PMC232-S20 [PADAUK]

12-bit ADC Enhanced;
PMC232-S20
型号: PMC232-S20
厂家: PADAUK Technology    PADAUK Technology
描述:

12-bit ADC Enhanced

文件: 总94页 (文件大小:1560K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PMC232/PMS232 Series  
12-bit ADC Enhanced  
Field Programmable Processor Array  
(FPPATM) 8-bit OTP Controller  
Data Sheet  
Version 1.04 – Dec. 18, 2018  
Copyright 2018 by PADAUK Technology Co., Ltd., all rights reserved  
6F-6, No.1, Sec. 3, Gongdao 5th Rd., Hsinchu City 30069, Taiwan, R.O.C.  
TEL: 886-3-572-8688 www.padauk.com.tw  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
IMPORTANT NOTICE  
PADAUK Technology reserves the right to make changes to its products or to terminate  
production of its products at any time without notice. Customers are strongly  
recommended to contact PADAUK Technology for the latest information and verify  
whether the information is correct and complete before placing orders.  
PADAUK Technology products are not warranted to be suitable for use in life-support  
applications or other critical applications. PADAUK Technology assumes no liability for  
such applications. Critical applications include, but are not limited to, those which may  
involve potential risks of death, personal injury, fire or severe property damage.  
PADAUK Technology assumes no responsibility for any issue caused by a customer’s  
product design. Customers should design and verify their products within the ranges  
guaranteed by PADAUK Technology. In order to minimize the risks in customers’ products,  
customers should design a product with adequate operating safeguards.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 2 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Table of content  
1.Features.............................................................................................................................9  
1-1.Special Features ....................................................................................................................9  
1-2. System Functions ..................................................................................................................9  
1-3. High Performance RISC CPU Array.......................................................................................9  
1-4. Package Information............................................................................................................10  
2. General Description and Block Diagram ......................................................................11  
3. Pin Assignment and Description...................................................................................12  
4. Device Characteristics ...................................................................................................17  
4-1. AC/DC Device Characteristics .............................................................................................17  
4-2. Absolute Maximum Ratings .................................................................................................19  
4-3. Typical ILRC frequency vs. VDD and temperature...............................................................20  
4-4. Typical IHRC frequency deviation vs. VDD and temperature (calibrated to 16MHz).............21  
4-5. Typical operating current vs. VDD @ system clock = ILRC/n...............................................22  
4-6. Typical operating current vs. VDD @ system clock = IHRC/n ..............................................22  
4-7. Typical operating current vs. VDD @ system clock = 4MHz EOSC / n.................................23  
4-8. Typical operating current vs. VDD @ system clock = 32kHz EOSC / n................................23  
4-9. Typical IO driving current (IOH) and sink current (IOL)............................................................24  
4-10. Typical IO input high/low threshold voltage (VIH/VIL)...........................................................24  
4-11. Typical resistance of IO pull high device ............................................................................25  
4-12. Typical VDD/2 Bias output voltage.....................................................................................25  
4-13. Typical power down current (IPD) and power save current (IPS)...........................................26  
4-14. Timing charts for boot up conditions ..................................................................................27  
5. Functional Description...................................................................................................28  
5-1. Processing Units..................................................................................................................28  
5-1-1. Program Counter .......................................................................................................29  
5-1-2. Stack Pointer .............................................................................................................29  
5-1-3. Single FPP mode.......................................................................................................30  
5-2. Program Memory - OTP.......................................................................................................31  
5-2-1. Program Memory Assignment....................................................................................31  
5-2-2. Example of Using Program Memory for Two FPP mode............................................32  
5-2-3. Example of Using Program Memory for Single FPP mode.........................................32  
5-3. Program Structure ...............................................................................................................33  
5-3-1. Program structure of two FPP units mode .................................................................33  
5-3-2. Program structure of single FPP mode ......................................................................33  
5-4. Boot Procedure....................................................................................................................34  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 3 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-5. Data Memory -- SRAM.........................................................................................................35  
5-6. Arithmetic and Logic Unit.....................................................................................................35  
5-7. Oscillator and clock..............................................................................................................36  
5-7-1. Internal High RC oscillator and Internal Low RC oscillator .........................................36  
5-7-2. Chip calibration..........................................................................................................36  
5-7-3. IHRC Frequency Calibration and System Clock.........................................................36  
5-7-4. External Crystal Oscillator..........................................................................................38  
5-7-5. System Clock and LVR level......................................................................................39  
5-7-6. System Clock Switching.............................................................................................40  
5-8. 16-bit Timer (Timer16) .........................................................................................................41  
5-9. 8-bit Timer (Timer2) with PWM generation...........................................................................43  
5-9-1. Using the Timer2 to generate periodical waveform ....................................................44  
5-9-2. Using the Timer2 to generate 8-bit PWM waveform...................................................46  
5-9-3. Using the Timer2 to generate 6-bit PWM waveform...................................................47  
5-10. WatchDog Timer................................................................................................................48  
5-11. Interrupt .............................................................................................................................49  
5-12. Power-Save and Power-Down ...........................................................................................51  
5-12-1. Power-Save mode (“stopexe”) .................................................................................51  
5-12-2. Power-Down mode (“stopsys”).................................................................................52  
5-12-3. Wake-up..................................................................................................................53  
5-13. IO Pins...............................................................................................................................54  
5-14. Reset and LVR ..................................................................................................................55  
5.14.1. Reset .......................................................................................................................55  
5.14.2. LVR reset.................................................................................................................55  
5-15. VDD/2 bias Voltage Generator...........................................................................................55  
5-16. Analog-to-Digital Conversion (ADC) module......................................................................56  
5-16-1. The input requirement for AD conversion.................................................................57  
5-16-2. Select the ADC bit resolution ...................................................................................58  
5-16-3. ADC clock selection.................................................................................................58  
5-16-4. AD conversion .........................................................................................................58  
5-16-5. Configure the analog pins........................................................................................58  
5-16-6. Using the ADC.........................................................................................................59  
6. IO Registers ....................................................................................................................60  
6-1. ACC Status Flag Register (flag), IO address = 0x00............................................................60  
6-2. FPP unit Enable Register (fppen), IO address = 0x01..........................................................60  
6-3. Stack Pointer Register (sp), IO address = 0x02 ...................................................................60  
6-4. Clock Mode Register (clkmd), IO address = 0x03 ................................................................60  
6-5. Interrupt Enable Register (inten), IO address = 0x04 ...........................................................61  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 4 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
6-6. Interrupt Request Register (intrq), IO address = 0x05..........................................................61  
6-7. Timer16 mode Register (t16m), IO address = 0x06 .............................................................62  
6-8. General Data register for IO (gdio), IO address = 0x07........................................................62  
6-9. External Oscillator setting Register (eoscr), IO address = 0x0a ...........................................62  
6-10. Internal High RC oscillator control Register (ihrcr), IO address = 0x0b...............................63  
6-11. Interrupt Edge Select Register (integs), IO address = 0x0c................................................63  
6-12. Port A Digital Input Enable Register (padier), IO address = 0x0d.......................................64  
6-13. Port B Digital Input Enable Register (pbdier), IO address = 0x0e.......................................64  
6-14. Port A Data Register (pa), IO address = 0x10....................................................................64  
6-15. Port A Control Register (pac), IO address = 0x11 ..............................................................65  
6-16. Port A Pull-up Register (paph), IO address = 0x12 ............................................................65  
6-17. Port B Data Register (pb), IO address = 0x14....................................................................65  
6-18. Port B Control Register (pbc), IO address = 0x15 ..............................................................65  
6-19. Port B Pull-up Register (pbph), IO address = 0x16 ............................................................65  
6-20. Port C Data Register (pc), IO address = 0x17....................................................................65  
6-21. Port C Control Register (pcc), IO address = 0x18 ..............................................................65  
6-22. Port C Pull-up Register (pcph), IO address = 0x19 ............................................................65  
6-23. ADC Control Register (adcc), IO address = 0x20...............................................................66  
6-24. ADC Mode Register (adcm), IO address = 0x21 ................................................................66  
6-25. ADC Result High Register (adcrh), IO address = 0x22.......................................................66  
6-26. ADC Result Low Register (adcrl), IO address = 0x23 ........................................................67  
6-27. Miscellaneous Register (misc), IO address = 0x3b ............................................................67  
6-28. Timer2 Control Register (tm2c), IO address = 0x3c ...........................................................68  
6-29. Timer2 Counter Register (tm2ct), IO address = 0x3d.........................................................68  
6-30. Timer2 Scalar Register (tm2s), IO address = 0x37 ............................................................68  
6-31. Timer2 Bound Register (tm2b), IO address = 0x09............................................................68  
7. Instructions.....................................................................................................................69  
7-1. Data Transfer Instructions....................................................................................................69  
7-2. Arithmetic Operation Instructions.........................................................................................73  
7-3. Shift Operation Instructions..................................................................................................75  
7-4. Logic Operation Instructions ................................................................................................77  
7-5. Bit Operation Instructions.....................................................................................................80  
7-6. Conditional Operation Instructions .......................................................................................81  
7-7. System control Instructions..................................................................................................83  
7-8. Summary of Instructions Execution Cycle............................................................................85  
7-9. Summary of affected flags by Instructions............................................................................86  
8. Code Options..................................................................................................................87  
9. Special Notes..................................................................................................................88  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 5 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
9-1.Warning................................................................................................................................88  
9-2.Using IC ...............................................................................................................................88  
9-2-1. IO pin usage and setting...........................................................................................88  
9-2-2. Interrupt ....................................................................................................................89  
9-2-3. System clock switching.............................................................................................90  
9-2-4. Power down mode, wakeup and watchdog ...............................................................90  
9-2-5. TIMER time out.........................................................................................................91  
9-2-6. Using ADC................................................................................................................91  
9-2-7. LVR ..........................................................................................................................92  
9-2-8. IHRC.........................................................................................................................92  
9-2-9. Program writing.........................................................................................................92  
9-3.Using ICE.............................................................................................................................93  
9-3-1. Emulating PMC232/PMS232 series IC on ICE PDK3S-I-001/002/003 ......................93  
9-3-2. Important Notice for ICE operation............................................................................94  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 6 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Revision History:  
Revision  
Date  
Description  
0.01  
2015/08/01  
1st version  
1. Add 1-4. Package Information: PMC232-Y24A  
2. Add 3. PMC232-Y24A Pin Assignment and Description  
1. Add 8-1. Warning  
0.02  
0.03  
2015/10/30  
2017/03/27  
2. Add 8-2-8. IHRC Description  
1. Updated company address & Tel No.  
2. Amend 1-1, 1-2, 1-3  
3. Add AVDD and AGND in Chapter 3  
4. Amend 4-1 AC/DC Device Characteristics  
5. Amend 4-3 to 4-12  
6. Add 4-13 Typical power down current (IPD) and power save current (IPS)  
7. Amend 5-7 Oscillator and clock  
8. Amend 5-7-1, 5-7-3, 5-7-4, 5-7-5  
9. Amend 5-9 8-bit Timer (Timer2) with PWM generation  
10. Amend 5-9-1, 5-9-2  
11. Amend 5-11 Interrupt  
1.04  
2018/12/18  
12. Amend 5-12-1, 5-12-2, 5-12-3  
13. Amend Table 7: Differences in wake-up sources between Power-Save mode  
and Power-Down mode  
14. Amend Fig.18: Analog Input Model  
15. Amend 6-7, 6-12, 6-13  
16. Amend Section 7-8 Summary of Instructions Execution Cycle and delete 9-2-9  
17. Add Chapter 8 Special Notes  
18. Updated the link in Section 9-1  
19. Amend 9-2-1, 9-2-5  
20. Add 9-2-9 Program writing  
21. Amend 9-3 Using ICE  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 7 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Major Differences between P232C and PMC232/PMS232  
There are many differences between P232C and PMC232/PMS232. The table below only shows the major  
differences between them.  
Item Function  
P232C  
12mA@5.0V  
PMC232/PMS232  
10mA@5.0V  
1
2
3
4
5
IO capability  
SRAM  
200 bytes  
160 bytes  
Band-gap  
LVR  
+/- 200mV(@1.20V)  
4 levels LVR setting  
N/A  
+/- 60mV(@1.20V) after calibration  
8 levels LVR setting  
Yes  
Single FPPA mode  
LCD Half VDD bias  
voltage  
6
N/A  
Yes  
ADC reference high  
voltage  
7
8
9
VDD and PB1  
VDD  
ADC resolution  
8bit to 12bit selectable  
padidr , pbdidr, pcdidr  
Only 12bit available.  
padier , pbdier  
Port digital/analog input  
configure registers  
IHRC option command  
WDT timeout  
10  
11  
12  
.ADJUST_OTP_IHRCR  
512 ILRC clock cycles  
Yes  
.ADJUST_IIC  
4 selectable periods  
N/A  
Hardware Comparator  
Procedure for converting code from P232C to PMC232/PMS232  
Please follow the below steps for converting code from P232C to PMC232/PMS232:  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
8.  
Go through the PMC232/PMS232 datasheet and user guide;  
Modify the source code engineering file “.pre”; change “.chip P232CXXX” to “.chip PMC232” or “.chip PMS232”  
Press “Build” and then IDE will show some errors and warnings.  
Modify the source code correspondingly until all errors have been solved.  
Save and build the project files again.  
Write to a real chip and test its functions in detail.  
Back to the step 3 if necessary.  
Contact our FAE at fae@padauk.com.tw if you still have any problems.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 8 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
1. Features  
1-1. Special Features  
PMC232 series:  
High EFT series  
Operating temperature range: -40°C ~ 85°C  
PMS232 series:  
General purpose series  
Not supposed to use in AC RC step-down powered or high EFT requirement applications.  
PADAUK assumes no liability if such kind of applications can not pass the safety regulation tests.  
Operating temperature range: -20°C ~ 70°C  
1-2. System Functions  
2Kx16 bits OTP program memory for both FPP units  
160 Bytes data RAM for both FPP units  
One hardware 16-bit timer  
Support fast wake-up  
18 IO pins with 10mA driving / sink capability  
Every IO pin can be configured to enable wake-up function  
Band-gap circuit to provide 1.20V reference voltage  
Up to 10-channel 12-bit resolution ADC with 1-channel for internal band-gap reference voltage  
One hardware 8-bit timer with PWM generator  
Provide software configurable LCD driver IO with optional VDD/2 LCD bias voltage  
Provide maximum 4x13 dots LCD display  
Operating voltage range: 2.2V ~ 5.5V  
Clock sources: internal high RC oscillator, internal low RC oscillator and external crystal oscillator  
Eight levels of LVR reset ~ 4.1V, 3.6V, 3.1V, 2.8V, 2.5V, 2.2V, 2.0V, 1.8V  
Two external interrupt pins  
1-3. High Performance RISC CPU Array  
Operating modes: Two processing units FPPATM mode or Traditional one processing unit mode  
100 powerful instructions  
Most instructions are 1T execution cycle  
Programmable stack pointer to provide adjustable stack level  
Direct and indirect addressing modes for data access. Data memories are available for use as an index pointer of  
Indirect addressing mode  
IO space and memory space are independent  
Separated IO and memory space  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 9 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
 
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
1-4. Package Information  
PMC232 series  
PMC232 - S14: SOP14 (150mil);  
PMC232 - S16A: SOP16 Type A (150mil);  
PMC232 - S16B: SOP16 Type B (150mil);  
PMC232 - Y24A: SSOP24 (150mil);  
PMC232 - S18: SOP18 (300mil);  
PMC232 - S20: SOP20 (300mil);  
PMC232 - D14: DIP14 (300mil);  
PMC232 - D18: DIP18 (300mil);  
PMC232 - D20: DIP20 (300mil);  
PMS232 series  
PMS232 - S14: SOP14 (150mil);  
PMS232 - S16A: SOP16 Type A (150mil) ;  
PMS232 - S16B: SOP16 Type B (150mil) ;  
PMS232 - S18: SOP18 (300mil) ;  
PMS232 - S20: SOP20 (300mil) ;  
PMS232 - D14: DIP14 (300mil);  
PMS232 - D18: DIP18 (300mil);  
PMS232 - D20: DIP20 (300mil);  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 10 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
2. General Description and Block Diagram  
The PMC232/PMS232 family is an ADC-Type of PADAUK’s parallel processing, fully static, OTP-based CMOS  
2x8 bit processor array that can execute two peripheral functions in parallel. It employs RISC architecture based  
on patent pending FPPA™ (Field Programmable Processor Array) technology and all the instructions are  
executed in one cycle except that some instructions are two cycles that handle indirect memory access.  
2Kx16 bits OTP program memory and 160 bytes data SRAM are inside for two FPP units using, one up to 10  
channels 12-bit ADC is built inside the chip with one channel for internal band-gap reference voltage.  
PMC232/PMS232 also provides two hardware timers: one is 16-bit timer and the other one is 8-bit with PWM  
generation.  
Interrupt  
2KW OTP  
&
Task  
Controller  
16-bit Timer  
IO Ports  
Control  
PWM  
Function  
FPP0  
FPP1  
160 bytes  
SRAM  
I2C  
Function  
SPI  
12-bit ADC  
&
Function  
Band-gap  
UART  
Function  
8-bit  
Timer / PWM  
Key Scan  
Function  
POR / LVR  
LCD  
Function  
Watchdog  
Timer  
Power  
management  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 11 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
3. Pin Assignment and Description  
PMC232 series  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 12 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
PMS232 series  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 13 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Pin Description  
Pin Type &  
Pin Name  
Description  
Buffer Type  
The functions of this pin can be:  
(1) Bit 7 of port A. It can be configured as digital input or two-state output, with pull-up  
resistor .  
IO  
PA7 /  
X1  
ST /  
(2) X1 when crystal oscillator is used.  
CMOS  
If this pin is used for crystal oscillator, bit 7 of padier register must be programmed “0”  
to avoid leakage current. This pin can be used to wake-up system during sleep mode;  
however, wake-up function is also disabled if bit 7 of padier register is “0”.  
The functions of this pin can be:  
(1) Bit 6 of port A. It can be configured as digital input or two-state output, with pull-up  
resistor .  
IO  
PA6 /  
X2  
ST /  
(2) X2 when crystal oscillator is used.  
CMOS  
If this pin is used for crystal oscillator, bit 6 of padier register must be programmed “0”  
to avoid leakage current. This pin can be used to wake-up system during sleep mode;  
however, wake-up function is also disabled if bit 6 of padier register is “0”.  
The functions of this pin can be:  
(1) Bit 5 of port A. It can be configured as digital input or open-drain output pin.  
Please notice that there is no pull-up resistor in this pin.  
(2) Hardware reset.  
IO (OC)  
ST /  
PA5 /  
RESET#  
CMOS  
This pin can be used to wake-up system during sleep mode; however, wake-up  
function is also disabled if bit 5 of padier register is “0”. Please put 33Ω resistor in  
series to have high noise immunity when this pin is in input mode.  
The functions of this pin can be:  
(1) Bit 4 of port A. It can be configured as digital inputor two-state output, with pull-up  
resistor by software independently  
IO  
PA4 /  
AD8  
ST /  
(2) Channel 8 of ADC analog input  
CMOS /  
Analog  
When this pin is configured as analog input, please use bit 4 of register padier to  
disable the digital input to prevent current leakage. The bit 4 of padier register can be  
set to “0” to disable digital input; wake-up from power-down by toggling this pin is also  
disabled.  
The functions of this pin can be:  
(1) Bit 3 of port A. It can be configured as digital inputor two-state output, with pull-up  
resistor independently by software  
PA3 /  
AD7 /  
IO  
(2) Channel 7 of ADC analog input  
ST /  
(3) PWM output from Timer2  
PWM /  
COM3  
CMOS /  
Analog  
(4) COM3 for LCD. It can provide VDD/2 LCD bias voltage.  
When this pin is configured as analog input, please use bit 3 of register padier to  
disable the digital input to prevent current leakage. The bit 3 of padier register can be  
set to “0” to disable digital input; wake-up from power-down by toggling this pin is also  
disabled.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 14 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Pin Type &  
Buffer Type  
Pin Name  
Description  
The functions of this pin can be:  
(1) Bit 2 of port A. It can be configured as digital input or two-state output, with pull-up  
resistor independently by software  
PA2 /  
PWM /  
COM2  
IO  
ST /  
(2) PWM output from Timer2  
CMOS  
(3) COM2 for LCD. It can provide VDD/2 LCD bias voltage.  
The bit 2 of padier register can be set to “0” to disable wake-up from power-down by  
toggling this pin.  
The functions of this pin can be:  
(1) Bit 0 of port A. It can be configured as digital input or two-state output, with pull-up  
resistor independently by software  
PA0 /  
INT0 /  
COM0  
IO  
(2) External interrupt line 0. It can be used as an external interrupt line 0. Both rising  
edge and falling edge are accepted to request interrupt service and configurable  
by register setting.  
ST /  
CMOS  
(3) COM0 for LCD. This pin is also the COM0 from LCD bias voltage generator.  
The bit 0 of padier register can be set to “0” to disable wake-up from power-down by  
toggling this pin.  
PB6 / AD6  
PB5 / AD5  
PB4 / AD4  
PB3 / AD3  
PB2 / AD2  
The functions of these pins can be:  
(1) Bit 6~1 of port B. These six pins can each be configured as analog input, digital  
input, and two-state output mode with pull-up resistor independently by software.  
(2) Channel 6~1 of ADC analog input.  
IO  
ST /  
CMOS /  
Analog  
When any of these six pins acts as analog inputs, please use register pbdier to  
disable the digital input to prevent current leakage. If the control bit in pbdier register  
is set to “0” to disable digital input, wake-up from power-down by toggling the  
corresponding pin is also disabled. When using PB2 as ADC input, please add one  
0.1uF capacitance on it.  
PB1 / AD1  
The functions of this pin can be:  
(1) Bit 0 of port B. It can be configured as analog input, digital input, and two-state  
output mode with pull-up resistor independently by software.  
(2) Channel 0 of ADC analog input. When this pin acts as analog input, please use bit  
0 of register pbdier to disable the digital input to prevent current leakage.  
(3) External interrupt line 1. Both rising edge and falling edge are accepted to request  
interrupt service and configurable by register setting.  
IO  
PB0 /  
AD0 /  
INT1  
ST /  
CMOS /  
Analog  
If bit 0 of pbdier register is set to “0” to disable digital input, wake-up from power-down  
by toggling this pin is also disabled.  
The functions of this pin can be:  
IO  
PC5 /  
(1) Bit 5 of port C. It can be configured as analog input, digital input, and two-state  
output mode with pull-up resistor independently by software.  
(2) COM1 for LCD. This pin is also the COM1 for LCD bias voltage generator  
ST /  
COM1  
CMOS  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 15 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Pin Type &  
Buffer Type  
Pin Name  
Description  
IO  
PC4  
PC1  
Bit 4, 1 of port C. These pins can be configured as digital input mode and two-state  
output mode with pull-up resistor independently by software.  
ST /  
CMOS  
IO  
Bit 0 of port C. It can be configured as analog input, digital input, and two-state output  
mode with pull-up resistor independently by software.  
PC0  
ST /  
CMOS  
VDD: Digital positive power  
VDD /  
AVDD  
VDD/  
AVDD: Analog positive power  
AVDD  
VDD is the IC power supply while AVDD is the ADC power supply. AVDD and VDD  
are double bonding internally and they have the same external pin.  
GND: Digital negative power  
GND /  
AGND  
GND /  
AGND  
AGND: Analog negative power  
GND is the IC ground pin while AGND is the ADC ground pin. AGND and GND are  
double bonding internally and they have the same external pin.  
Notes: IO: Input/Output; ST: Schmitt Trigger input; OC: Open Collector; Analog: Analog input pin;  
CMOS: CMOS voltage level  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 16 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
4. Device Characteristics  
4-1. AC/DC Device Characteristics  
All data are acquired under the conditions of Ta = -40 oC ~ 85 oC, Vdd=5.0V, fSYS=2MHz unless noted.  
Symbol  
Description  
Operating Voltage  
Min  
Typ  
Max  
Unit  
Conditions (Ta=25 oC)  
* Subject to LVR tolerance  
Under_20ms_Vdd_ok**=Y/N  
VDD  
2.2  
5.0  
5.5  
V
System clock* =  
IHRC/2  
0
0
0
8M  
4M  
2M  
VDD3.0V  
VDD2.5V  
VDD2.2V  
VDD = 5.0V  
fSYS  
IHRC/4  
Hz  
IHRC/8  
ILRC  
24K  
1.7  
15  
mA fSYS=IHRC/16=1MIPS@5.0V  
uA fSYS=ILRC=12kHz@3.3V  
uA fSYS= 0Hz,VDD=5.0V  
uA fSYS= 0Hz,VDD=3.3V  
VDD=5.0V;  
Operating Current  
IOP  
IPD  
Power Down Current  
1.0  
0.5  
(by stopsys command)  
Power Save Current  
IPS  
0.3  
mA Band-gap, LVR, IHRC, ILRC,  
Timer16 modules are ON.  
V
(by stopexe command)  
VIL  
VIH  
IOL  
IOH  
VIN  
Input low voltage for IO lines  
Input high voltage for IO lines  
IO lines sink current  
0
0.7 VDD  
7
0.3VDD  
VDD  
13  
V
10  
-7  
mA VDD=5.0V, VOL=0.5V  
mA VDD=5.0V, VOH=4.5V  
IO lines drive current  
-5  
-9  
Input voltage  
-0.3  
VDD+0.3  
1
V
IINJ (PIN) Injected current on pin  
mA VDD+0.3VIN-0.3  
62  
VDD=5.0V  
VDD=3.3V  
VDD=2.2V  
RPH  
Pull-up Resistance  
100  
210  
3.86  
3.35  
2.84  
2.61  
2.37  
2.04  
1.86  
1.67  
4.15  
3.60  
3.05  
2.80  
2.55  
2.20  
2.00  
1.80  
4.44  
3.85  
3.26  
3.00  
2.73  
2.35  
2.14  
1.93  
Low Voltage Detect Voltage *  
VLVR  
V
(Brown-out voltage)  
Band-gap Reference Voltage  
(before calibration)  
1.11  
1.20  
1.29  
VDD=5V, 25oC  
V
VBG  
VDD=2.2V ~ 5.5V,  
-40oC <Ta<85oC*  
-20oC <Ta<70oC*  
25oC, VDD=2.2V~5.5V  
VDD=2.2V~5.5V,  
-40oC <Ta<85oC*  
-20oC <Ta<70oC*  
Band-gap Reference Voltage *  
1.140*  
1.145*  
15.76*  
1.20*  
1.20*  
16*  
1.260*  
1.255*  
16.24*  
(after calibration)  
Frequency of IHRC after  
fIHRC  
MHz  
calibration *  
14.72*  
15.04*  
16*  
16*  
17.28*  
16.96*  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 17 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Symbol  
Description  
Min  
20.4*  
15.6*  
16.8*  
10.2*  
4.55*  
4.90*  
30  
Typ  
24*  
24*  
24*  
12*  
7*  
Max  
27.6*  
32.4*  
31.2*  
13.8*  
9.45*  
9.10*  
Unit  
Conditions (Ta=25 oC)  
VDD=5.0V, Ta=25oC  
VDD=5.0V, -40oC <Ta<85oC*  
VDD=5.0V, -20oC <Ta<70oC*  
VDD=3.3V, Ta=25oC  
VDD=2.2V, -40oC <Ta<85oC*  
VDD=2.2V, -20oC <Ta<70oC*  
VDD = 5.0V  
fILRC  
Frequency of ILRC *  
KHz  
7*  
tINT  
VADC  
VAD  
Interrupt pulse width  
ns  
V
Supply voltage for workable ADC  
AD Input Voltage  
2.5  
5.0  
VDD  
12  
0
V
ADrs ADC resolution  
bit  
0.9  
0.8  
2
@5V  
ADcs ADC current consumption  
mA  
us  
@3V  
ADclk ADC clock period  
2.5V ~ 5.5V  
ADC conversion time  
tADCONV (TADCLK is the period of the selected  
AD conversion clock)  
17  
TADCLK 12-bit resolution  
AD DNL ADC Differential Non-Linearity  
AD INL ADC Integral Non-Linearity  
ADos ADC offset*  
±2*  
±4*  
3
LSB  
LSB  
mV  
PMC232/PMS232 in stop  
VDR  
RAM data retention voltage*  
1.5  
2.5  
V
mode.  
R(VDD/2) (VDD/2) pull-up / pull-down resistance  
5
10  
KΩ  
ΔV(VDD/2) Deviation of (VDD/2) output voltage  
±1%  
±3%  
@VDD=5V  
2408  
4096  
16384  
256  
misc[1:0]=00 (default)  
misc[1:0]=01  
misc[1:0]=10  
misc[1:0]=11  
tWDT  
Watchdog timeout period  
TILRC  
System wake-up period  
Fast wake-up by IO toggle from  
STOPEXE suspend  
Where TSYS is the time period  
of system clock  
128  
128  
TSYS  
Since IHRC starts up more  
quickly in the beginning, so  
Fast wake-up by IO toggle from  
STOPSYS suspend, IHRC is the system  
clock  
TSYS the actual wake-up time will be  
shorter than standard 128  
Sysclk  
tWUP  
Fast wake-up by IO toggle from  
STOPSYS suspend, ILRC is the system  
clock  
Where TSYS is ILRC-based  
TSYS  
128  
time period of system clock  
Normal wake-up from STOPEXE or  
STOPSYS suspend  
Where TILRC is the clock  
1024  
TILRC  
period of ILRC  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 18 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Symbol  
tSBP  
Description  
Min  
Typ  
Max  
Unit  
TILRC  
us  
Conditions (Ta=25 oC)  
System boot-up period from  
power-on  
Where TILRC is the clock period of  
1024  
ILRC  
tRST  
External reset pulse width  
120  
@VDD=5V  
*These parameters are for design reference, not tested for each chip.  
** Under_20ms_VDD_Ok is a checking condition for the VDD rising from 0V to the stated voltage within 20ms.  
4-2. Absolute Maximum Ratings  
Supply Voltage ………………………….  
2.2V ~ 5.5V  
Input Voltage ……………………………. -0.3V ~ VDD + 0.3V  
Operating Temperature ………………... PMC232 Series: -40°C ~ 85°C  
PMS232 Series: -20°C ~ 70°C  
Junction Temperature ………………….. 150°C  
Storage Temperature …………………… -50°C ~ 125°C  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 19 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
4-3. Typical ILRC frequency vs. VDD and temperature  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 20 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
4-4. Typical IHRC frequency deviation vs. VDD and temperature (calibrated to 16MHz)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 21 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
4-5. Typical operating current vs. VDD @ system clock = ILRC/n  
Conditions:  
2-FPPA (FPPA0: tog PA0, FPPA1: idle)  
ON: ILRC; OFF: Band-gap, LVR, IHRC, EOSC, T16, TM2, ADC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
4-6. Typical operating current vs. VDD @ system clock = IHRC/n  
Conditions:  
2-FPPA (FPPA0: tog PA0, FPPA1: idle)  
ON: Band-gap, LVR, IHRC; OFF: ILRC, EOSC, T16, TM2, ADC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 22 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
4-7. Typical operating current vs. VDD @ system clock = 4MHz EOSC / n  
Conditions:  
2-FPPA (FPPA0: tog PA0, FPPA1: idle)  
ON: EOSC, MISC.6 = 1;  
OFF: Band-gap, LVR, IHRC, ILRC, T16, TM2, ADC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
4-8. Typical operating current vs. VDD @ system clock = 32kHz EOSC / n  
Conditions:  
2-FPPA (FPPA0: tog PA0, FPPA1: idle)  
ON: EOSC, MISC.6 = 1;  
OFF: Band-gap, LVR, IHRC, ILRC, T16, TM2, ADC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 23 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
4-9. Typical IO driving current (IOH) and sink current (IOL)  
4-10. Typical IO input high/low threshold voltage (VIH/VIL)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 24 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
4-11. Typical resistance of IO pull high device  
4-12. Typical VDD/2 Bias output voltage  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 25 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
4-13. Typical power down current (IPD) and power save current (IPS)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 26 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
4-14. Timing charts for boot up conditions  
LVR level  
SBP  
VDD  
POR  
VDD  
LVR  
t
SBP  
t
Program  
Program  
Execution  
Execution  
Boot up from LVR detection  
Boot up from Power-On Reset  
VDD  
VDD  
t
SBP  
WD  
Time Out  
Reset#  
t
SBP  
Program  
Execution  
Program  
Execution  
Boot up from Reset Pad reset  
Boot up from Watch Dog Time Out  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 27 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5. Functional Description  
5-1. Processing Units  
There are two processing units (FPP unit) inside the chip of PMC232/PMS232. In each processing unit, it  
includes (i) its own Program Counter to control the program execution sequence (ii) its own Stack Pointer to  
store or restore the program counter for program execution (iii) its own accumulator (iv) Status Flag to record  
the status of program execution. Each FPP unit has its own program counter and accumulator for program  
execution, flag register to record the status, and stack pointer for jump operation. Based on such architecture,  
FPP unit can execute its own program independently, thus parallel processing can be expected.  
These two FPP units share the same 2k×16 bits OTP program memory, 160 bytes data SRAM and all the IO  
ports, these two FPP units are operated at mutual exclusive clock cycles to avoid interference. One task switch  
is built inside the chip to decide which FPP unit should be active for the corresponding cycle. The hardware  
diagram and basic timing diagram of FPP units are illustrated in Fig. 1. For FPP0 unit, its program will be  
executed in sequence every other system clock, shown as (M-1)th, Mth and (M+1)th instructions. For FPP1 unit,  
its program will be also executed in sequence every other system clock, shown as (N-1)th, Nth and (N+1)th  
instructions.  
System Clock  
FPP0  
Program Counter 0  
Stack Pointer 0  
Accumulator 0  
Task Switch  
Time  
(M-1)th  
Mth  
(M+1)th  
2KW OTP  
Program  
Memory  
Flag register 0  
FPP0 active  
FPP1  
Program Counter 1  
Stack Pointer 1  
Accumulator 1  
160 bytes  
SRAM  
(N-1)th  
Nth  
(N+1)th  
IO Port  
Flag register 1  
FPP1 active  
Fig.1: Hardware and Timing Diagram of FPP unit  
Each FPP unit has half computing power of whole system; for example, FPP0 and FPP1will be operated at  
4MHz if system clock is 8MHz. The FPP unit can be enabled or disabled by programming the FPP unit Enable  
Register, only FPP0 is enabled after power-on reset. The system initialization will be started from FPP0 and  
FPP1 unit can be enabled by user’s program if necessary. Both FPP0 and FPP1 can be enabled or disabled by  
using any one FPP unit.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 28 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-1-1. Program Counter  
Program Counter (PC) is the unit that contains the address of an instruction to be executed next. The  
program counter is automatically incremented at each instruction cycle so that instructions are retrieved  
sequentially from the program memory. Certain instructions, such as branches and subroutine calls, interrupt  
the sequence by placing a new value in the program counter. The bit length of the program counter is 12 for  
PMC232/PMS232. The program counter of FPP0 is 0 after hardware reset and 1 for FPP1. Whenever an  
interrupt happens in FPP0, the program counter will jump to ’h10 for interrupt service routine. Each FPP unit  
has its own program counter to control the program execution sequence.  
5-1-2. Stack Pointer  
The stack pointer in each processing unit is used to point the top of the stack area where the local variables  
and parameters to subroutines are stored; the stack pointer register (sp) is located in IO address 0x02h. The  
bit number of stack pointer is 8 bit; the stack memory cannot be accessed over 160 bytes and should be  
defined within 160 bytes from 0x00h address. The stack memory of PMC232/PMS232 for each FPP unit can  
be assigned by user via stack pointer register, means that the depth of stack pointer for each FPP unit is  
adjustable in order to optimize system performance. The following example shows how to define the stack in  
the ASM (assembly language) project:  
ROMADR  
GOTO  
GOTO  
...  
0
FPPA0  
FPPA1  
RAMADR  
WORD  
WORD  
...  
0
// Address must be less than 0x100  
// one WORD  
// two WORD  
Stack0 [1]  
Stack1 [2]  
FPPA0:  
SP  
=
=
Stack0;  
// assign Stack0 for FPPA0,  
// one level call because of Stack0[1]  
...  
call  
...  
function1  
FPPA1:  
SP  
Stack1;  
// assign Stack1 for FPPA1,  
// two level call because of Stack1[2]  
...  
call  
...  
function2  
In Mini-C project, the stack calculation is done by system software, user will not have effort on it, and the  
example is shown as below:  
void  
FPPA0 (void)  
{
...  
}
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 29 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
User can check the stack assignment in the window of program disassembling, Fig. 2 shows that the status of  
stack before FPP0 execution, system has calculated the required stack space and has reserved for the  
program.  
Fig.2: Stack Assignment in Mini-C project  
5-1-3. Single FPP mode  
For traditional MCU user who does not need parallel processing capability, PMC232/PMS232 provides single  
FPP mode optional to behave as traditional MCU. After single FPP mode is selected, FPP1 is always disabled  
and only FPP0 is active. Fig.3 shows the timing diagram for each FPP unit,. Please notice that wait and delay  
instructions are NOT supported when single FPP mode is chosen.  
System Clock  
FPP0  
Task Switch  
Program Counter 0  
Time  
Stack Pointer 0  
(M-1)th  
(M+1)  
(M+3)th  
th (M+2)th  
(M+4)th  
Mth  
2KW OTP  
Program  
Memory  
Accumulator 0  
Flag register 0  
FPP0 active  
FPP1  
160 bytes  
SRAM  
Program Counter 1  
Stack Pointer 1  
Accumulator 1  
Flag register 1  
IO Port  
FPP1 is always inactive  
Fig.3: Timing Diagram of single FPP mode  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 30 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-2. Program Memory - OTP  
5-2-1. Program Memory Assignment  
The OTP (One Time Programmable) program memory is used to store the program instructions to be  
executed. All program codes for each FPP unit are stored in this OTP memory for both FPP0 and FPP1. The  
OTP program memory may contains the data, tables and interrupt entry. After reset, the initial address for  
FPP0 is ‘h0 and ‘h1 for FPP1. The interrupt entry is ‘h10 if used and interrupt function is for FPP0 only, the  
last eight addresses are reserved for system using, like checksum, serial number, etc. The OTP program  
memory for PMC232/PMS232 is a 2kx16 bit that is partitioned as Table 1. The OTP memory from address  
‘h7F8 to ‘h7FF is for system using, address space from ‘h002 to ‘h00F and from ‘h011 to ‘h7F7 are user  
program space. The address ‘h001 is the FPP1 initial address for two FPP units mode and user program for  
single FPP unit mode.  
Address  
0x000  
0x001  
0x002  
Function  
FPP0 reset – goto instruction  
FPP1 reset – goto instruction  
User program  
0x00F  
0x010  
0x011  
User program  
Interrupt entry address  
User program  
0x7F7  
0x7F8  
User program  
System Using  
0x7FF  
System Using  
Table 1: Program Memory Organization of PMC232/PMS232  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 31 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-2-2. Example of Using Program Memory for Two FPP mode  
Table 2 shows one example of using program memory which two FPP units are active.  
Address  
Function  
000 FPP0 reset – goto instruction (goto  
‘h020)  
001 Begin of FPP1 program  
• •  
00F goto ‘h1A1 to continue FPP1 program  
010 Interrupt entry address (FPP0 only)  
• •  
01F End of ISR  
020 Begin of FPP0 user program  
• •  
1A0 End of FPP0 user program  
1A1 Continuing FPP1 program  
• •  
7F7 End of FPP1 program  
7F8 System Using  
• •  
7FF System Using  
Table 2: Example of using Program Memory for two FPP units mode  
5-2-3. Example of Using Program Memory for Single FPP mode  
The entire user’s program memory can be assigned to FPP0 when single FPP mode is selected. Table 3  
shows the example of program memory using for single FPP unit mode.  
Address  
000 FPP0 reset  
Function  
001 Begin of user program  
002 user program  
• •  
00F goto instruction (goto 0x020)  
010 Interrupt entry address  
011 ISR  
• •  
01F End of ISR  
020 user program  
• •  
• •  
7F7 user program  
7F8 System Using  
• •  
7FF System Using  
Table 3: Example of using Program Memory for single FPP mode  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 32 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-3. Program Structure  
5-3-1. Program structure of two FPP units mode  
After power-up, the program starting address of FPP0 is 0x000 and 0x001 for FPP1. The 0x010 is the entry  
address of interrupt service routine, which belongs to FPP0 only. The basic firmware structure for  
PMC232/PMS232 is shown as Fig. 4, the program codes of two FPP units are placed in one whole program  
space. Except for the initial addresses of processing units and entry address of interrupt, the memory location  
is not specially specified; the program codes of processing unit can be resided at any location no matter what  
the processing unit is. After power-up, the fpp0Boot will be executed first, which will include the system  
initialization and other FPP units enabled.  
.romadr 0x00  
// Program Begin  
goto  
fpp0Boot;  
goto fpp1Boot;  
//------Interrpt service Routine-----------------  
.romadr 0x010  
pushaf ;  
t0sn  
goto  
t0sn  
intrq.0;  
ISR_PA0;  
intrq.1;  
//PA.0 ISR  
//PB.0 ISR  
goto  
ISR_PB0;  
//------End of ISR---------  
//------ Begin of FPP0 ----------  
fpp0Boot :  
//--- Initialize FPP0 SP and so on…  
fpp0Loop:  
goto fpp0Loop:  
FPP0 function  
subroutine  
//------ End of FPP0 --------  
//------ Begin of FPP1 ----------  
fpp1Boot :  
//--- Initialize FPP1 SP and so on…  
FPP1 function  
subroutine  
fpp1Loop:  
goto fpp1Loop:  
//--------- End of FPP1 --------  
Fig.4: Program Structure  
5-3-2. Program structure of single FPP mode  
After power-up, the program starting address of FPP0 is 0x000, 0x010 is the entry address of interrupt  
service routine. For single FPP unit mode, the firmware structure is same as traditional MCU. After power-up,  
the program will be executed from address 0x000, then continuing the program sequence.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 33 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-4. Boot Procedure  
POR (Power-On-Reset) is used to reset PMC232/PMS232 when power up, however, the supply voltage may  
be not stable. To ensure the stability of supply voltage after power up, it will wait 1024 ILRC clock cycles before  
first instruction being executed, which is tSBP and shown in the Fig. 5. After boot up procedure, the default  
system clock is ILRC; user should ensure that the power should be stable after boot up time.  
VDD  
t
SBP  
POR  
Program  
Execution  
Boot up from Power-On Reset  
Fig.5: Power-Up Sequence  
Fig. 6 shows the typical program flow after boot up. Please notice that the FPP1 is disabled after reset and  
recommend NOT enabling FPP1 before system and FPP0 initialization.  
Start  
Initialize the system  
FPP0  
Initialize the I/O  
Initialize the shared  
Resources  
Set the Stack of FPP0  
Enable FPP1  
FPP0 Firmware  
Set the Stack of FPP1  
FPP1  
FPP1 Firmware  
Fig.6: Boot Procedure  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 34 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-5. Data Memory -- SRAM  
Fig. 7 shows the SRAM data memory organization of PMC232/PMS232, all the SRAM data memory could be  
accessed by FPP0 and FPP1 directly with 1T clock cycle, the data access can be byte or bit operation.  
Besides data storage, the SRAM data memory is also served as data pointer of indirect access method and the  
stack memory for all FPP units.  
The stack memory for each processing unit should be independent from each other, and defined in the data  
memory. The stack pointer is defined in the stack pointer register of each processing unit; the depth of stack  
memory of each processing unit is defined by the user. The arrangement of stack memory fully flexible and can  
be dynamically adjusted by the user.  
For indirect memory access mechanism, the data memory is used as the data pointer to address the data byte.  
All the data memory could be the data pointer; it’s quite flexible and useful to do the indirect memory access.  
Since the data width is 8-bit, all the 160 bytes data memory of PMC232/PMS232 can be accessed by indirect  
access mechanism.  
Address  
000h  
˙
DATA  
˙
index  
˙
DATA  
FPP0  
FPP1  
˙
FPP0 stack  
˙
˙
˙
˙
DATA  
˙
FPP1 stack  
˙
˙
˙
˙
DATA  
˙
˙
˙
˙
˙
˙
9Fh  
Fig.7: Data Memory Organization  
5-6. Arithmetic and Logic Unit  
Arithmetic and Logic Unit (ALU) is the computation element to operate integer arithmetic, logic, shift and other  
specialized operations. The operation data can be from instruction, accumulator or SRAM data memory.  
Computation result could be written into accumulator or SRAM. FPP0 and FPP1 will share ALU for its  
corresponding operation.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 35 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-7. Oscillator and clock  
There are three oscillator circuits provided by PMC232/PMS232: external crystal oscillator (EOSC), internal  
high RC oscillator (IHRC) and internal low RC oscillator (ILRC), and these three oscillators are enabled or  
disabled by registers eoscr.7, clkmd.4 and clkmd.2 independently. User can choose one of these three  
oscillators as system clock source and use clkmd register to target the desired frequency as system clock to  
meet different application.  
Oscillator Module  
EOSC  
Enable/Disable  
eoscr.7  
IHRC  
clkmd.4  
ILRC  
clkmd.2  
5-7-1. Internal High RC oscillator and Internal Low RC oscillator  
After boot-up, the IHRC and ILRC oscillators are enabled. The frequency of IHRC can be calibrated to  
eliminate process variation by ihrcr register; normally it is calibrated to 16MHz. The frequency deviation can  
be within 1% normally after calibration under the calibrated voltage, however, it still drifts slightly with supply  
voltage and operating temperature. Please refer to the measurement chart for IHRC frequency verse VDD  
and IHRC frequency verse temperature. The frequency of ILRC will vary by process, supply voltage and  
temperature, please refer to DC specification and do not use for accurate timing application.  
5-7-2. Chip calibration  
The IHRC frequency and band-gap reference voltage may be different chip by chip due to manufacturing  
variation, PMC232/PMS232 provide both the IHRC frequency calibration and band-gap calibration to  
eliminate this variation, and this function can be selected when compiling user’s program and the command  
will be inserted into user’s program automatically. The calibration command is shown as below:  
.ADJUST_IC SYSCLK=IHRC/(p1), IHRC=(p2)MHz, VDD=(p3)V, Band-gap=(p4);  
Where, p1=2, 4, 8, 16, 32; In order to provide different system clock.  
p2=14 ~ 18; In order to calibrate the chip to different frequency, 16MHz is the usually one.  
p3=2.5 ~ 5.5; In order to calibrate the chip under different supply voltage.  
p4= On or Off; Band-gap calibration is On or Off.  
5-7-3. IHRC Frequency Calibration and System Clock  
During compiling the user program, the options for IHRC calibration and system clock are shown as Table 4:  
SYSCLK  
○ Set IHRC / 2  
Set IHRC / 4  
Set IHRC / 8  
Set IHRC / 16  
Set IHRC / 32  
○ Set ILRC  
CLKMD  
IHRCR  
Calibrated  
Calibrated  
Calibrated  
Description  
= 34h (IHRC / 2)  
= 14h (IHRC / 4)  
= 3Ch (IHRC / 8)  
IHRC calibrated to 16MHz, CLK=8MHz (IHRC/2)  
IHRC calibrated to 16MHz, CLK=4MHz (IHRC/4)  
IHRC calibrated to 16MHz, CLK=2MHz (IHRC/8)  
IHRC calibrated to 16MHz, CLK=1MHz (IHRC/16)  
IHRC calibrated to 16MHz, CLK=0.5MHz (IHRC/32)  
IHRC calibrated to 16MHz, CLK=ILRC  
= 1Ch (IHRC / 16) Calibrated  
= 7Ch (IHRC / 32) Calibrated  
= E4h (ILRC / 1)  
No change  
Calibrated  
○ Disable  
No Change IHRC not calibrated, CLK not changed, Band-gap OFF  
Table 4 : Options for IHRC Frequency Calibration  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 36 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Usually, .ADJUST_IC will be the first command after boot up, in order to set the target operating frequency  
whenever starting the system. The program code for IHRC frequency calibration is executed only one time  
that occurs in writing the codes into OTP memory; after then, it will not be executed again. If the different  
option for IHRC calibration is chosen, the system status is also different after boot. The following shows the  
status of PMC232/PMS232 for different option:  
(1) .ADJUST_IC  
SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V, Band-gap=On  
After boot up, CLKMD = 0x34:  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is enabled  
System CLK = IHRC/2 = 8MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode, BG=1.2V  
(2) .ADJUST_IC  
SYSCLK=IHRC/4, IHRC=16MHz, VDD=3.3V, Band-gap=On  
After boot up, CLKMD = 0x14:  
IHRC frequency is calibrated to 16MHz@VDD=3.3V and IHRC module is enabled  
System CLK = IHRC/4 = 4MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode, BG=1.2V  
(3) .ADJUST_IC  
SYSCLK=IHRC/8, IHRC=16MHz, VDD=2.5V, Band-gap=On  
After boot up, CLKMD = 0x3C:  
IHRC frequency is calibrated to 16MHz@VDD=2.5V and IHRC module is enabled  
System CLK = IHRC/8 = 2MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode, BG=1.2V  
(4) .ADJUST_IC  
SYSCLK=IHRC/16, IHRC=16MHz, VDD=2.5V, Band-gap=On  
After boot up, CLKMD = 0x1C:  
IHRC frequency is calibrated to 16MHz@VDD=2.5V and IHRC module is enabled  
System CLK = IHRC/16 = 1MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode, BG=1.2V  
(5) .ADJUST_IC  
SYSCLK=IHRC/32, IHRC=16MHz, VDD=5V, Band-gap=Off  
After boot up, CLKMD = 0x7C:  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is enabled  
System CLK = IHRC/32 = 500kHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(6) .ADJUST_IC  
SYSCLK=ILRC, IHRC=16MHz, VDD=5V, Band-gap=Off  
After boot up, CLKMD = 0XE4:  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is disabled  
System CLK = ILRC  
Watchdog timer is disabled, ILRC is enabled, PA5 is input mode  
(7) .ADJUST_IC  
DISABLE  
After boot up, CLKMD is not changed (Do nothing):  
IHRC is not calibrated and IHRC module is disabled, Band-gap is not calibrated  
System CLK = ILRC  
Watchdog timer is enabled, ILRC is enabled, PA5 is in input mode,  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 37 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-7-4. External Crystal Oscillator  
If crystal oscillator is used, a crystal or resonator is required between X1 and X2. Fig. 8 shows the hardware  
connection under this application; the range of operating frequency of crystal oscillator can be from 32 kHz to  
4MHz, depending on the crystal placed on; higher frequency oscillator than 4MHz is NOT supported.  
(Select driving current for oscillator)  
eoscr[6:5]  
(Enable crystal oscillator)  
eoscr.7  
C1  
PA7/X1  
System clock = EOSC  
PA6/X2  
C2  
The values of C1 and C2 should depend on  
the specification of crystal.  
Fig.8: Connection of crystal oscillator  
Besides crystal, external capacitor and options of PMC232/PMS232 should be fine tuned in eoscr (0x0a)  
register to have good sinusoidal waveform. The eoscr.7 is used to enable crystal oscillator module, eoscr.6  
and eoscr.5 are used to set the different driving current to meet the requirement of different frequency of  
crystal oscillator:  
eoscr.[6:5]=01 : Low driving capability, for lower frequency, ex: 32KHz crystal oscillator  
eoscr.[6:5]=10 : Middle driving capability, for middle frequency, ex: 1MHz crystal oscillator  
eoscr.[6:5]=11 : High driving capability, for higher frequency, ex: 4MHz crystal oscillator  
Table 5 shows the recommended values of C1 and C2 for different crystal oscillator; the measured start-up  
time under its corresponding conditions is also shown. Since the crystal or resonator had its own  
characteristic, the capacitors and start-up time may be slightly different for different type of crystal or  
resonator, please refer to its specification for proper values of C1 and C2.  
Measured  
Frequency  
C1  
C2  
Conditions  
Start-up time  
6ms  
4MHz  
1MHz  
32kHz  
4.7pF  
10pF  
22pF  
4.7pF  
10pF  
22pF  
(eoscr[6:5]=11, misc.6=0)  
(eoscr[6:5]=10, misc.6=0)  
(eoscr[6:5]=01, misc.6=0)  
11ms  
450ms  
Table 5: Recommend values of C1 and C2 for crystal and resonator oscillators  
When using the crystal oscillator, user must pay attention to the stable time of oscillator after enabling it, the  
stable time of oscillator will depend on frequency ` crystal type ` external capacitor and supply voltage. Before  
switching the system to the crystal oscillator, user must make sure the oscillator is stable; the reference  
program is shown as below:  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 38 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
void FPPA0 (void)  
{
. ADJUST_IC SYSCLK=IHRC/16, IHRC=16MHz, VDD=5V, Band-gap=On  
// If Band-gap is not calibrated, it can use “. ADJUST_IC DISABLE” ...  
// EOSCR = 0b110_00000;  
$
$
EOSCR Enable, 4MHz;  
T16M EOSC, /1, BIT13;  
// T16 receive 2^14=16384 clocks of crystal EOSC,  
// Intrq.T16 =>1, crystal EOSC Is stable  
WORD  
count  
=
0;  
stt16count;  
Intrq.T16 =  
0;  
wait1  
Intrq.T16;  
0xB4;  
// count from 0x0000 to 0x2000, then set INTRQ.T16  
// switch system clock to EOSC;  
// disable IHRC  
clkmd  
=
Clkmd.4 = 0;  
...  
Please notice that the crystal oscillator should be fully turned off before entering the power-down mode, in  
order to avoid unexpected wakeup event. If the 32 KHz crystal oscillator is used and extremely low operating  
current is required, misc.6 can be set to reduce current after crystal oscillator is running normally.  
5-7-5. System Clock and LVR level  
The clock source of system clock comes from EOSC, IHRC and ILRC, the hardware diagram of system clock  
in the PMC232/PMS232 is shown as Fig. 9.  
clkmd[7:5]  
÷2, ÷4, ÷6,  
IHRC  
clock  
÷8, ÷16, ÷32, ÷64  
System  
clock  
CLK  
M
U
X
EOSC  
clock  
÷1, ÷2, ÷4, ÷8  
ILRC  
÷1 (default), ÷4  
clock  
Fig.9: Options of System Clock  
User can choose different operating system clock depends on its requirement; the selected operating system  
clock should be combined with supply voltage and LVR level to make system stable. The LVR level will be  
selected during compilation, and the lowest LVR levels can be chosen for different operating frequencies.  
Please refer to Section 4.1.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 39 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-7-6. System Clock Switching  
After IHRC calibration, user may want to switch system clock to a new frequency or may switch system clock  
at any time to optimize the system performance and power consumption. Basically, the system clock of  
PMC232/PMS232 can be switched among IHRC, ILRC and EOSC by setting the clkmd register at any time;  
system clock will be the new one after writing to clkmd register immediately. Please notice that the original  
clock module can NOT be turned off at the same time as writing command to clkmd register. The examples  
are shown as below and more information about clock switching, please refer to the “Help -> Application Note  
-> CLKMD”.  
Case 1: Switching system clock from ILRC to IHRC/2  
//  
//  
//  
system clock is ILRC  
CLKMD  
CLKMD.2  
=
=
0x34;  
0;  
switch to IHRC/2ILRC CAN NOT be disabled here  
ILRC CAN be disabled at this time  
Case 2: Switching system clock from ILRC to EOSC  
//  
system clock is ILRC  
CLKMD  
CLKMD.2  
=
=
0xA6//  
switch to IHRCILRC CAN NOT be disabled here  
ILRC CAN be disabled at this time  
0;  
//  
Case 3: Switching system clock from IHRC/2 to ILRC  
//  
//  
//  
system clock is IHRC/2  
CLKMD  
CLKMD.4  
=
=
0xF4;  
0;  
switch to ILRCIHRC CAN NOT be disabled here  
IHRC CAN be disabled at this time  
Case 4: Switching system clock from IHRC/2 to EOSC  
//  
system clock is IHRC/2  
CLKMD  
CLKMD.4  
=
=
0XB0//  
switch to EOSCIHRC CAN NOT be disabled here  
IHRC CAN be disabled at this time  
0;  
//  
Case 5: Switching system clock from IHRC/2 to IHRC/4  
//  
system clock is IHRC/2, ILRC is enabled here  
switch to IHRC/4  
CLKMD  
=
0X14//  
Case 6: System may hang if it is to switch clock and turn off original oscillator at the same time  
//  
//  
//  
system clock is ILRC  
CLKMD  
=
0x30;  
CAN NOT switch clock from ILRC to IHRC/2 and  
turn off ILRC oscillator at the same time  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 40 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-8. 16-bit Timer (Timer16)  
A 16-bit hardware timer (Timer16) is implemented in the PMC232/PMS232, the clock sources of Timer16 may  
come from system clock (CLK), clock of external crystal oscillator (EOSC), internal high RC oscillator (IHRC),  
internal low RC oscillator (ILRC) and PA0, a multiplex is used to select clock output for the clock source.  
Before sending clock to the counter16, a pre-scaling logic with divided-by-1, 4, 16, and 64 is used for wide  
range counting. The 16-bit counter performs up-counting operation only, the counter initial values can be  
stored from memory by stt16 instruction and the counting values can be loaded to memory by ldt16 instruction.  
A selector is used to select the interrupt condition of Timer16, whenever overflow occurs, the Timer16 interrupt  
can be triggered. The hardware diagram of Timer16 is shown as Fig. 10. The interrupt source of Timer16  
comes from one of bit 8 to 15 of 16-bit counter, and the interrupt type can be rising edge trigger or falling edge  
trigger which is specified in the bit 5 of integs register (IO address 0x0C).  
stt16 command  
DATA Memory  
t16m[7:5]  
t16m[4:3]  
ldt16 command  
CLK  
M
U
X
Pre-  
scalar  
÷
1, 4,  
16, 64  
16-bit  
up  
counter  
Bit[15:0]  
IHRC  
EOSC  
ILRC  
Data Bus  
PA0  
Bit[15:8]  
M
U
X
To set  
interrupt  
request flag  
or  
t16m[2:0]  
integs.4  
Fig.10: Hardware diagram of Timer16  
When using the Timer16, the syntax for Timer16 has been defined in the .INC file. There are three  
parameters to define the Timer16; 1st parameter is used to define the clock source of Timer16, 2nd parameter  
is used to define the pre-scalar and the last one is to define the interrupt source. The detail description is  
shown as below:  
T16M  
$ 7~5:  
IO_RW  
0x06  
STOP, SYSCLK, X, X, IHRC, EOSC, ILRC, PA0_F  
/1, /4, /16, /64  
// 1st par.  
// 2nd par.  
// 3rd par.  
$ 4~3:  
$ 2~0:  
BIT8, BIT9, BIT10, BIT11, BIT12, BIT13, BIT14, BIT15  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 41 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
User can define the parameters of T16M based on system requirement, some examples are shown below  
and more examples can refer to “Help Application Note IC Introduction Register Introduction T16M”  
in IDE utility.  
$
T16M  
SYSCLK, /64, BIT15;  
// choose (SYSCLK/64) as clock source, every 2^16 clock to set INTRQ.2=1  
// if using System Clock = IHRC / 2 = 8 MHz  
// SYSCLK/64 = 8 MHz/64 = 125kHz, about every 512 mS to generate INTRQ.2=1  
$
$
$
T16M  
EOSC, /1, BIT13;  
// choose (EOSC/1) as clock source, every 2^14 clocks to generate INTRQ.2=1  
// if EOSC=32768 Hz, 32768 Hz/(2^14) = 2Hz, every 0.5S to generate INTRQ.2=1  
T16M  
PA0_F, /1, BIT8;  
// choose PA0 as clock source, every 2^9 to generate INTRQ.2=1  
// receiving every 512 times PA0 to generate INTRQ.2=1  
T16M  
STOP;  
// stop Timer16 counting  
If Timer16 is operated at free running, the frequency of interrupt can be described as below:  
FINTRQ_T16M = Fclock source ÷ P ÷ 2n+1  
Where, F is the frequency of selected clock source to Timer16;  
P is the selection of t16m [4:3]; (1, 4, 16, 64)  
N is the nth bit selected to request interrupt service, for example: n=10 if bit 10 is selected.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 42 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-9. 8-bit Timer (Timer2) with PWM generation  
An 8-bit hardware timer (Timer2) with PWM generation is implemented in the PMC232/PMS232, please refer  
to Fig. 10 shown its hardware diagram, the clock sources of Timer2 may come from system clock, internal high  
RC oscillator (IHRC), internal low RC oscillator (ILRC), PA0, PA3 and PA4, bit [7:4] of register tm2c are used to  
select the clock of Timer2. Please notice that external crystal oscillator is NOT to be the clock of Timer2  
because of possible clock glitch. If IHRC is selected for Timer2 clock source, the clock sent to Timer2 will keep  
running when using ICE in halt state. According to the setting of register tm2c[3:2], Timer2 output can be  
selectively output to PA2 or PA3. At this point, regardless of whether PA2 or PA3 is the input or output state,  
Timer2 signal will be forced to output. A clock pre-scaling module is provided with divided-by-1, 4, 16, and 64  
options, controlled by bit [6:5] of tm2s register; one scaling module with divided-by-1~31 is also provided and  
controlled by bit [4:0] of tm2s register. In conjunction of pre-scaling function and scaling function, the frequency  
of Timer2 clock (TM2_CLK) can be wide range and flexible. TM2_CLK can be selected as system clock in  
order to provide special frequency of system clock, please refer to clkmd register.  
The Timer2 counter performs 8-bit up-counting operation only; the counter values can be set or read back by  
tm2ct register. The 8-bit counter will be clear to zero automatically when its values reach for upper bound  
register, the upper bound register is used to define the period of timer or duty of PWM. There are two operating  
modes for Timer2: period mode and PWM mode; period mode is used to generate periodical output waveform  
or interrupt event; PWM mode is used to generate PWM output waveform with optional 6-bit or 8-bit PWM  
resolution, Fig. 11 shows the timing diagram of Timer2 for both period mode and PWM mode.  
TM2_CLK  
tm2s.7  
tm2s[6:5] tm2s[4:0]  
tm2c[7:4]  
tm2c.1  
edge to  
interrupt  
CLK,  
IHRC,  
ILRC,  
PA0,  
M
U
X
Pre-  
scalar  
÷
1, 4,  
16, 64  
Scalar  
8-bit  
up  
counter  
tm2ct[7:0]  
÷
~PA0,  
PA3,  
1 ~ 31  
X
O
R
D
E
M
U
X
~PA3,  
PA4,  
~PA4  
PA2  
PA3  
upper  
bound  
register  
tm2c.0  
tm2b[7:0]  
tm2c[3:2]  
Fig.11: Timer2 hardware diagram  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 43 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Time out and  
Time out and  
Time out and  
Interrupt request  
Interrupt request  
Interrupt request  
Counter  
0xFF  
bound  
Counter  
0xFF  
Counter  
0x3F  
bound  
bound  
Time  
Time  
Time  
Time  
Time  
Event Trigger  
Event Trigger  
Event Trigger  
Output-pin  
Output-pin  
Output-pin  
Time  
Mode 0 – Period Mode  
Mode 1 – 8-bit PWM Mode  
Mode 1 – 6-bit PWM Mode  
Fig.12: Timing diagram of Timer2 in period mode and PWM mode (tm2c.1=1)  
5-9-1. Using the Timer2 to generate periodical waveform  
If periodical mode is selected, the duty cycle of output is always 50%; its frequency can be summarized as  
below:  
Frequency of Output = Y ÷ [2 × (K+1) × S1 × (S2+1) ]  
Where,  
Y = tm2c[7:4] : frequency of selected clock source  
K = tm2b[7:0] : bound register in decimal  
S1 = tm2s[6:5] : pre-scalar (1, 4, 16, 64)  
S2 = tm2s[4:0] : scalar register in decimal (1 ~ 31)  
Example 1:  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ [ 2 × (1271) × 1 × (01) ] = 31.25kHz  
Example 2:  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s[7:0] = 0b0_11_11111, S1=64 , S2 = 31  
frequency = 8MHz ÷ ( 2 × (1271) × 64 × (311) ) =15.25Hz  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 44 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Example 3:  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0000_1111, K=15  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency = 8MHz ÷ ( 2 × (151) × 1 × (01) ) = 250kHz  
Example 4:  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0000_0001, K=1  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency = 8MHz ÷ ( 2 × (11) × 1 × (01) ) =2MHz  
The sample program for using the Timer2 to generate periodical waveform from PA2 is shown as below:  
void FPPA0 (void)  
{
. ADJUST_IC  
SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V  
tm2ct = 0x00;  
tm2b = 0x7f;  
tm2s = 0b0_00_00001;  
//  
8-bit PWM, pre-scalar = 1, scalar = 2  
tm2c = 0b0001_01_0_0;  
//  
system clock, output=PA2, period mode  
while(1)  
{
nop;  
}
}
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 45 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-9-2. Using the Timer2 to generate 8-bit PWM waveform  
If 8-bit PWM mode is selected, it should set tm2c[1]=1 and tm2s[7]=0, the frequency and duty cycle of output  
waveform can be summarized as below:  
Frequency of Output = Y ÷ [256 × S1 × (S2+1) ]  
Duty of Output = [( K1 ) ÷ 256]×100%  
Where, Y = tm2c[7:4] : frequency of selected clock source  
K = tm2b[7:0] : bound register in decimal  
S1= tm2s[6:5] : pre-scalar (1, 4, 16, 64)  
S2 = tm2s[4:0] : scalar register in decimal (1 ~ 31)  
Example 1:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 256 × 1 × (0+1) ) = 31.25kHz  
duty of output = [(127+1) ÷ 256] × 100% = 50%  
Example 2:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0_11_11111, S1=64, S2=31  
frequency of output = 8MHz ÷ ( 256 × 64 × (31+1) ) = 15.25Hz  
duty of output = [(127+1) ÷ 256] × 100% = 50%  
Example 3:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b1111_1111, K=255  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 256 × 1 × (0+1) ) = 31.25kHz  
duty of output = [(255+1) ÷ 256] × 100% = 100%  
Example 4:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0000_1001, K = 9  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 256 × 1 × (0+1) ) = 31.25kHz  
duty of output = [(9+1) ÷ 256] × 100% = 3.9%  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 46 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
The sample program for using the Timer2 to generate PWM waveform from PA2 is shown as below:  
void  
{
FPPA0 (void)  
.ADJUST_IC SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V  
wdreset;  
tm2ct = 0x00;  
tm2b = 0x7f;  
tm2s = 0b0_00_00001;  
//  
//  
8-bit PWM, pre-scalar = 1, scalar = 2  
system clock, output=PA2, PWM mode  
tm2c = 0b0001_01_1_0;  
while(1)  
{
nop;  
}
}
5-9-3. Using the Timer2 to generate 6-bit PWM waveform  
If 6-bit PWM mode is selected, it should set tm2c[1]=1 and tm2s[7]=1, the frequency and duty cycle of output  
waveform can be summarized as below:  
Frequency of Output = Y ÷ [64 × S1 × (S2+1) ]  
Duty of Output = [( K1 ) ÷ 64] × 100%  
Where, tm2c[7:4] = Y : frequency of selected clock source  
tm2b[7:0] = K : bound register in decimal  
tm2s[6:5] = S1 : pre-scalar (1, 4, 16, 64)  
tm2s[4:0] = S2 : scalar register in decimal (1 ~ 31)  
Example 1:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0001_1111, K=31  
tm2s = 0b1_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 64 × 1 × (0+1) ) = 125kHz  
duty = [(31+1) ÷ 64] × 100% = 50%  
Example 2:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0001_1111, K=31  
tm2s = 0b1_11_11111, S1=64, S2=31  
frequency of output = 8MHz ÷ ( 64 × 64 × (31+1) ) = 61.03 Hz  
duty of output = [(31+1) ÷ 64] × 100% = 50%  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 47 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Example 3:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0011_1111, K=63  
tm2s = 0b1_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 64 × 1 × (0+1) ) = 125kHz  
duty of output = [(63+1) ÷ 64] × 100% = 100%  
Example 4:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0000_0000, K=0  
tm2s = 0b1_00_00000, S1=1, S2=0  
frequency = 8MHz ÷ ( 64 × 1 × (0+1) ) = 125kHz  
duty = [(0+1) ÷ 64] × 100% =1.5%  
5-10. WatchDog Timer  
The watchdog timer (WDT) is a counter with clock coming from ILRC and there are four different timeout  
periods of watchdog timer can be chosen by setting the misc register, it is:  
256 ILRC clocks period if register misc[1:0]=11  
2048 ILRC clocks period if register misc[1:0]=00 (default)  
4096 ILRC clocks period if register misc[1:0]=01  
16384 ILRC clocks period if register misc[1:0]=10  
The frequency of ILRC may drift a lot due to the variation of manufacture, supply voltage and temperature;  
user should reserve guard band for save operation. WDT can be cleared by power-on-reset or by command  
wdreset at any time. When WDT is timeout, PMC232/PMS232 will be reset to restart the program execution.  
The relative timing diagram of watchdog timer is shown as Fig. 13.  
VDD  
t
SBP  
WD  
Time Out  
Program  
Execution  
Watch Dog Time Out Sequence  
Fig.13: Sequence of Watch Dog Time Out  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 48 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-11. Interrupt  
There are five interrupt lines for PMC232/PMS232:  
External interrupt PA0  
External interrupt PB0  
ADC interrupt  
Timer16 interrupt  
Timer2 interrupt  
Every interrupt request line has its own corresponding interrupt control bit to enable or disable it; the hardware  
diagram of interrupt function is shown as Fig. 14. All the interrupt request flags are set by hardware and  
cleared by writing intrq register. When the request flags are set, it can be rising edge, falling edge or both,  
depending on the setting of register integs. All the interrupt request lines are also controlled by engint  
instruction (enable global interrupt) to enable interrupt operation and disgint instruction (disable global  
interrupt) to disable it. Only FPP0 can accept the interrupt request, other FPP unit will not be interfered by  
interrupt.  
The stack memory for interrupt is shared with data memory and its address is specified by stack register sp.  
Since the program counter is 16 bits width, the bit 0 of stack register sp should be kept 0. Moreover, user can  
use pushaf / popaf instructions to store or restore the values of ACC and flag register to / from stack  
memory. Since the stack memory is shared with data memory, user should manipulate the memory using  
carefully. By adjusting the memory location of stack point, the depth of stack pointer for every FPP unit could  
be fully specified by user to achieve maximum flexibility of system.  
Inten.6  
Timer2  
Intrq.6  
Inten.3  
Intrq.3  
Inten.2  
Intrq.2  
Inten.1  
Intrq.1  
Inten.0  
Intrq.0  
detect  
event  
output  
Interrupt  
to FPP0  
ADC output  
detect  
event  
detect  
rising  
edge  
detect  
both  
edges  
detect  
both  
T16 output  
PB0  
engint / disgint  
Note: “engint” and  
“disgint” are instructions  
PA0  
edges  
Fig.14: Hardware diagram of interrupt controller  
Once the interrupt occurs, its operation will be:  
The program counter will be stored automatically to the stack memory specified by register sp.  
New sp will be updated to sp+2.  
Global interrupt will be disabled automatically.  
The next instruction will be fetched from address 0x010.  
During the interrupt service routine, the interrupt source can be determined by reading the intrq register.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 49 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Note: Even if INTEN=0, INTRQ will be still triggered by the interrupt source.  
After finishing the interrupt service routine and issuing the reti instruction to return back, its operation will be:  
The program counter will be restored automatically from the stack memory specified by register sp.  
New sp will be updated to sp-2.  
Global interrupt will be enabled automatically.  
The next instruction will be the original one before interrupt.  
User must reserve enough stack memory for interrupt, two bytes stack memory for one level interrupt and four  
bytes for two levels interrupt. For interrupt operation, the following sample program shows how to handle the  
interrupt, noticing that it needs four bytes stack memory to handle interrupt and pushaf.  
void  
{
FPPA0  
(void)  
...  
$
INTEN PA0;  
// INTEN =1; interrupt request when PA0 level changed  
INTRQ  
ENGINT  
...  
=
0;  
// clear INTRQ  
// global interrupt enable  
DISGINT  
...  
// global interrupt disable  
}
void Interrupt (void)  
// interrupt service routine  
{
PUSHAF  
// store ALU and FLAG register  
// If INTEN.PA0 will be opened and closed dynamically,  
// user can judge whether INTEN.PA0 =1 or not.  
// Example: If (INTEN.PA0 && INTRQ.PA0) {…}  
// If INTEN.PA0 is always enable,  
// user can omit the INTEN.PA0 judgement to speed up interrupt service routine.  
If (INTRQ.PA0)  
{
// Here for PA0 interrupt service routine  
INTRQ.PA0 = 0;  
...  
// Delete corresponding bit (take PA0 for example)  
}
...  
// X : INTRQ = 0;  
// It is not recommended to use INTRQ = 0 to clear all at the end of  
// the interrupt service routine.  
// It may accidentally clear out the interrupts that have just occurred  
// and are not yet processed.  
POPAF  
// restore ALU and FLAG register  
}
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 50 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-12. Power-Save and Power-Down  
There are three operational modes defined by hardware: ON mode, Power-Save mode and Power-Down  
modes. ON mode is the state of normal operation with all functions ON, Power-save mode (“stopexe”) is the  
state to reduce operating current and CPU keeps ready to continue, Power-Down mode (“stopsys”) is used  
to save power deeply. Therefore, Power-save mode is used in the system which needs low operating power  
with wake-up occasionally and Power-Down mode is used in the system which needs power down deeply  
with seldom wake-up. Table 6 shows the differences in oscillator modules between Power-Save mode  
(“stopexe”) and Power-Down mode (“stopsys”).  
Differences in oscillator modules between STOPSYS and STOPEXE  
IHRC  
Stop  
ILRC  
Stop  
EOSC  
Stop  
STOPSYS  
STOPEXE  
No Change  
No Change  
No Change  
Table 6: Differences in oscillator modules between STOPSYS and STOPEXE  
5-12-1. Power-Save mode (“stopexe”)  
Using “stopexe” instruction to enter the Power-Save mode, only system clock is disabled, remaining all the  
oscillator modules active. For CPU, it stops executing; however, for Timer16, counter keep counting if its  
clock source is not the system clock. The wake-up sources for “stopexe” can be IO-toggle or Timer16  
counts to the set values when clock sources of Timer16 come from IHRC, ILRC or EOSC modules.  
Wake-up from input pins can be considered as a continuation of normal execution, the detail information for  
Power-Save mode shows below:  
IHRC and EOSC oscillator modules: No change, keep active if it was enabled  
ILRC oscillator modules: must remain enabled, need to start with ILRC when be wakening up  
System clock: Disable, therefore, CPU stops execution  
OTP memory is turned off  
T16/ T2: Stop counting if system clock is selected or the corresponding oscillator module is disabled;  
otherwise, it keeps counting.  
Wake-up sources: IO toggle in digital mode (PxDIER bit is 1) or Timer16 or Timer2.  
The watchdog timer must be disabled before issuing the “stopexe” command, the example is shown as  
below:  
CLKMD.En_WatchDog  
stopexe;  
=
0;  
// disable watchdog timer  
// power saving  
….  
Wdreset;  
CLKMD.En_WatchDog  
=
1;  
// enable watchdog timer  
Another example shows how to use Timer16 to wake-up from “stopexe”:  
$ T16M IHRC, /1, BIT8  
// Timer16 setting  
WORD  
STT16  
count  
count;  
=
0;  
stopexe;  
The initial counting value of Timer16 is zero and the system will be waken up after the Timer16 counts 256  
IHRC clocks.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 51 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-12-2. Power-Down mode (“stopsys”)  
Power-Down mode is the state of deeply power-saving with turning off all the oscillator modules. By using  
the “stopsys” instruction, this chip will be put on Power-Down mode directly. The internal low frequency RC  
oscillator must be enabled before entering the Power-Down mode, means that bit 2 of register clkmd (0x03)  
must be set to high before issuing “stopsys” command in order to resume the system when wakeup. The  
following shows the internal status of PMC232/PMS232 detail when “stopsys” command is issued:  
All the oscillator modules are turned off  
Enable internal low RC oscillator (set bit 2 of register clkmd)  
OTP memory is turned off  
The contents of SRAM and registers remain unchanged  
Wake-up sources: IO toggle in digital mode (PxDIER bit is 1)  
Wake-up from input pins can be considered as a continuation of normal execution. To minimize power  
consumption, all the I/O pins should be carefully manipulated before entering power-down mode. The  
reference sample program for power down is shown as below:  
CMKMD  
=
0xF4;  
0;  
//  
//  
Change clock from IHRC to ILRC  
disable IHRC  
CLKMD.4 =  
while (1)  
{
STOPSYS;  
if (…) break;  
//  
//  
//  
enter power-down  
if wakeup happen and check OK, then return to high speed,  
else stay in power-down mode again.  
}
CLKMD  
=
0x34;  
//  
Change clock from ILRC to IHRC/2  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 52 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-12-3. Wake-up  
After entering the Power-Down or Power-Save modes, the PMC232/PMS232 can be resumed to normal  
operation by toggling IO pins, Timer interrupt is available for Power-Save mode ONLY. Table 7 shows the  
differences in wake-up sources between STOPSYS and STOPEXE.  
Differences in wake-up sources between STOPSYS and STOPEXE  
IO Toggle  
Yes  
Timer Interrupt  
STOPSYS  
STOPEXE  
No  
Yes  
Yes  
Table 7: Differences in wake-up sources between Power-Save mode and Power-Down mode  
When using the IO pins to wake-up the PMC232/PMS232, registers padier and pbdier should be properly  
set to enable the wake-up function for every corresponding pin. The wake-up time for normal wake-up is  
about 1024 ILRC clocks counting from wake-up event; fast wake-up can be selected to reduce the wake-up  
time by misc register. For fast wake-up mechanism, the wake-up time is 128 system clocks from IO toggling  
if STOPEXE was issued, and 128 system clocks plus oscillator (IHRC or ILRC) stable time from IO toggling  
if STOPSYS was issued. The oscillator stable time is the time for IHRC or ILRC oscillator from power-on,  
depending on which oscillator is used as system clock source. Please notice that the fast wake-up will turn  
off automatically when EOSC is selected as the system clock.  
System  
Wake-up  
mode  
Wake-up time (tWUP  
from IO toggle  
)
Suspend mode  
clock  
source  
IHRC or  
ILRC  
STOPEXE  
suspend  
fast  
128 * TSYS,  
wake-up  
fast  
Where TSYS is the time period of system clock  
STOPSYS  
suspend  
IHRC  
128 TSYS : MISC(0x20) / 8 TSYS:MISC(0x28)  
wake-up  
128 TSYS + TSILRC  
;
STOPSYS  
suspend  
fast  
ILRC  
Where TSILRC is the stable time of ILRC from  
power-on.  
wake-up  
STOPSYS or  
STOPEXE  
suspend  
fast  
1024 * TILRC  
,
EOSC  
wake-up  
Where TILRC is the clock period of ILRC  
STOPEXE  
suspend  
normal  
wake-up  
normal  
1024 * TILRC  
Where TILRC is the clock period of ILRC  
1024 * TILRC  
Where TILRC is the clock period of ILRC  
,
Any one  
Any one  
STOPSYS  
suspend  
,
wake-up  
** Please notice that the clock source of watch-dog will be switched to system clock (for example: 4MHz)  
when fast wakeup is enabled. Therefore, for fast wake-up, recommending turning off the watchdog timer  
before enabling the fast wakeup. When wake-up, turning on the watchdog timer after disabling the fast  
wakeup.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 53 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-13. IO Pins  
Other than PA5, all the pins can be independently set into two states output or input by configuring the data  
registers (pa, pb, pc), control registers (pac, pbc, pcc) and pull-up registers (paph, pbph, pcph). All these  
pins have Schmitt-trigger input buffer and output driver with CMOS level. When it is set to output low, the  
pull-up resistor is turned off automatically. If user wants to read the pin state, please notice that it should be  
set to input mode before reading the data port; if user reads the data port when it is set to output mode, the  
reading data comes from data register, NOT from IO pad. As an example, Table 6 shows the configuration  
table of bit 0 of port A. The hardware diagram of IO buffer is also shown as Fig. 15.  
pa.0 pac.0 paph.0  
Description  
Input without pull-up resistor  
X
X
0
1
1
0
0
1
1
1
0
1
X
0
1
Input with pull-up resistor  
Output low without pull-up resistor  
Output high without pull-up resistor  
Output high with pull-up resistor  
Table 8: PA0 Configuration Table  
RD pull-high latch  
WR pull-high latch  
D
D
D
Q
(weak P-MOS)  
pull-high  
latch  
Q
Data  
latch  
Q1  
PAD  
WR data latch  
RD control latch  
Q
WR control latch  
Control  
latch  
M
U
X
RD Port  
Data Bus  
padier.x or pbdier.x  
Wakeup module  
Interrupt module  
(PA0,PB0 only)  
Analog Module  
Fig.15: Hardware diagram of IO buffer  
Other than PA5, all the IO pins have the same structure; PA5 can is open-drain ONLY when setting to output  
mode (without Q1). The corresponding bits in registers padier / pbdier should be set to low to prevent  
leakage current for those pins are selected to be analog function. When PMC232/PMS232 is put in  
power-down or power-save mode, every pin can be used to wake-up system by toggling its state. Therefore,  
those pins needed to wake-up system must be set to input mode and set the corresponding bits of registers  
padier and pbdier to high. The same reason, padier.0 should be set high when PA0 is used as external  
interrupt pin and pbdier.0 for PB0.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 54 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-14. Reset and LVR  
5.14.1. Reset  
There are many causes to reset the PMC232/PMS232, once reset is asserted, most of all the registers in  
PMC232/PMS232 will be set to default values, When reset comes from WDT timeout, gdio register (IO  
address 0x7) keeps the same value, system should be restarted once abnormal cases happen, or by  
jumping program counter to address ’h0. The data memory is in uncertain state when reset comes from  
power-up and LVR; however, the content will be kept when reset comes from PRST# pin or WDT timeout.  
5.14.2. LVR reset  
By code option, there are many different levels of LVR for reset. Usually, user selects LVR reset level to be in  
conjunction with operating frequency and supply voltage.  
5-15. VDD/2 bias Voltage Generator  
This function can be enabled by bit 4 of misc register. Those pins which are defined to output VDD/2 voltage  
are PA3  
PA2PC5PA0 during input mode, being used as COM function for LCD application. If user  
wants  
to output VDDVDD/2GND three levels voltage, the corresponding pins must be set to output-high for VDD,  
enabling VDD/2 bias voltage with input mode for VDD/2, and  
shows how to use this function.  
output-low for GND correspondingly, Fig. 16  
VDD  
VDD/2  
GND  
Pin set to output high  
Pin set to input  
Pin set to output low  
Fig.16: Using VDD/2 bias voltage generator  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 55 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-16. Analog-to-Digital Conversion (ADC) module  
adcm[3:0]  
adcc [5:2]  
Scalar  
and  
1001  
system clock  
PA4/AD8  
PA3/AD7  
NC  
MUX  
1000  
ADCCLK  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
PB6/AD6  
PB5/AD5  
PB4/AD4  
PB3/AD3  
PB2/AD2  
PB1/AD1  
PB0/AD0  
VIN  
A/D  
Converter  
signal for conversion  
1111  
{adcrh[7:0],adcrl[7:4]} for 12-bit resolution  
{adcrh[7:0],adcrl[7:5]} for 11-bit resolution  
(adcrh[7:0],adcrl[7:6]) for 10-bit resolution  
{adcrh[7:0],adcrl[7]} for 9-bit resolution  
{adcrh[7:0]} for 8-bit resolution  
band-gap  
voltage  
generator  
Fig.17: ADC Block Diagram  
There are six registers when using the ADC module, which are:  
ADC Control Register (adcc)  
ADC Mode Register (adcm)  
ADC Result High/Low Register (adcrh, adcrl)  
Port A/B Digital Input Enable Register (padier, pbdier)  
The following steps are recommended to do the AD conversion procedure:  
(1) Configure the ADC module:  
Configure the voltage reference high by adcc register  
Select the ADC input channel by adcc register  
Select the bit resolution of ADC by adcm register  
Configure the AD conversion clock by adcm register  
Configure the pin as analog input by padier, pbdier register  
Enable the ADC module by adcc register  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 56 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
(2) Configure interrupt for ADC: (if desired)  
Clear the ADC interrupt request flag in bit 3 of intrq register  
Enable the ADC interrupt request in bit 3 of inten register  
Enable global interrupt by issuing engint command  
(3) Start AD conversion:  
Set ADC process control bit in the adcc register to start the conversion (set1 adcc.6).  
(4) Wait for the completion flag of AD conversion, by either:  
Waiting for the completion flag by using command “wait1 addc.6”; or  
Waiting for the ADC interrupt.  
(5) Read the ADC result registers:  
Read adcrh and adcrl the result registers  
(6) For next conversion, goto step 1 or step 2 as required.  
5-16-1. The input requirement for AD conversion  
For the AD conversion to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the voltage reference high level and discharge to the voltage reference low level. The  
analog input model is shown as Fig. 18, the signal driving source impedance (Rs) and the internal sampling  
switch impedance (Rss) will affect the required time to charge the capacitor CHOLD directly. The internal  
sampling switch impedance may vary with ADC supply voltage; the signal driving source impedance will  
affect accuracy of analog input signal. User must ensure the measured signal is stable before sampling;  
therefore, the maximum signal driving source impedance is highly dependent on the frequency of signal to  
be measured. The recommended maximum impedance for analog driving source is about 10KΩ under  
500kHz input frequency and 10-bit resolution requirements, and 10under 500Hz input frequency and  
10-bit resolution.  
Fig.18: Analog Input Model  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 57 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Before starting the AD conversion, the minimum signal acquisition time should be met for the selected  
analog input signal. The signal acquisition time (TACQ) of ADC in PMC232/PMS232 series is fixed to one  
clock period of ADCLK, the selection of ADCLK must be met the minimum signal acquisition time.  
5-16-2. Select the ADC bit resolution  
The ADC resolution is 12bit. Please configure adcm register bit [7:5] to be “100” before staring AD  
conversion via $ADCM instruction. Higher resolution can detect small signal variation; however, it will take  
more time to convert the analog signal to digital signal. The selection can be done via adcm register. The  
ADC bit resolution should be configured before starting the AD conversion.  
5-16-3. ADC clock selection  
The clock of ADC module (ADCLK) can be selected by adcm register; there are 8 possible options for  
ADCLK from sysclk/1 to sysclk/128. Due to the signal acquisition time TACQ is one clock period of ADCLK,  
the ADCLK must meet that requirement. The recommended ADC clock is to operate at 2us.  
5-16-4. AD conversion  
The process of AD conversion starts from setting START/DONE bit (bit 6 of adcc) to high, the START/DONE  
flag for read will be cleared automatically, then converting analog signal bit by bit and finally setting  
START/DONE high to indicate the completion of AD conversion. If ADCLK is selected, TADCLK is the period of  
ADCLK and the AD conversion time can be calculated as follows:  
12-bit resolution: AD conversion time = 17 TADCLK  
5-16-5. Configure the analog pins  
The 10 analog input signals for ADC shared with Port A[3], Port A[4], and Port B[6:0]. To avoid leakage  
current at the digital circuit, those pins defined for analog input should disable the digital input function (set  
the corresponding bit of padier or pbdier register to be 0).  
The measurement signals of ADC belong to small signal; it should avoid the measured signal to be  
interfered during the measurement period, the selected pin should (1) be set to input mode (2) turn off weak  
pull-up resistor (3) set the corresponding pin to analog input by port A/B digital input disable register (padier  
/ pbdier).  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 58 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
5-16-6. Using the ADC  
The following example shows how to use ADC with PB0~PB3.  
First, defining the selected pins:  
PBC  
PBPH  
PBDIER  
=
=
=
0B_XXXX_0000;  
0B_XXXX_0000;  
0B_XXXX_0000;  
//  
//  
//  
PB0 ~ PB3 as Input  
PB0 ~ PB3 without pull-up resistor  
PB0 ~ PB3 digital input is disabled  
Next, setting ADCC register, example as below:  
$
$
$
ADCC Enable, PB3;  
ADCC Enable, PB2;  
ADCC Enable, PB0;  
//  
//  
//  
set PB3 as ADC input  
set PB2 as ADC input  
set PB0 as ADC input  
Next, setting ADCM register, example as below:  
$
$
ADCM 12BIT, /16;  
ADCM 12BIT, /8;  
//  
//  
recommend /16 @System Clock=8MHz  
recommend /8 @System Clock=4MHz  
Then, start the ADC conversion:  
AD_START  
WAIT1  
=
1;  
//  
//  
start ADC conversion  
wait ADC conversion result  
AD_DONE  
;
Finally, it can read ADC result when AD_DONE is high:  
WORD  
Data  
Data;  
//  
two bytes result: ADCRH and ADCRL  
=
(ADCRH << 8) | ADCRL;  
The ADC can be disabled by using the following method:  
ADCC Disable;  
$
or  
ADCC  
=
0;  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 59 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
6. IO Registers  
6-1. ACC Status Flag Register (flag), IO address = 0x00  
Bit Reset  
R/W  
-
Description  
7 - 4  
3
-
Reserved. These four bits are “1” when reading.  
0
R/W  
OV (Overflow Flag). This bit is set whenever the sign operation is overflow.  
AC (Auxiliary Carry Flag). There are two conditions to set this bit, the first one is carry out  
of low nibble in addition operation and the other one is borrow from the high nibble into low  
nibble in subtraction operation.  
2
0
R/W  
C (Carry Flag). There are two conditions to set this bit, the first one is carry out in addition  
operation, and the other one is borrow in subtraction operation. Carry is also affected by  
shift with carry instruction.  
1
0
0
0
R/W  
R/W  
Z (Zero Flag). This bit will be set when the result of arithmetic or logic operation is zero;  
Otherwise, it is cleared.  
6-2. FPP unit Enable Register (fppen), IO address = 0x01  
Bit Reset  
R/W  
-
Description  
7 - 2  
-
Reserved. Please keep 0 for future compatibility.  
1
0
0
1
R/W  
R/W  
FPP1 enable. This bit is used to enable FPP1. 0 / 1: disable / enable  
FPP0 enable. This bit is used to enable FPP0. 0 / 1: disable / enable  
6-3. Stack Pointer Register (sp), IO address = 0x02  
Bit Reset R/W  
Description  
Stack Pointer Register. Read out the current stack pointer, or write to change the stack  
pointer.  
7 - 0 R/W  
-
6-4. Clock Mode Register (clkmd), IO address = 0x03  
Bit Reset R/W  
Description  
System clock selection:  
Type 0, clkmd[3]=0  
Type 1, clkmd[3]=1  
000: IHRC/4  
001: IHRC/2  
010: IHRC  
000: IHRC/16  
001: IHRC/8  
010: reserved  
011: IHRC/32  
100: Reserved  
101: EOSC/8  
11x: reserved.  
7 - 5  
111  
R/W  
011: EOSC/4  
100: EOSC/2  
101: EOSC  
110: ILRC/4  
111: ILRC (default)  
4
3
2
1
0
1
R/W Internal High RC Enable. 0 / 1: disable / enable  
Clock Type Select. This bit is used to select the clock type in bit [7:5].  
RW  
0 / 1: Type 0 / Type 1.  
R/W Internal Low RC Enable. 0 / 1: disable / enable  
If ILRC is disabled, watchdog timer is also disabled.  
R/W Watch Dog Enable. 0 / 1: disable / enable  
R/W Pin PA5/RESET# function. 0 / 1: PA5 / RESET#.  
1
0
1
0
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 60 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
 
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
6-5. Interrupt Enable Register (inten), IO address = 0x04  
Bit Reset R/W  
Description  
7
6
-
-
Reserved.  
0
-
R/W  
-
Enable interrupt from Timer2. 0 / 1: disable / enable.  
Reserved.  
5 : 4  
3
0
0
0
0
R/W  
R/W  
R/W  
R/W  
Enable interrupt from ADC. 0 / 1: disable / enable.  
Enable interrupt from Timer16 overflow. 0 / 1: disable / enable.  
Enable interrupt from PB0. 0 / 1: disable / enable.  
Enable interrupt from PA0.0 / 1: disable / enable.  
2
1
0
6-6. Interrupt Request Register (intrq), IO address = 0x05  
Bit  
Reset R/W  
Description  
7
-
-
-
-
-
Reserved.  
Interrupt Request from Timer2, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
6
5 : 4  
3
R/W  
-
Reserved.  
Interrupt Request from ADC, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
R/W  
Interrupt Request from Timer16, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
2
1
0
-
-
-
R/W  
R/W  
R/W  
Interrupt Request from pin PB0, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
Interrupt Request from pin PA0, this bit is set by hardware and cleared by software.  
0 / 1: No Request / request  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 61 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
6-7. Timer16 mode Register (t16m), IO address = 0x06  
Bit  
Reset R/W  
Description  
Timer16 Clock source selection.  
000: disable  
001: system clock (CLK)  
010: reserved  
7 - 5  
000  
R/W 011: reserved  
100: IHRC  
101: EOSC  
110: ILRC  
111: PA0 falling edge (from external pin)  
Timer16 clock pre-divider.  
00: /1  
4 - 3  
00  
R/W 01: /4  
10: /16  
11: /64  
Interrupt source selection. Interrupt event happens when selected bit goes high.  
0 : bit 8 of Timer16  
1 : bit 9 of Timer16  
2 : bit 10 of Timer16  
2 - 0  
000  
R/W 3 : bit 11 of Timer16  
4 : bit 12 of Timer16  
5 : bit 13 of Timer16  
6 : bit 14 of Timer16  
7 : bit 15 of Timer16  
6-8. General Data register for IO (gdio), IO address = 0x07  
Bit  
Reset R/W  
Description  
General data for IO. This port is the general data buffer in IO space and cleared when  
POR or LVR, and it will KEEP the old values when reset from watch dog time out. It can  
7 - 0  
00  
R/W perform the IO operation, like wait0 gdio.x, wait1 gdio.x and tog gdio.x to replace of  
operations which instructions are supported in memory space (ex: wait1 mem; wait0  
mem; tog mem).  
6-9. External Oscillator setting Register (eoscr), IO address = 0x0a  
Bit  
Reset R/W  
Description  
7
0
WO Enable external crystal oscillator. 0 / 1 : Disable / Enable  
External crystal oscillator selection.  
00 : reserved  
6 - 5  
00  
WO 01 : Low driving capability, for lower frequency, ex: 32kHz crystal oscillator  
10 : Middle driving capability, for middle frequency, ex: 1MHz crystal oscillator  
11 : High driving capability, for higher frequency, ex: 4MHz crystal oscillator  
4 - 1  
0
-
-
Reserved. Please keep 0 for future compatibility.  
0
WO Power-down the Band-gap and LVR hardware modules. 0 / 1: normal / power-down.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 62 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
6-10. Internal High RC oscillator control Register (ihrcr), IO address = 0x0b  
Bit  
Reset R/W  
Description  
Bit [7:0] for frequency calibration of IHRC.  
0x00 for lowest frequency and 0x7f for highest frequency.  
7 - 0  
-
WO  
6-11. Interrupt Edge Select Register (integs), IO address = 0x0c  
Bit  
Reset R/W  
Description  
7 - 5  
-
-
Reserved.  
Timer16 edge selection.  
4
0
WO 0 : rising edge of the selected bit to trigger interrupt  
1 : falling edge of the selected bit to trigger interrupt  
PB0 edge selection.  
00 : both rising edge and falling edge of the selected bit to trigger interrupt  
WO 01 : rising edge of the selected bit to trigger interrupt  
10 : falling edge of the selected bit to trigger interrupt  
11 : reserved.  
3 - 2  
00  
00  
PA0 edge selection.  
00 : both rising edge and falling edge of the selected bit to trigger interrupt  
WO 01 : rising edge of the selected bit to trigger interrupt  
10 : falling edge of the selected bit to trigger interrupt  
11 : reserved.  
1 - 0  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 63 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
6-12. Port A Digital Input Enable Register (padier), IO address = 0x0d  
Bit  
Reset R/W  
Description  
Enable PA7 digital input and wake-up event. 1 / 0 : enable / disable.  
This bit should be set to low to prevent leakage current when external crystal oscillator is  
used. If this bit is set to low, PA7 can NOT be used to wake-up the system.  
Note: For ICE emulation, the function is disabled when this bit is “1” and “0” is enabled.  
Enable PA6 digital input and wake-up event. 1 / 0 : enable / disable.  
This bit should be set to low to prevent leakage current when external crystal oscillator is  
used. If this bit is set to low, PA6 can NOT be used to wake-up the system.  
Note: For ICE emulation, the function is disabled when this bit is “1” and “0” is enabled.  
Enable PA5 wake-up event. 1 / 0 : enable / disable.  
7
1
WO  
6
5
4
1
1
1
WO  
WO  
WO  
This bit can be set to low to disable wake-up from PA5 toggling.  
Note: For ICE emulation, wakeup is disabled when this bit is “1” and “0” is enabled.  
Enable PA4 digital input and wake-up event. 1 / 0 : enable / disable.  
This bit should be set to low when PA4 is assigned as AD input to prevent leakage  
current. If this bit is set to low, PA4 can NOT be used to wake-up the system.  
Note: For ICE emulation, the function is disabled when this bit is “1” and “0” is enabled.  
Enable PA3 digital input and wake-up event. 1 / 0 : enable / disable.  
This bit should be set to low when PA3 is assigned as AD input to prevent leakage  
current. If this bit is set to low, PA3 can NOT be used to wake-up the system.  
Note: For ICE emulation, the function is disabled when this bit is “1” and “0” is enabled.  
Enable PA2 wake-up event. 1 / 0 : enable / disable.  
3
1
WO  
2
1
1
1
WO  
WO  
This bit can be set to low to disable wake-up from PA2 toggling.  
Note: For ICE emulation, wakeup is disabled when this bit is “1” and “0” is enabled.  
Reserved  
Enable PA0 wake-up event and interrupt request. 1 / 0 : enable / disable.  
This bit can be set to low to disable wake-up from PA0 toggling and interrupt request from  
this pin.  
0
1
WO  
Note: For ICE emulation, the function is disabled when this bit is “1” and “0” is enabled.  
6-13. Port B Digital Input Enable Register (pbdier), IO address = 0x0e  
Bit  
Reset R/W  
Description  
7
1
WO Reserved  
Enable PB6~PB0 digital input to prevent leakage when the pin is assigned for AD input.  
When disable is selected, the wakeup function from this pin is also disabled.  
0 / 1 : disable / enable  
6 - 0  
0x6F  
WO  
Note: For ICE emulation, the function is disabled when this bit is “1” and “0” is enabled.  
6-14. Port A Data Register (pa), IO address = 0x10  
Bit  
Reset R/W  
0x00 R/W Data register for Port A.  
Description  
7 - 0  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 64 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
6-15. Port A Control Register (pac), IO address = 0x11  
Bit  
Reset R/W  
Description  
Port A control registers. This register is used to define input mode or output mode for  
each corresponding pin of port A. 0 / 1: input / output  
7 - 0  
0x00  
R/W  
Please note that PA5 can be INPUT or OUTPUT LOW ONLY, the output state will be  
tri-state when PA5 is programmed into output mode with data 1.  
6-16. Port A Pull-up Register (paph), IO address = 0x12  
Bit  
Reset R/W  
Description  
Port A pull-up register. This register is used to enable the internal pull-up device on each  
corresponding pin of port A and this pull high function is active only for input mode.  
0 / 1 : disable / enable  
7 - 0  
0x00 R/W  
Please note that PA5 does NOT have pull-up resistor.  
6-17. Port B Data Register (pb), IO address = 0x14  
Bit  
Reset R/W  
0x00 R/W Data register for Port B.  
Description  
7 - 0  
6-18. Port B Control Register (pbc), IO address = 0x15  
Bit  
Reset R/W  
Description  
Port B control register. This register is used to define input mode or output mode for each  
corresponding pin of port B. 0 / 1: input / output  
7 - 0  
0x00 R/W  
6-19. Port B Pull-up Register (pbph), IO address = 0x16  
Bit  
Reset R/W  
Description  
Port B pull-up register. This register is used to enable the internal pull-up device on each  
corresponding pin of port B. 0 / 1 : disable / enable  
7 - 0  
0x00 R/W  
6-20. Port C Data Register (pc), IO address = 0x17  
Bit  
Reset R/W  
0x00 R/W Bit [7:0] of data register for Port C.  
Description  
7 - 0  
6-21. Port C Control Register (pcc), IO address = 0x18  
Bit  
Reset R/W  
Description  
Bit [7:0] of port C control register. This register is used to define input mode or output  
mode for each corresponding pin. 0 / 1: input / output  
7 - 0  
0x00 R/W  
6-22. Port C Pull-up Register (pcph), IO address = 0x19  
Bit  
Reset R/W  
Description  
Bit [7:0] of Port C pull-up register. This register is used to enable the internal pull-up device  
on each corresponding pin. 0 / 1 : disable / enable  
7 - 0 0x00 R/W  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 65 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
 
 
 
 
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
6-23. ADC Control Register (adcc), IO address = 0x20  
Bit Reset R/W  
Description  
7
0
R/W Enable ADC function. 0/1: Disable/Enable.  
ADC process control bit.  
Write “1” to start AD conversion, and the flag is cleared automatically when starting the AD  
6
0
R/W  
conversion ;  
Read “1” to indicate the completion of AD conversion and “0” is in progressing.  
Channel selector. These four bits are used to select input signal for AD conversion.  
0000: PB0/AD0,  
0001: PB1/AD1,  
0010: PB2/AD2,  
0011: PB3/AD3,  
0100: PB4/AD4,  
5 - 2 0000 R/W 0101: PB5/AD5,  
0110: PB6/AD6,  
0111: reserved  
1000: PA3/AD7  
1001: PA4/AD8  
1111: band-gap 1.20 volt reference voltage  
Others: reserved  
0 - 1  
-
-
Reserved. (keep 0 for future compatibility)  
6-24. ADC Mode Register (adcm), IO address = 0x21  
Bit Reset  
R/W  
Description  
Bit Resolution.  
7 - 5  
4
000  
-
WO 100:12-bit, AD 12-bit result [11:0] = { adcrh[7:0], adcrl[7:4] }.  
others: reserved,  
-
Reserved (keep 0 for future compatibility)  
ADC clock source selection.  
000: sysclk/1,  
001: sysclk/2,  
010: sysclk/4,  
3 - 1  
000  
WO 011: sysclk/8,  
100: sysclk/16,  
101: sysclk/32,  
110: sysclk/64,  
111: sysclk/128,  
0
-
-
Reserved  
6-25. ADC Result High Register (adcrh), IO address = 0x22  
Bit Reset  
R/W  
Description  
These eight read-only bits will be the bit [11:4] of AD conversion result. The bit 7 of this  
register is the MSB of ADC result for any resolution.  
7 - 0  
-
RO  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 66 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
6-26. ADC Result Low Register (adcrl), IO address = 0x23  
Bit Reset  
R/W  
RO  
-
Description  
These four bits will be the bit [3:0] of AD conversion result.  
Reserved  
7 - 4  
3 - 0  
-
-
6-27. Miscellaneous Register (misc), IO address = 0x3b  
Bit Reset  
R/W  
Description  
Reserved. (keep 0 for future compatibility)  
Enable extremely low current for 32kHz crystal oscillator AFTER oscillation.  
WO 0: Normal.  
1: Low driving current for 32kHz crystal oscillator.  
7
6
-
-
0
Enable fast Wake-up. Fast wake-up is NOT supported when EOSC is enabled.  
0: Normal wake-up.  
The wake-up time is 1024 ILRC clocks  
1: Fast wake-up.  
The wake-up time is 128(MISC.3=0) / 8(MISC.3=1) CLKs (system clock) +  
oscillator stable time.  
5
0
WO  
If wake-up from STOPEXE suspend, there is no oscillator stable time;  
If wake-up from STOPSYS suspend, it will be IHRC or ILRC stable time from  
power-on.  
Please notice that the clock source will be switched to system clock  
(for example: 4MHz) when fast wakeup is enabled, therefore,  
it is recommended to turn off the watchdog timer before enabling the fast wakeup  
and turn on the watchdog timer after disabling the fast wakeup.  
Enable to generate half VDD on PA0/PA2/PA3/PC5 pins.  
0 / 1 : Disable / Enable  
4
3
2
0
0
0
WO  
Recover time from LVR reset.  
WO 0: Normal. The system will take about 1024 ILRC clocks to boot up from LVR reset.  
1: Fast. The system will take about 64 ILRC clocks to boot up from LVR reset.  
Disable LVR function.  
WO  
0 / 1 : Enable / Disable  
Watch dog time out period  
00: 2048 ILRC clock period  
1 - 0  
00  
WO 01: 4096 ILRC clock period  
10: 16384 ILRC clock period  
11: 256 ILRC clock period  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 67 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
6-28. Timer2 Control Register (tm2c), IO address = 0x3c  
Bit Reset  
R/W  
Description  
Timer2 clock selection.  
0000 : disable  
0001 : system clock  
0010 : internal high RC oscillator (IHRC)  
0011 : reserved  
0100 : ILRC  
0101 : reserved  
011x : reserved  
7 - 4 0000  
R/W  
1000 : PA0 (rising edge)  
1001 : ~PA0 (falling edge)  
1010 : PA3 (rising edge)  
1011 : ~PA3 (falling edge)  
1100 : PA4 (rising edge)  
1101 : ~PA4 (falling edge)  
Notice: In ICE mode and IHRC is selected for Timer2 clock, the clock sent to Timer2  
does NOT be stopped, Timer2 will keep counting when ICE is in halt state.  
Timer2 output selection.  
00 : disable  
3–2  
00  
R/W 01 : PA2  
10 : PA3  
11 : reserved  
Timer2 mode selection.  
1
0
0
0
R/W  
R/W  
0 / 1 : period mode / PWM mode  
Enable to inverse the polarity of Timer2 output.  
0 / 1: disable / enable.  
6-29. Timer2 Counter Register (tm2ct), IO address = 0x3d  
Bit Reset  
R/W  
Description  
7 - 0 0x00  
R/W Bit [7:0] of Timer2 counter register.  
6-30. Timer2 Scalar Register (tm2s), IO address = 0x37  
Bit Reset  
R/W  
Description  
PWM resolution selection.  
7
0
WO 0 : 8-bit  
1 : 6-bit  
Timer2 clock pre-scalar.  
00 : ÷ 1  
WO 01 : ÷ 4  
10 : ÷ 16  
6 - 5  
00  
11 : ÷ 64  
4 - 0 00000 WO Timer2 clock scalar.  
6-31. Timer2 Bound Register (tm2b), IO address = 0x09  
Bit Reset  
R/W  
Description  
7 - 0 0x00  
WO Timer2 bound register.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 68 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
7. Instructions  
Symbol  
Description  
ACC  
a
Accumulator (Abbreviation of accumulator)  
Accumulator (symbol of accumulator in program)  
sp  
flag  
I
Stack pointer  
ACC status flag register  
Immediate data  
&
Logical AND  
|
Logical OR  
^
Movement  
Exclusive logic OR  
+
Add  
OV  
Z
Subtraction  
NOT (logical complement, 1’s complement)  
NEG (2’s complement)  
Overflow (The operational result is out of range in signed 2’s complement number system)  
Zero (If the result of ALU operation is zero, this bit is set to 1)  
Carry (The operational result is to have carry out for addition or to borrow carry for subtraction in  
unsigned number system)  
C
Auxiliary Carry  
AC  
(If there is a carry out from low nibble after the result of ALU operation, this bit is set to 1)  
Program counter for FPP0  
pc0  
pc1  
Program counter for FPP1  
7-1. Data Transfer Instructions  
mov  
mov  
mov  
a, I  
Move immediate data into ACC.  
Example: mov a, 0x0f;  
Result: a ← 0fh;  
Affected flags: NZ NC NAC NOV  
M, a  
a, M  
Move data from ACC into memory  
Example: mov  
MEM, a;  
Result: MEM ← a  
Affected flags: NZ NC NAC NOV  
Move data from memory into ACC  
Example: mov  
Result: a ← MEM; Flag Z is set when MEM is zero.  
Affected flags: YZ NC NAC NOV  
a, MEM ;  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 69 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
mov  
mov  
nmov  
a, IO  
IO, a  
M, a  
Move data from IO into ACC  
Example: mov a, pa ;  
Result: a ← pa; Flag Z is set when pa is zero.  
Affected flags: YZ NC NAC NOV  
Move data from ACC into IO  
Example: mov  
Result: pb ← a  
pb, a;  
Affected flags: NZ NC NAC NOV  
Take the negative logic (2’s complement) of ACC to put on memory  
Example: mov  
MEM, a;  
Result: MEM a  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
a, 0xf5 ;  
ram9, a;  
// ACC is 0xf5  
nmov  
// ram9 is 0x0b, ACC is 0xf5  
------------------------------------------------------------------------------------------------------------------------  
Take the negative logic (2’s complement) of memory to put on ACC  
nmov  
a, M  
Example: mov  
a, MEM ;  
Result: a MEM; Flag Z is set when MEM is zero.  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
nmov  
a, 0xf5 ;  
ram9, a ;  
a, ram9 ;  
// ram9 is 0xf5  
// ram9 is 0xf5, ACC is 0x0b  
------------------------------------------------------------------------------------------------------------------------  
Load high byte data in OTP program memory to ACC by using index as OTP address. It needs  
2T to execute this instruction.  
ldtabh index  
Example: ldtabh index;  
Result:  
a ← {bit 15~8 of OTP [index]};  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
...  
ROMptr ;  
// declare a pointer of ROM in RAM  
mov  
mov  
mov  
mov  
...  
a, la@TableA ; // assign pointer to ROM TableA (LSB)  
lb@ROMptr, a ; // save pointer to RAM (LSB)  
a, ha@TableA ; // assign pointer to ROM TableA (MSB)  
hb@ROMptr, a ; // save pointer to RAM (MSB)  
ldtabh  
...  
ROMptr ;  
// load TableA MSB to ACC (ACC=0X02)  
TableA :  
dc  
0x0234, 0x0042, 0x0024, 0x0018 ;  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 70 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
ldtabl index  
ldt16 word  
stt16 word  
Load low byte data in OTP to ACC by using index as OTP address. It needs 2T to execute this  
instruction.  
Example: ldtabl index;  
Result:  
a ← {bit7~0 of OTP [index]};  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
...  
ROMptr ;  
// declare a pointer of ROM in RAM  
mov  
mov  
mov  
mov  
...  
a, la@TableA ; // assign pointer to ROM TableA (LSB)  
lb@ROMptr, a ; // save pointer to RAM (LSB)  
a, ha@TableA ; // assign pointer to ROM TableA (MSB)  
hb@ROMptr, a ; // save pointer to RAM (MSB)  
ldtabl  
...  
ROMptr ;  
// load TableA LSB to ACC (ACC=0x34)  
TableA :  
dc 0x0234, 0x0042, 0x0024, 0x0018 ;  
------------------------------------------------------------------------------------------------------------------------  
Move 16-bit counting values in Timer16 to memory in word.  
Example: ldt16 word;  
Result:  
word ← 16-bit timer  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
...  
T16val ;  
// declare a RAM word  
clear  
clear  
stt16  
...  
lb@ T16val ; // clear T16val (LSB)  
hb@ T16val ; // clear T16val (MSB)  
T16val ;  
// initial T16 with 0  
set1  
...  
t16m.5 ;  
// enable Timer16  
set0  
ldt16  
...  
t16m.5 ;  
T16val ;  
// disable Timer16  
// save the T16 counting value to T16val  
------------------------------------------------------------------------------------------------------------------------  
Store 16-bit data from memory in word to Timer16.  
Example: stt16 word;  
Result:  
16-bit timer ←word  
Affected flags: NZ NC NAC NOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 71 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
...  
T16val ;  
// declare a RAM word  
mov  
mov  
mov  
mov  
stt16  
...  
a, 0x34 ;  
lb@ T16val , a ; // move 0x34 to T16val (LSB)  
a, 0x12 ;  
hb@ T16val , a ; // move 0x12 to T16val (MSB)  
T16val ;  
// initial T16 with 0x1234  
----------------------------------------------------------------------------------------------------------------------  
Exchange data between ACC and memory  
xch  
M
Example: xch MEM ;  
Result:  
MEM ← a , a ← MEM  
Affected flags: NZ NC NAC NOV  
idxm a, index Move data from specified memory to ACC by indirect method. It needs 2T to execute this  
instruction.  
Example: idxm a, index;  
Result:  
a ← [index], where index is declared by word.  
Affected flags: NZ NC NAC NOV  
Application Example:  
-----------------------------------------------------------------------------------------------------------------------  
word  
...  
RAMIndex ;  
// declare a RAM pointer  
mov  
mov  
mov  
mov  
...  
a, 0x5B ;  
// assign pointer to an address (LSB)  
// save pointer to RAM (LSB)  
lb@RAMIndex, a ;  
a, 0x00 ;  
// assign 0x00 to an addr.(MSB), be 0  
// save pointer to RAM (MSB)  
hb@RAMIndex, a ;  
idxm  
a, RAMIndex ;  
// move data in address 0x5B to ACC  
------------------------------------------------------------------------------------------------------------------------  
Idxm index, a Move data from ACC to specified memory by indirect method. It needs 2T to execute this  
instruction.  
Example: idxm index, a;  
Result:  
[index] ← a; where index is declared by word.  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
...  
RAMIndex ;  
// declare a RAM pointer  
mov  
mov  
mov  
mov  
...  
a, 0x5B ;  
// assign pointer to an address (LSB)  
lb@RAMIndex, a ; // save pointer to RAM (LSB)  
a, 0x00 ; // assign 0x00 to an addr.(MSB), be 0  
hb@RAMIndex, a ; // save pointer to RAM (MSB)  
mov  
idxm  
a, 0xA5 ;  
RAMIndex, a ;  
// mov 0xA5 to memory in address 0x5B  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 72 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
pushaf  
Move the ACC and flag register to memory that address specified in the stack pointer.  
Example: pushaf;  
Result:  
[sp] ← {flag, ACC};  
sp ← sp + 2 ;  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
.romadr 0x10 ;  
// ISR entry address  
pushaf ;  
...  
// put ACC and flag into stack memory  
// ISR program  
...  
// ISR program  
popaf ;  
reti ;  
// restore ACC and flag from stack memory  
------------------------------------------------------------------------------------------------------------------------  
Restore ACC and flag from the memory which address is specified in the stack pointer.  
Example: popaf;  
popaf  
Result:  
sp ← sp - 2  
{Flag, ACC} ← [sp] ;  
Affected flags: YZ YC YAC YOV  
;
7-2. Arithmetic Operation Instructions  
add  
add  
add  
a, I  
Add immediate data with ACC, then put result into ACC  
Example: add a, 0x0f ;  
Result: a ← a + 0fh  
Affected flags: YZ YC YAC YOV  
a, M  
M, a  
Add data in memory with ACC, then put result into ACC  
Example: add  
a, MEM ;  
Result: a ← a + MEM  
Affected flags: YZ YC YAC YOV  
Add data in memory with ACC, then put result into memory  
Example: add  
Result: MEM ← a + MEM  
Affected flags: YZ YC YAC YOV  
MEM, a;  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 73 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
addc a, M  
Add data in memory with ACC and carry bit, then put result into ACC  
Example: addc  
a, MEM ;  
Result: a ← a + MEM + C  
Affected flags: YZ YC YAC YOV  
addc M, a  
Add data in memory with ACC and carry bit, then put result into memory  
Example: addc  
MEM, a ;  
Result: MEM ← a + MEM + C  
Affected flags: YZ YC YAC YOV  
addc  
addc  
a
Add carry with ACC, then put result into ACC  
Example: addc  
a ;  
Result: a ← a + C  
Affected flags: YZ YC YAC YOV  
M
Add carry with memory, then put result into memory  
Example: addc  
MEM ;  
Result: MEM ← MEM + C  
Affected flags: YZ YC YAC YOV  
nadd a, M  
Add negative logic (2’s complement) of ACC with memory  
Example: nadd  
a, MEM ;  
Result: a a + MEM  
Affected flags: YZ YC YAC YOV  
nadd M, a  
Add negative logic (2’s complement) of memory with ACC  
Example: nadd  
MEM, a ;  
Result: MEM MEM + a  
Affected flags: YZ YC YAC YOV  
sub  
sub  
sub  
a, I  
Subtraction immediate data from ACC, then put result into ACC.  
Example: sub  
a, 0x0f;  
Result: a ← a - 0fh ( a + [2’s complement of 0fh] )  
Affected flags: YZ YC YAC YOV  
a, M  
M, a  
Subtraction data in memory from ACC, then put result into ACC  
Example: sub  
a, MEM ;  
Result: a ← a - MEM ( a + [2’s complement of M] )  
Affected flags: YZ YC YAC YOV  
Subtraction data in ACC from memory, then put result into memory  
Example: sub  
Result: MEM ← MEM - a ( MEM + [2’s complement of a] )  
Affected flags: YZ YC YAC YOV  
MEM, a;  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 74 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
subc a, M  
Subtraction data in memory and carry from ACC, then put result into ACC  
Example: subc  
a, MEM;  
Result: a ← a – MEM - C  
Affected flags: YZ YC YAC YOV  
subc M, a  
Subtraction ACC and carry bit from memory, then put result into memory  
Example: subc  
MEM, a ;  
Result: MEM ← MEM – a - C  
Affected flags: YZ YC YAC YOV  
subc  
subc  
inc  
a
Subtraction carry from ACC, then put result into ACC  
Example: subc  
a;  
Result: a ← a - C  
Affected flags: YZ YC YAC YOV  
M
Subtraction carry from the content of memory, then put result into memory  
Example: subc  
MEM;  
Result: MEM ← MEM - C  
Affected flags: YZ YC YAC YOV  
M
Increment the content of memory  
Example: inc  
MEM ;  
Result: MEM ← MEM + 1  
Affected flags: YZ YC YAC YOV  
dec  
M
Decrement the content of memory  
Example: dec  
MEM;  
Result: MEM ← MEM - 1  
Affected flags: YZ YC YAC YOV  
clear  
M
Clear the content of memory  
Example: clear  
Result: MEM ← 0  
Affected flags: NZ NC NAC NOV  
MEM ;  
7-3. Shift Operation Instructions  
sr  
a
Shift right of ACC  
Example: sr  
a ;  
Result: a (0,b7,b6,b5,b4,b3,b2,b1) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b0)  
Affected flags: NZ YC NAC NOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 75 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
src  
sr  
a
Shift right of ACC with carry  
Example: src a ;  
Result: a (c,b7,b6,b5,b4,b3,b2,b1) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b0)  
Affected flags: NZ YC NAC NOV  
Shift right the content of memory  
M
Example: sr MEM ;  
Result: MEM(0,b7,b6,b5,b4,b3,b2,b1) ← MEM(b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b0)  
Affected flags: NZ YC NAC NOV  
Shift right of memory with carry  
src  
sl  
M
Example: src MEM ;  
Result: MEM(c,b7,b6,b5,b4,b3,b2,b1) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b0)  
Affected flags: NZ YC NAC NOV  
Shift left of ACC  
a
Example: sl a ;  
Result: a (b6,b5,b4,b3,b2,b1,b0,0) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a (b7)  
Affected flags: NZ YC NAC NOV  
Shift left of ACC with carry  
slc  
sl  
a
Example: slc a ;  
Result: a (b6,b5,b4,b3,b2,b1,b0,c) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b7)  
Affected flags: NZ YC NAC NOV  
Shift left of memory  
M
Example: sl MEM ;  
Result: MEM (b6,b5,b4,b3,b2,b1,b0,0) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b7)  
Affected flags: NZ YC NAC NOV  
Shift left of memory with carry  
slc  
M
Example: slc MEM ;  
Result: MEM (b6,b5,b4,b3,b2,b1,b0,C) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM (b7)  
Affected flags: NZ YC NAC NOV  
Swap the high nibble and low nibble of ACC  
swap  
swap  
a
Example: swap  
a ;  
Result: a (b3,b2,b1,b0,b7,b6,b5,b4) ← a (b7,b6,b5,b4,b3,b2,b1,b0)  
Affected flags: NZ NC NAC NOV  
M
Swap the high nibble and low nibble of memory  
Example: swap  
MEM ;  
Result: MEM (b3,b2,b1,b0,b7,b6,b5,b4) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0)  
Affected flags: NZ NC NAC NOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 76 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
7-4. Logic Operation Instructions  
and  
and  
and  
or  
a, I  
a, M  
M, a  
a, I  
Perform logic AND on ACC and immediate data, then put result into ACC  
Example: and a, 0x0f ;  
Result: a ← a & 0fh  
Affected flags: YZ NC NAC NOV  
Perform logic AND on ACC and memory, then put result into ACC  
Example: and  
a, RAM10 ;  
Result: a ← a & RAM10  
Affected flags: YZ NC NAC NOV  
Perform logic AND on ACC and memory, then put result into memory  
Example: and  
MEM, a ;  
Result: MEM ← a & MEM  
Affected flags: YZ NC NAC NOV  
Perform logic OR on ACC and immediate data, then put result into ACC  
Example: or  
a, 0x0f ;  
Result: a ← a | 0fh  
Affected flags: YZ NC NAC NOV  
or  
a, M  
Perform logic OR on ACC and memory, then put result into ACC  
Example: or  
a, MEM ;  
Result: a ← a | MEM  
Affected flags: YZ NC NAC NOV  
or  
M, a  
a, I  
Perform logic OR on ACC and memory, then put result into memory  
Example: or  
MEM, a ;  
Result: MEM ← a | MEM  
Affected flags: YZ NC NAC NOV  
xor  
xor  
xor  
Perform logic XOR on ACC and immediate data, then put result into ACC  
Example: xor  
a, 0x0f ;  
Result: a ← a ^ 0fh  
Affected flags: YZ NC NAC NOV  
a, IO  
Perform logic XOR on ACC and IO register, then put result into ACC  
Example: xor  
a, pa ;  
Result: a ← a ^ pa ; // pa is the data register of port A  
Affected flags: YZ NC NAC NOV  
IO, a  
Perform logic XOR on ACC and IO register, then put result into IO register  
Example: xor  
Result: pa ← a ^ pa ; // pa is the data register of port A  
Affected flags: NZ NC NAC NOV  
pa, a ;  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 77 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
xor  
xor  
not  
a, M  
M, a  
a
Perform logic XOR on ACC and memory, then put result into ACC  
Example: xor a, MEM ;  
Result: a ← a ^ RAM10  
Affected flags: YZ NC NAC NOV  
Perform logic XOR on ACC and memory, then put result into memory  
Example:  
Result:  
xor  
MEM, a ;  
MEM ← a ^ MEM  
Affected flags: YZ NC NAC NOV  
Perform 1’s complement (logical complement) of ACC  
Example: not  
a ;  
Result: a a  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
not  
a, 0x38 ;  
a ;  
// ACC=0X38  
// ACC=0XC7  
------------------------------------------------------------------------------------------------------------------------  
Perform 1’s complement (logical complement) of memory  
not  
M
Example: not  
MEM ;  
Result: MEM MEM  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
not  
a, 0x38 ;  
mem, a ;  
mem ;  
// mem = 0x38  
// mem = 0xC7  
------------------------------------------------------------------------------------------------------------------------  
Perform 2’s complement of ACC  
neg  
a
Example: neg  
a;  
Result: a a  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
neg  
a, 0x38 ;  
a ;  
// ACC=0X38  
// ACC=0XC8  
------------------------------------------------------------------------------------------------------------------------  
Perform 2’s complement of memory  
neg  
M
Example: neg  
Result: MEM MEM  
Affected flags: YZ NC NAC NOV  
MEM;  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 78 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
neg  
a, 0x38 ;  
mem, a ;  
mem ;  
// mem = 0x38  
// mem = 0xC8  
------------------------------------------------------------------------------------------------------------------------  
Compare ACC with immediate data  
comp  
a, I  
Example: comp  
a, 0x55;  
Result: Flag will be changed by regarding as ( a - 0x55 )  
Affected flags: YZ YC YAC YOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
a, 0x38 ;  
a, 0x38 ;  
a, 0x42 ;  
a, 0x24 ;  
a, 0x6a ;  
comp  
comp  
comp  
comp  
// Z flag is set  
// C flag is set  
// C, Z flags are clear  
// C, AC flags are set  
------------------------------------------------------------------------------------------------------------------------  
Compare ACC with the content of memory  
comp  
a, M  
Example: comp  
a, MEM;  
Result: Flag will be changed by regarding as ( a - MEM )  
Affected flags: YZ YC YAC YOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
comp  
mov  
mov  
mov  
comp  
a, 0x38 ;  
mem, a ;  
a, mem ;  
a, 0x42 ;  
mem, a ;  
a, 0x38 ;  
a, mem ;  
// Z flag is set  
// C flag is set  
------------------------------------------------------------------------------------------------------------------------  
Compare ACC with the content of memory  
comp  
M, a  
Example: comp  
MEM, a;  
Result: Flag will be changed by regarding as ( MEM - a )  
Affected flags: YZ YC YAC YOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 79 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
7-5. Bit Operation Instructions  
set0 IO.n  
Set bit n of IO port to low  
Example: set0 pa.5 ;  
Result: set bit 5 of port A to low  
Affected flags: NZ NC NAC NOV  
set1 IO.n  
Set bit n of IO port to high  
Example: set1 pb.5 ;  
Result: set bit 5 of port B to high  
Affected flags: NZ NC NAC NOV  
tog IO.n  
Toggle bit state of bit n of IO port  
Example: tog pa.5 ;  
Result: toggle bit 5 of port A  
Affected flags: NZ NC NAC NOV  
set0 M.n  
set1 M.n  
swapc IO.n  
Set bit n of memory to low  
Example: set0 MEM.5 ;  
Result: set bit 5 of MEM to low  
Affected flags: NZ NC NAC NOV  
Set bit n of memory to high  
Example: set1 MEM.5 ;  
Result: set bit 5 of MEM to high  
Affected flags: NZ NC NAC NOV  
Swap the nth bit of IO port with carry bit  
Example: swapc  
IO.0;  
Result: C ← IO.0 , IO.0 ← C  
When IO.0 is a port to output pin, carry C will be sent to IO.0;  
When IO.0 is a port from input pin, IO.0 will be sent to carry C;  
Affected flags: NZ YC NAC NOV  
Application Example1 (serial output) :  
------------------------------------------------------------------------------------------------------------------------  
...  
set1  
...  
pac.0 ;  
// set PA.0 as output  
set0  
swapc  
set1  
swapc  
...  
flag.1 ;  
pa.0 ;  
// C=0  
// move C to PA.0 (bit operation), PA.0=0  
// C=1  
flag.1 ;  
pa.0 ;  
// move C to PA.0 (bit operation), PA.0=1  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 80 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
------------------------------------------------------------------------------------------------------------------------  
Application Example2 (serial input) :  
------------------------------------------------------------------------------------------------------------------------  
...  
set0  
...  
pac.0 ;  
// set PA.0 as input  
swapc  
src  
pa.0 ;  
a ;  
// read PA.0 to C (bit operation)  
// shift C to bit 7 of ACC  
swapc  
src  
pa.0 ;  
a ;  
// read PA.0 to C (bit operation)  
// shift new C to bit 7, old C  
...  
------------------------------------------------------------------------------------------------------------------------  
7-6. Conditional Operation Instructions  
ceqsn a, I  
Compare ACC with immediate data and skip next instruction if both are equal.  
Flag will be changed like as (a ← a - I)  
Example: ceqsn  
a, 0x55 ;  
MEM ;  
inc  
goto  
error ;  
Result: If a=0x55, then “goto error”; otherwise, “inc MEM”.  
Affected flags: YZ YC YAC YOV  
ceqsn a, M  
Compare ACC with memory and skip next instruction if both are equal.  
Flag will be changed like as (a ← a - M)  
Example: ceqsn  
a, MEM;  
Result: If a=MEM, skip next instruction  
Affected flags: YZ YC YAC YOV  
ceqsn M, a  
cneqsn a, M  
Compare ACC with memory and skip next instruction if both are equal.  
Example: ceqsn  
MEM, a;  
Result: If a=MEM, skip next instruction  
Affected flags: YZ YC YAC YOV  
Compare ACC with memory and skip next instruction if both are not equal.  
Flag will be changed like as (a ← a - M)  
Example: cneqsn  
a, MEM;  
Result: If a≠MEM, skip next instruction  
Affected flags: YZ YC YAC YOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 81 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
cneqsn a, I  
Compare ACC with immediate data and skip next instruction if both are no equal.  
Flag will be changed like as (a ← a - I)  
Example: cneqsn  
a,0x55 ;  
MEM ;  
error ;  
inc  
goto  
Result: If a≠0x55, then “goto error”; Otherwise, “inc MEM”.  
Affected flags: YZ YC YAC YOV  
Check IO bit and skip next instruction if it’s low  
t0sn IO.n  
t1sn IO.n  
t0sn M.n  
t1sn M.n  
Example: t0sn  
pa.5;  
Result: If bit 5 of port A is low, skip next instruction  
Affected flags: NZ NC NAC NOV  
Check IO bit and skip next instruction if it’s high  
Example: t1sn  
pa.5 ;  
Result: If bit 5 of port A is high, skip next instruction  
Affected flags: NZ NC NAC NOV  
Check memory bit and skip next instruction if it’s low  
Example: t0sn MEM.5 ;  
Result: If bit 5 of MEM is low, then skip next instruction  
Affected flags: NZ NC NAC NOV  
Check memory bit and skip next instruction if it’s high  
EX: t1sn MEM.5 ;  
Result: If bit 5 of MEM is high, then skip next instruction  
Affected flags: NZ NC NAC NOV  
Increment ACC and skip next instruction if ACC is zero  
izsn  
dzsn  
izsn  
dzsn  
a
Example: izsn  
Result:  
a;  
a
a + 1,skip next instruction if a = 0  
Affected flags: YZ YC YAC YOV  
a
Decrement ACC and skip next instruction if ACC is zero  
Example: dzsn  
Result:  
a;  
A
A - 1,skip next instruction if a = 0  
Affected flags: YZ YC YAC YOV  
M
Increment memory and skip next instruction if memory is zero  
Example: izsn  
Result: MEM  
MEM;  
MEM + 1, skip next instruction if MEM= 0  
Affected flags: YZ YC YAC YOV  
M
Decrement memory and skip next instruction if memory is zero  
Example: dzsn  
Result: MEM  
Affected flags: YZ YC YAC YOV  
MEM;  
MEM - 1, skip next instruction if MEM = 0  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 82 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Wait here until bit n of IO port is low.  
Example: wait0 pa.5;  
wait0 IO.n  
wait1 IO.n  
Result:  
Wait bit 5 of port A low to execute next instruction;  
Affected flags: NZ NC NAC NOV  
Wait here until bit n of IO port is low.  
Example: wait1 pa.5;  
Result:  
Wait bit 5 of port A high to execute next instruction;  
Affected flags: NZ NC NAC NOV  
7-7. System control Instructions  
call  
label  
Function call, address can be full range address space  
Example: call  
function1;  
pc + 1  
Result: [sp]  
pc  
sp  
function1  
sp + 2  
Affected flags: NZ NC NAC NOV  
goto label  
Go to specific address which can be full range address space  
Example: goto  
error;  
Result: Go to error and execute program.  
Affected flags: NZ NC NAC NOV  
Delay the (N1) cycles which N is specified by the content of ACC, the timing is based on the  
executing FPP unit. After the delay instruction is executed, the ACC will be zero.  
delay  
a
Example: delay  
a;  
Result: Delay 16 cycles here if ACC=0fh  
Affected flags: NZ NC NAC NOV  
Note: Because ACC is the temporarily buffer for counting, please make sure that it will not be  
interrupted when executing this instruction. Otherwise, it may be not the expected delay time.  
Delay the (N1) cycles which N is specified by the immediate data, the timing is based on the  
delay  
I
executing FPP unit. After the delay instruction is executed, the ACC will be zero.  
Example: delay  
0x05;  
Result: Delay 6 cycles here  
Affected flags: NZ NC NAC NOV  
Note: Because ACC is the temporarily buffer for counting, please make sure that it will not be  
interrupted when executing this instruction. Otherwise, it may be not the expected delay time.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 83 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Delay the (N1) cycles which N is specified by the content of memory, the timing is based on  
the executing FPP unit. After the delay instruction is executed, the ACC will be zero.  
delay  
M
Example: delay  
M;  
Result: Delay 256 cycles here if M=ffh  
Affected flags: NZ NC NAC NOV  
Note: Because ACC is the temporarily buffer for counting, please make sure that it will not be  
interrupted when executing this instruction. Otherwise, it may be not the expected delay time.  
Place immediate data to ACC, then return  
ret  
ret  
I
Example: ret 0x55;  
Result:  
A ← 55h  
ret ;  
Affected flags: NZ NC NAC NOV  
Return to program which had function call  
Example: ret;  
Result:  
sp ← sp - 2  
pc ← [sp]  
Affected flags: NZ NC NAC NOV  
reti  
Return to program that is interrupt service routine. After this command is executed, global  
interrupt is enabled automatically.  
Example: reti;  
Affected flags: NZ NC NAC NOV  
nop  
No operation  
Example: nop;  
Result: nothing changed  
Affected flags: NZ NC NAC NOV  
pcadd  
a
Next program counter is current program counter plus ACC.  
Example: pcadd a;  
Result: pc ← pc + a  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
...  
mov  
pcadd  
goto  
goto  
goto  
goto  
...  
a, 0x02 ;  
a ;  
// PC <- PC+2  
// jump here  
err1 ;  
correct ;  
err2 ;  
err3 ;  
correct:  
...  
------------------------------------------------------------------------------------------------------------------------  
// jump here  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 84 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
engint  
Enable global interrupt enable  
Example: engint;  
Result: Interrupt request can be sent to FPP0  
Affected flags: NZ NC NAC NOV  
disgint  
stopsys  
Disable global interrupt enable  
Example: disgint ;  
Result: Interrupt request is blocked from FPP0  
Affected flags: NZ NC NAC NOV  
System halt.  
Example: stopsys;  
Result: Stop the system clocks and halt the system  
Affected flags: NZ NC NAC NOV  
stopexe  
CPU halt.  
The oscillator module is still active to output clock, however, system clock is disabled to save  
power.  
Example: stopexe;  
Result: Stop the system clocks and keep oscillator modules active.  
Affected flags: NZ NC NAC NOV  
reset  
Reset the whole chip, its operation will be same as hardware reset.  
Example: reset;  
Result: Reset the whole chip.  
Affected flags: NZ NC NAC NOV  
wdreset  
Reset Watchdog timer.  
Example: wdreset ;  
Result: Reset Watchdog timer.  
Affected flags: NZ NC NAC NOV  
7-8. Summary of Instructions Execution Cycle  
Instruction  
Condition  
1 FPPA  
2T  
2 FPPA  
1T  
goto, call  
Condition is fulfilled  
2T  
1T  
ceqsn, cneqsn, t0sn, t1sn, dzsn,  
izsn  
Condition is not fulfilled  
1T  
1T  
ldtabh, ldtabl, idxm, pcadd, ret, reti  
2T  
2T  
Others  
1T  
1T  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 85 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
7-9. Summary of affected flags by Instructions  
Instruction  
mov a, I  
Z
-
C
-
AC OV Instruction  
Z
-
C
-
AC OV Instruction  
Z
Y
-
C
-
AC OV  
-
-
-
-
-
-
-
-
-
-
mov M, a  
mov IO, a  
ldtabh index  
stt16 word  
idxm index, a  
add a, I  
-
-
-
-
mov a, M  
-
-
-
-
-
-
-
-
mov a, IO  
nmov a, M  
ldt16 word  
idxm a, index  
popaf  
Y
Y
-
-
-
-
nmov M, a  
ldtabl index  
-
-
-
-
-
-
-
-
-
-
-
-
-
xch  
M
-
-
-
-
-
-
-
-
pushaf  
-
-
-
-
-
-
-
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
add a, M  
addc M, a  
nadd a, M  
sub a, M  
subc M, a  
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
add M, a  
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
addc a, M  
addc  
a
addc  
M
nadd M, a  
sub M, a  
sub a, I  
subc a, M  
subc  
dec  
src  
a
subc  
clear  
M
M
inc  
sr a  
src  
sl  
M
M
a
sr  
M
-
Y
Y
-
-
-
M
-
-
-
sl  
a
-
-
-
slc  
a
-
-
-
M
-
-
-
slc  
and  
M
-
-
-
swap  
and  
a
-
-
-
swap  
and  
M
-
-
-
a, I  
Y
Y
Y
Y
Y
Y
-
-
-
a, M  
Y
Y
Y
Y
Y
Y
-
-
-
-
M, a  
Y
Y
-
-
-
-
or a, I  
-
-
-
or a, M  
-
-
-
or M, a  
-
-
-
xor  
a, I  
-
-
-
xor a, IO  
-
-
-
xor IO, a  
-
-
-
xor  
a, M  
M
-
-
-
xor  
M, a  
-
-
-
not  
a
Y
Y
Y
-
-
-
-
-
-
not  
-
-
-
neg  
a
-
-
Y
-
-
Y
-
neg  
M
-
comp  
a, I  
Y
-
Y
-
Y
-
comp  
a, M  
Y
-
comp  
M, a  
Y
-
Y
-
Y
-
set0 IO.n  
set0 M.n  
ceqsn a, I  
cneqsn a, M  
t1sn IO.n  
set1 IO.n  
set1 M.n  
ceqsn a, M  
cneqsn a, I  
t0sn M.n  
tog IO.n  
-
-
-
-
-
-
-
-
swapc IO.n  
ceqsn M, a  
t0sn IO.n  
t1sn M.n  
-
Y
Y
-
-
-
Y
Y
-
Y
Y
-
Y
Y
Y
Y
-
Y
Y
-
Y
Y
Y
Y
Y
-
Y
-
Y
-
Y
Y
-
Y
Y
-
-
Y
Y
-
-
-
-
-
-
-
izsn  
dzsn  
call  
a
Y
Y
-
Y
Y
-
dzsn  
a
Y
-
Y
-
Y
-
Y
-
izsn  
wait1 IO.n  
delay  
M
Y
-
Y
-
Y
-
Y
-
M
wait0 IO.n  
goto label  
label  
I
-
-
-
-
a
-
-
-
-
delay  
ret  
-
-
-
-
delay  
reti  
M
-
-
-
-
ret  
I
-
-
-
-
-
-
-
-
-
-
-
-
nop  
-
-
-
-
pcadd  
a
-
-
-
-
engint  
stopexe  
-
-
-
-
disgint  
reset  
-
-
-
-
stopsys  
wdreset  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 86 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
8. Code Options  
Option  
Selection  
Enable  
Disable  
4.1V  
Description  
Security Enable  
Security  
Security Disable  
Select LVR = 4.1V  
3.6V  
Select LVR = 3.6V  
3.1V  
Select LVR = 3.1V  
2.8V  
Select LVR = 2.8V  
LVR  
2.5V  
Select LVR = 2.5V  
2.2V  
Select LVR = 2.2V  
2.0V  
Select LVR = 2.0V  
1.8V  
Select LVR = 1.8V  
Yes  
reach normal operating voltage quickly within 20 mS  
can’t reach normal operating voltage quickly within 20 mS  
Single FPP unit mode  
Under_20mS_VDD_OK  
FPPA  
No  
1-FPPA  
2-FPPA  
Two FPP units mode  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 87 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
9. Special Notes  
This chapter is to remind user who use PMC232/PMS232 series IC in order to avoid frequent errors upon  
operation.  
9-1. Warning  
User must read all application notes of the IC by detail before using it. Please download the related application  
notes from the following link:  
http://www.padauk.com.tw/tw/technical/index.aspx  
9-2. Using IC  
9-2-1. IO pin usage and setting  
(1) IO pin as digital input  
When IO is set as digital input, the level of Vih and Vil would changes with the voltage and  
temperature. Please follow the minimum value of Vih and the maximum value of Vil.  
The value of internal pull high resistor would also changes with the voltage, temperature and pin  
voltage. It is not the fixed value.  
(2) IO pin as analog input  
Configure IO pin as input  
Set PADIER and PBDIER registers to configure corresponding IO as analog input  
For some IO pins of PA and PB that are not used, PADIER.1 and PBDIER.7 should be set low in  
order to prevent current leakage.  
Set PAPH and PBPH registers to disable corresponding IO pull-up resistor  
The functions of PADIER and PBDIER registers of PMC232/PMS232 series IC is contrary to ICE  
functions  
Please use following program in order to keep ICE emulation consisting with PMC232/PMS232  
series IC procedure.  
$ PADIER 0x0D;  
$ PBDIER 0x70;  
(3) PA5 as output pin  
PA5 can only be Open-Drain output pin. Output high requires adding pull-up resistor  
(4) PA5 as PRST# input  
No internal pull-up resistor for PA5  
Configure PA5 a s input  
Set CLKMD.0=1 to enable PA5 as PRST# input pin  
(5) PA5 as input pin to connect with a push button or a switch by a long wire  
Needs to put a >10Ω resistor in between PA5 and the long wire  
Avoid using PA5 as input  
(6) PC as digital input pin  
There is no PCDIER register in PMC232/PMS232 series IC, PC is defaulted to enable the digital  
input function. Therefore, PC can be configured as input to wake up system from power save mode.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 88 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
(7) PA7 and PA6 as external crystal oscillator  
Configure PA7 and PA6 as input  
Disable PA7 and PA6 internal pull-up resistor  
Configure PADIER register to set PA6 and PA7 as analog input  
EOSCR register bit [6:5] selects corresponding crystal oscillator frequency :  
01 : for lower frequency, ex : 32kHz  
10 : for middle frequency, ex : 455kHz1MHz  
11 : for higher frequency, ex : 4MHz  
Program EOSCR.7 =1 to enable crystal oscillator  
Ensure EOSC working well before switching from IHRC or ILRC to EOSC  
Note: Please read the PMC-APN013 carefully. According to PMC-APN013,, the crystal oscillator should  
be used reasonably. If the following situations happen to cause IC start-up slowly or non-startup,  
PADAUK Technology is not responsible for this: the quality of the user's crystal oscillator is not good, the  
usage conditions are unreasonable, the PCB cleaner leakage current, or the PCB layouts are  
unreasonable.  
9-2-2. Interrupt  
(1) When using the interrupt function, the procedure should be:  
Step1: Set INTEN register, enable the interrupt control bit  
Step2: Clear INTRQ register  
Step3: In the main program, using ENGINT to enable CPU interrupt function  
Step4: Wait for interrupt. When interrupt occurs, enter to Interrupt Service Routine  
Step5: After the Interrupt Service Routine being executed, return to the main program  
* Use DISGINT in the main program to disable all interrupts  
* When interrupt service routine starts, use PUSHAF instruction to save ALU and FLAG  
register. POPAF instruction is to restore ALU and FLAG register before RETI as below:  
void Interrupt (void)  
// Once the interrupt occurs, jump to interrupt service routine  
// enter DISGINT status automatically, no more interrupt is  
{
accepted  
PUSHAF;  
POPAF;  
}
// RETI will be added automatically. After RETI being executed, ENGINT status  
will be restored  
(2) INTEN and INTRQ have no initial values. Please set required value before enabling interrupt function  
(3) FPPA1 will not be affected by interrupt at all  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 89 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
9-2-3. System clock switching  
(1) System clock can be switched by CLKMD register. Please notice that, NEVER switch the system clock and  
turn off the original clock source at the same time. For example: When switching from clock A to clock B,  
please switch to clock B first; and after that turn off the clock A oscillator through CLKMD.  
Case 1 : Switch system clock from ILRC to IHRC/2  
CLKMD  
=
0x36;  
0;  
// switch to IHRC, ILRC can not be disabled here  
CLKMD.2 =  
// ILRC can be disabled at this time  
Case 2 : Switch system clock from ILRC to EOSC  
CLKMD  
=
0xA6;  
0;  
// switch to EOSC, ILRC can not be disabled here  
CLKMD.2 =  
// ILRC can be disabled at this time  
ERROR. Switch ILRC to IHRC and turn off ILRC simultaneously  
CLKMD 0x50; // MCU will hang  
=
(2) Please ensure the EOSC oscillation has established before switching from ILRC or IHRC to EOSC. MCU  
will not check its status. Please wait for a while after enabling EOSC. System clock can be switched to  
EOSC afterwards. Otherwise, MCU will hang. The example for switching system clock from ILRC to 4MHz  
EOSC after boot up is as below:  
.ADJUST_IC  
DISABLE  
CLKMD.1 = 0;  
// turn off WDT for executing delay instruction.  
// 4MHz EOSC start to oscillate.  
$
EOSCR  
Enable, 4MHz;  
delay 255  
// Delay for EOSC establishment  
CLKMD = 0xA4;  
CLKMD.2 = 0;  
// ILRC -> EOSC;  
// turn off ILRC only if necessary  
The delay duration should be adjusted in accordance with the characteristic of the crystal and PCB.  
To measure the oscillator signal by the oscilloscope, please select (x10) on the probe and measure  
through PA6(X2) pin to avoid the interference on the oscillator.  
9-2-4. Power down mode, wakeup and watchdog  
(1) Watchdog will be inactive once ILRC is disabled  
(2) Please turn off watchdog before executing STOPSYS or STOPEXE instruction, otherwise IC will be reset  
due to watchdog timeout. It is the same as in ICE emulation.  
(3) The clock source of Watchdog is ILRC if the fast wakeup is disabled; otherwise, the clock source of  
Watchdog will be the system clock and the reset time becomes much shorter. It is recommended to  
disable Watchdog and enable fast wakeup before entering STOPSYS mode. When the system is waken  
up from power down mode, please firstly disable fast wakeup function, and then enable Watchdog. It is to  
avoid system to be reset after being waken up.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 90 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
(4) If enable Watchdog during programming and also wants the fast wakeup, the example as below:  
CLKMD.En_WatchDog  
=
0;  
// disable watchdog timer  
$ MISC  
stopexe;  
nop;  
Fast_Wake_Up;  
$ MISC  
Wdreset;  
WT_xx;  
// Reset Watchdog time to normal wake-up  
// enable watchdog timer  
CLKMD.En_WatchDog  
=
1;  
9-2-5. TIMER time out  
When select $ INTEGS BIT_R (default value) and T16M counter BIT8 to generate interrupt, if T16M  
counts from 0, the first interrupt will occur when the counter reaches to 0x100 (BIT8 from 0 to 1) and the  
second interrupt will occur when the counter reaches 0x300 (BIT8 from 0 to 1). Therefore, selecting BIT8 as  
1 to generate interrupt means that the interrupt occurs every 512 counts. Please notice that if T16M counter  
is restarted, the next interrupt will occur once Bit8 turns from 0 to 1.  
If select $ INTEGS BIT_F(BIT triggers from 1 to 0) and T16M counter BIT8 to generate interrupt, the T16M  
counter changes to an interrupt every 0x200/0x400/0x600/. Please pay attention to two differences with  
setting INTEGS methods.  
9-2-6. Using ADC  
(1) Configure corresponding IO as input through PXDIER register  
(2) The recommended highest ADC conversion frequency is 500kHz and maximum output impedance of  
analog signal source is 10KΩ.  
(3) Never restart next conversion before completion of last ADC conversion; otherwise, wrong value would  
get.  
(4) Please pay attention on sequence of operation if the program fits for below conditions,  
1. Use the FPP (ex. FPPA0) for handling power-save mode to disable ADC.  
2. Use the FPP (ex. FPPA1) for handling ADC conversion to enable ADC and wait for completion of  
ADC conversion with WAIT1 ADC_Done instruction.  
3. Execute above1&2simultaneously  
In case the above sequence is not properly arranged, there may be a chance that FPPA1 can not pass  
through WAIT1 ADC_Done instruction because the ADC may be disabled by FPPA0 before WAIT1  
ADC_Done instruction being executed.  
Recommendation:  
Define a Flag which represents the operation of ADC. Every time FPPA1 set the flag when enable the  
ADC and reset it when the completion of ADC conversion. FPPA0 checks this flag and decides to enter  
power-save and disable ADC if it is reset.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 91 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
9-2-7. LVR  
(1) VDD must reach or above 2.2V for successful power-on process; otherwise IC will be inactive.  
(2) The setting of LVR (1.8V, 2.0V, 2.2V etc) will be valid just after successful power-on process.  
9-2-8. IHRC  
(1) The IHRC frequency calibration is performed when IC is programmed by the writer.  
(2) Because the characteristic of the Epoxy Molding Compound (EMC) would some degrees affects the IHRC  
frequency (either for package or COB), if the calibration is done before molding process, the actual IHRC  
frequency after molding may be deviated or becomes out of spec. Normally , the frequency is getting  
slower a bit.  
(3) It usually happens in COB package or Quick Turnover Programming (QTP). And PADAUK would not take  
any responsibility for this situation.  
(4) Users can make some compensatory adjustments according to their own experiences. For example, users  
can set IHRC frequency to be 0.5% ~ 1% higher and aim to get better re-targeting after molding.  
9-2-9. Program writing  
There are 8 pins for using the writer to program: PA0,PA3, PA4, PA5, PA6, PA7, VDD, and GND.  
User can program PMC232/PMS232 from using PDK3S-P-002:  
(1) Put the PMC232/PMS232-S14/D14 in the top of the textool over the CN36.  
(2) Put the PMC232/PMS232-S20/D20 in the top of the textool over the CN37.  
(3) Put the PMC232/PMS232-S18/D18 to move down one space over CN37.  
(4) Other packages could be programmed by user’s way.  
All the left signs behind the jumper are the same (there are VDD, PA0, PA3, PA4, PA5, PA6, PA7, and  
GND).The following picture is shown:  
If user use PDK5S-P-003 or above to program, please follow the instruction.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 92 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
Special notes about voltage and current while Multi-Chip-Package(MCP) or On-Board Programming  
(1) PA5 (VPP) may be higher than 11V.  
(2) VDD may be higher than 6.5V, and its maximum current may reach about 20mA.  
(3) All other signal pins level (except GND) are the same as VDD.  
User should confirm when using this product in MCP or On-Board Programming, the peripheral circuit or  
components will not be destroyed or limit the above voltages.  
9-3. Using ICE  
9-3-1. Emulating PMC232/PMS232 series IC on ICE PDK3S-I-001/002/003  
PMC232/PMS232 series I/O pin is defined as compatible with P232C series. When user use ICE  
PDK3S-I-001/002/003 to emulate PMC232/PMS232 series IC, please connect the cable labeled CN8 or CN7  
with CN8 or CN7 connector on ICE PDK3S-I-001/002/003 by matching each assembled pins respectively.  
(1) Emulating PMC232/PMS232(SOP14/DIP14) : Use cable labeled CN8:P232CS14/CD14 to connect CN8  
connector on ICE PDK3S-I-001. Connection is shown as below:  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 93 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 
 
PMC232/PMS232 Series  
12-bit ADC Enhanced FPPATM  
8-bit OTP Controller  
(2) Emulating PMC232/PMS232(SOP20/DIP20) : Use cable labeled CN7:P232CS20/CD20 to connect CN7  
connector on ICE PDK3S-I-001/002/003. Connection is shown as below:  
9-3-2. Important Notice for ICE operation  
(1) When ICE PDK3S-I-001/002/003 emulates LCD 1/2 VDD function of PMC232/PMS232 series IC, the PC5  
as COM1 for 1/2 VDD function of PMC232/PMS232 series IC requires jumping wire for adding 5.1K pull-up  
and down resistance.  
(2) ICE PDK3S-I-001/002/003 does not support emulating below IC functions of PMC232/PMS232 series from  
(a) to (g). Thus, user needs to take PMC232/PMS232 Real Chip for test. Please noticeIn order to avoid  
the problems on difference between ICE and Real Chip test procedure, those functions will be temporarily  
removed from datasheet before ICE is set to support them. PMC232/PMS232 Real Chip is defaulted with  
these functions and performing ordinarily. User is recommended to consider these exceptions and careful  
handle whenever doing the test.  
(a) PMC232/PMS232 series IC is able to set LVR minimum to 1.8V, total 8 stages 4.0V, 3.5V, 3.0V,  
2.75V, 2.5V, 2.2V, 2.0V, 1.8V.  
(b) PMC232/PMS232 series IC LVR function can be disabled by register (misc.2).  
(c) PMC232/PMS232 series IC is able to support LVR reset and fast-recover by register (misc.3).  
(d) PMC232/PMS232 series IC is able to be set as single core operating model.  
(e) PMC232/PMS232 series IC supports VDD less than 4V, 3V, 2V voltage level detection and store  
detecting result to internal register (rstst).  
(f) PMC232/PMS232 series IC supports reset-source detection.  
(g) Watch-dog series IC provides watch-dog time out function which is assigned by register misc[1:0]  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 94 of 94  
PDK-DS-PMx232_V104– Dec. 18, 2018  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY