can choose one of these three oscillators as  
system clock source and use clkmd register to target the desired frequency as system clock to meet different  
applications.  
Oscillator Module  
EOSC  
Enable/Disable  
eoscr.7  
IHRC  
clkmd.4  
ILRC  
clkmd.2  
Table 2: Three oscillation circuits  
5.4.1. Internal High RC oscillator and Internal Low RC oscillator  
After boot-up, the IHRC and ILRC oscillators are enabled. The frequency of IHRC can be calibrated to  
eliminate process variation by ihrcr register; normally it is calibrated to 16MHz. Please refer to the  
measurement chart for IHRC frequency verse VDD and IHRC frequency verse temperature.  
The frequency of ILRC will vary by process, supply voltage and temperature, please refer to DC specification  
and do not use for accurate timing application.  
5.4.2. Chip calibration  
The IHRC frequency and bandgap reference voltage may be different chip by chip due to manufacturing  
variation, PFS172 provide the IHRC frequency calibration to eliminate this variation, and this function can be  
selected when compiling user’s program and the command will be inserted into user’s program automatically.  
The calibration command is shown as below:  
.ADJUST_IC SYSCLK=IHRC/(p1), IHRC=(p2)MHz, VDD=(p3)V;  
Where, p1=2, 4, 8, 16, 32; In order to provide different system clock.  
p2=14 ~ 18; In order to calibrate the chip to different frequency, 16MHz is the usually one.  
p3=2.5 ~ 5.5; In order to calibrate the chip under different supply voltage.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 29 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
5.4.3. IHRC Frequency Calibration and System Clock  
During compiling the user program, the options for IHRC calibration and system clock are shown as Table 3:  
SYSCLK  
○ Set IHRC / 2  
Set IHRC / 4  
Set IHRC / 8  
Set IHRC / 16  
Set IHRC / 32  
○ Set ILRC  
CLKMD  
IHRCR  
Calibrated  
Calibrated  
Calibrated  
Description  
= 34h (IHRC / 2)  
= 14h (IHRC / 4)  
= 3Ch (IHRC / 8)  
IHRC calibrated to 16MHz, CLK=8MHz (IHRC/2)  
IHRC calibrated to 16MHz, CLK=4MHz (IHRC/4)  
IHRC calibrated to 16MHz, CLK=2MHz (IHRC/8)  
IHRC calibrated to 16MHz, CLK=1MHz (IHRC/16)  
IHRC calibrated to 16MHz, CLK=0.5MHz (IHRC/32)  
IHRC calibrated to 16MHz, CLK=ILRC  
= 1Ch (IHRC / 16) Calibrated  
= 7Ch (IHRC / 32) Calibrated  
= E4h (ILRC / 1)  
No change  
Calibrated  
○ Disable  
No Change IHRC not calibrated, CLK not changed  
Table 3: Options for IHRC Frequency Calibration  
Usually, .ADJUST_IC will be the first command after boot up, in order to set the target operating frequency  
whenever starting the system. The program code for IHRC frequency calibration is executed only one time  
that occurs in writing the codes into MTP memory; after then, it will not be executed again. If the different  
option for IHRC calibration is chosen, the system status is also different after boot. The following shows the  
status of PFS172 for different option:  
(1) .ADJUST_IC  
SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V  
After boot up, CLKMD = 0x34  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is enabled  
System CLK = IHRC/2 = 8MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(2) .ADJUST_IC  
SYSCLK=IHRC/4, IHRC=16MHz, VDD=3.3V  
After boot up, CLKMD = 0x14:  
IHRC frequency is calibrated to 16MHz@VDD=3.3V and IHRC module is enabled  
System CLK = IHRC/4 = 4MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(3) .ADJUST_IC  
SYSCLK=IHRC/8, IHRC=16MHz, VDD=2.5V  
After boot up, CLKMD = 0x3C:  
IHRC frequency is calibrated to 16MHz@VDD=2.5V and IHRC module is enabled  
System CLK = IHRC/8 = 2MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
SYSCLK=IHRC/16, IHRC=16MHz, VDD=2.5V  
(4) .ADJUST_IC  
After boot up, CLKMD = 0x1C:  
IHRC frequency is calibrated to 16MHz@VDD=2.5V and IHRC module is enabled  
System CLK = IHRC/16 = 1MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(5) .ADJUST_IC  
SYSCLK=IHRC/32, IHRC=16MHz, VDD=5V  
After boot up, CLKMD = 0x7C:  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is enabled  
System CLK = IHRC/32 = 500KHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 30 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
(6) .ADJUST_IC  
SYSCLK=ILRC, IHRC=16MHz, VDD=5V  
After boot up, CLKMD = 0XE4:  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is disabled  
System CLK = ILRC  
Watchdog timer is disabled, ILRC is enabled, PA5 is input mode  
(7) .ADJUST_IC  
DISABLE  
After boot up, CLKMD is not changed (Do nothing):  
IHRC is not calibrated and IHRC module is disabled by Boot-up Time  
System CLK = ILRC or IHRC/64 (by Boot-upTime)  
Watchdog timer is enabled, ILRC is enabled, PA5 is in input mode  
5.4.4. External Crystal Oscillator  
If crystal oscillator is used, a crystal or resonator is required between X1 and X2. Fig.2 shows the hardware  
connection under this application; the range of operating frequency of crystal oscillator can be from 32 KHz to  
4MHz, depending on the crystal placed on; higher frequency oscillator than 4MHz is NOT supported.  
(Select driving current for oscillator)  
eoscr[6:5]  
(Enable crystal oscillator)  
eoscr.7  
C1  
PA7/X1  
System clock = EOSC  
PA6/X2  
C2  
The values of C1 and C2 should depend on  
the specification of crystal.  
Fig.2: Connection of crystal oscillator  
Besides crystal, external capacitor and options of PFS172 should be fine tuned in eoscr (0x0a) register to  
have good sinusoidal waveform. The eoscr.7 is used to enable crystal oscillator module, eoscr.6 and eoscr.5  
are used to set the different driving current to meet the requirement of different frequency of crystal oscillator:  
eoscr.[6:5]=01 : Low driving capability, for lower frequency, ex: 32KHz crystal oscillator  
eoscr.[6:5]=10 : Middle driving capability, for middle frequency, ex: 1MHz crystal oscillator  
eoscr.[6:5]=11 : High driving capability, for higher frequency, ex: 4MHz crystal oscillator  
Table 4 shows the recommended values of C1 and C2 for different crystal oscillator; the measured start-up  
time under its corresponding conditions is also shown. Since the crystal or resonator had its own  
characteristic, the capacitors and start-up time may be slightly different for different type of crystal or  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 31 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
resonator, please refer to its specification for proper values of C1 and C2.  
Measured  
Start-up time  
6ms  
Frequency  
C1  
C2  
Conditions  
4MHz  
1MHz  
32KHz  
4.7pF  
10pF  
22pF  
4.7pF  
10pF  
22pF  
(eoscr[6:5]=11, misc.6=0)  
(eoscr[6:5]=10, misc.6=0)  
(eoscr[6:5]=01, misc.6=0)  
11ms  
450ms  
Table 4: Recommend values of C1 and C2 for crystal and resonator oscillators  
When using the crystal oscillator, user must pay attention to the stable time of oscillator after enabling it, the  
stable time of oscillator will depend on frequency “crystal type” external capacitor and supply voltage. Before  
switching the system to the crystal oscillator, user must make sure the oscillator is stable; the reference  
program is shown as below:  
void  
{
FPPA0 (void)  
. ADJUST_IC SYSCLK=IHRC/16, IHRC=16MHz, VDD=5V  
$
$
EOSCR  
Enable, 4MHz;  
// EOSCR = 0b110_00000;  
T16M EOSC, /1, BIT13;  
// T16 receive 2^14=16384 clocks of crystal EOSC,  
// Intrq.T16 =>1, crystal EOSC Is stable  
WORD  
count =  
0;  
stt16 count;  
Intrq.T16  
=
0;  
do  
{
nop; }while(!Intrq.T16);  
// count from 0x0000 to 0x2000, then set INTRQ.T16  
// switch system clock to EOSC;  
clkmd=  
0xB4;  
Clkmd.4 = 0;  
...  
// disable IHRC  
Please notice that the crystal oscillator should be fully turned off before entering the power-down mode, in  
order to avoid unexpected wake-up event.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 32 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
5.4.5. System Clock and LVR level  
The clock source of system clock comes from EOSC, IHRC and ILRC, the hardware diagram of system clock  
in the PFS172 is shown as Fig.3.  
clkmd[7:5]  
÷2, ÷4, ÷8,  
IHRC  
÷16, ÷32, ÷64  
System  
clock  
M
÷1, ÷4, ÷16  
ILRC  
CLK  
U
X
÷1, ÷2, ÷4, ÷8  
EOSC  
Fig.3: Options of System Clock  
User can choose different operating system clock depends on its requirement; the selected operating system  
clock should be combined with supply voltage and LVR level to make system stable. The LVR level will be  
selected during compilation, and the lowest LVR levels can be chosen for different operating frequencies.  
Please refer to Section 4.1.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 33 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
5.4.6. System Clock Switching  
After IHRC calibration, user may want to switch system clock to a new frequency or may switch system clock  
at any time to optimize the system performance and power consumption. Basically, the system clock of  
PFS172 can be switched among IHRC, ILRC and EOSC by setting the clkmd register at any time; system  
clock will be the new one after writing to clkmd register immediately. Please notice that the original clock  
module can NOT be turned off at the same time as writing command to clkmd register. The examples are  
shown as below and more information about clock switching, please refer to the “Application Note” -> “IC  
Introduction” -> “Register Introduction” -> CLKMD”.  
Case 1: Switching system clock from ILRC to IHRC/2  
//  
//  
//  
//  
system clock is ILRC  
CLKMD.4  
CLKMD  
// CLKMD.2  
=
=
=
1;  
turn on IHRC first to improve anti-interference ability  
switch to IHRC/2, ILRC CAN NOT be disabled here  
if need, ILRC CAN be disabled at this time  
0x34  
0;  
Case 2: Switching system clock from ILRC to EOSC  
//  
//  
//  
system clock is ILRC  
CLKMD  
CLKMD.2  
=
=
0xA6;  
0;  
switch to EOSC, ILRC CAN NOT be disabled here  
ILRC CAN be disabled at this time  
Case 3: Switching system clock from IHRC/2 to ILRC  
//  
//  
//  
system clock is IHRC/2  
CLKMD  
CLKMD.4  
=
=
0xF4;  
0;  
switch to ILRC, IHRC CAN NOT be disabled here  
IHRC CAN be disabled at this time  
Case 4: Switching system clock from IHRC/2 to EOSC  
//  
//  
//  
system clock is IHRC/2  
CLKMD  
CLKMD.4  
=
=
0XB0;  
0;  
switch to EOSC, IHRC CAN NOT be disabled here  
IHRC CAN be disabled at this time  
Case 5: Switching system clock from IHRC/2 to IHRC/4  
//  
//  
system clock is IHRC/2, ILRC is enabled here  
switch to IHRC/4  
CLKMD  
=
0X14;  
Case 6: System may hang if it is to switch clock and turn off original oscillator at the same time  
//  
system clock is ILRC  
CLKMD  
=
0x30;  
//  
CAN NOT switch clock from ILRC to IHRC/2 and  
turn off ILRC oscillator at the same time  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 34 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
5.5. Comparator  
One hardware comparator is built inside the PFS172; Fig.4 shows its hardware diagram. It can compare  
signals between two pins or with either internal reference voltage Vinternal R or internal bandgap reference  
voltage. The two signals to be compared, one is the plus input and the other one is the minus input. For the  
minus input of comparator can be PA3, PA4, Internal bandgap 1.20 volt, PB6, PB7 or Vinternal R selected by bit  
[3:1] of gpcc register, and the plus input of comparator can be PA4 or Vinternal R selected by bit 0 of gpcc  
register.  
The comparator result can be selected through gpcs.7 to forcibly output to PA0 whatever input or output state.  
It can be a direct output or sampled by Timer2 clock (TM2_CLK) which comes from Timer2 module. The  
output polarity can be also inverted by setting gpcc.4 register. The comparator output can be used to request  
interrupt service or read through gpcc.6.  
PA3/CIN-  
PA4/CIN-  
Bandgap  
PB6/CIN-  
PB7/CIN-  
Fig.4: Hardware diagram of comparator  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 35 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
5.5.1 Internal reference voltage (Vinternal R  
)
The internal reference voltage Vinternal R is built by series resistance to provide different level of reference  
voltage, bit 4 and bit 5 of gpcs register are used to select the maximum and minimum values of Vinternal R  
and bit [3:0] of gpcs register are used to select one of the voltage level which is deivided-by-16 from the  
defined maximum level to minimum level. Fig.5 to Fig.8 shows four conditions to have different reference  
voltage Vinternal R. By setting the gpcs register, the internal reference voltage Vinternal R can be ranged from  
(1/32)*VDD to (3/4)*VDD.  
Case 1 : gpcs.5=0 & gpcs.4=0  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.4=0  
gpcs.4=1  
gpcs.5=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V
internal R = (3/4) VDD ~ (1/4) VDD + (1/32) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
1
4
(n+1)  
32  
V internal R  
=
*
VDD +  
*
VDD, n = gpcs[3:0] in decimal  
Fig.5: Vinternal R hardware connection if gpcs.5=0 and gpcs.4=0  
Case 2 : gpcs.5=0 & gpcs.4= 1  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.4=0  
gpcs.4=1  
gpcs.5=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (2/3) VDD ~ (1/24) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
(n+1)  
V internal R  
=
*
VDD, n = gpcs[3:0] in decimal  
24  
Fig.6: Vinternal R hardware connection if gpcs.5=0 and gpcs.4=1  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 36 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
Case 3 : gpcs.5=1 & gpcs.4= 0  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.5=1  
gpcs.4=0  
gpcs.4=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (3/5) VDD ~ (1/5) VDD + (1/40) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
1
5
(n+1)  
40  
V internal R  
=
*
VDD +  
*
VDD, n = gpcs[3:0] in decimal  
Fig.7: Vinternal R hardware connection if gpcs.5=1 and gpcs.4=0  
Case 4 : gpcs.5=1 & gpcs.4=1  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.4=0  
gpcs.4=1  
gpcs.5=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (1/2) VDD ~ (1/32) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
(n+1)  
V internal R  
=
*
VDD, n = gpcs[3:0] in decimal  
32  
Fig.8: Vinternal R hardware connection if gpcs.5=1 and gpcs.4=1  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 37 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
5.5.2  
Using the comparator  
Case I:  
Choosing PA3 as minus input and Vinternal R with (18/32)*VDD voltage level as plus input. Vinternal R is  
configured as the above Figure “gpcs[5:4] = 2b’00” and gpcs [3:0] = 4b’1001 (n=9) to have Vinternal R  
(1/4)*VDD + [(9+1)/32]*VDD = [(9+9)/32]*VDD = (18/32)*VDD.  
=
gpcs = 0b0_0_00_1001;  
gpcc = 0b1_0_0_0_000_0;  
padier = 0bxxxx_0_xxx;  
// Vinternal R = VDD*(18/32)  
// enable comp, - input: PA3, + input: Vinternal R  
// disable PA3 digital input to prevent leakage current  
or  
$ GPCS  
$ GPCC  
V
DD*18/32;  
Enable, N_PA3, P_R;  
// - input: N_xx, + input: P_R(Vinternal R  
)
PADIER = 0bxxxx_0_xxx;  
Case 2:  
Choosing Vinternal R as minus input with (22/40)*VDD voltage level and PA4 as plus input, the comparator  
result will be inverted and then output to PA0. Vinternal R is configured as the above Figure “gpcs[5:4] =  
2b’10” and gpcs [3:0] = 4b’1101 (n=13) to have Vinternal R = (1/5)*VDD + [(13+1)/40]*VDD = [(13+9)/40]*VDD  
= (22/40)*VDD.  
gpcs = 0b1_0_10_1101;  
gpcc = 0b1_0_0_1_011_1;  
// output to PA0,Vinternal R = VDD*(22/40)  
// Inverse output, - input: Vinternal R, + input: PA4  
// disable PA4 digital input to prevent leakage current  
padier  
= 0bxxx_0_xxxx;  
or  
$ GPCS  
$ GPCC  
Output, VDD*22/40;  
Enable, Inverse, N_R, P_PA4; // - input: N_R(Vinternal R), + input: P_xx  
PADIER = 0bxxx_0_xxxx;  
Note: When selecting output to PA0 output, GPCS will affect the PA3 output function in ICE. Though the  
IC is fine, be careful to avoid this error during emulation.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 38 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
5.5.3 Using the comparator and bandgap 1.20V  
The internal bandgap module can provide 1.20 volt, it can measure the external supply voltage level. The  
bandgap 1.20 volt is selected as minus input of comparator and Vinternal R is selected as plus input. The  
supply voltage of Vinternal R is VDD, and the VDD voltage level can be detected by adjusting the voltage level  
of Vinternal R to compare with bandgap. If N (gpcs[3:0] in decimal) is the number to let Vinternal R closest to  
bandgap 1.20 volt, the supply voltage VDD can be calculated by using the following equations:  
For using Case 1: VDD = [ 32 / (N+9) ] * 1.20 volt ;  
For using Case 2: VDD = [ 24 / (N+1) ] * 1.20 volt ;  
For using Case 3: VDD = [ 40 / (N+9) ] * 1.20 volt ;  
For using Case 4: VDD = [ 32 / (N+1) ] * 1.20 volt ;  
Case 1:  
$ GPCS VDD*12/40;  
// 4.0V * 12/40 = 1.2V  
$ GPCC Enable, BANDGAP, P_R; // - input: BANDGAP, + input: P_R(Vinternal R  
)
….  
if (GPC_Out)  
// or GPCC.6  
{
//  
//  
when VDD4V  
}
else  
{
}
when VDD4V  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 39 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
5.6 16-bit Timer (Timer16)  
A 16-bit hardware timer (Timer16) is implemented in the PFS172, the clock sources of Timer16 may come  
from system clock (CLK), clock of external crystal oscillator (EOSC), internal high RC oscillator (IHRC),  
internal low RC oscillator (ILRC), PA4 and PA0. A multiplex is used to select clock output for the clock source.  
Before sending clock to the counter16, a pre-scaling logic with divided-by-1, 4, 16, and 64 is used for wide  
range counting.  
The 16-bit counter performs up-counting operation only. The counter initial values can be stored from  
memory by stt16 instruction and the counting values can be loaded to memory by ldt16 instruction. A  
selector is used to select the interrupt condition of Timer16, whenever overflow occurs, the Timer16 interrupt  
can be triggered. The hardware diagram of Timer16 is shown as Fig.9. The interrupt source of Timer16  
comes from one of bit 8 to 15 of 16-bit counter, and the interrupt type can be rising edge trigger or falling edge  
trigger which is specified in the bit 4 of integs register (IO address 0x0C).  
PA4  
Fig.9: Hardware diagram of Timer16  
When using the Timer16, the syntax for Timer16 has been defined in the .INC file. There are three  
parameters to define the Timer16; 1st parameter is used to define the clock source of Timer16, 2nd parameter  
is used to define the pre-scalar and the last one is to define the interrupt source. The detail description is  
shown as below:  
T16M  
IO_RW  
0x06  
$ 7~5:STOP, SYSCLK, X, PA4_F, IHRC, EOSC, ILRC, PA0_F  
$ 4~3:/1, /4, /16, /64  
// 1st par.  
// 2nd par.  
// 3rd par.  
$ 2~0:BIT8, BIT9, BIT10, BIT11, BIT12, BIT13, BIT14, BIT15  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 40 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
User can define the parameters of T16M based on system requirement, some examples are shown below  
and more examples please refer to “Application Note IC Introduction Register Introduction T16M” in  
IDE utility.  
$ T16M SYSCLK, /64, BIT15;  
// choose (SYSCLK/64) as clock source, every 2^16 clock to set INTRQ.2=1  
// if using System Clock = IHRC / 2 = 8 MHz  
// SYSCLK/64 = 8 MHz/64 = 125KHz, about every 512 mS to generate INTRQ.2=1  
$ T16M EOSC, /1, BIT13;  
// choose (EOSC/1) as clock source, every 2^14 clocks to generate INTRQ.2=1  
// if EOSC=32768 Hz, 32768 Hz/(2^14) = 2Hz, every 0.5S to generate INTRQ.2=1  
$ T16M PA0_F, /1, BIT8;  
// choose PA0 as clock source, every 2^9 to generate INTRQ.2=1  
// receiving every 512 times PA0 to generate INTRQ.2=1  
$ T16M STOP;  
// stop Timer16 counting  
If Timer16 is operated at free running, the frequency of interrupt can be described as below:  
FINTRQ_T16M = Fclock source ÷ P ÷ 2n+1  
Where, F is the frequency of selected clock source to Timer16;  
P is the selection of t16m [4:3]; (1, 4, 16, 64)  
N is the nth bit selected to request interrupt service, for example: n=10 if bit 10 is selected.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 41 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
5.7 8-bit Timer (Timer2/Timer3) with PWM generation  
Two 8-bit hardware timers (Timer2 and Timer3) with PWM generation are implemented in the PFS172. The  
following descriptions thereinafter are for Timer2 only. It is because Timer3 have same structure with Timer2.  
Please refer to Fig.10 shown the hardware diagram of Timer2, the clock sources of Timer2 may come from  
system clock, internal high RC oscillator (IHRC), internal low RC oscillator (ILRC), external crystal oscillator  
(EOSC), PA0, PB0, PA4 and comparator. Bit [7:4] of register tm2c are used to select the clock of Timer2. If  
IHRC is selected for Timer2 clock source, the clock sent to Timer2 will keep running when using ICE in halt  
state. According to the setting of register tm2c[3:2], Timer2 output can be selectively output to PB2, PA3 or  
PB4(Timer3 count output can be selected as PB5, PB6 or PB7). At this point, regardless of whether PX.x is the  
input or output state, Timer2( or Timer3) signal will be forced to output. A clock pre-scaling module is provided  
with divided-by- 1, 4, 16, and 64 options, controlled by bit [6:5] of tm2s register; one scaling module with  
divided-by-1~31 is also provided and controlled by bit [4:0] of tm2s register. In conjunction of pre-scaling  
function and scaling function, the frequency of Timer2 clock (TM2_CLK) can be wide range and flexible.  
The Timer2 counter performs 8-bit up-counting operation only; the counter values can be set or read back by  
tm2ct register. The 8-bit counter will be clear to zero automatically when its values reach for upper bound  
register, the upper bound register is used to define the period of timer or duty of PWM. There are two operating  
modes for Timer2: period mode and PWM mode; period mode is used to generate periodical output waveform  
or interrupt event; PWM mode is used to generate PWM output waveform with optional 6-bit to 8-bit PWM  
resolution, Fig.11 shows the timing diagram of Timer2 for both period mode and PWM mode.  
Fig.10: Timer2 hardware diagram  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 42 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
Time out and  
Time out and  
Time out and  
Interrupt request  
Interrupt request  
Interrupt request  
Counter  
0xFF  
bound  
Counter  
0xFF  
Counter  
0x3F  
bound  
bound  
Time  
Time  
Time  
Time  
Time  
Event Trigger  
Event Trigger  
Event Trigger  
Output-pin  
Output-pin  
Output-pin  
Time  
Mode 0 – Period Mode  
Mode 1 – 8-bit PWM Mode  
Mode 1 – 6-bit PWM Mode  
Fig.11: Timing diagram of Timer2 in period mode and PWM mode (tm2c.1=1)  
A Code Option GPC_PWM is for the applications which need the generated PWM waveform to be controlled  
by the comparator result. If the Code Option GPC_PWM is selected, the PWM output stops while the  
comparator output is 1 and then the PWM output turns on while the comparator output goes back to 0, as  
shown in Fig. 12.  
PWM Output  
Comparator  
Output  
Fig.12: Comparator controls the output of PWM waveform  
5.7.1 Using the Timer2 to generate periodical waveform  
If periodical mode is selected, the duty cycle of output is always 50%; its frequency can be summarized  
as below:  
Frequency of Output = Y ÷ [2 × (K+1) × S1 × (S2+1) ]  
Where,  
Y = tm2c[7:4] : frequency of selected clock source  
K = tm2b[7:0] : bound register in decimal  
S1 = tm2s[6:5] : pre-scalar (S1= 1, 4, 16, 64)  
S2 = tm2s[4:0] : scalar register in decimal (S2= 0 ~ 31)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 43 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
Example 1:  
Example 2:  
Example 3:  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ [ 2 × (127+1) × 1 × (0+1) ] = 31.25KHz  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s[7:0] = 0b0_11_11111, S1=64 , S2 = 31  
frequency = 8MHz ÷ ( 2 × (127+1) × 64 × (31+1) ) =15.25Hz  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0000_1111, K=15  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency = 8MHz ÷ ( 2 × (15+1) × 1 × (0+1) ) = 250KHz  
Example 4:  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0000_0001, K=1  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency = 8MHz ÷ ( 2 × (1+1) × 1 × (0+1) ) =2MHz  
The sample program for using the Timer2 to generate periodical waveform from PA3 is shown as below:  
Void FPPA0 (void)  
{
. ADJUST_IC SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V  
tm2ct = 0x00;  
tm2b = 0x7f;  
tm2s = 0b0_00_00001;  
//  
//  
8-bit PWM, pre-scalar = 1, scalar = 2  
system clock, output=PA3, period mode  
tm2c = 0b0001_10_0_0;  
while(1)  
{
nop;  
}
}
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 44 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
5.7.2 Using the Timer2 to generate 8-bit PWM waveform  
If 8-bit PWM mode is selected, it should set tm2c[1]=1 and tm2s[7]=0, the frequency and duty cycle of  
output waveform can be summarized as below:  
Frequency of Output = Y ÷ [256 × S1 × (S2+1) ]  
Duty of Output = [( K1 ) ÷ 256]×100%  
Where, Y = tm2c[7:4] : frequency of selected clock source  
K = tm2b[7:0] : bound register in decimal  
S1= tm2s[6:5] : pre-scalar (S1= 1, 4, 16, 64)  
S2 = tm2s[4:0] : scalar register in decimal (S2= 0 ~ 31)  
Example 1:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 256 × 1 × (0+1) ) = 31.25KHz  
duty of output = [(127+1) ÷ 256] × 100% = 50%  
Example 2:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0_11_11111, S1=64, S2=31  
frequency of output = 8MHz ÷ ( 256 × 64 × (31+1) ) = 15.25Hz  
duty of output = [(127+1) ÷ 256] × 100% = 50%  
Example 3:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b1111_1111, K=255  
tm2s = 0b0_00_00000, S1=1, S2=0  
PWM output keep high  
duty of output = [(255+1) ÷ 256] × 100% = 100%  
Example 4:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0000_1001, K = 9  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 256 × 1 × (0+1) ) = 31.25KHz  
duty of output = [(9+1) ÷ 256] × 100% = 3.9%  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 45 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
The sample program for using the Timer2 to generate PWM waveform from PA3 is shown as below:  
void  
{
FPPA0 (void)  
.ADJUST_IC  
SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V  
tm2ct = 0x00;  
tm2b = 0x7f;  
tm2s = 0b0_00_00001;  
//  
//  
8-bit PWM, pre-scalar = 1, scalar = 2  
system clock, output=PA3, PWM mode  
tm2c = 0b0001_10_1_0;  
while(1)  
{
nop;  
}
}
5.7.3 Using the Timer2 to generate 6-bit PWM waveform  
If 6-bit PWM mode is selected, it should set tm2c[1]=1 and tm2s[7]=1, the frequency and duty cycle of  
output waveform can be summarized as below:  
Frequency of Output = Y ÷ [64 × S1 × (S2+1) ]  
Duty of Output = [( K1 ) ÷ 64] × 100%  
Where, tm2c[7:4] = Y : frequency of selected clock source  
tm2b[7:0] = K : bound register in decimal  
tm2s[6:5] = S1 : pre-scalar (S1= 1, 4, 16, 64)  
tm2s[4:0] = S2 : scalar register in decimal (S2= 0 ~ 31)  
Users can set Timer2 to be 7-bit PWM mode instead of 6-bit mode by using TMx_Bit code option. At that  
time, the calculation factors of the above equations become 128 instead of 64.  
Example 1:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0001_1111, K=31  
tm2s = 0b1_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 64 × 1 × (0+1) ) = 125KHz  
duty = [(31+1) ÷ 64] × 100% = 50%  
Example 2:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0001_1111, K=31  
tm2s = 0b1_11_11111, S1=64, S2=31  
frequency of output = 8MHz ÷ ( 64 × 64 × (31+1) ) = 61.03 Hz  
duty of output = [(31+1) ÷ 64] × 100% = 50%  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 46 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
Example 3:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0011_1111, K=63  
tm2s = 0b1_00_00000, S1=1, S2=0  
PWM output keep high  
duty of output = [(63+1) ÷ 64] × 100% = 100%  
Example 4:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0000_0000, K=0  
tm2s = 0b1_00_00000, S1=1, S2=0  
frequency = 8MHz ÷ ( 64 × 1 × (0+1) ) = 125KHz  
duty = [(0+1) ÷ 64] × 100% =1.5%  
5.7.4 Complementary PWM with Dead Zones  
User can get complementary PWM with dead zones by employing TM2 and TM3. Here provide an  
example in which duty cycle and dead time are adjustable.  
//------- These two parameters need be defined when T(PWM) = 256 us ----------  
#define  
#define  
PWM_pulse  
dead_zone  
70  
30  
// 70 us; Adjust it for a different duty cycle of TM2/TM3.  
// 30 us; Adjust it for the best dead time.  
//--------Parameters for switching duty cycle -----------------------------------  
#define  
#define  
#define  
PWM_Pulse_a  
PWM_Pulse_b  
t_delay  
100 // 100 us; Adjust it for a different duty cycle of TM2/TM3  
160 // 160 us; Adjust it for a different duty cycle of TM2/TM3  
500 // 500 us; Switching time of duty cycle  
void  
{
FPPA0 (void)  
// SYSCLK must quicker than Timer2’s clock. Here set SYSCLK=2MHz to capture Tm2ct = 0.  
.ADJUST_IC SYSCLK=IHRC/8, IHRC=16MHz, VDD=3.3V, Init_ram;  
//******Generate complementary PWM with dead zones in a fixed-duty cycle****************  
//------Set the counter upper bound, duty cycle and TMXCT -----------  
$ TM2S 8BIT,/4,/4  
TM2B  
// 16MHz /4 /4 /256 = 1MHz / 256 =  
256 us  
=
PWM_pulse - 1;  
$ TM3S 8BIT,/4,/4  
// 16MHz /4 /4 /256  
TM3B  
=
=
PWM_pulse + 2 * dead_zone - 1;  
0;  
TM2CT  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 47 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
TM3CT  
=
0;  
//------Timer PWM output control -------------------  
$ TM3C  
.delay  
IHRC, PB5, PWM, Inverse;  
dead_zone*2 - 2;  
// Inverse output  
// "*2": SYSCLK = 2MHz  
// "-2": executing “$ TM3C XXXX” needs two  
//  
instructions  
$ TM2C  
IHRC, PB4, PWM;  
//***Note: Do not change the sequence of the control part’s program*****  
//-------Following codes can be for reference when user needs switch duty cycle ----------  
//------ Switching PWM_pulse -------------------  
While (1)  
{
While(tm2ct!=0)  
{}  
// Wait till tm2ct=0 to avoid noise  
TM2B  
TM3B  
.delay  
=
=
PWM_Pulse_a - 1;  
PWM_Pulse_a + 2 * dead_zone - 1;  
t_delay*2;  
While(tm2ct!=0) {}  
TM2B  
TM3B  
.delay  
=
=
PWM_Pulse_b - 1;  
PWM_Pulse_b + 2 * dead_zone - 1;  
t_delay*2;  
}
}
The following figures show the waveforms at different condition.  
1. The PWM waveforms in a fixed-duty cycle:  
TM2  
Dead time  
30us.  
TM3  
Fig. 13: Two complementary PWM waveforms with dead zones  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 48 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
2. PWM waveforms when switching two duty cycles:  
TM2  
TM3  
Dead time  
30us  
Fig. 14: Two complementary PWM waveforms with dead zones  
Note: This example just illustrate a method for generating complementary PWM with dead zones and  
switching duty cycle. If users try to switch duty cycle by adjusting PWM_pulse: such as when the present  
PWM_pulse = 70, directly let PWM_pulse_a = 100 and PWM_pulse_b = 160. Then the new value must not  
be re-assigned to tm2b register until tm2ct is 0.  
This method can effectively deal with the problems such as first duty cycle inaccuracy and possible  
dead zone time reduction or dead zone disappear caused by assigning new value to tm2b when tm2ct is not  
0. Please handle it carefully and consult FAE when necessary according to the practical application  
specifications.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 49 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
5.8 WatchDog Timer  
The watchdog timer (WDT) is a counter with clock coming from ILRC. WDT can be cleared by power-on-reset  
or by command wdreset at any time. There are four different timeout periods of watchdog timer to be chosen  
by setting the misc register, it is:  
8k ILRC clocks period if register misc[1:0]=00 (default)  
16k ILRC clocks period if register misc[1:0]=01  
64k ILRC clocks period if register misc[1:0]=10  
256k ILRC clocks period if register misc[1:0]=11  
The frequency of ILRC may drift a lot due to the variation of manufacture, supply voltage and temperature;  
user should reserve guard band for save operation. Besides, the watchdog period will also be shorter than  
expected after Reset or Wakeup events. It is suggested to clear WDT by wdreset command after these  
events to ensure enough clock periods before WDT timeout.  
When WDT is timeout, PFS172 will be reset to restart the program execution. The relative timing diagram of  
watchdog timer is shown as Fig.15.  
VDD  
t
SBP  
WD  
Time Out  
Program  
Execution  
Watch Dog Time Out Sequence  
Fig.15: Sequence of Watch Dog Time Out  
5.9 Interrupt  
There are seven interrupt lines for PFS172:  
External interrupt PA0/PB5  
External interrupt PB0/PA4  
ADC interrupt  
Timer16 interrupt  
GPC interrupt  
Timer2 interrupt  
Timer3 interrupt  
Every interrupt request line has its own corresponding interrupt control bit to enable or disable it; the  
hardware diagram of interrupt function is shown as Fig.16. All the interrupt request flags are set by hardware  
and cleared by writing intrq register. When the request flags are set, it can be rising edge, falling edge or both,  
depending on the setting of register integs. All the interrupt request lines are also controlled by engint  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 50 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
instruction (enable global interrupt) to enable interrupt operation and disgint instruction (disable global  
interrupt) to disable it.  
The stack memory for interrupt is shared with data memory and its address is specified by stack register sp.  
Since the program counter is 16 bits width, the bit 0 of stack register sp should be kept 0. Moreover, user can  
use pushaf / popaf instructions to store or restore the values of ACC and flag register to / from stack  
memory. Since the stack memory is shared with data memory, the stack position and level are arranged by  
the compiler in Mini-C project. When defining the stack level in ASM project, users should arrange their  
locations carefully to prevent address conflicts.  
Fig.16: Hardware diagram of interrupt controller  
Once the interrupt occurs, its operation will be:  
The program counter will be stored automatically to the stack memory specified by register sp.  
New sp will be updated to sp+2.  
Global interrupt will be disabled automatically.  
The next instruction will be fetched from address 0x010.  
During the interrupt service routine, the interrupt source can be determined by reading the intrq register.  
Note: Even if INTEN=0, INTRQ will be still triggered by the interrupt source.  
After finishing the interrupt service routine and issuing the reti instruction to return back, its operation will be:  
The program counter will be restored automatically from the stack memory specified by register sp.  
New sp will be updated to sp-2.  
Global interrupt will be enabled automatically.  
The next instruction will be the original one before interrupt.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 51 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
User must reserve enough stack memory for interrupt, two bytes stack memory for one level interrupt and four  
bytes for two levels interrupt. For interrupt operation, the following sample program shows how to handle the  
interrupt, noticing that it needs four bytes stack memory to handle interrupt and pushaf.  
void  
{
FPPA0  
(void)  
...  
$
INTEN PA0;  
// INTEN =1; interrupt request when PA0 level changed  
// clear INTRQ  
INTRQ  
ENGINT  
...  
=
0;  
// global interrupt enable  
DISGINT  
...  
// global interrupt disable  
}
void  
{
Interrupt (void)  
// interrupt service routine  
PUSHAF  
// store ALU and FLAG register  
// If INTEN.PA0 will be opened and closed dynamically,  
// user can judge whether INTEN.PA0 =1 or not.  
// Example: If (INTEN.PA0 && INTRQ.PA0) {…}  
// If INTEN.PA0 is always enable,  
// user can omit the INTEN.PA0 judgement to speed up interrupt service routine.  
If (INTRQ.PA0)  
{
// Here for PA0 interrupt service routine  
INTRQ.PA0 = 0;  
// Delete corresponding bit (take PA0 for example)  
...  
}
...  
// X : INTRQ = 0;  
// It is not recommended to use INTRQ = 0 to clear all at the end of  
the  
// interrupt service routine.  
// It may accidentally clear out the interrupts that have just occurred  
// and are not yet processed.  
POPAF  
}
// restore ALU and FLAG register  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 52 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
5.10 Power-Save and Power-Down  
There are three operational modes defined by hardware: ON mode, Power-Save mode and Power-Down  
modes. ON mode is the state of normal operation with all functions ON, Power-Save mode (“stopexe”) is the  
state to reduce operating current and CPU keeps ready to continue, Power-Down mode (“stopsys”) is used  
to save power deeply. Therefore, Power-Save mode is used in the system which needs low operating power  
with wake-up periodically and Power-Down mode is used in the system which needs power down deeply with  
seldom wake-up.  
5.10.1 Power-Save mode (“stopexe”)  
Using “stopexe” instruction to enter the Power-Save mode, only system clock is disabled, remaining all  
the oscillator modules active. For CPU, it stops executing; however, for Timer16, counter keep counting  
if its clock source is not the system clock. The wake-up sources for “stopexe” can be IO-toggle or  
Timer16 counts to set values when the clock source of Timer16 is IHRC or ILRC modules, or wake-up  
by comparator when setting GPCC.7=1 and GPCS.6=1 to enable the comparator wake-up function at  
the same time. Wake-up from input pins can be considered as a continuation of normal execution, the  
detail information for Power-Save mode shows below:  
IHRC and EOSC oscillator modules: No change, keep active if it was enabled.  
ILRC oscillator modules: must remain enabled, need to start with ILRC when be wakening up.  
System clock: Disable, therefore, CPU stops execution.  
MTP memory is turned off.  
Timer counter: Stop counting if system clock is selected or the corresponding oscillator module is  
disabled; otherwise, it keeps counting. (The Timer contains TM16, TM2, TM3.)  
Wake-up sources:  
a. IO toggle wake-up: IO toggling in digital input mode (PxC bit is 1 and PxDIER bit is 1)  
b. Timer wake-up: If the clock source of Timer is not the SYSCLK, the system will be awakened  
when the Timer counter reaches the set value.  
c. Comparator wake-up: It need setting GPCC.7=1 and GPCS.6=1 to enable the comparator  
wake-up function at the same time.  
An example shows how to use Timer16 to wake-up from “stopexe”:  
$ T16M  
ILRC, /1, BIT8  
// Timer16 setting  
$ INTEGS BIT_R, xxx;  
// BITx 0 to 1 will trigger (default)  
WORD  
STT16  
stopexe;  
count =  
count;  
0;  
The initial counting value of Timer16 is zero and the system will be woken up after the Timer16 counts  
256 ILRC clocks.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 53 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
5.10.2 Power-Down mode (“stopsys”)  
Power-Down mode is the state of deeply power-saving with turning off all the oscillator modules. By  
using the “stopsys” instruction, this chip will be put on Power-Down mode directly. It is recommend to set  
GPCC.7=0 to disable the comparator before the command stopsys.The following shows the internal  
status of PFS172 detail when “stopsys” command is issued:  
All the oscillator modules are turned off.  
MTP memory is turned off.  
The contents of SRAM and registers remain unchanged.  
Wake-up sources: IO toggle in digital mode. (PxDIER bit is 1)  
Wake-up from input pins can be considered as a continuation of normal execution. To minimize power  
consumption, all the I/O pins should be carefully manipulated before entering power-down mode. The  
reference sample program for power down is shown as below:  
CLKMD  
CLKMD.4  
=
=
0xF4;  
0;  
//  
//  
Change clock from IHRC to ILRC  
disable IHRC  
while (1)  
{
STOPSYS;  
//  
//  
//  
enter power-down  
if (…) break;  
if wakeup happen and check OK, then return to high speed,  
else stay in power-down mode again.  
}
CLKMD  
=
0x34;  
//  
Change clock from ILRC to IHRC/2  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 54 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
5.10.3 Wake-up  
After entering the Power-Down or Power-Save modes, the PFS172 can be resumed to normal  
operation by toggling IO pins, Wake-up from timer are available for Power-Save mode ONLY. Table 5  
shows the differences in wake-up sources between STOPSYS and STOPEXE.  
Differences in wake-up sources between STOPSYS and STOPEXE  
IO Toggle  
Yes  
Timer wake-up  
STOPSYS  
STOPEXE  
No  
Yes  
Yes  
Table 5: Differences in wake-up sources between Power-Save mode and Power-Down mode  
When using the IO pins to wake-up the PFS172, registers pxdier should be properly set to enable the  
wake-up function for every corresponding pin. The time for normal wake-up is about 3000 ILRC clocks  
counting from wake-up event; fast wake-up can be selected to reduce the wake-up time by misc register,  
and the time for fast wake-up is about 45 ILRC clocks from IO toggling.  
Suspend mode  
STOPEXE suspend  
or  
Wake-up mode  
Wake-up time (tWUP) from IO toggle  
45 * TILRC,  
Where TILRC is the time period of ILRC  
Fast wake-up  
STOPSYS suspend  
STOPEXE suspend  
or  
3000 * TILRC  
,
Normal wake-up  
Where TILRC is the clock period of ILRC  
STOPSYS suspend  
Please notice that when Fast boot-up is selected, no matter which wake-up mode is selected in misc.5,  
the wake-up mode will be forced to be FAST. If Normal boot-up is selected, the wake-up mode is  
determined by misc.5.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 55 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
5.11 IO Pins  
All the pins can be independently set into two states output or input by configuring the data registers (pa, pb),  
control registers (pac, pbc) and pull-high registers (paph, pbph) or pull-low registers (papl, pbpl). All these  
pins have Schmitt-trigger input buffer and output driver with CMOS level. When it is set to output low, the  
pull-high / pull-low resistor is turned off automatically. If user wants to read the pin state, please notice that it  
should be set to input mode before reading the data port; if user reads the data port when it is set to output  
mode, the reading data comes from data register, NOT from IO pad. As an example, Table 6 shows the  
configuration table of bit 0 of port A. The hardware diagram of IO buffer is also shown as Fig.17.  
pa.0 pac.0 paph.0 papl.0  
Description  
X
X
X
X
0
0
0
0
0
1
1
0
1
0
1
X
X
0
0
1
1
X
X
Input without pull-high / pull-low resistor  
Input with pull-high resistor  
Input with pull-low resistor  
Input with pull-low / pull-high rseistor  
Output low without pull-high / pull-low resistor  
Output high without pull-high / pull-low resistor  
1
Table 6: PA0 Configuration Table  
Fig. 17: Hardware diagram of IO buffer  
PB4 and PB7 can adjust their drive and sink current by code option PB4_PB7_Drive.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 56 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
All the IO pins have the same structure. The corresponding bits in registers padier / pbdier should be set to  
low to prevent leakage current for those pins are selected to be analog function. When PFS172 is put in  
power-down or power-save mode, every pin can be used to wake-up system by toggling its state. Therefore,  
those pins needed to wake-up system must be set to input mode and set the corresponding bits of registers  
pxdier to high. The same reason, padier.0 should be set high when PA0 is used as external interrupt pin,  
and so for other external interrupt pins: PB0, PA4 and PB5.  
5.12 Reset and LVR  
5.12.1 Reset  
There are many causes to reset the PFS172, once reset is asserted, most of all the registers in PFS172  
will be set to default values, system should be restarted once abnormal cases happen, or by jumping  
program counter to address 0x0. The data memory is in uncertain state when reset comes from power-up  
and LVR; however, the content will be kept when reset comes from PRSTB pin or WDT timeout.  
5.12.2 LVR reset  
By code option, there are many different levels of LVR for reset. Usually, user selects LVR reset level to be  
in conjunction with operating frequency and supply voltage.  
5.13 Analog-to-Digital Conversion (ADC) module  
Fig. 18: ADC Block Diagram  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 57 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
There are 5 registers when using the ADC module, which are:  
ADC Control Register (adcc)  
ADC Mode Register (adcm)  
ADC Result Register (adcr)  
Port A/B Digital Input Enable Register (padier, pbdier)  
The following steps are required to do the AD conversion procedure:  
(1) Configure the AD conversion clock by adcm register  
(2) Configure the pin as analog input by padier, pbdier register  
(3) Select the ADC input channel by adcc register  
(4) Enable the ADC module by adcc register  
(5) Execute the AD conversion and check if ADC data is ready  
set ‘1’ to addc.6 to start the conversion and check whether addc.6 is ‘1’  
(6) Read the ADC result registers  
5.13.1 The input requirement for AD conversion  
For the AD conversion to meet its specified accuracy, the charge holding capacitor (CHOLD) must be  
allowed to fully charge to the voltage reference high level and discharge to the voltage reference low level.  
The analog input model is shown as Fig.19, the signal driving source impedance (Rs) and the internal  
sampling switch impedance (Rss) will affect the required time to charge the capacitor CHOLD directly. The  
internal sampling switch impedance may vary with ADC supply voltage; the signal driving source  
impedance will affect accuracy of analog input signal. User must ensure the measured signal is stable  
before sampling; therefore, the maximum signal driving source impedance is highly dependent on the  
frequency of signal to be measured. The recommended maximum impedance for analog driving source is  
about 10KΩ under 500KHz input frequency.  
Fig.19: Analog Input Model  
Before starting the AD conversion, the minimum signal acquisition time should be met for the selected  
analog input signal, the selection of ADCLK must be met the minimum signal acquisition time.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 58 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
5.13.2 ADC clock selection  
The clock of ADC module (ADCLK) can be selected by adcm register; there are 8 possible options for  
ADCLK from CLK÷1 to CLK÷128 (CLK is the system clock). Due to the signal acquisition time TACQ is one  
clock period of ADCLK, the ADCLK must meet that requirement. The recommended ADC clock is to  
operate at 2us.  
5.13.3 Configure the analog pins  
There are 12 analog signals can be selected for AD conversion, 11 analog input signals come from  
external pins and one is from internal bandgap reference voltage 1.2V. For those external pins defined as  
analog input, to avoid leakage current from the digital circuit of the shared IO ports, please always  
remember to disable the digital input function (set the corresponding bit of padier or pbdier register to be  
0).  
Due to the measurement signals of ADC are very small; user should avoid the measured signal to be  
interfered during the measurement period. Thus, the selected pin should: (1)be set to input mode; (2) turn  
off weak pull-high and pull-low resistor; (3) set the corresponding pin to analog input by port A/B digital  
input disable register (padier / pbdier).  
5.13.4 Using the ADC  
The following example shows how to use ADC with PB0~PB3:  
First, defining the selected pins:  
PBC  
=
=
=
=
0B_XXXX_0000;  
0B_XXXX_0000;  
0B_XXXX_0000;  
0B_XXXX_0000;  
//  
//  
//  
//  
PB0 ~ PB3 as Input  
PBPH  
PBPL  
PBDIER  
PB0 ~ PB3 without pull-high resistor  
PB0 ~ PB3 without pull-low resistor  
PB0 ~ PB3 digital input is disabled  
Next, setting ADCC register, example as below:  
$
$
$
ADCC Enable, PB3;  
ADCC Enable, PB2;  
ADCC Enable, PB0;  
//  
//  
//  
set PB3 as ADC input  
set PB2 as ADC input  
set PB0 as ADC input  
Next, setting ADCM register, example as below:  
$
$
ADCM /16;  
ADCM /8;  
//  
//  
recommend /16 @System Clock=8MHz  
recommend /8 @System Clock=4MHz  
Then, start the ADC conversion:  
AD_START = 1;  
// start ADC conversion  
while(!AD_DONE) NULL;  
// wait ADC conversion result  
Finally, it can read ADC result when AD_DONE is high:  
BYTE  
Data  
Data;  
ADCR  
=
The ADC can be disabled by using the following method:  
ADCC Disable;  
$
or  
ADCC  
=
0;  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 59 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
6. IO Registers  
6.1. ACC Status Flag Register (flag), IO address = 0x00  
Bit Reset  
R/W  
-
Description  
7 - 4  
3
-
Reserved. Please do not use.  
0
R/W  
OV (Overflow Flag). This bit is set to be 1 whenever the sign operation is overflow.  
AC (Auxiliary Carry Flag). There are two conditions to set this bit, the first one is carry out  
of low nibble in addition operation and the other one is borrow from the high nibble into low  
nibble in subtraction operation.  
2
0
R/W  
C (Carry Flag). There are two conditions to set this bit, the first one is carry out in addition  
operation, and the other one is borrow in subtraction operation. Carry is also affected by  
shift with carry instruction.  
1
0
0
0
R/W  
R/W  
Z (Zero Flag). This bit will be set when the result of arithmetic or logic operation is zero;  
Otherwise, it is cleared.  
6.2. Stack Pointer Register (sp), IO address = 0x02  
Bit Reset R/W  
Description  
Stack Pointer Register. Read out the current stack pointer, or write to change the stack  
pointer.  
7 - 0 R/W  
-
6.3. Clock Mode Register (clkmd), IO address = 0x03  
Bit Reset R/W  
Description  
System clock (CLK) selection:  
Type 0, clkmd[3]=0 Type 1, clkmd[3]=1  
000: IHRC÷4  
001: IHRC÷2  
010: reserved  
011: EOSC÷4  
100: EOSC÷2  
101: EOSC  
000: IHRC÷16  
001: IHRC÷8  
010: ILRC÷16 (ICE does NOT Support.)  
011: IHRC÷32  
7 - 5  
111  
R/W  
100: IHRC÷64  
101: EOSC÷8  
110: ILRC÷4  
11x: reserved.  
111: ILRC (default)  
4
3
1
0
R/W Internal High RC Enable. 0 / 1: disable / enable  
Clock Type Select. This bit is used to select the clock type in bit [7:5].  
0 / 1: Type 0 / Type 1.  
R/W  
R/W  
Internal Low RC Enable. 0 / 1: disable / enable  
If ILRC is disabled, watchdog timer is also disabled.  
2
1
1
0
1
0
R/W Watch Dog Enable. 0 / 1: disable / enable  
R/W Pin PA5/PRSTB function. 0 / 1: PA5 / PRSTB.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 60 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
6.4. Interrupt Enable Register (inten), IO address = 0x04  
Bit  
7
Reset  
R/W  
Description  
0
0
0
0
0
0
0
0
R/W  
Enable interrupt from Timer3. 0 / 1: disable / enable  
6
R/W Enable interrupt from Timer2. 0 / 1: disable / enable  
5
-
Reserved  
4
R/W  
Enable interrupt from comparator. 0 / 1: disable / enable  
3
R/W Enable interrupt from ADC. 0 / 1: disable / enable  
R/W Enable interrupt from Timer16 overflow. 0 / 1: disable / enable  
R/W Enable interrupt from PB0/PA4. 0 / 1: disable / enable  
R/W Enable interrupt from PA0/PB5. 0 / 1: disable / enable  
2
1
0
6.5. Interrupt Request Register (intrq), IO address = 0x05  
Bit Reset R/W  
Description  
Interrupt Request from Timer3, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
7
-
R/W  
Interrupt Request from Timer2, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
6
5
4
-
-
-
R/W  
-
Reserved  
Interrupt Request from comparator, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
R/W  
Interrupt Request from ADC, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
3
2
1
0
-
-
-
-
R/W  
R/W  
R/W  
R/W  
Interrupt Request from Timer16, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
Interrupt Request from pin PB0/PA4, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
Interrupt Request from pin PA0/PB5, this bit is set by hardware and cleared by software.  
0 / 1: No Request / request  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 61 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
6.6. Timer16 mode Register (t16m), IO address = 0x06  
Bit  
Reset R/W  
Description  
Timer16 Clock source selection.  
000: disable  
001: CLK (system clock)  
010: reserved  
7 - 5  
000  
R/W 011: PA4 falling edge (from external pin)  
100: IHRC  
101: EOSC  
110: ILRC  
111: PA0 falling edge (from external pin)  
Timer16 clock pre-divider.  
00: ÷1  
4 - 3  
00  
R/W 01: ÷4  
10: ÷16  
11: ÷64  
Interrupt source selection. Interrupt event happens when the selected bit status is changed.  
0 : bit 8 of Timer16  
1 : bit 9 of Timer16  
2 : bit 10 of Timer16  
R/W 3 : bit 11 of Timer16  
4 : bit 12 of Timer16  
5 : bit 13 of Timer16  
6 : bit 14 of Timer16  
7 : bit 15 of Timer16  
2 - 0  
000  
6.7. External Oscillator setting Register (eoscr), IO address = 0x0a  
Bit  
Reset R/W  
Description  
7
0
WO Enable external crystal oscillator. 0 / 1 : Disable / Enable  
External crystal oscillator selection.  
00 : reserved  
6 - 5  
00  
WO 01 : Low driving capability, for lower frequency, ex: 32KHz crystal oscillator  
10 : Middle driving capability, for middle frequency, ex: 1MHz crystal oscillator  
11 : High driving capability, for higher frequency, ex: 4MHz crystal oscillator  
4 - 1  
0
-
-
Reserved. Please keep 0 for future compatibility.  
0
WO Power-down the Bandgap and LVR hardware modules. 0 / 1: normal / power-down.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 62 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
6.8. Interrupt Edge Select Register (integs), IO address = 0x0c  
Bit  
Reset  
R/W  
Description  
7 - 5  
-
-
Reserved.  
Timer16 edge selection.  
4
0
WO 0 : rising edge of the selected bit to trigger interrupt  
1 : falling edge of the selected bit to trigger interrupt  
PB0/PA4 edge selection.  
00: both rising edge and falling edge of the selected bit to trigger interrupt  
WO 01: rising edge of the selected bit to trigger interrupt  
10: falling edge of the selected bit to trigger interrupt  
11: reserved.  
3 - 2  
00  
PA0/PB5 edge selection.  
00 : both rising edge and falling edge of the selected bit to trigger interrupt  
WO 01 : rising edge of the selected bit to trigger interrupt  
10 : falling edge of the selected bit to trigger interrupt  
11 : reserved.  
1 - 0  
00  
6.9. Port A Digital Input Enable Register (padier), IO address = 0x0d  
Bit  
Reset  
R/W  
Description  
Enable PA7 digital input and wake-up event. 1 / 0 : enable / disable  
This bit should be set to low to prevent leakage current when external crystal oscillator is  
used. If this bit is set to low, PA7 can NOT be used to wake-up the system.  
Enable PA6 digital input and wake-up event. 1 / 0 : enable / disable  
This bit should be set to low to prevent leakage current when external crystal oscillator is  
used. If this bit is set to low, PA6 can NOT be used to wake-up the system.  
Enable PA5 digital input and wake-up event. 1 / 0 : enable / disable  
This bit can be set to low to disable PA5 digital input and wake-up function.  
Enable PA4 digital input, wake-up event and interrupt request. 1 / 0 : enable / disable  
This bit can be set to low to prevent leakage current when PA0 is assigned as AD input,  
and to disable wake-up from PA4 toggling and interrupt request from this pin.  
Enable PA3 digital input and wake-up event. 1 / 0 : enable / disable  
This bit should be set to low when PA3 is assigned as AD input to prevent leakage  
current. If this bit is set to low, PA3 can NOT be used to wake-up the system.  
Reserved.  
7
1
WO  
6
5
4
1
1
1
WO  
WO  
WO  
3
1
-
WO  
-
2 - 1  
Enable PA0 digital input, wake-up event and interrupt request.  
1 / 0 : enable / disable  
0
1
WO  
This bit can be set to low to prevent leakage current when PA0 is assigned as AD input,  
and to disable wake-up from PA0 toggling and interrupt request from this pin.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 63 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
6.10.Port B Digital Input Enable Register (pbdier), IO address = 0x0e  
Bit  
Reset R/W  
Description  
Enable PB7~PB6 digital input and wake-up event.  
1 / 0 : enable / disable  
7 - 6  
11  
1
WO These bits can be set to low to prevent leakage current when PB7~PB6 are assigned as AD  
inputs. When disable is selected, the wake-up function and interrupt requests from these  
pins are also disabled.  
Enable PB5 digital input, wake-up event and interrupt request.  
1 / 0 : enable / disable  
5
4 - 1  
0
WO  
This bit can be set to low to prevent leakage current when PB5 is assigned as AD input, and  
to disable wake-up from PB5 toggling and interrupt request from this pin.  
Enable PB47~PB1 digital input and wake-up event.  
1 / 0 : enable / disable  
1111  
WO These bits can be set to low to prevent leakage current when PB4~PB1 are assigned as AD  
inputs. When disable is selected, the wake-up function and interrupt requests from these  
pins are also disabled.  
Enable PB0 digital input, wake-up event and interrupt request.  
1 / 0 : enable / disable  
1
WO  
This bit can be set to low to prevent leakage current when PB0 is assigned as AD input, and  
to disable wake-up from PB0 toggling and interrupt request from this pin.  
6.11. Port A Data Register (pa), IO address = 0x10  
Bit  
Reset R/W  
0x00 R/W Data register for Port A.  
Description  
7 - 0  
6.12. Port A Control Register (pac), IO address = 0x11  
Bit  
Reset R/W  
Description  
Port A control registers. This register is used to define input mode or output mode for each  
corresponding pin of port A. 0 / 1: input / output  
7 - 0  
0x00 R/W  
6.13. Port A Pull-High Register (paph), IO address = 0x12  
Bit  
Reset R/W  
Description  
Port A pull-high register. This register is used to enable the internal pull-high device on each  
7 - 0  
0x00 R/W corresponding pin of port A and this pull high function is active only for input mode.  
0 / 1 : disable / enable  
6.14. Port A Pull-Low Register (papl), IO address = 0x13  
Bit  
Reset R/W  
Description  
7 - 0  
0x00 R/W PA pull-low register. 0 / 1: Disable / Enable.  
6.15. Port B Data Register (pb), IO address = 0x15  
Bit  
Reset R/W  
0x00 R/W Data register for Port B.  
Description  
7 - 0  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 64 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
 
 
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
6.16. Port B Control Register (pbc), IO address = 0x16  
Bit  
Reset R/W  
Description  
Port B control register. This register is used to define input mode or output mode for each  
corresponding pin of port B. 0 / 1: input / output  
7 - 0  
0x00 R/W  
6.17. Port B Pull-High Register (pbph), IO address = 0x17  
Bit  
Reset R/W  
Description  
Port B pull-high register. This register is used to enable the internal pull-high device on each  
7 - 0  
0x00  
R/W corresponding pin of port B and this pull high function is active only for input mode.  
0 / 1 : disable / enable  
6.18. Port B Pull-Low Register (pbpl), IO address = 0x18  
Bit  
Reset R/W  
Description  
7 -0  
0x00 R/W PB pull-low register. 0 / 1: Disable / Enable.  
6.19. ADC Control Register (adcc), IO address = 0x20  
Bit  
Reset  
R/W  
Description  
Enable ADC function. 0/1: Disable/Enable.  
7
0
R/W  
ADC process control bit.  
6
0
R/W  
Write “1” to start conversion  
Read “1” to indicate the ADC is ready or end of conversion.  
Channel selector. These four bits are used to select input signal for AD conversion.  
0000: PB0/AD0,  
0001: PB1/AD1,  
0010: PB2/AD2,  
0011: PB3/AD3,  
0100: PB4/AD4,  
0101: PB5/AD5,  
5 - 2  
0000  
R/W  
0110: PB6/AD6,  
0111: PB7/AD7,  
1000: PA3/AD8,  
1001: PA4/AD9,  
1010: PA0/AD10,  
1111: (Channel F) Bandgap reference voltage  
Others: reserved  
0 - 1  
-
-
Reserved. (keep 0 for future compatibility)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 65 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
6.20. ADC Mode Register (adcm), IO address = 0x21  
Bit  
Reset  
R/W  
Description  
Reserved. (keep 0 for future compatibility)  
7 - 4  
-
-
ADC clock source selection.  
000: CLK (system clock) ÷ 1,  
001: CLK (system clock) ÷ 2,  
010: CLK (system clock) ÷ 4,  
011: CLK (system clock) ÷ 8,  
100: CLK (system clock) ÷ 16,  
101: CLK (system clock) ÷ 32,  
110: CLK (system clock) ÷ 64,  
111: CLK (system clock) ÷ 128,  
Reserved.  
3 - 1  
000  
R/W  
0
-
-
6.21. ADC Result Register (adcr), IO address = 0x22  
Bit Reset  
7 - 0  
R/W  
Description  
-
RO  
These eight read-only bits are the AD conversion result.  
6.22. MISC Register (misc), IO address = 0x26  
Bit  
Reset R/W  
Description  
Reserved. (keep 0 for future compatibility)  
Enable fast Wake up. Fast wake-up is NOT supported when EOSC is enabled.  
7 - 6  
-
-
5
0
WO 0: Normal wake up. The wake-up time is 3000 ILRC clocks (Not for fast boot-up)  
1: Fast wake up. The wake-up time is 45 ILRC clocks.  
4
3
2
-
-
-
-
Reserved.  
Reserved.  
0
WO Disable LVR function. 0 / 1 : Enable / Disable  
Watch dog time out period  
00: 8k ILRC clock period  
1 - 0  
00  
WO 01: 16k ILRC clock period  
10: 64k ILRC clock period  
11: 256k ILRC clock period  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 66 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
6.23. Comparator Control Register (gpcc), IO address = 0x2b  
Bit  
Reset  
R/W  
Description  
Enable comparator. 0 / 1 : disable / enable  
7
0
R/W When this bit is set to enable, please also set the corresponding analog input pins to be  
digital disable to prevent IO leakage.  
Comparator result of comparator.  
6
5
4
-
RO  
0: plus input < minus input  
1: plus input > minus input  
Select whether the comparator result output will be sampled by TM2_CLK?  
0
0
R/W 0: result output NOT sampled by TM2_CLK  
1: result output sampled by TM2_CLK  
Inverse the polarity of result output of comparator.  
R/W 0: polarity is NOT inversed.  
1: polarity is inversed.  
Selection the minus input (-) of comparator.  
000 : PA3  
001 : PA4  
010 : Internal 1.20 volt bandgap reference voltage  
3 - 1  
000  
R/W  
011 : Vinternal R  
100 : PB6 (not for ICE)  
101 : PB7 (not for ICE)  
11X: reserved  
Selection the plus input (+) of comparator.  
R/W 0 : Vinternal R  
0
0
1 : PA4  
6.24. Comparator Selection Register (gpcs), IO address = 0x2c  
Bit  
Reset  
R/W  
WO  
-
Description  
Comparator output enable (to PA0).  
0 / 1 : disable / enable  
Reserved.  
7
0
6
5
4
-
0
0
WO Selection of high range of comparator.  
WO Selection of low range of comparator.  
Selection the voltage level of comparator.  
0000 (lowest) ~ 1111 (highest)  
3 - 0  
0000  
WO  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 67 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
6.25. Timer2 Control Register (tm2c), IO address = 0x30  
Bit Reset  
R/W  
Description  
Timer2 clock selection.  
0000 : disable  
0001 : CLK  
0010 : IHRC or IHRC *2 (by code option TMx_source)  
0011 : EOSC  
0100 : ILRC  
0101 : comparator output (ICE does NOT support.)  
1000 : PA0 (rising edge)  
7 - 4  
0000  
R/W  
1001 : ~PA0 (falling edge)  
1010 : PB0 (rising edge)  
1011 : ~PB0 (falling edge)  
1100 : PA4 (rising edge)  
1101 : ~PA4 (falling edge)  
Others: reserved  
Notice: In ICE mode and IHRC is selected for Timer2 clock, the clock sent to Timer2 does  
NOT be stopped, Timer2 will keep counting when ICE is in halt state.  
Timer2 output selection.  
00 : disable  
01 : PB2  
3 - 2  
00  
R/W  
10 : PA3  
11 : PB4  
Timer2 mode selection.  
0 / 1 : period mode / PWM mode  
Enable to inverse the polarity of Timer2 output.  
0 / 1: disable / enable  
1
0
0
0
R/W  
R/W  
6.26. Timer2 Counter Register (tm2ct), IO address = 0x31  
Bit  
Reset  
R/W  
Description  
7 - 0  
0x00  
R/W  
Bit [7:0] of Timer2 counter register.  
6.27. Timer2 Scalar Register (tm2s), IO address = 0x32  
Bit  
Reset  
R/W  
Description  
PWM resolution selection.  
0 : 8-bit  
7
0
WO  
1 : 6-bit or 7-bit (by code option TMx_bit)  
Timer2 clock pre-scalar.  
00 : ÷ 1  
01 : ÷ 4  
6 - 5  
00  
WO  
WO  
10 : ÷ 16  
11 : ÷ 64  
Timer2 clock scalar.  
4 - 0 00000  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 68 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
6.28. Timer2 Bound Register (tm2b), IO address = 0x33  
Bit  
Reset R/W  
Description  
7 - 0  
0x00 WO Timer2 bound register.  
6.29. Timer3 Control Register (tm3c), IO address = 0x34  
Bit Reset  
R/W  
Description  
Timer3 clock selection.  
0000 : disable  
0001 : CLK  
0010 : IHRC or IHRC *2 (by code option TMx_source)  
0011 : EOSC  
0100 : ILRC  
0101 : comparator output (ICE does NOT support.)  
1000 : PA0 (rising edge)  
7 - 4  
0000  
R/W  
1001 : ~PA0 (falling edge)  
1010 : PB0 (rising edge)  
1011 : ~PB0 (falling edge)  
1100 : PA4 (rising edge)  
1101 : ~PA4 (falling edge)  
Others: reserved  
Notice: In ICE mode and IHRC is selected for Timer3 clock, the clock sent to Timer3 does  
NOT be stopped, Timer3 will keep counting when ICE is in halt state.  
Timer3 output selection.  
00 : disable  
3 - 2  
00  
R/W 01 : PB5  
10 : PB6  
11 : PB7  
1
0
0
0
R/W Timer3 mode selection. 0 / 1 : period mode / PWM mode  
Enable to inverse the polarity of Timer3 output.  
R/W  
0 / 1: disable / enable  
6.30. Timer3 Counter Register (tm3ct), IO address = 0x35  
Bit  
Reset R/W  
0x00 R/W Bit [7:0] of Timer2 counter register.  
Description  
7 - 0  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 69 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
6.31. Timer3 Scalar Register (tm3s), IO address = 0x36  
Bit  
Reset  
R/W  
Description  
PWM resolution selection.  
0 : 8-bit  
7
0
WO  
1 : 6-bit or 7-bit (by code option TMx_bit)  
Timer3 clock pre-scalar.  
00 : ÷ 1  
6 - 5  
00  
WO  
WO  
01 : ÷ 4  
10 : ÷ 16  
11 : ÷ 64  
4 - 0 00000  
Timer3 clock scalar.  
6.32. Timer3 Bound Register (tm3b), IO address = 0x37  
Bit  
Reset  
R/W  
Description  
7 - 0  
0x00  
WO  
Timer3 bound register.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 70 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
7. Instructions  
Symbol  
Symbol  
ACC  
a
Accumulator (Abbreviation of accumulator)  
Accumulator (symbol of accumulator in program)  
sp  
flag  
I
Stack pointer  
ACC status flag register  
Immediate data  
&
Logical AND  
|
Logical OR  
^
Movement  
Exclusive logic OR  
+
Add  
OV  
Z
Subtraction  
NOT (logical complement, 1’s complement)  
NEG (2’s complement)  
Overflow (The operational result is out of range in signed 2’s complement number system)  
Zero (If the result of ALU operation is zero, this bit is set to 1)  
Carry (The operational result is to have carry out for addition or to borrow carry for subtraction in  
unsigned number system)  
C
Auxiliary Carry  
AC  
(If there is a carry out from low nibble after the result of ALU operation, this bit is set to 1)  
Only addressed in 0~0x7F (0~127) is allowed  
M.n  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 71 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
7.1. Data Transfer Instructions  
mov  
mov  
mov  
mov  
mov  
a, I  
Move immediate data into ACC.  
Example: mov a, 0x0f;  
Result: a ← 0fh;  
Affected flags: NZ NC NAC NOV  
M, a  
a, M  
Move data from ACC into memory  
Example: mov  
MEM, a;  
Result: MEM ← a  
Affected flags: NZ NC NAC NOV  
Move data from memory into ACC  
Example: mov  
a, MEM ;  
Result: a ← MEM; Flag Z is set when MEM is zero.  
Affected flags: YZ NC NAC NOV  
a, IO  
Move data from IO into ACC  
Example: mov  
a, pa ;  
Result: a ← pa; Flag Z is set when pa is zero.  
Affected flags: YZ NC NAC NOV  
IO, a  
Move data from ACC into IO  
Example: mov  
Result: pb ← a  
pb, a;  
Affected flags: NZ NC NAC NOV  
Move 16-bit counting values in Timer16 to memory in word.  
Example: ldt16 word;  
ldt16 word  
Result:  
word ← 16-bit timer  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
T16val ;  
// declare a RAM word  
clear  
clear  
stt16  
lb@ T16val ;  
hb@ T16val ;  
T16val ;  
// clear T16val (LSB)  
// clear T16val (MSB)  
// initial T16 with 0  
set1  
t16m.5 ;  
// enable Timer16  
set0  
ldt16  
….  
t16m.5 ;  
T16val ;  
// disable Timer 16  
// save the T16 counting value to T16val  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 72 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
stt16 word  
Store 16-bit data from memory in word to Timer16.  
Example: stt16 word;  
Result:  
16-bit timer ←word  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
T16val ;  
// declare a RAM word  
mov  
mov  
mov  
mov  
stt16  
a, 0x34 ;  
lb@ T16val , a ; // move 0x34 to T16val (LSB)  
a, 0x12 ;  
hb@ T16val , a ; // move 0x12 to T16val (MSB)  
T16val ;  
// initial T16 with 0x1234  
----------------------------------------------------------------------------------------------------------------------  
Idxm a, index  
Move data from specified memory to ACC by indirect method. It needs 2T to execute this  
instruction.  
Example: idxm a, index;  
Result:  
a ← [index], where index is declared by word.  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
RAMIndex ;  
// declare a RAM pointer  
mov  
mov  
mov  
mov  
a, 0x5B ;  
// assign pointer to an address (LSB)  
// save pointer to RAM (LSB)  
lb@RAMIndex, a ;  
a, 0x00 ;  
// assign 0x00 to an address (MSB), should be 0  
// save pointer to RAM (MSB)  
hb@RAMIndex, a ;  
idxm  
a, RAMIndex ;  
// move memory data in address 0x5B to ACC  
------------------------------------------------------------------------------------------------------------------------  
Idxm index, a Move data from ACC to specified memory by indirect method. It needs 2T to execute this  
instruction.  
Example: idxm index, a;  
Result:  
[index] ← a; where index is declared by word.  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
RAMIndex ;  
// declare a RAM pointer  
mov  
mov  
mov  
mov  
a, 0x5B ;  
// assign pointer to an address (LSB)  
// save pointer to RAM (LSB)  
lb@RAMIndex, a ;  
a, 0x00 ;  
// assign 0x00 to an address (MSB), should be 0  
hb@RAMIndex, a ; // save pointer to RAM (MSB)  
mov  
idxm  
a, 0xA5 ;  
RAMIndex, a ;  
// mov 0xA5 to memory in address 0x5B  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 73 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
xch  
M
Exchange data between ACC and memory  
Example: xch MEM ;  
Result:  
MEM ← a , a ← MEM  
Affected flags: NZ NC NAC NOV  
pushaf  
Move the ACC and flag register to memory that address specified in the stack pointer.  
Example: pushaf;  
Result:  
[sp] ← {flag, ACC};  
sp ← sp + 2 ;  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
.romadr 0x10 ;  
// ISR entry address  
pushaf ;  
// put ACC and flag into stack memory  
// ISR program  
// ISR program  
popaf ;  
reti ;  
// restore ACC and flag from stack memory  
------------------------------------------------------------------------------------------------------------------------  
Restore ACC and flag from the memory which address is specified in the stack pointer.  
Example: popaf;  
popaf  
Result:  
sp ← sp - 2  
{Flag, ACC} ← [sp] ;  
Affected flags: YZ YC YAC YOV  
;
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 74 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
7.2. Arithmetic Operation Instructions  
add  
add  
add  
a, I  
Add immediate data with ACC, then put result into ACC  
Example: add a, 0x0f ;  
Result: a ← a + 0fh  
Affected flags: YZ YC YAC YOV  
a, M  
M, a  
Add data in memory with ACC, then put result into ACC  
Example: add  
a, MEM ;  
Result: a ← a + MEM  
Affected flags: YZ YC YAC YOV  
Add data in memory with ACC, then put result into memory  
Example: add  
MEM, a;  
Result: MEM ← a + MEM  
Affected flags: YZ YC YAC YOV  
addc a, M  
addc M, a  
Add data in memory with ACC and carry bit, then put result into ACC  
Example: addc  
a, MEM ;  
Result: a ← a + MEM + C  
Affected flags: YZ YC YAC YOV  
Add data in memory with ACC and carry bit, then put result into memory  
Example: addc  
MEM, a ;  
Result: MEM ← a + MEM + C  
Affected flags: YZ YC YAC YOV  
addc  
addc  
a
Add carry with ACC, then put result into ACC  
Example: addc  
a ;  
Result: a ← a + C  
Affected flags: YZ YC YAC YOV  
M
Add carry with memory, then put result into memory  
Example: addc  
MEM ;  
Result: MEM ← MEM + C  
Affected flags: YZ YC YAC YOV  
nadd a, M  
Add negative logic (2’s complement) of ACC with memory  
Example: nadd  
a, MEM ;  
Result: a a + MEM  
Affected flags: YZ YC YAC YOV  
nadd M, a  
Add negative logic (2’s complement) of memory with ACC  
Example: nadd  
MEM, a ;  
Result: MEM MEM + a  
Affected flags: YZ YC YAC YOV  
sub  
sub  
a, I  
Subtraction immediate data from ACC, then put result into ACC  
Example: sub  
a, 0x0f;  
Result: a ← a - 0fh ( a + [2’s complement of 0fh] )  
Affected flags: YZ YC YAC YOV  
a, M  
Subtraction data in memory from ACC, then put result into ACC  
Example: sub  
Result: a ← a - MEM ( a + [2’s complement of M] )  
Affected flags: YZ YC YAC YOV  
a, MEM ;  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 75 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
sub  
M, a  
Subtraction data in ACC from memory, then put result into memory  
Example: sub MEM, a;  
Result: MEM ← MEM - a ( MEM + [2’s complement of a] )  
Affected flags: YZ YC YAC YOV  
subc a, M  
subc M, a  
Subtraction data in memory and carry from ACC, then put result into ACC  
Example: subc  
a, MEM;  
Result: a ← a – MEM - C  
Affected flags: YZ YC YAC YOV  
Subtraction ACC and carry bit from memory, then put result into memory  
Example: subc  
MEM, a ;  
Result: MEM ← MEM – a - C  
Affected flags: YZ YC YAC YOV  
subc  
subc  
a
Subtraction carry from ACC, then put result into ACC  
Example: subc  
a;  
Result: a ← a - C  
Affected flags: YZ YC YAC YOV  
M
Subtraction carry from the content of memory, then put result into memory  
Example: subc  
MEM;  
Result: MEM ← MEM - C  
Affected flags: YZ YC YAC YOV  
inc  
M
Increment the content of memory  
Example: inc  
MEM ;  
Result: MEM ← MEM + 1  
Affected flags: YZ YC YAC YOV  
dec  
M
Decrement the content of memory  
Example: dec  
MEM;  
Result: MEM ← MEM - 1  
Affected flags: YZ YC YAC YOV  
clear  
M
Clear the content of memory  
Example: clear  
Result: MEM ← 0  
Affected flags: NZ NC NAC NOV  
MEM ;  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 76 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
7.3. Shift Operation Instructions  
sr  
a
Shift right of ACC, shift 0 to bit 7  
Example: sr a ;  
Result: a (0,b7,b6,b5,b4,b3,b2,b1) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b0)  
Affected flags: NZ YC NAC NOV  
src  
sr  
a
Shift right of ACC with carry bit 7 to flag  
Example: src a ;  
Result: a (c,b7,b6,b5,b4,b3,b2,b1) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b0)  
Affected flags: NZ YC NAC NOV  
Shift right the content of memory, shift 0 to bit 7  
Example: sr MEM ;  
M
Result: MEM(0,b7,b6,b5,b4,b3,b2,b1) ← MEM(b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b0)  
Affected flags: NZ YC NAC NOV  
Shift right of memory with carry bit 7 to flag  
src  
sl  
M
Example: src MEM ;  
Result: MEM(c,b7,b6,b5,b4,b3,b2,b1) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b0)  
Affected flags: NZ YC NAC NOV  
a
Shift left of ACC shift 0 to bit 0  
Example: sl a ;  
Result: a (b6,b5,b4,b3,b2,b1,b0,0) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a (b7)  
Affected flags: NZ YC NAC NOV  
Shift left of ACC with carry bit 0 to flag  
slc  
sl  
a
Example: slc a ;  
Result: a (b6,b5,b4,b3,b2,b1,b0,c) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b7)  
Affected flags: NZ YC NAC NOV  
Shift left of memory, shift 0 to bit 0  
M
Example: sl MEM ;  
Result: MEM (b6,b5,b4,b3,b2,b1,b0,0) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b7)  
Affected flags: NZ YC NAC NOV  
Shift left of memory with carry bit 0 to flag  
slc  
M
Example: slc MEM ;  
Result: MEM (b6,b5,b4,b3,b2,b1,b0,c) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM (b7)  
Affected flags: NZ YC NAC NOV  
Swap the high nibble and low nibble of ACC  
swap  
a
Example: swap  
Result: a (b3,b2,b1,b0,b7,b6,b5,b4) ← a (b7,b6,b5,b4,b3,b2,b1,b0)  
Affected flags: NZ NC NAC NOV  
a ;  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 77 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
7.4. Logic Operation Instructions  
and  
and  
and  
or  
a, I  
a, M  
M, a  
a, I  
Perform logic AND on ACC and immediate data, then put result into ACC  
Example: and a, 0x0f ;  
Result: a ← a & 0fh  
Affected flags: YZ NC NAC NOV  
Perform logic AND on ACC and memory, then put result into ACC  
Example: and  
a, RAM10 ;  
Result: a ← a & RAM10  
Affected flags: YZ NC NAC NOV  
Perform logic AND on ACC and memory, then put result into memory  
Example: and  
MEM, a ;  
Result: MEM ← a & MEM  
Affected flags: YZ NC NAC NOV  
Perform logic OR on ACC and immediate data, then put result into ACC  
Example: or  
a, 0x0f ;  
Result: a ← a | 0fh  
Affected flags: YZ NC NAC NOV  
or  
a, M  
Perform logic OR on ACC and memory, then put result into ACC  
Example: or  
a, MEM ;  
Result: a ← a | MEM  
Affected flags: YZ NC NAC NOV  
or  
M, a  
a, I  
Perform logic OR on ACC and memory, then put result into memory  
Example: or  
MEM, a ;  
Result: MEM ← a | MEM  
Affected flags: YZ NC NAC NOV  
xor  
xor  
Perform logic XOR on ACC and immediate data, then put result into ACC  
Example: xor  
a, 0x0f ;  
Result: a ← a ^ 0fh  
Affected flags: YZ NC NAC NOV  
IO, a  
Perform logic XOR on ACC and IO register, then put result into IO register  
Example: xor  
pa, a ;  
Result: pa ← a ^ pa ; // pa is the data register of port A  
Affected flags: NZ NC NAC NOV  
xor  
xor  
a, M  
M, a  
Perform logic XOR on ACC and memory, then put result into ACC  
Example: xor  
a, MEM ;  
Result: a ← a ^ RAM10  
Affected flags: YZ NC NAC NOV  
Perform logic XOR on ACC and memory, then put result into memory  
Example:  
xor  
MEM, a ;  
Result:  
MEM ← a ^ MEM  
Affected flags: YZ NC NAC NOV  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 78 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
not  
a
Perform 1’s complement (logical complement) of ACC  
Example: not a ;  
Result: a a  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
not  
a, 0x38 ;  
a ;  
// ACC=0X38  
// ACC=0XC7  
------------------------------------------------------------------------------------------------------------------------  
Perform 1’s complement (logical complement) of memory  
not  
M
Example: not  
MEM ;  
Result: MEM MEM  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
not  
a, 0x38 ;  
mem, a ;  
mem ;  
// mem = 0x38  
// mem = 0xC7  
------------------------------------------------------------------------------------------------------------------------  
Perform 2’s complement of ACC  
neg  
a
Example: neg  
a;  
Result: a a  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
neg  
a, 0x38 ;  
a ;  
// ACC=0X38  
// ACC=0XC8  
------------------------------------------------------------------------------------------------------------------------  
Perform 2’s complement of memory  
neg  
M
Example: neg  
MEM;  
Result: MEM MEM  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
not  
a, 0x38 ;  
mem, a ;  
mem ;  
// mem = 0x38  
// mem = 0xC8  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 79 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
comp  
a, M  
Compare ACC with the content of memory  
Example: comp a, MEM;  
Result: Flag will be changed by regarding as ( a - MEM )  
Affected flags: YZ YC YAC YOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
comp  
mov  
mov  
mov  
comp  
a, 0x38 ;  
mem, a ;  
a, mem ;  
a, 0x42 ;  
mem, a ;  
a, 0x38 ;  
a, mem ;  
// Z flag is set as 1  
// C flag is set as 1  
------------------------------------------------------------------------------------------------------------------------  
Compare ACC with the content of memory  
comp  
M, a  
Example: comp  
MEM, a;  
Result: Flag will be changed by regarding as ( MEM - a )  
Affected flags: YZ YC YAC YOV  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 80 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
7.5. Bit Operation Instructions  
set0 IO.n  
set1 IO.n  
swapc IO.n  
Set bit n of IO port to low  
Example: set0 pa.5 ;  
Result: set bit 5 of port A to low  
Affected flags: NZ NC NAC NOV  
Set bit n of IO port to high  
Example: set1 pb.5 ;  
Result: set bit 5 of port B to high  
Affected flags: NZ NC NAC NOV  
Swap the nth bit of IO port with carry bit  
Example: swapc  
IO.0;  
Result: C ← IO.0 , IO.0 ← C  
When IO.0 is a port to output pin, carry C will be sent to IO.0;  
When IO.0 is a port from input pin, IO.0 will be sent to carry C;  
Affected flags: NZ YC NAC NOV  
Application Example1 (serial output) :  
------------------------------------------------------------------------------------------------------------------------  
...  
set1  
...  
pac.0 ;  
// set PA.0 as output  
set0  
swapc  
set1  
swapc  
...  
flag.1 ;  
pa.0 ;  
// C=0  
// move C to PA.0 (bit operation), PA.0=0  
// C=1  
flag.1 ;  
pa.0 ;  
// move C to PA.0 (bit operation), PA.0=1  
------------------------------------------------------------------------------------------------------------------------  
Application Example2 (serial input) :  
------------------------------------------------------------------------------------------------------------------------  
...  
set0  
...  
pac.0 ;  
// set PA.0 as input  
swapc  
src  
pa.0 ;  
a ;  
// read PA.0 to C (bit operation)  
// shift C to bit 7 of ACC  
swapc  
src  
pa.0 ;  
a ;  
// read PA.0 to C (bit operation)  
// shift new C to bit 7, old C  
...  
------------------------------------------------------------------------------------------------------------------------  
Set bit n of memory to low  
set0 M.n  
set1 M.n  
Example: set0 MEM.5 ;  
Result: set bit 5 of MEM to low  
Affected flags: NZ NC NAC NOV  
Set bit n of memory to high  
Example: set1 MEM.5 ;  
Result: set bit 5 of MEM to high  
Affected flags: NZ NC NAC NOV  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 81 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
7.6. Conditional Operation Instructions  
ceqsn a, I  
Compare ACC with immediate data and skip next instruction if both are equal.  
Flag will be changed like as (a ← a – I)  
Example: ceqsn  
a, 0x55 ;  
MEM ;  
error ;  
inc  
goto  
Result: If a=0x55, then “goto error”; otherwise, “inc MEM”.  
Affected flags: YZ YC YAC YOV  
Compare ACC with memory and skip next instruction if both are equal.  
Flag will be changed like as (a ← a - M)  
ceqsn a, M  
Example: ceqsn  
a, MEM;  
Result: If a=MEM, skip next instruction  
Affected flags: YZ YC YAC YOV  
cneqsn a, M  
Compare ACC with memory and skip next instruction if both are not equal.  
Flag will be changed like as (a ← a - M)  
Example: cneqsn  
a, MEM;  
Result: If a≠MEM, skip next instruction  
Affected flags: YZ YC YAC YOV  
cneqsn a, I  
Compare ACC with immediate data and skip next instruction if both are no equal.  
Flag will be changed like as (a ← a - I)  
Example: cneqsn  
a,0x55 ;  
MEM ;  
error ;  
inc  
goto  
Result: If a≠0x55, then “goto error”; Otherwise, “inc MEM”.  
Affected flags: YZ YC YAC YOV  
Check IO bit and skip next instruction if it’s low  
t0sn IO.n  
t1sn IO.n  
t0sn M.n  
t1sn M.n  
Example: t0sn  
pa.5;  
Result: If bit 5 of port A is low, skip next instruction  
Affected flags: NZ NC NAC NOV  
Check IO bit and skip next instruction if it’s high  
Example: t1sn  
pa.5 ;  
Result: If bit 5 of port A is high, skip next instruction  
Affected flags: NZ NC NAC NOV  
Check memory bit and skip next instruction if it’s low  
Example: t0sn MEM.5 ;  
Result: If bit 5 of MEM is low, then skip next instruction  
Affected flags: NZ NC NAC NOV  
Check memory bit and skip next instruction if it’s high  
EX: t1sn MEM.5 ;  
Result: If bit 5 of MEM is high, then skip next instruction  
Affected flags: NZ NC NAC NOV  
Increment ACC and skip next instruction if ACC is zero  
izsn  
a
Example: izsn  
Result:  
a;  
a
a + 1,skip next instruction if a = 0  
Affected flags: YZ YC YAC YOV  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 82 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
dzsn  
izsn  
a
Decrement ACC and skip next instruction if ACC is zero  
Example: dzsn a;  
Result: A - 1,skip next instruction if a = 0  
A
Affected flags: YZ YC YAC YOV  
M
Increment memory and skip next instruction if memory is zero  
Example: izsn  
Result: MEM  
MEM;  
MEM + 1, skip next instruction if MEM= 0  
Affected flags: YZ YC YAC YOV  
dzsn  
M
Decrement memory and skip next instruction if memory is zero  
Example: dzsn  
Result: MEM  
Affected flags: YZ YC YAC YOV  
MEM;  
MEM - 1, skip next instruction if MEM = 0  
7.7. System control Instructions  
call  
label  
Function call, address can be full range address space  
Example: call  
function1;  
pc + 1  
Result: [sp]  
pc  
sp  
function1  
sp + 2  
Affected flags: NZ NC NAC NOV  
goto label  
Go to specific address which can be full range address space  
Example: goto  
error;  
Result: Go to error and execute program.  
Affected flags: NZ NC NAC NOV  
Place immediate data to ACC, then return  
Example: ret 0x55;  
ret  
I
Result:  
A ← 55h  
ret ;  
Affected flags: NZ NC NAC NOV  
Return to program which had function call  
Example: ret;  
ret  
Result:  
sp ← sp - 2  
pc ← [sp]  
Affected flags: NZ NC NAC NOV  
Return to program that is interrupt service routine. After this command is executed, global  
interrupt is enabled automatically.  
reti  
nop  
Example: reti;  
Affected flags: NZ NC NAC NOV  
No operation  
Example: nop;  
Result: nothing changed  
Affected flags: NZ NC NAC NOV  
Reset Watchdog timer.  
wdreset  
Example: wdreset ;  
Result: Reset Watchdog timer.  
Affected flags: NZ NC NAC NOV  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 83 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
pcadd  
a
Next program counter is current program counter plus ACC.  
Example: pcadd a;  
Result: pc ← pc + a  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
pcadd  
goto  
goto  
goto  
goto  
a, 0x02 ;  
a ;  
// PC <- PC+2  
// jump here  
err1 ;  
correct ;  
err2 ;  
err3 ;  
correct:  
// jump here  
------------------------------------------------------------------------------------------------------------------------  
Enable global interrupt enable  
engint  
Example: engint;  
Result: Interrupt request can be sent to CPU  
Affected flags: NZ NC NAC NOV  
Disable global interrupt enable  
disgint  
stopsys  
stopexe  
Example: disgint ;  
Result: Interrupt request is blocked from CPU  
Affected flags: NZ NC NAC NOV  
System halt.  
Example: stopsys;  
Result: Stop the system clocks and halt the system  
Affected flags: NZ NC NAC NOV  
CPU halt. The oscillator module is still active to output clock, however, system clock is disabled  
to save power.  
Example: stopexe;  
Result: Stop the system clocks and keep oscillator modules active.  
Affected flags: NZ NC NAC NOV  
Reset the whole chip, its operation will be same as hardware reset.  
Example: reset;  
reset  
Result: Reset the whole chip.  
Affected flags: NZ NC NAC NOV  
7.8. Summary of Instructions Execution Cycle  
goto, call, idxm, pcadd, ret, reti  
2T  
2T  
1T  
1T  
Condition is fulfilled.  
ceqsn, cneqsn,t0sn, t1sn, dzsn, izsn  
Condition is not fulfilled.  
Others  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 84 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
7.9. Summary of affected flags by Instructions  
Instruction  
mov a, I  
Z
-
C
-
AC OV Instruction  
Z
-
C
-
AC OV Instruction  
Z
Y
-
C
-
AC OV  
-
-
-
-
mov M, a  
mov IO, a  
idxm a, index  
pushaf  
-
-
-
-
mov a, M  
ldt16 word  
idxm index, a  
popaf  
-
-
-
-
mov a, IO  
stt16 word  
Y
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
xch  
M
-
-
-
-
-
-
-
-
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
-
add a, I  
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
add a, M  
addc M, a  
nadd a, M  
sub a, M  
subc M, a  
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
add M, a  
addc a, M  
addc  
a
addc  
M
nadd M, a  
sub a, I  
sub M, a  
subc a, M  
subc  
dec  
src  
a
subc  
clear  
M
M
inc  
sr a  
src  
sl  
M
M
a
sr  
M
-
Y
Y
-
-
M
-
-
sl  
a
-
-
-
slc  
a
-
-
-
-
-
M
-
-
-
-
slc  
and  
M
-
-
-
swap  
and  
a
-
-
-
and  
a, I  
Y
Y
Y
Y
Y
Y
-
-
a, M  
Y
Y
-
-
-
M, a  
Y
Y
Y
Y
Y
-
-
or a, I  
-
-
-
-
-
or a, M  
-
-
-
or M, a  
xor  
xor  
neg  
a, I  
-
-
xor  
not  
neg  
IO, a  
-
-
-
xor  
not  
a, M  
M, a  
a
-
-
a
Y
Y
-
-
-
M
-
-
Y
-
-
Y
-
-
-
M
-
-
-
-
comp a, M  
set1 IO.n  
Y
comp M, a  
set0 M.n  
Y
-
Y
-
Y
-
set0 IO.n  
set1 M.n  
ceqsn a, M  
t0sn IO.n  
t1sn M.n  
-
-
-
-
swapc IO.n  
cneqsn a,M  
t1sn IO.n  
-
Y
Y
-
-
ceqsn a, I  
cneqsn a, I  
t0sn M.n  
Y
Y
-
Y
Y
-
Y
Y
-
Y
Y
-
Y
-
Y
-
Y
Y
Y
Y
-
Y
-
-
-
-
Y
-
-
Y
-
izsn  
dzsn  
ret  
a
Y
Y
-
Y
Y
-
Y
Y
-
Y
Y
-
dzsn  
call  
a
Y
Y
Y
Y
izsn  
M
Y
-
Y
-
M
label  
goto label  
reti  
I
ret  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
nop  
-
-
-
-
pcadd  
a
engint  
-
-
-
-
disgint  
reset  
-
-
-
-
stopsys  
wdreset  
stopexe  
-
-
-
-
-
-
-
-
7.10. BIT definition  
Bit access of RAM is only available for address from 0x00 to 0x7F.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 85 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
8. Code Options  
Option  
Selection  
Enable  
Disable  
4.0V  
Description  
MTP content is protected and program cannot be read back  
MTP content is not protected so program can be read back  
Select LVR = 4.0V  
Security  
3.5V  
Select LVR = 3.5V  
3.0V  
Select LVR = 3.0V  
2.7V  
Select LVR = 2.7V  
LVR  
2.5V  
Select LVR = 2.5V  
2.2V  
Select LVR = 2.2V  
2.0V  
Select LVR = 2.0V  
1.8V  
Select LVR = 1.8V  
Slow  
Please refer to tWUP and tSBP in Section 4.1  
Please refer to tWUP and tSBP in Section 4.1  
INTEN/ INTRQ.Bit0 is from PA.0  
INTEN/ INTRQ.Bit0 is from PB.5  
INTEN/ INTRQ.Bit1 is from PB.0  
INTEN/ INTRQ.Bit1 is from PA.4  
PB4 & PB7 Drive / Sink Current is Normal  
PB4 & PB7 Drive / Sink Current is Strong (ICE does NOT support.)  
The comparator will trigger an interrupt on both the rising edge or falling edge  
Boot-up_Time  
Interrupt Src0  
Interrupt Src1  
PB4_PB7_Drive  
Comparator  
Fast  
PA.0  
PB.5  
PB.0  
PA.4  
Normal  
Strong  
All_Edge  
Rising_Edge The comparator will trigger an interrupt on the rising edge  
Falling_Edge The comparator will trigger an interrupt on the falling edge  
Edge  
Disable  
Enable  
Comparator does not control all PWM outputs  
Comparator controls all PWM outputs (ICE does NOT support.)  
When tm2c[7:4]= 0010, TM2 clock source = IHRC = 16MHZ  
When tm3c[7:4]= 0010, TM3 clock source = IHRC = 16MHZ  
When tm2c[7:4]= 0010, TM2 clock source = IHRC*2 = 32MHZ  
When tm3c[7:4]= 0010, TM3 clock source = IHRC*2 = 32MHZ  
(ICE does NOT support.)  
GPC_PWM  
16MHZ  
32MHZ  
6 Bit  
TMx_Source  
When tm2s.7=1, TM2 PWM resolution is 6 Bit  
When tm3s.7=1, TM3 PWM resolution is 6 Bit  
When tm2s.7=1, TM2 PWM resolution is 7 Bit  
When tm3s.7=1, TM3 PWM resolution is 7 Bit  
(ICE does NOT support.)  
TMx_Bit  
7 Bit  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 86 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
9. Special Notes  
This chapter is to remind user who use PFS172 series IC in order to avoid frequent errors upon operation.  
9.1. Warning  
User must read all application notes of the IC by detail before using it. Please download the related  
application notes from the following link:  
http://www.padauk.com.tw/tw/technical/index.aspx  
9.2. Using IC  
9.2.1. IO pin usage and setting  
(1) IO pin is set to be digital input  
When IO is set as digital input, the level of Vih and Vil would changes with the voltage and temperature.  
Please follow the minimum value of Vih and the maximum value of Vil.  
The value of internal pull high resistor would also changes with the voltage, temperature and pin  
voltage. It is not the fixed value.  
(2) If IO pin is set to be digital input and enable wake-up function  
Configure IO pin as input.  
Set corresponding bit to “1” in PXDIER.  
If those IO pins of PA that are not used, such as PADIER [1:2], it should be set low in order to prevent  
them from leakage.  
(3) PA5 is set to be PRST# input pin  
Configure PA5 as input.  
Set CLKMD.0=1 to enable PA5 as PRST# input pin.  
(4) PA7 and PA6 as external crystal oscillator  
Configure PA7 and PA6 as input  
Disable PA7 and PA6 internal pull-up resistor  
Configure PADIER register to set PA6 and PA7 as analog input  
EOSCR register bit [6:5] selects corresponding crystal oscillator frequency :  
01 : for lower frequency, ex : 32KHz  
10 : for middle frequency, ex : 455KHz, 1MHz  
11 : for higher frequency, ex : 4MHz  
Program EOSCR.7 =1 to enable crystal oscillator  
Ensure EOSC working well before switching from IHRC or ILRC to EOSC  
Note: Please read the PMC-APN013 carefully. According to PMC-APN013, the crystal oscillator should be  
used reasonably. If the following situations happen to cause IC start-up slowly or non-startup, PADAUK  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 87 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
Technology is not responsible for this: the quality of the user's crystal oscillator is not good, the usage  
conditions are unreasonable, the PCB cleaner leakage current, or the PCB layouts are unreasonable.  
9.2.2. Interrupt  
(1) When using the interrupt function, the procedure should be:  
Step1: Set INTEN register, enable the interrupt control bit  
Step2: Clear INTRQ register  
Step3: In the main program, using ENGINT to enable CPU interrupt function  
Step4: Wait for interrupt. When interrupt occurs, enter to Interrupt Service Routine  
Step5: After the Interrupt Service Routine being executed, return to the main program  
* Use DISGINT in the main program to disable all interrupts  
* When interrupt service routine starts, use PUSHAF instruction to save ALU and FLAG  
register. POPAF instruction is to restore ALU and FLAG register before RETI as below:  
void Interrupt (void)  
{
// Once the interrupt occurs, jump to interrupt service routine  
// enter DISGINT status automatically, no more interrupt is  
accepted  
PUSHAF;  
POPAF;  
}
// RETI will be added automatically. After RETI being executed, ENGINT status  
will be restored  
(2) INTEN and INTRQ have no initial values. Please set required value before enabling interrupt function.  
(3) There are two sets of external IO pin interrupt source. Every set is decided by code option Interrupt Src0  
and Interrupt Src1 corresponding to the unique interrupt pin. Please comply with the inten / intrq / integs  
register when selecting IO pin.  
9.2.3. System clock switching  
System clock can be switched by CLKMD register. Please notice that, NEVER switch the system clock and  
turn off the original clock source at the same time. For example: When switching from clock A to clock B,  
please switch to clock B first; and after that turn off the clock A oscillator through CLKMD.  
Example : Switch system clock from ILRC to IHRC/2  
CLKMD  
=
0x36;  
0;  
// switch to IHRC, ILRC can not be disabled here  
// ILRC can be disabled at this time  
CLKMD.2 =  
ERROR: Switch ILRC to IHRC and turn off ILRC simultaneously  
CLKMD 0x50; // MCU will hang  
=
9.2.4. Watchdog  
Watchdog will be inactive once ILRC is disabled.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 88 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
9.2.5. TIMER time out  
When select $ INTEGS BIT_R (default value) and T16M counter BIT8 to generate interrupt, if T16M counts  
from 0, the first interrupt will occur when the counter reaches to 0x100 (BIT8 from 0 to 1) and the second  
interrupt will occur when the counter reaches 0x300 (BIT8 from 0 to 1). Therefore, selecting BIT8 as 1 to  
generate interrupt means that the interrupt occurs every 512 counts. Please notice that if T16M counter is  
restarted, the next interrupt will occur once Bit8 turns from 0 to 1.  
If select $ INTEGS BIT_F(BIT triggers from 1 to 0) and T16M counter BIT8 to generate interrupt, the T16M  
counter changes to an interrupt every 0x200/0x400/0x600/. Please pay attention to two differences with  
setting INTEGS methods.  
9.2.6. IHRC  
(1) The IHRC frequency calibration is performed when IC is programmed by the writer.  
(2) Because the characteristic of the Epoxy Molding Compound (EMC) would some degrees affects the  
IHRC frequency (either for package or COB), if the calibration is done before molding process, the actual  
IHRC frequency after molding may be deviated or becomes out of spec. Normally , the frequency is  
getting slower a bit.  
(3) It usually happens in COB package or Quick Turnover Programming (QTP). And PADAUK would not  
take any responsibility for this situation.  
(4) Users can make some compensatory adjustments according to their own experiences. For example,  
users can set IHRC frequency to be 0.5% ~ 1% higher and aim to get better re-targeting after molding.  
9.2.7. LVR  
User can set MISC.2 as “1” to disable LVR. However, VDD must be kept as exceeding the lowest working  
voltage of chip; Otherwise IC may work abnormally.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 89 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
 
 
PFS172  
8bit MTP MCU with 8-bit ADC  
9.2.8. Programming Writing  
Please use PDK5S-P-003 to program. PDK3S-P-002 or older versions do not support programming PFS172.  
Jumper connection: Please follow the instruction inside the writer software to connect the jumper.  
Please select the following program mode according to the actual situation.  
Normal Programming Mode  
Range of application:  
Single-Chip-Package IC with programming at the writer IC socket or on the handler.  
Multi-Chip-Package(MCP) with PFS172. Be sure its connected IC and devices will not be damaged by  
the following voltages, and will not clam the following voltages.  
The voltage conditions in normal programming mode:  
(1) VDD is 7.5V, and the maximum supply current is up to about 20mA.  
(2) PA5 is 5.5V.  
(3) The voltages of other program pins (except GND) are the same as VDD.  
Important Cautions  
You MUST follow the instructions on APN004 and APN011 for programming IC on the handler.  
Connecting a 0.01uF capacitor between VDD and GND at the handler port to the IC is always  
good for suppressing disturbance. But please DO NOT connect with 0.01uF capacitor,  
otherwise, programming mode may be fail.  
Limited-Voltage Programming Mode  
Range of application:  
On-Board writing. Its peripheral circuits and devices will not be damaged by the following voltages, and  
will not clam the following voltages. Please refer to On-Board Writing for more details.  
Multi-Chip-Package(MCP) with PFS172. Please be sure that its connected IC and devices will not be  
damaged by the following voltages, and will not clam the following voltages.  
The voltage conditions in Limited-Voltage programming mode:  
(1) VDD is 5.0V, and the maximum supply current is up to about 20mA.  
(2) PA5 is 5.0V.  
(3) The voltage of other program pins (except GND) is the same as VDD.  
Please select "MTP On-Board VDD Limitation" or "On-Board Program" on the writer screen to enable the  
limited-voltage programming mode. (Please refer to the file of Writer “PDK5S-P-003 UM”).  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 90 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 
PFS172  
8bit MTP MCU with 8-bit ADC  
On-board Writing  
PFS172 can support On-board writing. On-Board Writing is known as the situation that the IC has to be  
programmed when the IC itself and other peripheral circuits and devices have already been mounted on the  
PCB. Five wires of PDK5S-P-003 are used for On-Board Writing: ICPCK, ICPDA, VDD, GND and ICVPP.  
They are used to connect PA3, PA6, VDD, GND and PA5 of the IC correspondingly.  
The above figure shows the connection for PFS172 on-board writing. In this figure, can be either resistors  
or capacitors. They are used to isolate the programming signal wires from the peripheral circuit. it should  
be≧10KΩfor resistance while ≦220pF for capacitance.  
Notice:  
In general, the limited-voltage programming mode is used in On-board Writing, Please refers to the  
13.2 for more detail about limited-voltage programming mode.  
Any zener diode ≦5.0V, or any circuitry which clam the 5.0V to be created SHOULD NOT be  
connected between VDD and GND of the PCB.  
Any capacitor ≧500uF SHOULD NOT be connected between VDD and GND of the PCB.  
In general, the writing signal pins PA3, PA5 and PA6 should not be considered as strong output pins.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 91 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
PFS172  
8bit MTP MCU with 8-bit ADC  
9.3. Using ICE  
(1) PDK5S-I-S01/2(B) supports PFS172 MCU emulation, the following items should be noted when using  
PDK5S-I-S01/2(B) to emulate PFS172:  
PDK5S-I-S01/2(B) doesn’t support the instruction NMOV/SWAP/NADD/COMP with RAM.  
PDK5S-I-S01/2(B) doesn’t support SYSCLK=ILRC/16.  
PDK5S-I-S01/2(B) doesn’t support the function Tm2.gpcrs/Tm3.gpcrs.  
PDK5S-I-S01/2(B) doesn’t support the code options: PB4_PB7_Drive, GPC_PWM, TMx_source  
and TMx_bit.  
PDK5S-I-S01/2(B) doesn’t support PAPL, PBPL.  
When using GPCC output, PA3 will be influenced.  
When simulating PWM waveform, please check the waveform during program running. When the  
ICE is suspended or single-step running, its waveform may be inconsistent with the reality.  
The ILRC frequency of the PDK5S-I-S01/2(B) simulator is different from the actual IC and is  
uncalibrated, with a frequency range of about 34K~38KHz.  
Fast Wakeup time is different from PDK5S-I-S01/2(B): 128 SYSCLK, PFS172: 45 ILRC  
Watch dog time out period is different from PDK5S-I-S01/2(B):  
WDT period  
misc[1:0]=00  
misc[1:0]=01  
misc[1:0]=10  
misc[1:0]=11  
PDK5S-I-S01/2(B)  
2048 * TILRC  
PFS172  
8192 * TILRC  
16384 * TILRC  
65536 * TILRC  
262144 * TILRC  
4096 * TILRC  
16384 * TILRC  
256 * TILRC  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 92 of 92  
PDK-DS-PFS172-EN_V000-May 8, 2020  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY