PMS133-U06 [PADAUK]

8bit OTP MCU with 12-bit ADC;
PMS133-U06
型号: PMS133-U06
厂家: PADAUK Technology    PADAUK Technology
描述:

8bit OTP MCU with 12-bit ADC

文件: 总106页 (文件大小:2265K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Datasheet  
Version 1.03 – Nov. 13, 2018  
Copyright 2018 by PADAUK Technology Co., Ltd., all rights reserved  
6F-6, No.1, Sec. 3, Gongdao 5th Rd., Hsinchu City 30069, Taiwan, R.O.C.  
TEL: 886-3-572-8688 www.padauk.com.tw  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
IMPORTANT NOTICE  
PADAUK Technology reserves the right to make changes to its products or to terminate  
production of its products at any time without notice. Customers are strongly  
recommended to contact PADAUK Technology for the latest information and verify  
whether the information is correct and complete before placing orders.  
PADAUK Technology products are not warranted to be suitable for use in life-support  
applications or other critical applications. PADAUK Technology assumes no liability for  
such applications. Critical applications include, but are not limited to, those which may  
involve potential risks of death, personal injury, fire or severe property damage.  
PADAUK Technology assumes no responsibility for any issue caused by a customer’s  
product design. Customers should design and verify their products within the ranges  
guaranteed by PADAUK Technology. In order to minimize the risks in customers’ products,  
customers should design a product with adequate operating safeguards.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 2 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Table of content  
1. Features...............................................................................................................................10  
1.1.  
1.2.  
1.3.  
1.4.  
Special Features...................................................................................................................10  
System Features...................................................................................................................10  
CPU Features.......................................................................................................................10  
Package Information .............................................................................................................11  
2. General Description and Block Diagram..........................................................................12  
3. Pin Assignment and Description ......................................................................................13  
4. Device Characteristics.......................................................................................................23  
4.1.  
4.2.  
4.3.  
4.4.  
4.5.  
4.6.  
4.7.  
4.8.  
4.9.  
AC/DC Device Characteristics ..............................................................................................23  
Absolute Maximum Ratings...................................................................................................25  
Typical ILRC frequency vs. VDD...........................................................................................25  
Typical IHRC frequency deviation vs. VDD (calibrated to 16MHz).........................................26  
Typical ILRC Frequency vs. Temperature.............................................................................26  
Typical IHRC Frequency vs. Temperature (calibrated to 16MHz)..........................................27  
Typical operating current vs. VDD @ system clock = ILRC/n................................................27  
Typical operating current vs. VDD @ system clock = IHRC/n ...............................................28  
Typical operating current vs. VDD @ system clock = 4MHz EOSC / n..................................28  
4.10. Typical operating current vs. VDD @ system clock = 32KHz EOSC / n.................................29  
4.11. Typical operating current vs. VDD @ system clock = 1MHz EOSC / n..................................29  
4.12. Typical IO driving current (IOH) and sink current (IOL) .............................................................30  
4.13. Typical IO input high/low threshold voltage (VIH/VIL) ..............................................................32  
4.14. Typical resistance of IO pull high device ...............................................................................32  
4.15. Typical power down current (IPD) and power save current (IPS)..............................................33  
4.16. Timing charts for boot up conditions......................................................................................34  
5. Functional Description.......................................................................................................35  
5.1.  
5.2.  
5.3.  
5.4.  
Program Memory - OTP........................................................................................................35  
Boot Procedure.....................................................................................................................35  
Data Memory - SRAM...........................................................................................................36  
Oscillator and clock...............................................................................................................36  
5.4.1. Internal High RC oscillator and Internal Low RC oscillator.........................................36  
5.4.2. Chip calibration..........................................................................................................36  
5.4.3. IHRC Frequency Calibration and System Clock ........................................................37  
5.4.4. External Crystal Oscillator .........................................................................................38  
5.4.5. System Clock and LVR level .....................................................................................40  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 3 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.4.6. System Clock Switching ............................................................................................40  
Comparator...........................................................................................................................42  
5.5.1 Internal reference voltage (Vinternal R)...........................................................................43  
5.5.2 Using the comparator ................................................................................................45  
5.5.3 Using the comparator and band-gap 1.20V ...............................................................46  
VDD/2 LCD Bias Voltage Generator .....................................................................................46  
16-bit Timer (Timer16) ..........................................................................................................47  
8-bit Timer (Timer2/Timer3) with PWM generation................................................................49  
5.8.1 Using the Timer2 to generate periodical waveform....................................................51  
5.8.2 Using the Timer2 to generate 8-bit PWM waveform...................................................52  
5.8.3 Using the Timer2 to generate 6-bit PWM waveform...................................................54  
11-bit PWM Generator ..........................................................................................................55  
5.9.1 PWM Waveform ........................................................................................................55  
5.9.2 Hardware and Timing Diagram..................................................................................56  
5.9.3 Equations for 11-bit PWM Generator.........................................................................57  
5.5.  
5.6  
5.7  
5.8  
5.9  
5.10 WatchDog Timer...................................................................................................................57  
5.11 Interrupt ................................................................................................................................58  
5.12 Power-Save and Power-Down ..............................................................................................60  
5.12.1 Power-Save mode (“stopexe)...................................................................................61  
5.12.2 Power-Down mode (“stopsys”) ..................................................................................61  
5.12.3 Wake-up....................................................................................................................62  
5.13 IO Pins..................................................................................................................................63  
5.14 Reset and LVR......................................................................................................................64  
5.14.1 Reset.........................................................................................................................64  
5.14.2 LVR reset ..................................................................................................................64  
5.15 Analog-to-Digital Conversion (ADC) module .........................................................................64  
5.15.1 The input requirement for AD conversion ..................................................................65  
5.15.2 Select the reference high voltage ..............................................................................66  
5.15.3 ADC clock selection...................................................................................................66  
5.15.4 Configure the analog pins..........................................................................................66  
5.15.5 Using the ADC...........................................................................................................67  
5.16 Multiplier ...............................................................................................................................68  
6. IO Registers ........................................................................................................................69  
6.1.  
6.2.  
6.3.  
6.4.  
ACC Status Flag Register (flag), IO address = 0x00 .............................................................69  
Stack Pointer Register (sp), IO address = 0x02 ....................................................................69  
Clock Mode Register (clkmd), IO address = 0x03 .................................................................69  
Interrupt Enable Register (inten), IO address = 0x04 ............................................................70  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 4 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
6.5.  
6.6.  
6.7.  
6.8.  
6.9.  
Interrupt Request Register (intrq), IO address = 0x05...........................................................70  
Timer16 mode Register (t16m), IO address = 0x06...............................................................71  
Multiplier Operand Register (mulop), IO address = 0x08.......................................................71  
Multiplier Result High Byte Register (mulrh), IO address = 0x09...........................................71  
External Oscillator setting Register (eoscr), IO address = 0x0a.............................................71  
6.10. Interrupt Edge Select Register (integs), IO address = 0x0c...................................................72  
6.11. Port A Digital Input Enable Register (padier), IO address = 0x0d..........................................72  
6.12. Port B Digital Input Enable Register (pbdier), IO address = 0x0e..........................................72  
6.13. Port C Digital Input Enable Register (pcdier), IO address = 0x0f...........................................72  
6.14. Port A Data Register (pa), IO address = 0x10.......................................................................72  
6.15. Port A Control Register (pac), IO address = 0x11 .................................................................73  
6.16. Port A Pull-High Register (paph), IO address = 0x12 ............................................................73  
6.17. Port B Data Register (pb), IO address = 0x13.......................................................................73  
6.18. Port B Control Register (pbc), IO address = 0x14 .................................................................73  
6.19. Port B Pull-High Register (pbph), IO address = 0x15 ............................................................73  
6.20. Port C Data Register (pc), IO address = 0x16.......................................................................73  
6.21. Port C Control Register (pcc), IO address = 0x17 .................................................................73  
6.22. Port C Pull-High Register (pcph), IO address = 0x18 ............................................................73  
6.23. ADC Control Register (adcc), IO address = 0x20..................................................................74  
6.24. ADC Mode Register (adcm), IO address = 0x21 ...................................................................74  
6.25. ADC Regulator Control Register (adcrgc), IO address = 0x24...............................................75  
6.26. ADC Result High Register (adcrh), IO address = 0x22..........................................................75  
6.27. ADC Result Low Register (adcrl), IO address = 0x23............................................................75  
6.28. MISC Register (misc), IO address = 0x26.............................................................................76  
6.29. Comparator Control Register (gpcc), IO address = 0x2b.......................................................76  
6.30. Comparator Selection Register (gpcs), IO address = 0x2c....................................................77  
6.31. Timer2 Control Register (tm2c), IO address = 0x30 ..............................................................77  
6.32. Timer2 Counter Register (tm2ct), IO address = 0x31 ............................................................77  
6.33. Timer2 Scalar Register (tm2s), IO address = 0x32................................................................78  
6.34. Timer2 Bound Register (tm2b), IO address = 0x33 ...............................................................78  
6.35. Timer3 Control Register (tm3c), IO address = 0x34 ..............................................................78  
6.36. Timer3 Counter Register (tm3ct), IO address = 0x35 ............................................................79  
6.37. Timer3 Scalar Register (tm3s), IO address = 0x36................................................................79  
6.38. Timer3 Bound Register (tm3b), IO address = 0x37 ...............................................................79  
6.39. PWMG0 control Register (pwmg0c), IO address = 0x40 .......................................................79  
6.40. PWMG0 Scalar Register (pwmg0s), IO address = 0x41........................................................80  
6.41. PWMG0 Duty Value High Register (pwmg0dth), IO address = 0x42 .....................................80  
6.42. PWMG0 Duty Value Low Register (pwmg0dtl), IO address = 0x43 .......................................80  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 5 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
6.43. PWMG0 Counter Upper Bound High Register (pwmg0cubh), IO address = 0x44 .................80  
6.44. PWMG0 Counter Upper Bound Low Register (pwmg0cubl), IO address = 0x45 ...................80  
6.45. PWMG1 control Register (pwmg1c), IO address = 0x46 .......................................................81  
6.46. PWMG1 Scalar Register (pwmg1s), IO address = 0x47........................................................81  
6.47. PWMG1 Duty Value High Register (pwmg1dth), IO address = 0x48 .....................................81  
6.48. PWMG1 Duty Value Low Register (pwmg1dtl), IO address = 0x49.......................................81  
6.49. PWMG1 Counter Upper Bound High Register (pwmg1cubh), IO address = 0x4a .................82  
6.50. PWMG1 Counter Upper Bound Low Register (pwmg1cubl), IO address = 0x04b .................82  
6.51. PWMG2 control Register (pwmg2c), IO address = 0x4C.......................................................82  
6.52. PWMG2 Scalar Register (pwmg2s), IO address = 0x4D .......................................................82  
6.53. PWMG2 Duty Value High Register (pwmg2dth), IO address = 0x4E.....................................83  
6.54. PWMG2 Duty Value Low Register (pwmg2dtl), IO address = 0x4F.......................................83  
6.55. PWMG2 Counter Upper Bound High Register (pwmg2cubh), IO address = 0x50 .................83  
6.56. PWMG2 Counter Upper Bound Low Register (pwmg2cubl), IO address = 0x51 ...................83  
7. Instructions.........................................................................................................................84  
7.1.  
7.2.  
7.3.  
7.4.  
7.5.  
7.6.  
7.7.  
7.8.  
7.9.  
Data Transfer Instructions.....................................................................................................85  
Arithmetic Operation Instructions ..........................................................................................89  
Shift Operation Instructions...................................................................................................91  
Logic Operation Instructions..................................................................................................92  
Bit Operation Instructions......................................................................................................95  
Conditional Operation Instructions ........................................................................................96  
System control Instructions ...................................................................................................97  
Summary of Instructions Execution Cycle .............................................................................98  
Summary of affected flags by Instructions.............................................................................99  
7.10. BIT definition.........................................................................................................................99  
8. Code Options....................................................................................................................100  
9. Special Notes....................................................................................................................102  
9.1.  
9.2.  
Warning ..............................................................................................................................102  
Using IC..............................................................................................................................102  
9.2.1. IO pin usage and setting..........................................................................................102  
9.2.2. Interrupt...................................................................................................................103  
9.2.3. System clock switching............................................................................................103  
9.2.4. Watchdog................................................................................................................103  
9.2.5. TIMER time out .......................................................................................................104  
9.2.6. IHRC .......................................................................................................................104  
9.2.7. LVR.........................................................................................................................104  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 6 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
9.2.8. Programming Writing...............................................................................................105  
9.2.9. Programming Compatibility......................................................................................106  
Using ICE............................................................................................................................106  
9.3  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 7 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Revision History:  
Revision  
Date  
Description  
0.01  
2017/09/11  
1st version  
1. Amend Section 1.2 System Features  
2. Amend Chapter 2 General Description and Block Diagram  
3. Amend Chapter 3 Pin Assignment and Description  
4. Amend Section 4.1 AC/DC Device Characteristics  
5. Amend Section 5.1 Program Memory – OTP  
6. Amend Section 5.4.3 IHRC Frequency Calibration and System Clock  
7. Amend Section 5.4.4 External Crystal Oscillator  
8. Amend Section 5.5.2 Using the comparator  
9. Add Section 5.6 VDD/2 LCD Bias Voltage Generator  
10. Add Fig.9 Using VDD/2 LCD Bias Voltage Generator  
11. Amend Section 5.7 16-bit Timer  
12. Amend Section 5.8.2 Using the Timer2 to generate 8-bit PWM waveform  
13. Amend Section 5.9 11-bit PWM Generator  
14. Amend Section 5.12.1 Power-Save mode (“stopexe”)  
15. Amend Fig.18 Hardware diagram of IO buffer  
16. Amend Fig.19 ADC Block Diagram  
17. Amend Section 5.15.4 Configure the analog pins  
18. Amend Section 5.15.5 Using the ADC  
19. Amend Section 6.3 Clock Mode Register  
20. Amend Section 6.4 Interrupt Enable Register  
21. Amend Section 6.5 Interrupt Request Register  
22. Amend Section 6.10 Interrupt Edge Select Register  
23. Amend Section 6.11 Port A Digital Input Enable Register  
24. Amend Section 6.12 Port B Digital Input Enable Register  
25. Amend Section 6.13 Port C Digital Input Enable Register  
26. Amend Section 6.23 ADC Control Register  
27. Amend Section 6.25 ADC Regulator Control Register  
28. Amend Section 6.28 MISC Register  
0.02  
2017/09/30  
29. Delete Section 6.29 MISC2 Register  
30. Amend Section 6.31 Timer2 Control Register  
31. Amend Section 6.33 Timer2 Scalar Register  
32. Amend Section 6.37 Timer3 Scalar Register  
33. Amend Section 6.39 PWMG0 control Register  
34. Amend Section 6.45 PWMG1 control Register  
35. Amend Section 6.51 PWMG2 control Register  
36. Amend Chapter 8 Code Options  
37. Amend Section 9.2.1 IO pin usage and setting  
38. Amend Section 9.2.2 Interrupt  
39. Amend Section 9.2.7 LVR  
40. Amend Section 9.2.9 RAM definition  
41. Amend Section 9.3 Using ICE  
1. Updated company address & Tel No.  
2. Amend Section 1.1 Special Features  
3. Amend Section 1.2: System Features  
4. Amend Section 1.3: CPU Features  
5. Amend Chapter 2: Block Diagram  
1.03  
2018/11/13  
6. Add AVDD, AGND and PA5 Pull-up resistor in Chapter 3  
7. Amend Section 4.1: AC/DC Device Characteristics  
8. Amend Section 4.3 to Section 4.15  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 8 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
9. Open 32KHz EOSC mode  
10. Amend Table 2: Three oscillation circuits  
11. Amend Section 5.4.1 Internal High RC oscillator and Internal Low RC oscillator  
12. Amend Section 5.4.5: System Clock and LVR level  
13. Amend Fig.4: Hardware diagram of comparator  
14. Amend Section 5.5.2: Using the comparator  
15. Amend Section 5.5.3: Using the comparator and band-gap 1.20V  
16. Amend Section 5.7: 16-bit Timer(Timer16)  
17. Amend Section 5.8: 8-bit Timer (Timer2/Timer3) with PWM generation  
18. Add Fig.13: Comparator controls the output of PWM waveform  
19. Amend Fig.15: Hardware Diagram of 11-bit PWM Generator  
20. Amend Section 5.9.3: Equations for 11-bit PWM Generator  
21. Amend Section 5.11: Interrupt  
22. Amend Section 5.12.1: Power-Save mode  
23. Amend Section 5.12.2: Power- Down mode  
24. Amend Section 5.12.3: Wake-up  
25. Amend Table 6: Differences in wake-up sources between Power-Save mode  
and Power-Down mode  
26. Amend Section 5.15: Analog-to-Digital Conversion (ADC) module  
27. Amend Fig.21: Analog Input Model  
28. Amend Section 6.2: Stack Pointer Register  
29. Amend Section 6.23: ADC Control Register  
30. Amend Section 6.35: Timer3 Control Register  
31. Amend Section 6.39: PWMG0 control Register  
32. Amend Section 6.40: PWMG0 Scalar Register  
33. Amend Section 6.44: PWMG0 Counter Upper Bound Low Register  
34. Amend Section 6.45: PWMG1 control Register  
35. Amend Section 6.46: PWMG1 Scalar Register  
36. Amend Section 6.47: PWMG1 Duty Value High Register  
37. Amend Section 6.49: PWMG1 Counter Upper Bound High Register  
38. Amend Section 6.50: PWMG1 Counter Upper Bound Low Register  
39. Amend Section 6.51: PWMG2 control Register  
40. Amend Section 6.52: PWMG2 Scalar Register  
41. Amend Section 6.53: PWMG2 Duty Value High Register  
42. Amend Section 6.55: PWMG2 Counter Upper Bound High Register  
43. Amend Section 6.56: PWMG2 Counter Upper Bound Low Register  
44. Delete the Symbol “pc0” in Chapter 7  
45. Add 7 Instructions: “nmov M, a”, “nmov a, M”, “ldtabh index”, “ldtabl index”,  
idxm a, index”, “swap M” and “xor a, IO”  
46. Amend Section 7.8 Summary of Instructions Execution Cycle and delete 9.2.8  
47. Move Section 9.2.9 BIT definition to Section 7.10  
48. Amend Chapter 8 Code Options  
49. Updated the link in Section 9.1  
50. Amend Section 9.2.1: IO pin usage and setting  
51. Amend Section 9.2.5: TIMER time out  
52. Amend Section 9.2.8: Programming Writing  
53. Amend Section 9.3: Using ICE  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 9 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
1. Features  
1.1. Special Features  
General purpose series  
Not supposed to use in AC RC step-down powered or high EFT requirement applications.  
PADAUK assumes no liability if such kind of applications can not pass the safety regulation tests.  
Operating temperature range: -20°C ~ 70°C  
1.2. System Features  
RAM  
(byte)  
256  
Max ADC  
Series  
OTP program memory  
Max IO no.  
Channel no.  
PMS133  
PMS134  
3KW  
4KW  
18  
22  
14  
14  
256  
One hardware 16-bit timer  
Two hardware 8-bit timers with PWM generation  
Three hardware 11-bit PWM generators (PWMG0, PWMG1 & PWMG2)  
One hardware comparator  
Band-gap circuit to provide 1.20V reference voltage  
Up to 14-channel 12-bit resolution ADC with one channel comes from internal band-gap reference voltage  
or 0.25*VDD  
ADC reference high voltage: external input, internal VDD, Band-gap 1.20V, 4V, 3V, 2V  
One 1T 8x8 hardware multiplier  
Max. 22 IO pins with optional pull-high resistor  
Three different IO Driving capability group to meet different application requirements  
(1) PB4, PB7 Drive/ Sink Current= 30mA/35mA (Strong) and 13mA/17mA (Normal)  
(2) Other IOs (except PA5) Drive/ Sink Current = 10mA/(13 or 20) mA  
(3) PA5 Sink Current = 10mA  
Every IO pin can be configured to enable wake-up function  
Built-in VDD/2 LCD bias voltage generator to provide maximum 4x10 dots LCD display  
Clock sources: IHRC, ILRC and EOSC (XTAL)  
For every wake-up enabled IO, two optional wake-up speed are supported: normal and fast  
Eight levels of LVR reset ~ 4.0V, 3.5V, 3.0V, 2.75V, 2.5V, 2.2V, 2.0V, 1.8V  
Two selectable external interrupt pins by code option  
1.3. CPU Features  
8bit high performance RISC CPU  
93 powerful instructions  
Most instructions are 1T execution cycle  
Programmable stack pointer to provide adjustable stack level  
Direct and indirect addressing modes for data access. Data memories are available for use as an index pointer  
of Indirect addressing mode  
IO space and memory space are independent  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 10 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
1.4. Package Information  
PMS134 Series  
PMS134-U06: SOT23-6 (60mil)  
PMS134-S08: SOP8 (150mil)  
PMS134-M10: MSOP10 (118mil)  
PMS134-S14: SOP14 (150mil)  
PMS134-S16A: SOP16A (150mil)  
PMS134-S16B: SOP16B (150mil)  
PMS134-S20: SOP20 (300mil)  
PMS134-H20: HTSOP20 (150mil)  
PMS134-S24: SOP24 (300mil)  
PMS134-Y24: SSOP24 (150mil)  
PMS134-4N10: DFN3*3-10P (0.5pitch)  
PMS134-2J16A: QFN4*4-16P (0.65pitch)  
PMS134-1J16A: QFN3*3-16P (0.5pitch)  
PMS134-2J24: QFN4*4-24P (0.5pitch)  
PMS133 Series  
PMS133-U06: SOT23-6 (60mil)  
PMS133-S08: SOP8 (150mil)  
PMS133-M10: MSOP10 (118mil)  
PMS133-S14: SOP14 (150mil)  
PMS133-S16A: SOP16A (150mil)  
PMS133-S16B: SOP16B (150mil)  
PMS133-S20: SOP20 (300mil)  
PMS133-H20: HTSOP20 (150mil)  
PMS133-4N10: DFN3*3-10P (0.5pitch)  
PMS133-2J16A: QFN4*4-16P (0.65pitch)  
PMS133-1J16A: QFN3*3-16P (0.5pitch)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 11 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
2. General Description and Block Diagram  
The PMS133/PMS134 family is an OTP-based CMOS 8-bit microcontroller with 12bit ADC. It employs RISC  
architecture and all the instructions are executed in one cycle except that some instructions are two cycles that  
handle indirect memory access.  
Up to 3KW/4KW OTP program memory and 256 bytes data SRAM are inside. One up to 14 channels 12-bit  
ADC is built inside the chip with multiple reference voltage sources selectable. PMS133/PMS134 also provides  
six hardware timers: one is 16-bit timer, two are 8-bit timers with PWM generation, and three hardware 11-bit  
timers with PWM generation are also included. PMS133/PMS134 also supports one hardware comparator and  
VDD/2 LCD bias voltage generator for LCD display application.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 12 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
3. Pin Assignment and Description  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 13 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 14 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 15 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 16 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Pin Type &  
Buffer Type  
Pin Name  
Description  
The functions of this pin can be:  
(1) Bit 7 of port A. It can be configured as digital input or two-state output, with pull-up  
resistor.  
(2) X1 is Crystal XIN(X1) when crystal oscillator is used.  
PA7 /  
X1 /  
IO  
(3) External interrupt line 0C. It can be used as an external interrupt line 0. Both rising  
edge and falling edge are accepted to request interrupt service and configurable  
by register setting  
ST /  
INT0C  
CMOS  
If this pin is used for crystal oscillator, bit 7 of padier register must be programmed “0”  
to avoid leakage current. This pin can be used to wake-up system during sleep mode;  
however, wake-up function is also disabled if bit 7 of padier register is “0”.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 17 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Pin Type &  
Buffer Type  
Pin Name  
Description  
The functions of this pin can be:  
(1) Bit 6 of port A. It can be configured as digital input or two-state output, with pull-up  
resistor.  
IO  
PA6 /  
X2  
ST /  
(2) X2 is Crystal XOUT(X2) when crystal oscillator is used.  
CMOS  
If this pin is used for crystal oscillator, bit 6 of padier register must be programmed “0”  
to avoid leakage current. This pin can be used to wake-up system during sleep mode;  
however, wake-up function is also disabled if bit 6 of padier register is “0”.  
The functions of this pin can be:  
(1) Bit 5 of port A. It can be configured as digital inputor open-drain output, with  
pull-up resistor.  
IO (OD)  
ST /  
PA5 /  
(2) Hardware reset.  
PRSTB  
CMOS  
This pin can be used to wake-up system during sleep mode; however, wake-up  
function is also disabled if bit 5 of padier register is “0”. Please put 33Ω resistor in  
series to have high noise immunity when this pin is in input mode.  
The functions of this pin can be:  
(1) Bit 4 of port A. It can be configured as digital input or two-state output, with pull-up  
resistor by software independently  
(2) Channel 9 of ADC analog input  
PA4 /  
AD9 /  
(3) COM3 to provide (1/2 VDD) for LCD display  
IO  
(4) Plus input source of comparator.  
COM3 /  
CIN+ /  
ST /  
(5) Minus input source 1 of comparator.  
CMOS /  
Analog  
(6) External interrupt line 1A. It can be used as an external interrupt line 1. Both rising  
edge and falling edge are accepted to request interrupt service and configurable  
by register setting  
CIN1- /  
INT1A /  
PG1PWM  
(7) Output of 11-bit PWM generator PWMG1  
When this pin is configured as analog input, please use bit 4 of register padier to  
disable the digital input to prevent current leakage. The bit 4 of padier register can be  
set to “0” to disable digital input; wake-up function by toggling this pin is also disabled.  
The functions of this pin can be:  
(1) Bit 3 of port A. It can be configured as digital input or two-state output, with pull-up  
resistor independently by software  
(2) Channel 8 of ADC analog input  
PA3 /  
AD8 /  
(3) COM4 to provide (1/2 VDD) for LCD display  
IO  
(4) Minus input source 0 of comparator.  
COM4 /  
CIN0- /  
ST /  
(5) External interrupt line 1B. It can be used as an external interrupt line 1. Both rising  
edge and falling edge are accepted to request interrupt service and configurable  
by register setting  
CMOS /  
Analog  
INT1B /  
TM2PWM /  
PG2PWM  
(6) PWM output from Timer2  
(7) Output of 11-bit PWM generator PWMG2  
When this pin is configured as analog input, please use bit 3 of register padier to  
disable the digital input to prevent current leakage. The bit 3 of padier register can be  
set to “0” to disable digital input; wake-up function by toggling this pin is also disabled.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 18 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Pin Type &  
Buffer Type  
Pin Name  
Description  
The functions of this pin can be:  
(1) Bit 2 of port A. It can be configured as digital input or two-state output, with pull-up  
resistor independently by software  
IO  
(2) External interrupt line 0B. It can be used as an external interrupt line 0. Both rising  
edge and falling edge are accepted to request interrupt service and configurable  
by register setting  
PA2 /  
ST /  
INT0B  
CMOS  
When this pin is configured as analog input, please use bit 2 of register padier to  
disable the digital input to prevent current leakage. The bit 2 of padier register can be  
set to “0” to disable digital input; wake-up function by toggling this pin is also disabled.  
The functions of this pin can be:  
IO  
Bit 1 of port A. It can be configured as digital input or two-state output, with pull-up  
resistor independently by software  
PA1  
ST /  
CMOS  
The bit 1 of padier register can be set to “0” to disable wake-up function by toggling  
this pin.  
The functions of this pin can be:  
(1) Bit 0 of port A. It can be configured as digital input or two-state output, with  
pull-up resistor independently by software  
(2) Channel 10 of ADC analog input  
(3) COM2 to provide (1/2 VDD) for LCD display  
PA0 /  
AD10 /  
COM2 /  
CO /  
(4) Output of comparator.  
IO  
(5) External interrupt line 0. It can be used as an external interrupt line 0. Both rising  
edge and falling edge are accepted to request interrupt service and configurable  
by register setting  
ST /  
CMOS /  
Analog  
INT0 /  
PG0PWM  
(6) Output of 11-bit PWM generator PWMG0.  
When this pin is configured as analog input, please use bit 0 of register padier to  
disable the digital input to prevent current leakage. The bit 0 of padier register can be  
set to “0” to disable digital input; wake-up function by toggling this pin is also  
disabled.  
The functions of this pin can be:  
(1) Bit 7 of port B. It can be configured as digital input or two-state output, with  
pull-up resistor independently by software  
(2) Channel 7 of ADC analog input  
PB7 /  
AD7 /  
IO  
(3) Minus input source 5 of comparator.  
ST /  
CIN5- /  
(4) PWM output from Timer3  
CMOS /  
Analog  
TM3PWM /  
PG1PWM  
(5) Output of 11-bit PWM generator PWMG1  
When this pin is configured as analog input, please use bit 7 of register pbdier to  
disable the digital input to prevent current leakage. The bit 7 of pbdier register can  
be set to “0” to disable digital input; wake-up function by toggling this pin is also  
disabled.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 19 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Pin Type &  
Buffer Type  
Pin Name  
Description  
The functions of this pin can be:  
(1) Bit 6 of port B. It can be configured as digital input or two-state output, with  
pull-up resistor independently by software  
(2) Channel 6 of ADC analog input  
(3) COM4 to provide (1/2 VDD) for LCD display  
PB6 /  
AD6 /  
(4) Minus input source 4 of comparator.  
IO  
(5) External interrupt line 1C. It can be used as an external interrupt line 1. Both  
rising edge and falling edge are accepted to request interrupt service and  
configurable by register setting.  
COM4 /  
CIN4- /  
ST /  
CMOS /  
Analog  
INT1C /  
TM3PWM /  
PG1PWM  
(6) PWM output from Timer3  
(7) Output of 11-bit PWM generator PWMG1  
When this pin is configured as analog input, please use bit 6 of register pbdier to  
disable the digital input to prevent current leakage. The bit 6 of pbdier register can  
be set to “0” to disable digital input; wake-up function by toggling this pin is also  
disabled.  
The functions of this pin can be:  
(1) Bit 5 of port B. It can be configured as digital input or two-state output, with  
pull-up resistor independently by software  
(2) Channel 5 of ADC analog input  
PB5 /  
AD5 /  
(3) COM3 to provide (1/2 VDD) for LCD display  
IO  
(4) External interrupt line 0A. It can be used as an external interrupt line 0. Both  
rising edge and falling edge are accepted to request interrupt service and  
configurable by register setting  
COM3 /  
INT0A /  
ST /  
CMOS /  
Analog  
(5) PWM output from Timer3  
TM3PWM /  
PG0PWM  
(6) Output of 11-bit PWM generator PWMG0  
When this pin is configured as analog input, please use bit 5 of register pbdier to  
disable the digital input to prevent current leakage. The bit 5 of pbdier register can  
be set to “0” to disable digital input; wake-up function by toggling this pin is also  
disabled.  
The functions of this pin can be:  
(1) Bit 4 of port B. It can be configured as digital input or two-state output, with  
pull-up resistor independently by software  
PB4 /  
AD4 /  
IO  
(2) Channel 4 of ADC analog input  
ST /  
(3) PWM output from Timer2  
(4) Output of 11-bit PWM generator PWMG0  
TM2PWM /  
PG0PWM  
CMOS /  
Analog  
When this pin is configured as analog input, please use bit 4 of register pbdier to  
disable the digital input to prevent current leakage. The bit 4 of pbdier register can  
be set to “0” to disable digital input; wake-up function by toggling this pin is also  
disabled.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 20 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Pin Type &  
Buffer Type  
Pin Name  
Description  
The functions of this pin can be:  
(1) Bit 3 of port B. It can be configured as digital input or two-state output, with  
pull-up resistor independently by software  
IO  
PB3 /  
AD3 /  
(2) Channel 3 of ADC analog input  
ST /  
(3) Output of 11-bit PWM generator PWMG2  
CMOS /  
Analog  
PG2PWM  
When this pin is configured as analog input, please use bit 3 of register pbdier to  
disable the digital input to prevent current leakage. The bit 3 of pbdier register can  
be set to “0” to disable digital input; wake-up function by toggling this pin is also  
disabled.  
The functions of this pin can be:  
(1) Bit 2 of port B. It can be configured as digital input or two-state output, with  
pull-up resistor independently by software  
PB2 /  
AD2 /  
IO  
(2) Channel 2 of ADC analog input  
ST /  
(3) COM2 to provide (1/2 VDD) for LCD display  
COM2 /  
CMOS /  
Analog  
(4) PWM output from Timer2  
TM2PWM /  
PG2PWM  
(5) Output of 11-bit PWM generator PWMG2.  
When this pin is configured as analog input, please use pbdier.2 to disable the digital  
input to prevent current leakage. The pbdier.2 can be set to “0” to disable digital  
input; wake-up functionby toggling this pin is also disabled.  
The functions of this pin can be:  
(1) Bit 1 of port B. It can be configured as digital input or two-state output, with  
pull-up resistor independently by software  
PB1 /  
AD1 /  
COM1 /  
Vref  
IO  
(2) Channel 1 of ADC analog input  
ST /  
(3) COM1 to provide (1/2 VDD) for LCD display  
CMOS /  
Analog  
(4) External reference high voltage for ADC.  
When this pin is configured as analog input, please use bit 1 of register pbdier to  
disable the digital input to prevent current leakage. The bit 1 of pbdier register can  
be set to “0” to disable digital input; wake-up functionby toggling this pin is also  
disabled.  
The functions of this pin can be:  
(1) Bit 0 of port B. It can be configured as digital input or two-state output, with  
pull-up resistor independently by software  
(2) Channel 0 of ADC analog input  
PB0 /  
AD0 /  
IO  
(3) COM1 to provide (1/2 VDD) for LCD display  
ST /  
(4) External interrupt line 1. It can be used as an external interrupt line 1. Both rising  
edge and falling edge are accepted to request interrupt service and configurable  
by register setting  
COM1 /  
INT1  
CMOS /  
Analog  
When this pin is configured as analog input, please use bit 0 of register pbdier to  
disable the digital input to prevent current leakage. The bit 0 of pbdier register can be  
set to “0” to disable digital input; wake-up functionby toggling this pin is also disabled.  
The function of this pin can be:  
IO  
Bit 5 of port C. It can be configured as digital input, two-state output with pull-up  
resistor independently by software  
PC5  
ST /  
CMOS  
The bit 5 of pcdier register can be set to “0” to disable digital input; wake-up from  
power-down by toggling this pin is also disabled.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 21 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Pin Type &  
Buffer Type  
Pin Name  
Description  
The function of this pin can be:  
IO  
Bit 4 of port C. It can be configured as digital input or two-state output, with pull-up  
resistor independently by software  
PC4  
ST /  
CMOS  
The bit 4 of pcdier register can be set to “0” to disable digital input; wake-up  
functionby toggling this pin is also disabled.  
The functions of this pin can be:  
(1) Bit 3 of port B. It can be configured as digital input or two-state output, with  
pull-up resistor independently by software  
IO  
PC3 /  
ST /  
PG1PWM  
(2) Output of 11-bit PWM generator PWMG1.  
CMOS  
The bit 3 of pcdier register can be set to “0” to disable digital input; wake-up  
functionby toggling this pin is also disabled.  
The functions of this pin can be:  
(1) Bit 2 of port C. It can be configured as digital input or two-state output, with  
pull-upresistor independently by software  
IO  
PC2 /  
AD12 /  
ST /  
(2) Channel 12 of ADC analog input  
CMOS /  
Analog  
(3) Output of 11-bit PWM generator PWMG0  
PG0PWM  
When this pin is configured as analog input, please use bit 2 of register pcdier to  
disable the digital input to prevent current leakage. The bit 2 of pcdier register can be  
set to “0” to disable digital input; wake-up functionby toggling this pin is also disabled.  
The functions of this pin can be:  
(1) Bit 1 of port C. It can be configured as digital input or two-state output, with  
pull-upresistor independently by software  
IO  
PC1 /  
AD11  
ST /  
(2) Channel 11 of ADC analog input  
CMOS /  
Analog  
When this pin is configured as analog input, please use bit 2 of register pcdier to  
disable the digital input to prevent current leakage. The bit 2 of pcdier register can be  
set to “0” to disable digital input; wake-up functionby toggling this pin is also disabled.  
The functions of this pin can be:  
(1) Bit 0 of port C. It can be configured asdigital input or two-state output, with pull-up  
resistor independently by software  
IO  
PC0 /  
ST /  
PG2PWM  
(2) Output of 11-bit PWM generator PWMG2  
CMOS  
The bit 0 of pcdier register can be set to “0” to disable digital input; wake-up  
functionby toggling this pin is also disabled.  
VDD: Digital positive power  
VDD/  
VDD/  
AVDD: Analog positive power  
AVDD  
AVDD  
VDD is the IC power supply while AVDD is the ADC power supply. AVDD and VDD  
are double bonding internally and they have the same external pin.  
GND: Digital negative power  
GND /  
AGND  
GND /  
AGND  
AGND: Analog negative power  
GND is the IC ground pin while AGND is the ADC ground pin. AGND and GND are  
double bonding internally and they have the same external pin.  
Notes: IO: Input/Output; ST: Schmitt Trigger input; OD: Open Drain; Analog: Analog input pin  
CMOS: CMOS voltage level  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 22 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
4. Device Characteristics  
4.1. AC/DC Device Characteristics  
All data are acquired under the conditions of VDD=5.0V, fSYS =2MHz unless noted.  
Symbol  
Description  
Operating Voltage  
Min  
2.2*  
-5  
Typ  
Max  
5.5  
5
Unit  
V
Conditions (Ta=25oC)  
VDD  
5.0  
* Subject to LVR tolerance  
LVR% Low Voltage Reset Tolerance  
System clock (CLK)* =  
IHRC/2  
%
0
0
0
8M  
4M  
2M  
V
V
V
DD 3.5V  
DD 2.5V  
DD 2.2V  
fSYS  
IHRC/4  
Hz  
IHRC/8  
ILRC  
63K  
2.0*  
0.75  
40  
VDD = 5.0V  
Power On Reset Voltage  
* Subject to LVR tolerance  
VPOR  
IOP  
IPD  
IPS  
mA fSYS=IHRC/16=1MIPS@5.0V  
Operating Current  
uA  
uA  
uA  
fSYS=ILRC=67KHz@3.3V  
fSYS= 0Hz,VDD=5.0V  
fSYS= 0Hz,VDD=3.3V  
Power Down Current  
(by stopsys command)  
Power Save Current  
(by stopexe command)  
0.2  
0.1  
VDD =5.0V; fSYS= ILRC  
2.5  
uA  
V
Only ILRC module is enabled.  
0
0.1 VDD  
0.2 VDD  
VDD  
PA5  
VIL  
VIH  
Input low voltage for IO lines  
Input high voltage for IO lines  
0
Other IO  
PA5  
0.8 VDD  
0.7 VDD  
V
VDD  
Other IO  
IO lines Sink current  
PB4, PB7 (Normal)  
PB4, PB7 (Strong)  
17  
IOL  
35  
mA VDD=5.0V, VOL=0.5V  
PA0-4, PB2, PB5-6  
PA5-7, PB0-1, PB3, PC0-5  
20  
13  
IO lines Drive current  
PB4, PB7 (Normal)  
PB4, PB7 (Strong)  
PA5  
13  
30  
IOH  
mA VDD=5.0V, VOH=4.5V  
0
Other IOs  
10  
VIN  
Input voltage  
-0.3  
VDD+0.3  
1
V
IINJ (PIN) Injected current on pin  
mA VDD +0.3VIN-0.3  
100  
200  
450  
VDD =5.0V  
RPH  
Pull-high Resistance  
KΩ  
VDD =3.3V  
VDD =2.2V  
VDD =2.2V ~ 5.5V  
-20oC <Ta<70oC*  
25oC, VDD =2.2V~5.5V  
VDD =2.2V~5.5V,  
0oC <Ta<70oC*  
VDD = 5.0V  
VBG  
Band-gap Reference Voltage  
1.145*  
15.76*  
15.20*  
30  
1.20*  
16*  
1.255*  
16.24*  
16.80*  
V
Frequency of ILRC after  
fILRC  
tINT  
MHz  
ns  
calibration *  
16*  
Interrupt pulse width  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 23 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Symbol  
Description  
Min  
Typ  
Max  
Unit  
Conditions (Ta=25oC)  
VADC  
ADC working voltage  
2.2  
VDD  
V
VAD  
AD Input Voltage  
ADC resolution  
0
VDD  
V
ADrs  
12  
bit  
0.9  
0.8  
2
@5V  
ADcs  
ADclk  
ADC current consumption  
mA  
us  
@3V  
ADC clock period  
2.2V ~ 5.5V  
ADC conversion time  
tADCONV (tADCLK is the period of the  
selected AD conversion clock)  
16  
tADCLK 12-bit resolution  
AD DNL ADC Differential Non-Linearity  
±2*  
±4*  
2*  
LSB  
LSB  
AD INL ADC Integral Non-Linearity  
ADos  
ADC offset  
mV  
V
@ VDD =3V  
ADC reference high voltage  
4V  
3.90*  
2.93*  
1.95*  
1.5  
4*  
3*  
2*  
4.10*  
3.07*  
2.05*  
VREFH  
@ VDD =5V, 25 oC  
3V  
2V  
VDR  
RAM data retention voltage*  
V
in stop mode  
8k  
misc[1:0]=00 (default)  
misc[1:0]=01  
16k  
tWDT  
Watchdog timeout period  
TILRC  
64k  
256k  
45  
misc[1:0]=10  
misc[1:0]=11  
Wake-up time period (fast)  
Where TILRC is the time  
period of ILRC  
tWUP  
TILRC  
Wake-up time period (normal)  
3000  
System boot-up period from  
power-on for Normal boot-up  
System boot-up period from  
power-on for Fast boot-up  
External reset pulse width  
50  
ms  
us  
VDD =5V  
tSBP  
750  
VDD =5V  
tRST  
120  
-
us  
@ VDD =5V  
CPos  
CPcm  
Comparator offset*  
Comparator input common  
mode*  
±10  
±20  
VDD -1.5  
500  
mV  
0
V
CPspt  
CPmc  
Comparator response time*  
Stable time to change  
comparator mode  
Comparator current  
consumption  
100  
2.5  
20  
ns  
us  
Both Rising and Falling  
VDD = 3.3V  
7.5  
CPcs  
uA  
*These parameters are for design reference, not tested for each chip.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 24 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
4.2. Absolute Maximum Ratings  
Supply Voltage ……………………………......  
*If VDD is over the maximum rating, it may lead to a permanent damage of IC.  
Input Voltage ………………………………….. -0.3V ~ VDD + 0.3V  
Operating Temperature .................................. -20oC ~ 70oC  
Junction Temperature ………………………… 150°C  
Storage Temperature ………………………… -50°C ~ 125°C  
2.2V ~ 5.5V  
4.3. Typical ILRC frequency vs. VDD  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 25 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
4.4. Typical IHRC frequency deviation vs. VDD (calibrated to 16MHz)  
4.5. Typical ILRC Frequency vs. Temperature  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 26 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
4.6. Typical IHRC Frequency vs. Temperature (calibrated to 16MHz)  
4.7. Typical operating current vs. VDD @ system clock = ILRC/n  
Conditions:  
ON: ILRC, Band-gap, LVR;  
OFF: IHRC, EOSC, T16, TM2, TM3, ADC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 27 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
4.8. Typical operating current vs. VDD @ system clock = IHRC/n  
Conditions:  
ON: IHRC, Band-gap, LVR;  
OFF: ILRC, EOSC, T16, TM2, TM3, ADC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
4.9. Typical operating current vs. VDD @ system clock = 4MHz EOSC / n  
Conditions:  
ON: EOSC[6,5] = [1,1], Band-gap, LVR;  
OFF: IHRC, ILRC, T16, TM2, TM3, ADC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 28 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
4.10.Typical operating current vs. VDD @ system clock = 32KHz EOSC / n  
Conditions:  
ON: EOSC[6,5] = [0,1], Band-gap, LVR;  
OFF: IHRC, ILRC, T16, TM2, TM3, ADC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
4.11.Typical operating current vs. VDD @ system clock = 1MHz EOSC / n  
Conditions:  
ON: EOSC[6,5] = [1,0], Band-gap, LVR;  
OFF: IHRC, ILRC, T16, TM2, TM3, ADC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 29 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
4.12.Typical IO driving current (IOH) and sink current (IOL)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 30 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 31 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
4.13. Typical IO input high/low threshold voltage (VIH/VIL)  
4.14. Typical resistance of IO pull high device  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 32 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
4.15. Typical power down current (IPD) and power save current (IPS)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 33 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
4.16. Timing charts for boot up conditions  
LVR level  
SBP  
VDD  
POR  
VDD  
LVR  
t
SBP  
t
Program  
Program  
Execution  
Execution  
Boot up from LVR detection  
Boot up from Power-On Reset  
VDD  
VDD  
t
SBP  
WD  
Time Out  
Reset#  
t
SBP  
Program  
Execution  
Program  
Execution  
Boot up from Reset Pad reset  
Boot up from Watch Dog Time Out  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 34 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5. Functional Description  
5.1. Program Memory - OTP  
The OTP (One Time Programmable) program memory is used to store the program instructions to be executed.  
The OTP program memory may contains the data, tables and interrupt entry. After reset, the initial address  
0x000 is reserved for system using, so the program will start from 0x001 which is GOTO FPPA0 instruction  
usually. The interrupt entry is 0x10 if used, the last 16 addresses are reserved for system using, like checksum,  
serial number, etc. The OTP program memory for PMS133/PMS134 is 3KW/4KW that is partitioned as Table 1.  
The OTP memory from address 0XFE8 to 0xFFF is for system using, address space from 0x002 to 0x00F and  
from 0x011 to 0XFE7are user program spaces.  
Address  
0x000  
0x001  
0x002  
Function  
System Using  
GOTO FPPA0 instruction  
User program  
0x00F  
0x010  
0x011  
User program  
Interrupt entry address  
User program  
0xBEF  
0xC00  
User program  
User Program  
• ( Not for PMS133 )  
User Program  
System Using  
0xFE7  
0XFE8  
0xFFF  
System Using  
Table 1: Program Memory Organization  
5.2. Boot Procedure  
POR (Power-On-Reset) is used to reset PMS133/PMS134 when power up. The boot up time can be optional  
fast or normal. Time for fast boot-up is about 45 ILRC clock cycles whereas 3000 ILRC clock cycles for normal  
boot-up. Customer must ensure the stability of supply voltage after power up no matter which option is chosen,  
the power up sequence is shown in the Fig. 1 and tSBP is the boot up time.  
Fig.1: Power-Up Sequence  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 35 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.3. Data Memory - SRAM  
The access of data memory can be byte or bit operation. Besides data storage, the SRAM data memory is also  
served as data pointer of indirect access method and the stack memory.  
The stack memory is defined in the data memory. The stack pointer is defined in the stack pointer register; the  
depth of stack memory of each processing unit is defined by the user. The arrangement of stack memory fully  
flexible and can be dynamically adjusted by the user.  
For indirect memory access mechanism, the data memory is used as the data pointer to address the data byte.  
All the data memory could be the data pointer; it’s quite flexible and useful to do the indirect memory access.  
Since the data width is 8-bit, all the 256 bytes data memory of PMS133/PMS134 can be accessed by indirect  
access mechanism.  
5.4. Oscillator and clock  
There are three oscillator circuits provided by PMS133/PMS134: external crystal oscillator (EOSC), internal  
high RC oscillator (IHRC) and internal low RC oscillator (ILRC), and these three oscillators are enabled or  
disabled by registers eoscr.7, clkmd.4 and clkmd.2 independently. User can choose one of these three  
oscillators as system clock source and use clkmd register to target the desired frequency as system clock to  
meet different applications.  
Oscillator Module  
EOSC  
Enable/Disable  
eoscr.7  
IHRC  
clkmd.4  
ILRC  
clkmd.2  
Table 2: Three oscillation circuits  
5.4.1. Internal High RC oscillator and Internal Low RC oscillator  
After boot-up, the IHRC and ILRC oscillators are enabled. The frequency of IHRC can be calibrated to  
eliminate process variation by ihrcr register; normally it is calibrated to 16MHz. Please refer to the  
measurement chart for IHRC frequency verse VDD and IHRC frequency verse temperature. The frequency of  
ILRC will vary by process, supply voltage and temperature, please refer to DC specification and do not use for  
accurate timing application.  
5.4.2. Chip calibration  
The IHRC frequency and band-gap reference voltage may be different chip by chip due to manufacturing  
variation, PMS133/PMS134 provide the IHRC frequency calibration to eliminate this variation, and this function  
can be selected when compiling user’s program and the command will be inserted into user’s program  
automatically. The calibration command is shown as below:  
.ADJUST_IC SYSCLK=IHRC/(p1), IHRC=(p2)MHz, VDD=(p3)V;  
Where, p1=2, 4, 8, 16, 32; In order to provide different system clock.  
p2=14 ~ 18; In order to calibrate the chip to different frequency, 16MHz is the usually one.  
p3=2.5 ~ 5.5; In order to calibrate the chip under different supply voltage.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 36 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.4.3. IHRC Frequency Calibration and System Clock  
During compiling the user program, the options for IHRC calibration and system clock are shown as Table 3:  
SYSCLK  
○ Set IHRC / 2  
Set IHRC / 4  
Set IHRC / 8  
Set IHRC / 16  
Set IHRC / 32  
○ Set ILRC  
CLKMD  
IHRCR  
Calibrated  
Calibrated  
Calibrated  
Description  
= 34h (IHRC / 2)  
= 14h (IHRC / 4)  
= 3Ch (IHRC / 8)  
IHRC calibrated to 16MHz, CLK=8MHz (IHRC/2)  
IHRC calibrated to 16MHz, CLK=4MHz (IHRC/4)  
IHRC calibrated to 16MHz, CLK=2MHz (IHRC/8)  
IHRC calibrated to 16MHz, CLK=1MHz (IHRC/16)  
IHRC calibrated to 16MHz, CLK=0.5MHz (IHRC/32)  
IHRC calibrated to 16MHz, CLK=ILRC  
= 1Ch (IHRC / 16) Calibrated  
= 7Ch (IHRC / 32) Calibrated  
= E4h (ILRC / 1)  
No change  
Calibrated  
○ Disable  
No Change IHRC not calibrated, CLK not changed  
Table 3: Options for IHRC Frequency Calibration  
Usually, .ADJUST_IC will be the first command after boot up, in order to set the target operating frequency  
whenever starting the system. The program code for IHRC frequency calibration is executed only one time that  
occurs in writing the codes into OTP memory; after then, it will not be executed again. If the different option for  
IHRC calibration is chosen, the system status is also different after boot. The following shows the status of  
PMS133/PMS134 for different option:  
(1) .ADJUST_IC  
SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V  
After boot up, CLKMD = 0x34  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is enabled  
System CLK = IHRC/2 = 8MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(2) .ADJUST_IC  
SYSCLK=IHRC/4, IHRC=16MHz, VDD=3.3V  
After boot up, CLKMD = 0x14:  
IHRC frequency is calibrated to 16MHz@VDD=3.3V and IHRC module is enabled  
System CLK = IHRC/4 = 4MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(3) .ADJUST_IC  
SYSCLK=IHRC/8, IHRC=16MHz, VDD=2.5V  
After boot up, CLKMD = 0x3C:  
IHRC frequency is calibrated to 16MHz@VDD=2.5V and IHRC module is enabled  
System CLK = IHRC/8 = 2MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
SYSCLK=IHRC/16, IHRC=16MHz, VDD=2.5V  
(4) .ADJUST_IC  
After boot up, CLKMD = 0x1C:  
IHRC frequency is calibrated to 16MHz@VDD=2.5V and IHRC module is enabled  
System CLK = IHRC/16 = 1MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(5) .ADJUST_IC  
SYSCLK=IHRC/32, IHRC=16MHz, VDD=5V  
After boot up, CLKMD = 0x7C:  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is enabled  
System CLK = IHRC/32 = 500KHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 37 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
(6) .ADJUST_IC  
SYSCLK=ILRC, IHRC=16MHz, VDD=5V  
After boot up, CLKMD = 0XE4:  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is disabled  
System CLK = ILRC  
Watchdog timer is disabled, ILRC is enabled, PA5 is input mode  
(7) .ADJUST_IC  
DISABLE  
After boot up, CLKMD is not changed (Do nothing):  
IHRC is not calibrated and IHRC module is disabled  
System CLK = ILRC or IHRC/64  
Watchdog timer is enabled, ILRC is enabled, PA5 is in input mode,  
5.4.4. External Crystal Oscillator  
If crystal oscillator is used, a crystal or resonator is required between X1 and X2. Fig.2 shows the hardware  
connection under this application; the range of operating frequency of crystal oscillator can be from 32 KHz to  
4MHz, depending on the crystal placed on; higher frequency oscillator than 4MHz is NOT supported.  
(Select driving current for oscillator)  
eoscr[6:5]  
(Enable crystal oscillator)  
eoscr.7  
C1  
PA7/X1  
System clock = EOSC  
PA6/X2  
C2  
The values of C1 and C2 should depend on  
the specification of crystal.  
Fig.2: Connection of crystal oscillator  
Besides crystal, external capacitor and options of PMS133/PMS134 should be fine tuned in eoscr (0x0a)  
register to have good sinusoidal waveform. The eoscr.7 is used to enable crystal oscillator module, eoscr.6 and  
eoscr.5 are used to set the different driving current to meet the requirement of different frequency of crystal  
oscillator:  
eoscr.[6:5]=01 : Low driving capability, for lower frequency, ex: 32KHz crystal oscillator  
eoscr.[6:5]=10 : Middle driving capability, for middle frequency, ex: 1MHz crystal oscillator  
eoscr.[6:5]=11 : High driving capability, for higher frequency, ex: 4MHz crystal oscillator  
Table 4 shows the recommended values of C1 and C2 for different crystal oscillator; the measured start-up  
time under its corresponding conditions is also shown. Since the crystal or resonator had its own characteristic,  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 38 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
the capacitors and start-up time may be slightly different for different type of crystal or resonator, please refer to  
its specification for proper values of C1 and C2.  
Measured  
Frequency  
C1  
C2  
Conditions  
Start-up time  
6ms  
4MHz  
1MHz  
32KHz  
4.7pF  
10pF  
22pF  
4.7pF  
10pF  
22pF  
(eoscr[6:5]=11, misc.6=0)  
(eoscr[6:5]=10, misc.6=0)  
(eoscr[6:5]=01, misc.6=0)  
11ms  
450ms  
Table 4: Recommend values of C1 and C2 for crystal and resonator oscillators  
When using the crystal oscillator, user must pay attention to the stable time of oscillator after enabling it, the  
stable time of oscillator will depend on frequency “crystal type” external capacitor and supply voltage. Before  
switching the system to the crystal oscillator, user must make sure the oscillator is stable; the reference  
program is shown as below:  
void  
{
FPPA0 (void)  
. ADJUST_IC SYSCLK=IHRC/16, IHRC=16MHz, VDD=5V  
$
$
EOSCR  
Enable, 4MHz;  
// EOSCR = 0b110_00000;  
T16M EOSC, /1, BIT13;  
// T16 receive 2^14=16384 clocks of crystal EOSC,  
// Intrq.T16 =>1, crystal EOSC Is stable  
WORD  
count =  
0;  
stt16 count;  
Intrq.T16  
=
0;  
do  
{
nop; }while(!Intrq.T16);  
// count from 0x0000 to 0x2000, then set INTRQ.T16  
// switch system clock to EOSC;  
clkmd=  
0xB4;  
Clkmd.4 = 0;  
...  
//disable IHRC  
Please notice that the crystal oscillator should be fully turned off before entering the power-down mode, in  
order to avoid unexpected wakeup event.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 39 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.4.5. System Clock and LVR level  
The clock source of system clock comes from EOSC, IHRC and ILRC, the hardware diagram of system clock  
in the PMS133/PMS134 is shown as Fig.3.  
clkmd[7:5]  
÷2, ÷4,  
IHRC  
clock  
÷8, ÷16, ÷32, ÷64  
System  
clock  
CLK  
M
U
X
EOSC  
clock  
÷1, ÷2, ÷4, ÷8  
ILRC  
÷1 (default), ÷4, ÷16  
clock  
Fig.3: Options of System Clock  
User can choose different operating system clock depends on its requirement; the selected operating system  
clock should be combined with supply voltage and LVR level to make system stable. The LVR level will be  
selected during compilation, and the lowest LVR levels can be chosen for different operating frequencies.  
Please refer to Section 4.1.  
5.4.6. System Clock Switching  
After IHRC calibration, user may want to switch system clock to a new frequency or may switch system clock at  
any time to optimize the system performance and power consumption. Basically, the system clock of  
PMS133/PMS134 can be switched among IHRC, ILRC and EOSC by setting the clkmd register at any time;  
system clock will be the new one after writing to clkmd register immediately. Please notice that the original  
clock module can NOT be turned off at the same time as writing command to clkmd register. The examples are  
shown as below and more information about clock switching, please refer to the “Help” -> “Application Note” ->  
“IC Introduction” -> “Register Introduction” -> CLKMD”.  
Case 1: Switching system clock from ILRC to IHRC/2  
//  
//  
//  
system clock is ILRC  
CLKMD  
CLKMD.2  
=
=
0x34  
0;  
switch to IHRC/2ILRC CAN NOT be disabled here  
ILRC CAN be disabled at this time  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 40 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Case 2: Switching system clock from ILRC to EOSC  
//  
//  
//  
system clock is ILRC  
CLKMD  
CLKMD.2  
=
=
0xA6;  
0;  
switch to IHRCILRC CAN NOT be disabled here  
ILRC CAN be disabled at this time  
Case 3: Switching system clock from IHRC/2 to ILRC  
//  
//  
//  
system clock is IHRC/2  
CLKMD  
CLKMD.4  
=
=
0xF4;  
0;  
switch to ILRCIHRC CAN NOT be disabled here  
IHRC CAN be disabled at this time  
Case 4: Switching system clock from IHRC/2 to EOSC  
//  
//  
//  
system clock is IHRC/2  
CLKMD  
CLKMD.4  
=
=
0XB0;  
0;  
switch to EOSCIHRC CAN NOT be disabled here  
IHRC CAN be disabled at this time  
Case 5: Switching system clock from IHRC/2 to IHRC/4  
//  
//  
system clock is IHRC/2, ILRC is enabled here  
switch to IHRC/4  
CLKMD  
=
0X14;  
Case 6: System may hang if it is to switch clock and turn off original oscillator at the same time  
//  
system clock is ILRC  
CLKMD  
=
0x30;  
//  
CAN NOT switch clock from ILRC to IHRC/2 and  
turn off ILRC oscillator at the same time  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 41 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.5. Comparator  
One hardware comparator is built inside the PMS133/PMS134; Fig.4 shows its hardware diagram. It can  
compare signals between two pins or with either internal reference voltage Vinternal R or internal band-gap  
reference voltage. The two signals to be compared, one is the plus input and the other one is the minus input.  
For the minus input of comparator can be PA3, PA4, Internal band-gap 1.20 volt, PB6, PB7 or Vinternal R selected  
by bit [3:1] of gpcc register, and the plus input of comparator can be PA4 or Vinternal R selected by bit 0 of gpcc  
register.  
The output result can be enabled to output to PA0 directly, or sampled by Time2 clock (TM2_CLK) which  
comes from Timer2 module. The output can be also inversed the polarity by bit 4 of gpcc register, the  
comparator output can be used to request interrupt service.  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.5=1  
gpcs.4=0  
gpcs.4=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
Vinternal R  
gpcc[3:1]  
PA3/CIN0-  
PA4/CIN1-  
Band-gap  
000  
001 M  
gpcc.4  
To request interrupt  
gpcc.6  
010 U  
011 X  
100  
X
O
R
-
PB6/CIN4-  
PB7/CIN5-  
M
U
X
101  
+
D
F
F
To  
PA0  
0
Timer 2  
clock  
MUX  
1
PA4/CIN+  
gpcc.0  
TM2_CLK  
gpcc.5  
gpcs.7  
Fig.4: Hardware diagram of comparator  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 42 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.5.1 Internal reference voltage (Vinternal R  
)
The internal reference voltage Vinternal R is built by series resistance to provide different level of reference  
voltage, bit 4 and bit 5 of gpcs register are used to select the maximum and minimum values of Vinternal R  
and bit [3:0] of gpcs register are used to select one of the voltage level which is deivided-by-16 from the  
defined maximum level to minimum level. Fig.5 to Fig.8 shows four conditions to have different reference  
voltage Vinternal R. By setting the gpcs register, the internal reference voltage Vinternal R can be ranged from  
(1/32)*VDD to (3/4)*VDD.  
Case 1 : gpcs.5=0 & gpcs.4=0  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.4=0  
gpcs.4=1  
gpcs.5=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (3/4) VDD ~ (1/4) VDD + (1/32) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
1
4
(n+1)  
32  
V internal R  
=
*
VDD +  
*
VDD, n = gpcs[3:0] in decimal  
Fig.5: Vinternal R hardware connection if gpcs.5=0 and gpcs.4=0  
Case 2 : gpcs.5=0 & gpcs.4= 1  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.4=0  
gpcs.4=1  
gpcs.5=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (2/3) VDD ~ (1/24) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
(n+1)  
V internal R  
=
*
VDD, n = gpcs[3:0] in decimal  
24  
Fig.6: Vinternal R hardware connection if gpcs.5=0 and gpcs.4=1  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 43 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Case 3 : gpcs.5=1 & gpcs.4= 0  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.4=0  
gpcs.4=1  
gpcs.5=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (3/5) VDD ~ (1/5) VDD + (1/40) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
1
5
(n+1)  
40  
V internal R  
=
*
VDD +  
*
VDD, n = gpcs[3:0] in decimal  
Fig.7: Vinternal R hardware connection if gpcs.5=1 and gpcs.4=0  
Case 4 : gpcs.5=1 & gpcs.4=1  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.4=0  
gpcs.4=1  
gpcs.5=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (1/2) VDD ~ (1/32) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
(n+1)  
V internal R  
=
*
VDD, n = gpcs[3:0] in decimal  
32  
Fig.8: Vinternal R hardware connection if gpcs.5=1 and gpcs.4=1  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 44 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.5.2  
Using the comparator  
Case I:  
Choosing PA3 as minus input and Vinternal R with (18/32)*VDD voltage level as plus input. Vinternal R is  
configured as the above Figure “gpcs[5:4] = 2b’00” and gpcs [3:0] = 4b’1001 (n=9) to have Vinternal R  
(1/4)*VDD + [(9+1)/32]*VDD = [(9+9)/32]*VDD (18/32)*VDD.  
=
=
gpcs = 0b0_0_00_1001;  
gpcc = 0b1_0_0_0_000_0;  
padier = 0bxxxx_0_xxx;  
// Vinternal R = VDD*(18/32)  
// enable comp, - input: PA3, + input: Vinternal R  
// disable PA3 digital input to prevent leakage current  
or  
$ GPCS  
$ GPCC  
V
DD*18/32;  
Enable, N_PA3, P_R;  
// - input: N_xx+ input: P_R(Vinternal R  
)
PADIER = 0bxxxx_0_xxx;  
Case 2:  
Choosing Vinternal R as minus input with (22/40)*VDD voltage level and PA4 as plus input, the comparator  
result will be inversed and then output to PA0. Vinternal R is configured as the above Figure “gpcs[5:4] =  
2b’10” and gpcs [3:0] = 4b’1101 (n=13) to have Vinternal R = (1/5)*VDD + [(13+1)/40]*VDD = [(13+9)/40]*VDD  
(22/40)*VDD.  
=
gpcs = 0b1_0_10_1101;  
gpcc = 0b1_0_0_1_011_1;  
padier = 0bxxx_0_xxxx;  
// output to PA0,Vinternal R = VDD*(22/40)  
// Inverse output, - input: Vinternal R, + input: PA4  
// disable PA4 digital input to prevent leakage current  
or  
$ GPCS  
$ GPCC  
V
DD*22/40;  
Enable, Inverse, N_R, P_PA4;  
// - input: N_R(Vinternal R)+ input: P_xx  
PADIER =0bxxx_0_xxxx;  
Note: When selecting output to PA0 output, GPCS will affect the PA3 output function in ICE. Though the  
IC is fine, be careful to avoid this error during emulation.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 45 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.5.3 Using the comparator and band-gap 1.20V  
The internal band-gap module can provide 1.20 volt, it can measure the external supply voltage level. The  
band-gap 1.20 volt is selected as minus input of comparator and Vinternal R is selected as plus input, the  
supply voltage of Vinternal R is VDD, the VDD voltage level can be detected by adjusting the voltage level of  
Vinternal R to compare with band-gap. If N (gpcs[3:0] in decimal) is the number to let Vinternal R closest to  
band-gap 1.20 volt, the supply voltage VDD can be calculated by using the following equations:  
For using Case 1: VDD = [ 32 / (N+9) ] * 1.20 volt ;  
For using Case 2: VDD = [ 24 / (N+1) ] * 1.20 volt ;  
For using Case 3: VDD = [ 40 / (N+9) ] * 1.20 volt ;  
For using Case 4: VDD = [ 32 / (N+1) ] * 1.20 volt ;  
Case 1:  
$ GPCS VDD*12/40;  
// 4.0V * 12/40 = 1.2V  
$ GPCC Enable, BANDGAP, P_R; // - input: BANDGAP, + input: P_R(Vinternal R  
)
….  
if (GPC_Out)  
// or GPCC.6  
{
//  
//  
when VDD4V  
}
else  
{
}
when VDD4V  
5.6 VDD/2 LCD Bias Voltage Generator  
This function can be enabled by misc.4 and code option LCD2. There are two sets of pins can be selected as  
the LCD COM ports, four pins in each set. By selecting PB0_A034 for LCD2, PB0, PA0, PA4 and PA3 are  
defined to output VDD/2 voltage during input mode, and be used as COM function for LCD applications. By  
selecting PB1256 of LCD2, PB1, PB2, PB5 and PB6 are defined as COM ports.  
If user wants to output VDD, VDD/2, GND three levels voltage, enabling VDD/2 bias voltage (by set misc.4=1),  
then set to output-high for VDD, with input mode for VDD/2, and output-low for GND correspondingly, Fig.9  
shows how to use this function.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 46 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
VDD  
VDD/2  
GND  
Pin set to output high  
Pin set to input  
Pin set to output low  
Fig. 9: Using VDD/2 LCD bias voltage generator  
5.7 16-bit Timer (Timer16)  
A 16-bit hardware timer (Timer16) is implemented in the PMS133/PMS134, the clock sources of Timer16 may  
come from system clock (CLK), clock of external crystal oscillator (EOSC), internal high RC oscillator (IHRC),  
internal low RC oscillator (ILRC), PA4 and PA0, a multiplex is used to select clock output for the clock source.  
Before sending clock to the counter16, a pre-scaling logic with divided-by-1, 4, 16, and 64 is used for wide  
range counting.  
The 16-bit counter performs up-counting operation only, the counter initial values can be stored from memory  
by stt16 instruction and the counting values can be loaded to memory by ldt16 instruction. A selector is used to  
select the interrupt condition of Timer16, whenever overflow occurs, the Timer16 interrupt can be triggered. The  
hardware diagram of Timer16 is shown as Fig.10. The interrupt source of Timer16 comes from one of bit 8 to 15  
of 16-bit counter, and the interrupt type can be rising edge trigger or falling edge trigger which is specified in the  
bit 5 of integs register (IO address 0x0C).  
PA4  
Fig.10: Hardware diagram of Timer16  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 47 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
When using the Timer16, the syntax for Timer16 has been defined in the .INC file. There are three parameters  
to define the Timer16; 1st parameter is used to define the clock source of Timer16, 2nd parameter is used to  
define the pre-scalar and the last one is to define the interrupt source. The detail description is shown as  
below:  
T16M  
IO_RW  
0x06  
$ 7~5:STOP, SYSCLK, X, PA4_F, IHRC, EOSC, ILRC, PA0_F  
$ 4~3:/1, /4, /16, /64  
// 1st par.  
// 2nd par.  
// 3rd par.  
$ 2~0:BIT8, BIT9, BIT10, BIT11, BIT12, BIT13, BIT14, BIT15  
User can define the parameters of T16M based on system requirement, some examples are shown below and  
more examples please refer to “Help Application Note IC Introduction Register Introduction T16M” in  
IDE utility.  
$ T16M SYSCLK, /64, BIT15;  
// choose (SYSCLK/64) as clock source, every 2^16 clock to set INTRQ.2=1  
// if using System Clock = IHRC / 2 = 8 MHz  
// SYSCLK/64 = 8 MHz/64 = 125KHz, about every 524 mS to generate INTRQ.2=1  
$ T16M EOSC, /1, BIT13;  
// choose (EOSC/1) as clock source, every 2^14 clocks to generate INTRQ.2=1  
// if EOSC=32768 Hz, 32768 Hz/(2^14) = 2Hz, every 0.5S to generate INTRQ.2=1  
$ T16M PA0_F, /1, BIT8;  
// choose PA0 as clock source, every 2^9 to generate INTRQ.2=1  
// receiving every 512 times PA0 to generate INTRQ.2=1  
$ T16M STOP;  
// stop Timer16 counting  
If Timer16 is operated at free running, the frequency of interrupt can be described as below:  
FINTRQ_T16M = Fclock source ÷ P ÷ 2n+1  
Where, F is the frequency of selected clock source to Timer16;  
P is the selection of t16m [4:3]; (1, 4, 16, 64)  
N is the nth bit selected to request interrupt service, for example: n=10 if bit 10 is selected.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 48 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.8 8-bit Timer (Timer2/Timer3) with PWM generation  
Two 8-bit hardware timers (Timer2 and Timer3) with PWM generation are implemented in the PMS133/PMS134.  
The following descriptions thereinafter are for Timer2 only. It is because Timer3 have same structure with  
Timer2. Please refer to Fig.11 shown the hardware diagram of Timer2, the clock sources of Timer2 may come  
from system clock, internal high RC oscillator (IHRC), internal low RC oscillator (ILRC), external crystal  
oscillator (EOSC), PA0, PB0, PA4 and comparator. Bit [7:4] of register tm2c are used to select the clock of  
Timer2. If IHRC is selected for Timer2 clock source, the clock sent to Timer2 will keep running when using ICE  
in halt state. The output of Timer2 can be sent to pin PB2, PA3 or PB4, depending on bit [3:2] of tm2c register. A  
clock pre-scaling module is provided with divided-by- 1, 4, 16, and 64 options, controlled by bit [6:5] of tm2s  
register; one scaling module with divided-by-1~31 is also provided and controlled by bit [4:0] of tm2s register. In  
conjunction of pre-scaling function and scaling function, the frequency of Timer2 clock (TM2_CLK) can be wide  
range and flexible.  
The Timer2 counter performs 8-bit up-counting operation only; the counter values can be set or read back by  
tm2ct register. The 8-bit counter will be clear to zero automatically when its values reach for upper bound  
register, the upper bound register is used to define the period of timer or duty of PWM. There are two operating  
modes for Timer2: period mode and PWM mode; period mode is used to generate periodical output waveform  
or interrupt event; PWM mode is used to generate PWM output waveform with optional 6-bit to 8-bit PWM  
resolution, Fig.12 shows the timing diagram of Timer2 for both period mode and PWM mode.  
Fig.11: Timer2 hardware diagram  
The output of Timer3 can be sent to pin PB5, PB6 or PB7.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 49 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Time out and  
Time out and  
Time out and  
Interrupt request  
Interrupt request  
Interrupt request  
Counter  
0xFF  
bound  
Counter  
0xFF  
Counter  
0x3F  
bound  
bound  
Time  
Time  
Time  
Time  
Event Trigger  
Event Trigger  
Event Trigger  
Output-pin  
Output-pin  
Output-pin  
Time  
Time  
Mode 0 – Period Mode  
Mode 1 – 8-bit PWM Mode  
Mode 1 – 6-bit PWM Mode  
Fig.12: Timing diagram of Timer2 in period mode and PWM mode (tm2c.1=1)  
A Code Option GPC_PWM is for the applications which need the generated PWM waveform to be controlled  
by the comparator result. If the Code Option GPC_PWM is selected, the PWM output stops while the  
comparator output is 1 and then the PWM output turns on while the comparator output goes back to 0, as  
shown in Fig. 13.  
PWM Output  
Comparator  
Output  
Fig.13Comparator controls the output of PWM waveform  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 50 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.8.1 Using the Timer2 to generate periodical waveform  
If periodical mode is selected, the duty cycle of output is always 50%; its frequency can be summarized as  
below:  
Frequency of Output = Y ÷ [2 × (K+1) × S1 × (S2+1) ]  
Where,  
Example 1:  
Example 2:  
Example 3:  
Y = tm2c[7:4] : frequency of selected clock source  
K = tm2b[7:0] : bound register in decimal  
S1 = tm2s[6:5] : pre-scalar (1, 4, 16, 64)  
S2 = tm2s[4:0] : scalar register in decimal (1 ~ 31)  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0000_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ [ 2 × (127+1) × 1 × (0+1) ] = 31.25KHz  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s[7:0] = 0b0111_11111, S1=64 , S2 = 31  
frequency = 8MHz ÷ ( 2 × (127+1) × 64 × (31+1) ) =15.25Hz  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0000_1111, K=15  
tm2s = 0b0000_00000, S1=1, S2=0  
frequency = 8MHz ÷ ( 2 × (15+1) × 1 × (0+1) ) = 250KHz  
Example 4:  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0000_0001, K=1  
tm2s = 0b0000_00000, S1=1, S2=0  
frequency = 8MHz ÷ ( 2 × (1+1) × 1 × (0+1) ) =2MHz  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 51 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
The sample program for using the Timer2 to generate periodical waveform from PA3 is shown as below:  
Void FPPA0 (void)  
{
. ADJUST_IC SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V  
tm2ct = 0x0;  
tm2b = 0x7f;  
tm2s = 0b0_00_00001;  
//  
//  
8-bit PWM, pre-scalar = 1, scalar = 2  
system clock, output=PA3, period mode  
tm2c = 0b0001_10_0_0;  
while(1)  
{
nop;  
}
}
5.8.2 Using the Timer2 to generate 8-bit PWM waveform  
If 8-bit PWM mode is selected, it should set tm2c[1]=1 and tm2s[7]=0, the frequency and duty cycle of  
output waveform can be summarized as below:  
Frequency of Output = Y ÷ [256 × S1 × (S2+1) ]  
Duty of Output =[ ( K1 ) ÷ 256]×100%  
Where, Y = tm2c[7:4] : frequency of selected clock source  
K = tm2b[7:0] : bound register in decimal  
S1= tm2s[6:5] : pre-scalar (1, 4, 16, 64)  
S2 = tm2s[4:0] : scalar register in decimal (1 ~ 31)  
Example 1:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0000_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 256 × 1 × (0+1) ) = 31.25KHz  
duty of output = [(127+1) ÷ 256] × 100% = 50%  
Example 2:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0111_11111, S1=64, S2=31  
frequency of output = 8MHz ÷ ( 256 × 64 × (31+1) ) = 15.25Hz  
duty of output = [(127+1) ÷ 256] × 100% = 50%  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 52 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Example 3:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b1111_1111, K=255  
tm2s = 0b0000_00000, S1=1, S2=0  
PWM output keep high  
duty of output = [(255+1) ÷ 256] × 100% = 100%  
Example 4:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0000_1001, K = 9  
tm2s = 0b0000_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 256 × 1 × (0+1) ) = 31.25KHz  
duty of output = [(9+1) ÷ 256] × 100% = 3.9%  
The sample program for using the Timer2 to generate PWM waveform from PA3 is shown as below:  
void  
{
FPPA0 (void)  
.ADJUST_IC  
SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V  
tm2ct = 0x0;  
tm2b = 0x7f;  
tm2s = 0b0_00_00001;  
//  
8-bit PWM, pre-scalar = 1, scalar = 2  
tm2c = 0b0001_10_1_0;  
//  
system clock, output=PA3, PWM mode  
while(1)  
{
nop;  
}
}
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 53 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.8.3 Using the Timer2 to generate 6-bit PWM waveform  
If 6-bit PWM mode is selected, it should set tm2c[1]=1 and tm2s[7]=1, the frequency and duty cycle of  
output waveform can be summarized as below:  
Frequency of Output = Y ÷ [64 × S1 × (S2+1) ]  
Duty of Output = [( K1 ) ÷ 64] × 100%  
Where, tm2c[7:4] = Y : frequency of selected clock source  
tm2b[7:0] = K : bound register in decimal  
tm2s[6:5] = S1 : pre-scalar (1, 4, 16, 64)  
tm2s[4:0] = S2 : scalar register in decimal (1 ~ 31)  
Users can set Timer2 to be 7-bit PWM mode instead of 6-bit mode by using TMx_Bit code option. At that  
time, the calculation factors of the above equations become 128 instead of 64.  
Example 1:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0001_1111, K=31  
tm2s = 0b1000_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 64 × 1 × (0+1) ) = 125KHz  
duty = [(31+1) ÷ 64] × 100% = 50%  
Example 2:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0001_1111, K=31  
tm2s = 0b1111_11111, S1=64, S2=31  
frequency of output = 8MHz ÷ ( 64 × 64 × (31+1) ) = 61.03 Hz  
duty of output = [(31+1) ÷ 64] × 100% = 50%  
Example 3:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0011_1111, K=63  
tm2s = 0b1000_00000, S1=1, S2=0  
PWM output keep high  
duty of output = [(63+1) ÷ 64] × 100% = 100%  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 54 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Example 4:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0000_0000, K=0  
tm2s = 0b1000_00000, S1=1, S2=0  
frequency = 8MHz ÷ ( 64 × 1 × (0+1) ) = 125KHz  
duty = [(0+1) ÷ 64] × 100% =1.5%  
5.9 11-bit PWM Generator  
Three 11-bit hardware PWM generators (PWMG0, PWMG1 & PWMG2) are implemented in the  
PMS133/PMS134. The following descriptions thereinafter are for PWMG0 only. It is because PWMG1 &  
PWMG2 have the same structures and functions with PWMG0.  
Their individual outputs are listed as below:  
PWMG0 – PA0, PB4, PB5, PC2  
PWMG1 – PA4, PB6, PB7, PC3  
PWMG2 – PA3, PB2, PB3, PC0  
5.9.1 PWM Waveform  
A PWM output waveform (Fig.13) has a time-base (TPeriod = Time of Period) and a time with output high  
level (Duty Cycle). The frequency of the PWM output is the inverse of the period (fPWM = 1/TPeriod).  
Fig.14: PWM Output Waveform  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 55 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.9.2 Hardware and Timing Diagram  
Three 11-bit hardware PWM generators are built inside the PMS133/PMS134; Fig.14 shows the hardware  
diagram PWMG0 as an example. The clock source can be IHRC or system clock and output pin can be  
selected via pwmc register selection. The period of PWM waveform is defined in the PWM upper bond  
high and low registers, the duty cycle of PWM waveform is defined in the PWM duty high and low registers.  
Comparator output can control the PWM waveform by selecting GPC_PWM code option.  
Fig.15: Hardware Diagram of 11-bit PWM Generator  
0x7FF  
Counter_Bound[10:0]  
11 bit  
Counter  
Duty[10:0]  
Time  
Time  
Output  
bit PWM generation  
Output Timing Diagram for 11-  
Fig.16: Output Timing Diagram of 11-bit PWM Generator  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 56 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.9.3 Equations for 11-bit PWM Generator  
If FIHRC is the frequency of IHRC oscillator and IHRC is the chosen clock source for 11-bit PWM generator,  
the PWM frequency and duty cycle in time will be:  
Frequency of PWM Output = FIHRC ÷ [P × (K + 1) × CB ]  
Duty Cycle of PWM Output (in time) =(1/FIHRC) * [ DB10_1 + DB0 * 0.5 + 0.5]  
Where,  
pwms[6:5] = P ; pre-scalar  
pwms[4:0] = K ; scalar  
Duty_Bound[10:1] = { pwmgxdth [7:0], pwmgxdtl[7:6]} = DB10_1; duty bound  
Duty_Bound[0] = pwmgxdtl[5] = DB0  
Counter_Bound[10:1] = { pwmgxcubh [7:0], pwmgxcubl [7:6]} = CB; counter bount  
5.10 WatchDog Timer  
The watchdog timer (WDT) is a counter with clock coming from ILRC. WDT can be cleared by power-on-reset  
or by command wdreset at any time. There are four different timeout periods of watchdog timer to be chosen  
by setting the misc register, it is:  
8k ILRC clocks period if register misc[1:0]=00 (default)  
16k ILRC clocks period if register misc[1:0]=01  
64k ILRC clocks period if register misc[1:0]=10  
256k ILRC clocks period if register misc[1:0]=11  
The frequency of ILRC may drift a lot due to the variation of manufacture, supply voltage and temperature;  
user should reserve guard band for save operation. Besides, the watchdog period will also be shorter than  
expected after Reset or Wakeup events. It is suggested to clear WDT by wdreset command after these events  
to ensure enough clock periods before WDT timeout.  
When WDT is timeout, PMS133/PMS134 will be reset to restart the program execution. The relative timing  
diagram of watchdog timer is shown as Fig.16.  
VDD  
t
SBP  
WD  
Time Out  
Program  
Execution  
Watch Dog Time Out Sequence  
Fig.17: Sequence of Watch Dog Time Out  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 57 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.11 Interrupt  
There are eight interrupt lines for PMS133/PMS134:  
External interrupt PA0/PB5/PA2/PA7  
External interrupt PB0/PA4/PB6/PA3  
ADC interrupt  
Timer16 interrupt  
GPC interrupt  
PWMG0 interrupt  
Timer2 interrupt  
Timer3 interrupt  
Every interrupt request line has its own corresponding interrupt control bit to enable or disable it; the hardware  
diagram of interrupt function is shown as Fig.17. All the interrupt request flags are set by hardware and cleared  
by writing intrq register. When the request flags are set, it can be rising edge, falling edge or both, depending  
on the setting of register integs. All the interrupt request lines are also controlled by engint instruction (enable  
global interrupt) to enable interrupt operation and disgint instruction (disable global interrupt) to disable it.  
The stack memory for interrupt is shared with data memory and its address is specified by stack register sp.  
Since the program counter is 16 bits width, the bit 0 of stack register sp should be kept 0. Moreover, user can  
use pushaf / popaf instructions to store or restore the values of ACC and flag register to / from stack memory.  
Since the stack memory is shared with data memory, the stack position and level are arranged by the compiler  
in Mini-C project. When defining the stack level in ASM project, users should arrange their locations carefully to  
prevent address conflicts.  
Fig.18: Hardware diagram of interrupt controller  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 58 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Once the interrupt occurs, its operation will be:  
The program counter will be stored automatically to the stack memory specified by register sp.  
New sp will be updated to sp+2.  
Global interrupt will be disabled automatically.  
The next instruction will be fetched from address 0x010.  
During the interrupt service routine, the interrupt source can be determined by reading the intrq register.  
Note: Even if INTEN=0, INTRQ will be still triggered by the interrupt source.  
After finishing the interrupt service routine and issuing the reti instruction to return back, its operation will be:  
The program counter will be restored automatically from the stack memory specified by register sp.  
New sp will be updated to sp-2.  
Global interrupt will be enabled automatically.  
The next instruction will be the original one before interrupt.  
User must reserve enough stack memory for interrupt, two bytes stack memory for one level interrupt and four  
bytes for two levels interrupt. For interrupt operation, the following sample program shows how to handle the  
interrupt, noticing that it needs four bytes stack memory to handle interrupt and pushaf.  
void  
{
FPPA0  
(void)  
...  
$
INTEN PA0;  
// INTEN =1; interrupt request when PA0 level changed  
// clear INTRQ  
INTRQ  
ENGINT  
...  
=
0;  
// global interrupt enable  
DISGINT  
...  
// global interrupt disable  
}
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 59 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
void  
{
Interrupt (void)  
// interrupt service routine  
PUSHAF  
// store ALU and FLAG register  
// If INTEN.PA0 will be opened and closed dynamically,  
// user can judge whether INTEN.PA0 =1 or not.  
// Example: If (INTEN.PA0 && INTRQ.PA0) {…}  
// If INTEN.PA0 is always enable,  
// user can omit the INTEN.PA0 judgement to speed up interrupt service routine.  
If (INTRQ.PA0)  
{
// Here for PA0 interrupt service routine  
INTRQ.PA0 = 0;  
// Delete corresponding bit (take PA0 for example)  
...  
}
...  
// X : INTRQ = 0;  
// It is not recommended to use INTRQ = 0 to clear all at the end of the  
// interrupt service routine.  
// It may accidentally clear out the interrupts that have just occurred  
// and are not yet processed.  
POPAF  
}
// restore ALU and FLAG register  
5.12 Power-Save and Power-Down  
There are three operational modes defined by hardware: ON mode, Power-Save mode and Power-Down  
modes. ON mode is the state of normal operation with all functions ON, Power-Save mode (“stopexe”) is the  
state to reduce operating current and CPU keeps ready to continue, Power-Down mode (“stopsys”) is used to  
save power deeply. Therefore, Power-Save mode is used in the system which needs low operating power with  
wake-up occasionally and Power-Down mode is used in the system which needs power down deeply with  
seldom wake-up. Table 5 shows the differences in oscillator modules between Power-Save mode (“stopexe”)  
and Power-Down mode (“stopsys”).  
Differences in oscillator modules between STOPSYS and STOPEXE  
IHRC  
Stop  
ILRC  
Stop  
EOSC  
Stop  
STOPSYS  
STOPEXE  
No Change  
No Change  
No Change  
Table 5: Differences in oscillator modules between STOPSYS and STOPEXE  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 60 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.12.1 Power-Save mode (“stopexe”)  
Using “stopexe” instruction to enter the Power-Save mode, only system clock is disabled, remaining all  
the oscillator modules active. For CPU, it stops executing; however, for Timer16, counter keep counting  
if its clock source is not the system clock. Wake-up from input pins can be considered as a continuation  
of normal execution, the detail information for Power-Save mode shows below:  
IHRC and EOSC oscillator modules: No change, keep active if it was enabled  
ILRC oscillator modules: must remain enabled, need to start with ILRC when be wakening up  
System clock: Disable, therefore, CPU stops execution  
OTP memory is turned off  
Timer16/ TM2/ TM3: Stop counting if system clock is selected or the corresponding oscillator module  
is disabled; otherwise, it keeps counting.  
Wake-up sources: IO toggle in digital mode (PxDIER bit is 1) or Timer16 or Timer2 or Timer3.  
An example shows how to use Timer16 to wake-up from “stopexe”:  
$ T16M  
ILRC, /1, BIT8  
// Timer16 setting  
$ INTEGS BIT_R, xxx;  
// BITx 0 to 1 will trigger (default)  
WORD  
STT16  
stopexe;  
count =  
count;  
0;  
The initial counting value of Timer16 is zero and the system will be woken up after the Timer16 counts  
256 ILRC clocks.  
5.12.2 Power-Down mode (“stopsys”)  
Power-Down mode is the state of deeply power-saving with turning off all the oscillator modules. By using  
the “stopsys” instruction, this chip will be put on Power-Down mode directly. The following shows the  
internal status of PMS133/PMS134 detail when “stopsys” command is issued:  
All the oscillator modules are turned off.  
OTP memory is turned off.  
The contents of SRAM and registers remain unchanged.  
Wake-up sources: IO toggle in digital mode (PxDIER bit is 1)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 61 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Wake-up from input pins can be considered as a continuation of normal execution. To minimize power  
consumption, all the I/O pins should be carefully manipulated before entering power-down mode. The  
reference sample program for power down is shown as below:  
CLKMD  
CLKMD.4  
=
=
0xF4;  
0;  
//  
//  
Change clock from IHRC to ILRC  
disable IHRC  
while (1)  
{
}
STOPSYS;  
//  
//  
//  
enter power-down  
if (…) break;  
if wakeup happen and check OK, then return to high speed,  
else stay in power-down mode again.  
CLKMD =  
0x34;  
//  
Change clock from ILRC to IHRC/2  
5.12.3 Wake-up  
After entering the Power-Down or Power-Save modes, the PMS133/PMS134 can be resumed to normal  
operation by toggling IO pins, Timerinterrupt is available for Power-Save mode ONLY. Table 6 shows the  
differences in wake-up sources between STOPSYS and STOPEXE.  
Differences in wake-up sources between STOPSYS and STOPEXE  
IO Toggle  
Yes  
Timer Interrupt  
STOPSYS  
STOPEXE  
No  
Yes  
Yes  
Table 6: Differences in wake-up sources between Power-Save mode and Power-Down mode  
When using the IO pins to wake-up the PMS133/PMS134, registers padier should be properly set to  
enable the wake-up function for every corresponding pin. The time for normal wake-up is about 3000  
ILRC clocks counting from wake-up event; fast wake-up can be selected to reduce the wake-up time by  
misc register, and the time for fast wake-up is about 45 ILRC clocks from IO toggling.  
Suspend mode  
STOPEXE suspend  
or  
Wake-up mode  
Wake-up time (tWUP) from IO toggle  
45 * TILRC,  
Where TILRC is the time period of ILRC  
Fast wake-up  
STOPSYS suspend  
STOPEXE suspend  
or  
3000 * TILRC  
,
Normal wake-up  
Where TILRC is the clock period of ILRC  
STOPSYS suspend  
Please notice that when Fast boot-up is selected, no matter which wake-up mode is selected in misc.5,  
the wake-up mode will be forced to be FAST. If Normal boot-up is selected, the wake-up mode is  
determined by misc.5.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 62 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.13 IO Pins  
All the pins can be independently set into two states output or input by configuring the data registers (pa, pb,  
pc), control registers (pac, pbc, pcc) and pull-high registers (paph, pbph, pcph). All these pins have  
Schmitt-trigger input buffer and output driver with CMOS level. When it is set to output low, the pull-up resistor  
is turned off automatically. If user wants to read the pin state, please notice that it should be set to input mode  
before reading the data port; if user reads the data port when it is set to output mode, the reading data comes  
from data register, NOT from IO pad. As an example, Table 7 shows the configuration table of bit 0 of port A.  
The hardware diagram of IO buffer is also shown as Fig.18.  
pa.0 pac.0 paph.0  
Description  
Input without pull-up resistor  
X
X
0
1
1
0
0
1
1
1
0
1
X
0
1
Input with pull-up resistor  
Output low without pull-up resistor  
Output high without pull-up resistor  
Output high with pull-up resistor  
Table 7: PA0 Configuration Table  
Fig. 19: Hardware diagram of IO buffer  
PB4 and PB7 can adjust their drive and sink current by code option PB4_PB7_Drive  
Other than PA5, all the IO pins have the same structure; PA5 can be open-drain ONLY when setting to output  
mode (without Q1). The corresponding bits in registers padier / pbdier / pcdier should be set to low to prevent  
leakage current for those pins are selected to be analog function. When PMS133/PMS134 is put in  
power-down or power-save mode, every pin can be used to wake-up system by toggling its state. Therefore,  
those pins needed to wake-up system must be set to input mode and set the corresponding bits of registers  
pxdier to high. The same reason, padier.0 should be set high when PA0 is used as external interrupt pin, and  
so for other external interrupt pins: PB0, PA4, PB5, PB6, PA2, PA3 and PA7.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 63 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.14 Reset and LVR  
5.14.1 Reset  
There are many causes to reset the PMS133/PMS134, once reset is asserted, most of all the registers in  
PMS133/PMS134 will be set to default values, system should be restarted once abnormal cases happen,  
or by jumping program counter to address 0x0. The data memory is in uncertain state when reset comes  
from power-up and LVR; however, the content will be kept when reset comes from PRSTB pin or WDT  
timeout.  
5.14.2 LVR reset  
By code option, there are 8 different levels of LVR for reset ~ 4.0V, 3.5V, 3.0V, 2.75V, 2.5V, 2.2V, 2.0V and  
1.8V; usually, user selects LVR reset level to be in conjunction with operating frequency and supply voltage.  
5.15 Analog-to-Digital Conversion (ADC) module  
Fig.20: ADC Block Diagram  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 64 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
There are seven registers when using the ADC module, which are:  
ADC Control Register (adcc)  
ADC Regulator Control Register (adcrgc)  
ADC Mode Register (adcm)  
ADC Result High/Low Register (adcrh, adcrl)  
Port A/B/C Digital Input Enable Register (padier, pbdier, pcdier)  
The following steps are required to do the ADC conversion procedure:  
(1) Configure the voltage reference high by adcrgc register  
(2) Configure the AD conversion clock by adcm register  
(3) Configure the pin as analog input by padier, pbdier register  
(4) Select the ADC input channel by adcc register  
(5) Enable the ADC module by adcc register  
(6) Delay a certain amount of time after enabling the ADC module  
Condition1: using the internal voltage reference high which are 2V, 3V, 4V or the input channel is bandgap  
It must delay more than 1 ms when the time of 200 AD clocks is less than 1ms. Or it must delay  
200 AD clocks when the time of 200 AD clocks is larger than 1ms.  
Condition 2: without using any internal 2V, 3V, 4V, bandgap voltage  
It needs to delay 200 AD clocks only.  
(7) Execute the AD conversion and check if ADC data is ready  
Set ‘1’ to addc.6 to start the conversion and check whether addc.6 is ‘1’  
(8) Read the ADC result registers:  
First read the adcrh register and then read the adcrl register.  
If user power down the ADC and enable the ADC again, be sure to go to step 6 to confirm the ADC becomes  
ready before the conversion.  
5.15.1 The input requirement for AD conversion  
For the AD conversion to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the voltage reference high level and discharge to the voltage reference low level. The  
analog input model is shown as Fig.20, the signal driving source impedance (Rs) and the internal sampling  
switch impedance (Rss) will affect the required time to charge the capacitor CHOLD directly. The internal  
sampling switch impedance may vary with ADC supply voltage; the signal driving source impedance will  
affect accuracy of analog input signal. User must ensure the measured signal is stable before sampling;  
therefore, the maximum signal driving source impedance is highly dependent on the frequency of signal to  
be measured. The recommended maximum impedance for analog driving source is about 10KΩ under  
500KHz input frequency.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 65 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Fig.21: Analog Input Model  
Before starting the AD conversion, the minimum signal acquisition time should be met for the selected  
analog input signal, the selection of ADCLK must be met the minimum signal acquisition time.  
5.15.2 Select the reference high voltage  
The ADC reference high voltage can be selected via bit[7:5] of register adcrgc and its option can be VDD,  
4V, 3V, 2V, 1.20V band-gap reference voltage or PB1 from external pin.  
5.15.3 ADC clock selection  
The clock of ADC module (ADCLK) can be selected by adcm register; there are 8 possible options for  
ADCLK from CLK÷1 to CLK÷128 (CLK is the system clock). Due to the signal acquisition time TACQ is one  
clock period of ADCLK, the ADCLK must meet that requirement. The recommended ADC clock is to  
operate at 2us.  
5.15.4 Configure the analog pins  
There are 14 analog signals can be selected for AD conversion, 13 analog input signals come from  
external pins and one is from internal band-gap reference voltage or 0.25*VDD. There are 4 voltage levels  
selectable for the internal band-gap reference, they are 1.2V, 2V, 3V and 4V. For external pins, the analog  
signals are shared with Port A[0], Port A[3], Port A[4], and Port B[7:0]. To avoid leakage current at the  
digital circuit, those pins defined for analog input should disable the digital input function (set the  
corresponding bit of padier / pbdier / pcder register to be 0).  
The measurement signals of ADC belong to small signal; it should avoid the measured signal to be  
interfered during the measurement period, the selected pin should (1) be set to input mode (2) turn off  
weak pull-high resistor (3) set the corresponding pin to analog input by port A/B/C digital input disable  
register (padier / pbdier / pcdier).  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 66 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.15.5 Using the ADC  
The following example shows how to use ADC with PB0~PB3.  
First, defining the selected pins:  
PBC  
PBPH  
PBDIER  
=
=
=
0B_XXXX_0000;  
0B_XXXX_0000;  
0B_XXXX_0000;  
//  
//  
//  
PB0 ~ PB3 as Input  
PB0 ~ PB3 without pull-high  
PB0 ~ PB3 digital input is disabled  
Next, setting ADCC register, example as below:  
$
$
$
ADCC Enable, PB3;  
ADCC Enable, PB2;  
ADCC Enable, PB0;  
//  
//  
//  
set PB3 as ADC input  
set PB2 as ADC input  
set PB0 as ADC input  
Next, setting ADCM register, example as below:  
$
$
ADCM 12BIT, /16;  
ADCM 12BIT, /8;  
//  
//  
recommend /16 @System Clock=8MHz  
recommend /8 @System Clock=4MHz  
Next, delay 400us, example as below:  
.Delay 8*400;  
.Delay 4*400;  
// System Clock=8MHz  
// System Clock=4MHz  
Then, start the ADC conversion:  
AD_START =  
1;  
// start ADC conversion  
while(!AD_DONE) NULL;  
// wait ADC conversion result  
Finally, it can read ADC result when AD_DONE is high:  
WORD  
Data$1  
Data$0  
// Data  
Data;  
ADCRH  
ADCRL;  
//  
two bytes result: ADCRH and ADCRL  
=
=
=
Data >> 4;  
The ADC can be disabled by using the following method:  
ADCC Disable;  
$
or  
ADCC  
=
0;  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 67 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
5.16 Multiplier  
There is an 8x8 multiplier on-chip to enhance hardware capability in arithmetic function, its multiplication is an  
8x8 unsigned operation and can be finished in one clock cycle. Before issuing the mul command, both  
multiplicand and multiplicator must be put on ACC and register mulop (0x08); After mul command, the high  
byte result will be put on register mulrh (0x09) and low byte result on ACC. The hardware diagram of this  
multiplier is shown as Fig.21.  
8-bit  
ACC  
8-bit  
mulop (0x08)  
mulrh  
Bit[15~8]  
ACC  
Bit[7~0]  
Fig.22: Block diagram of hardware multiplier  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 68 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
6. IO Registers  
6.1. ACC Status Flag Register (flag), IO address = 0x00  
Bit  
7 - 4  
3
Reset  
R/W  
-
Description  
-
Reserved. Please do not use.  
0
R/W  
OV (Overflow Flag). This bit is set to be 1 whenever the sign operation is overflow.  
AC (Auxiliary Carry Flag). There are two conditions to set this bit, the first one is carry out  
of low nibble in addition operation and the other one is borrow from the high nibble into low  
nibble in subtraction operation.  
2
0
R/W  
C (Carry Flag). There are two conditions to set this bit, the first one is carry out in addition  
operation, and the other one is borrow in subtraction operation. Carry is also affected by  
shift with carry instruction.  
1
0
0
0
R/W  
R/W  
Z (Zero Flag). This bit will be set when the result of arithmetic or logic operation is zero;  
Otherwise, it is cleared.  
6.2. Stack Pointer Register (sp), IO address = 0x02  
Bit  
Reset  
R/W  
Description  
Stack Pointer Register. Read out the current stack pointer, or write to change the stack  
pointer. Please notice that bit 0 should be kept 0 due to program counter is 16 bits.  
7 - 0  
-
R/W  
6.3. Clock Mode Register (clkmd), IO address = 0x03  
Bit  
Reset  
R/W  
R/W  
Description  
System clock (CLK) selection:  
Type 0, clkmd[3]=0  
Type 1, clkmd[3]=1  
000: IHRC÷4  
001: IHRC÷2  
010: IHRC  
000: IHRC÷16  
001: IHRC÷8  
010: ILRC÷16 (ICE does NOT Support.)  
011: IHRC÷32  
7 - 5  
111  
011: EOSC÷4  
100: EOSC÷2  
101: EOSC  
100: IHRC÷64  
101: EOSC÷8  
110: ILRC÷4  
11x: reserved  
111: ILRC (default)  
4
3
1
0
R/W Internal High RC Enable. 0 / 1: disable / enable  
Clock Type Select. This bit is used to select the clock type in bit [7:5].  
0 / 1: Type 0 / Type 1.  
R/W  
R/W  
Internal Low RC Enable. 0 / 1: disable / enable  
If ILRC is disabled, watchdog timer is also disabled.  
2
1
1
0
1
0
R/W Watch Dog Enable. 0 / 1: disable / enable  
R/W Pin PA5/PRSTB function. 0 / 1: PA5 / PRSTB.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 69 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
6.4. Interrupt Enable Register (inten), IO address = 0x04  
Bit  
7
Reset  
R/W  
R/W  
Description  
0
0
0
0
0
0
0
0
Enable interrupt from Timer3. 0 / 1: disable / enable.  
6
R/W Enable interrupt from Timer2. 0 / 1: disable / enable.  
R/W Enable interrupt from PWMG0. 0 / 1: disable / enable.  
5
4
R/W  
Enable interrupt from comparator. 0 / 1: disable / enable.  
3
R/W Enable interrupt from ADC. 0 / 1: disable / enable.  
2
R/W Enable interrupt from Timer16 overflow. 0 / 1: disable / enable.  
R/W Enable interrupt from PB0/PA4/PA3/PA6. 0 / 1: disable / enable.  
R/W Enable interrupt from PA0/PB5/PA2/PA7. 0 / 1: disable / enable.  
1
0
6.5. Interrupt Request Register (intrq), IO address = 0x05  
Bit Reset R/W  
Description  
Interrupt Request from Timer3, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
7
6
5
4
3
2
-
-
-
-
-
-
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Interrupt Request from Timer2, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
Interrupt Request from PWMG0, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
Interrupt Request from comparator, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
Interrupt Request from ADC, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
Interrupt Request from Timer16, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
Interrupt Request from pin PB0/PA4/PA3/PB6, this bit is set by hardware and cleared by  
1
0
-
-
R/W software.  
0 / 1: No request / Request  
Interrupt Request from pin PA0/PB5/PA2/PA7, this bit is set by hardware and cleared by  
R/W software.  
0 / 1: No Request / request  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 70 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
6.6. Timer16 mode Register (t16m), IO address = 0x06  
Bit  
Reset R/W  
Description  
Timer16 Clock source selection.  
000: disable  
001: CLK (system clock)  
010: reserved  
7 - 5  
000  
R/W 011: PA4 falling edge (from external pin)  
100: IHRC  
101: EOSC  
110: ILRC  
111: PA0 falling edge (from external pin)  
Timer16 clock pre-divider.  
00: ÷1  
4 - 3  
00  
R/W 01: ÷4  
10: ÷16  
11: ÷64  
Interrupt source selection. Interrupt event happens when the selected bit status is changed.  
0 : bit 8 of Timer16  
1 : bit 9 of Timer16  
2 : bit 10 of Timer16  
R/W 3 : bit 11 of Timer16  
4 : bit 12 of Timer16  
5 : bit 13 of Timer16  
6 : bit 14 of Timer16  
7 : bit 15 of Timer16  
2 - 0  
000  
6.7. Multiplier Operand Register (mulop), IO address = 0x08  
Bit  
Reset  
-
R/W  
R/W  
Description  
Operand for hardware multiplication operation.  
7 - 0  
6.8. Multiplier Result High Byte Register (mulrh), IO address = 0x09  
Bit  
Reset  
-
R/W  
RO  
Description  
7 - 0  
High byte result of multiplication operation (read only).  
6.9. External Oscillator setting Register (eoscr), IO address = 0x0a  
Bit  
7
Reset R/W  
Description  
0
WO Enable external crystal oscillator. 0 / 1 : Disable / Enable  
External crystal oscillator selection.  
00 : reserved  
6 - 5  
00  
WO 01 : Low driving capability, for lower frequency, ex: 32KHz crystal oscillator  
10 : Middle driving capability, for middle frequency, ex: 1MHz crystal oscillator  
11 : High driving capability, for higher frequency, ex: 4MHz crystal oscillator  
4 - 1  
0
-
-
Reserved. Please keep 0 for future compatibility.  
0
WO Power-down the Band-gap and LVR hardware modules. 0 / 1: normal / power-down.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 71 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
6.10.Interrupt Edge Select Register (integs), IO address = 0x0c  
Bit  
Reset  
-
R/W  
-
Description  
7 - 5  
Reserved.  
Timer16 edge selection.  
4
0
WO  
WO  
0 : rising edge of the selected bit to trigger interrupt  
1 : falling edge of the selected bit to trigger interrupt  
PB0/PA4/PA3/PB6 edge selection.  
00: both rising edge and falling edge of the selected bit to trigger interrupt  
01: rising edge of the selected bit to trigger interrupt  
10: falling edge of the selected bit to trigger interrupt  
11: reserved.  
3 - 2  
00  
PA0/PB5/PA2/PA7 edge selection.  
00 : both rising edge and falling edge of the selected bit to trigger interrupt  
01 : rising edge of the selected bit to trigger interrupt  
10 : falling edge of the selected bit to trigger interrupt  
11 : reserved.  
1 - 0  
00  
WO  
6.11.Port A Digital Input Enable Register (padier), IO address = 0x0d  
Bit  
Reset  
R/W  
Description  
Enable Port A digital input to prevent leakage when the pin is assigned for AD input. When  
disable is selected, the wakeup function from this pin is also disabled.  
0 / 1 : disable / enable  
7 - 0  
0xFF  
WO  
6.12.Port B Digital Input Enable Register (pbdier), IO address = 0x0e  
Bit  
Reset R/W  
Description  
Enable Port B digital input to prevent leakage when the pin is assigned for AD input. When  
7 - 0  
0xFF  
WO disable is selected, the wakeup function from this pin is also disabled.  
0 / 1 : disable / enable  
6.13.Port C Digital Input Enable Register (pcdier), IO address = 0x0f  
Bit  
Reset R/W  
Description  
Enable Port C digital input to prevent leakage when the pin is assigned for AD input. When  
7 - 0  
0xFF  
WO disable is selected, the wakeup function from this pin is also disabled.  
0 / 1 : disable / enable  
Note: Detail settings please refer to Section 9.3.  
6.14. Port A Data Register (pa), IO address = 0x10  
Bit  
Reset R/W  
0x00 R/W Data register for Port A.  
Description  
7 - 0  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 72 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
6.15. Port A Control Register (pac), IO address = 0x11  
Bit  
Reset R/W  
Description  
Port A control registers. This register is used to define input mode or output mode for each  
corresponding pin of port A. 0 / 1: input / output  
7 - 0  
0x00  
R/W  
Please note that PA5 can be INPUT or OUTPUT LOW ONLY, the output state will be tri-state  
when PA5 is programmed into output mode with data 1.  
6.16. Port A Pull-High Register (paph), IO address = 0x12  
Bit  
Reset R/W  
Description  
Port A pull-high register. This register is used to enable the internal pull-high device on each  
7 - 0  
0x00  
R/W corresponding pin of port A and this pull high function is active only for input mode.  
0 / 1 : disable / enable  
6.17. Port B Data Register (pb), IO address = 0x13  
Bit  
Reset R/W  
0x00 R/W Data register for Port B.  
Description  
7 - 0  
6.18. Port B Control Register (pbc), IO address = 0x14  
Bit  
Reset R/W  
Description  
Port B control register. This register is used to define input mode or output mode for each  
corresponding pin of port B. 0 / 1: input / output  
7 - 0  
0x00 R/W  
6.19. Port B Pull-High Register (pbph), IO address = 0x15  
Bit  
Reset R/W  
Description  
Port B pull-high register. This register is used to enable the internal pull-high device on each  
corresponding pin of port B and this pull high function is active only for input mode. 0 / 1 :  
disable / enable  
7 - 0  
0x00 R/W  
6.20. Port C Data Register (pc), IO address = 0x16  
Bit  
Reset R/W  
0x00 R/W Data register for Port C.  
Description  
7 - 0  
6.21. Port C Control Register (pcc), IO address = 0x17  
Bit  
Reset R/W  
Description  
Port C control register. This register is used to define input mode or output mode for each  
corresponding pin of port B. 0 / 1: input / output  
7 - 0  
0x00 R/W  
6.22. Port C Pull-High Register (pcph), IO address = 0x18  
Bit  
Reset R/W  
Description  
Port C pull-high register. This register is used to enable the internal pull-high device on  
7 - 0 0x00 R/W each corresponding pin of port C and this pull high function is active only for input mode.  
0 / 1 : disable / enable  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 73 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
 
 
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
6.23. ADC Control Register (adcc), IO address = 0x20  
Bit  
7
Reset  
0
R/W  
R/W  
Description  
Enable ADC function. 0/1: Disable/Enable.  
ADC process control bit.  
6
0
R/W  
Write “1” to start conversion  
Read “1” to indicate the ADC is ready or end of conversion.  
Channel selector. These four bits are used to select input signal for AD conversion.  
0000: PB0/AD0,  
0001: PB1/AD1,  
0010: PB2/AD2,  
0011: PB3/AD3,  
0100: PB4/AD4,  
0101: PB5/AD5,  
0110: PB6/AD6,  
5 - 2  
0000  
R/W  
0111: PB7/AD7,  
1000: PA3/AD8,  
1001: PA4/AD9,  
1010: PA0/AD10,  
1011: PC1/AD11, (PC2 for ICE at this address)  
1100: PC2/AD12, (PC1 for ICE at this address)  
1111: (Channel F) Band-gap reference voltage or 0.25*VDD  
Others: reserved  
0 - 1  
-
-
Reserved. (keep 0 for future compatibility)  
6.24. ADC Mode Register (adcm), IO address = 0x21  
Bit  
Reset  
-
R/W  
-
Description  
Reserved. (keep 0 for future compatibility)  
7 - 4  
ADC clock source selection.  
000: CLK (system clock) ÷ 1,  
001: CLK (system clock) ÷ 2,  
010: CLK (system clock) ÷ 4,  
3 - 1  
000  
R/W 011: CLK (system clock) ÷ 8,  
100: CLK (system clock) ÷ 16,  
101: CLK (system clock) ÷ 32,  
110: CLK (system clock) ÷ 64,  
111: CLK (system clock) ÷ 128,  
0
-
-
Reserved.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 74 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
6.25. ADC Regulator Control Register (adcrgc), IO address = 0x24  
Bit  
Reset R/W  
Description  
These three bits are used to select input signal for ADC reference high voltage.  
000: VDD,  
001: 2V,  
010: 3V,  
7 - 5  
000  
WO  
011: 4V,  
100: PB1,  
101: Band-gap 1.20 volt reference voltage  
Others: reserved  
ADC channel F selector:  
4
0
WO 0: Band-gap reference voltage  
1: 0.25*VDD. The deviation is within ±0.01*VDD mostly.  
Band-gap reference voltage selector for ADC channel F: (ICE is fixed to 1.2V)  
00: 1.2V  
WO 01: 2V  
10: 3V  
3 - 2  
1 - 0  
00  
-
11: 4V  
-
Reserved. Please keep 0.  
6.26. ADC Result High Register (adcrh), IO address = 0x22  
Bit  
Reset  
R/W  
Description  
These eight read-only bits will be the bit [11:4] of AD conversion result. The bit 7 of this  
register is the MSB of ADC result for any resolution.  
7 - 0  
-
RO  
6.27. ADC Result Low Register (adcrl), IO address = 0x23  
Bit  
Reset  
R/W  
RO  
-
Description  
These four bits will be the bit [3:0] of AD conversion result.  
Reserved.  
7 - 4  
3 - 0  
-
-
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 75 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
6.28.MISC Register (misc), IO address = 0x26  
Bit  
Reset R/W  
Description  
7 - 6  
-
-
Reserved. (keep 0 for future compatibility)  
Enable fast Wake up. Fast wake-up is NOT supported when EOSC is enabled.  
0: Normal wake up.  
5
4
0
WO  
The wake-up time is 3000 ILRC clocks (Not for fast boot-up)  
1: Fast wake up.  
The wake-up time is 45 ILRC clocks.  
Enable VDD/2 LCD bias voltage generator.  
0 / 1 : Disable / Enable (ICE cannot be dynamically switched)  
0
WO If Code Option selects LCD output, but MISC.4 does not set to 1, then the VDD/2 bias cannot  
be output on the IC. However, the emulator is always OK. Two above phenomena are  
different.  
3
2
Reserved.  
0
WO Disable LVR function. 0 / 1 : Enable / Disable  
Watch dog time out period  
00: 8k ILRC clock period  
1 - 0  
00  
WO 01: 16k ILRC clock period  
10: 64k ILRC clock period  
11: 256k ILRC clock period  
6.29.Comparator Control Register (gpcc), IO address = 0x2b  
Bit  
Reset  
R/W  
Description  
Enable comparator.  
0 / 1 : disable / enable  
7
0
R/W  
When this bit is set to enable, please also set the corresponding analog input pins to be  
digital disable to prevent IO leakage.  
Comparator result of comparator.  
0: plus input < minus input  
6
5
4
-
RO  
R/W  
R/W  
1: plus input > minus input  
Select whether the comparator result output will be sampled by TM2_CLK?  
0: result output NOT sampled by TM2_CLK  
1: result output sampled by TM2_CLK  
0
0
Inverse the polarity of result output of comparator.  
0: polarity is NOT inversed.  
1: polarity is inversed.  
Selection the minus input (-) of comparator.  
000 : PA3  
001 : PA4  
010 : Internal 1.20 volt band-gap reference voltage  
011 : Vinternal R  
3 - 1  
000  
R/W  
100 : PB6 (not for EV5)  
101 : PB7 (not for EV5)  
11X: reserved  
Selection the plus input (+) of comparator.  
0 : Vinternal R  
0
0
R/W  
1 : PA4  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 76 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
6.30.Comparator Selection Register (gpcs), IO address = 0x2c  
Bit  
Reset  
R/W  
WO  
-
Description  
Comparator output enable (to PA0).  
0 / 1 : disable / enable  
Reserved.  
7
0
6
5
4
0
0
0
WO Selection of high range of comparator.  
WO Selection of low range of comparator.  
Selection the voltage level of comparator.  
00 west) ~ 1111 (highest)  
3 - 0  
0000  
WO  
6.31.Timer2 Control Register (tm2c), IO address = 0x30  
Bit  
Reset  
R/W  
Description  
Timer2 clock selection.  
0000 : disable  
0001 : CLK  
0010 : IHRC or IHRC *2 (by code option TMx_source)  
0011 : EOSC  
0100 : ILRC  
0101 : comparator output (ICE does NOT Support.)  
1000 : PA0 (rising edge)  
7 - 4  
0000  
R/W  
1001 : ~PA0 (falling edge)  
1010 : PB0 (rising edge)  
1011 : ~PB0 (falling edge)  
1100 : PA4 (rising edge)  
1101 : ~PA4 (falling edge)  
Others: reserved  
Notice: In ICE mode and IHRC is selected for Timer2 clock, the clock sent to Timer2 does  
NOT be stopped, Timer2 will keep counting when ICE is in halt state.  
Timer2 output selection.  
00 : disable  
01 : PB2  
3 - 2  
00  
R/W  
10 : PA3  
11 : PB4  
Timer2 mode selection.  
0 / 1 : period mode / PWM mode  
Enable to inverse the polarity of Timer2 output.  
0 / 1: disable / enable  
1
0
0
0
R/W  
R/W  
6.32.Timer2 Counter Register (tm2ct), IO address = 0x31  
Bit  
Reset R/W  
0x00 R/W Bit [7:0] of Timer2 counter register.  
Description  
7 - 0  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 77 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
6.33.Timer2 Scalar Register (tm2s), IO address = 0x32  
Bit  
Reset R/W  
Description  
PWM resolution selection.  
7
0
WO 0 : 8-bit  
1 : 6-bit or 7-bit (by code option TMx_bit)  
Timer2 clock pre-scalar.  
00 : ÷ 1  
6 - 5  
00  
WO 01 : ÷ 4  
10 : ÷ 16  
11 : ÷ 64  
4 - 0 00000  
W
Timer2 clock scalar.  
6.34.Timer2 Bound Register (tm2b), IO address = 0x33  
Bit  
Reset R/W  
0x00 WO  
Description  
Timer2 bound register.  
7 - 0  
6.35.Timer3 Control Register (tm3c), IO address = 0x34  
Bit  
Reset  
R/W  
Description  
Timer3 clock selection.  
0000 : disable  
0001 : CLK  
0010 : IHRC or IHRC *2 (by code option TMx_source)  
0011 : EOSC  
0100 : ILRC  
0101 : comparator output  
1000 : PA0 (rising edge)  
7 - 4  
0000  
R/W  
1001 : ~PA0 (falling edge)  
1010 : PB0 (rising edge)  
1011 : ~PB0 (falling edge)  
1100 : PA4 (rising edge)  
1101 : ~PA4 (falling edge)  
Others: reserved  
Notice: In ICE mode and IHRC is selected for Timer3 clock, the clock sent to Timer3 does  
NOT be stopped, Timer3 will keep counting when ICE is in halt state.  
Timer3 output selection.  
00 : disable  
01 : PB5  
3 - 2  
00  
R/W  
10 : PB6  
11 : PB7  
Timer3 mode selection.  
1
0
0
0
R/W  
R/W  
0 / 1 : period mode / PWM mode  
Enable to inverse the polarity of Timer3 output.  
0 / 1: disable / enable  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 78 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
6.36.Timer3 Counter Register (tm3ct), IO address = 0x35  
Bit  
Reset R/W  
0x00 R/W Bit [7:0] of Timer2 counter register.  
Description  
7 - 0  
6.37.Timer3 Scalar Register (tm3s), IO address = 0x36  
Bit  
Reset  
R/W  
Description  
PWM resolution selection.  
0 : 8-bit  
7
0
WO  
1 : 6-bit or 7-bit (by code option TMx_bit)  
Timer3 clock pre-scalar.  
00 : ÷ 1  
6 - 5  
00  
WO  
WO  
01 : ÷ 4  
10 : ÷ 16  
11 : ÷ 64  
4 - 0 00000  
Timer3 clock scalar.  
6.38.Timer3 Bound Register (tm3b), IO address = 0x37  
Bit  
Reset  
0x00  
R/W  
WO  
Description  
7 - 0  
Timer3 bound register.  
6.39.PWMG0 control Register (pwmg0c), IO address = 0x40  
Bit  
7
Reset  
0
R/W  
R/W Enable PWMG0 generator. 0 / 1 : disable / enable.  
RO Output status of PWMG0 generator.  
Description  
6
5
-
0
R/W Enable to inverse the polarity of PWMG0 generator output. 0 / 1 : disable / enable.  
PWMG0 counter reset.  
4
0
R/W  
Writing “1” to clear PWMG0 counter and this bit will be self-clear to 0 after counter reset  
Select PWM output pin for PWMG0.  
000: none  
001: PB5  
3 - 1  
000  
R/W 010: PC2  
011: PA0  
100: PB4  
Others: reserved  
Clock source of PWMG0 generator.  
R/W  
0
0
0: CLK, 1: IHRC or IHRC*2 (by code option PWM_source)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 79 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
6.40.PWMG0 Scalar Register (pwmg0s), IO address = 0x41  
Bit  
Reset  
R/W  
Description  
PWMG0 interrupt mode.  
7
0
WO 0: Generate interrupt when counter matches the duty value  
1: Generate interrupt when counter is 0.  
PWMG0 clock pre-scalar.  
00 : ÷1  
WO 01 : ÷4  
10 : ÷16  
6 - 5  
4 - 0  
00  
11 : ÷64  
00000  
WO PWMG0 clock divider.  
6.41.PWMG0 Duty Value High Register (pwmg0dth), IO address = 0x42  
Bit  
Reset  
-
R/W  
Description  
7 - 0  
WO Duty values bit[10:3] of PWMG0.  
6.42.PWMG0 Duty Value Low Register (pwmg0dtl), IO address = 0x43  
Bit  
Reset  
-
R/W  
Description  
7 - 5  
WO Duty values bit [2:0] of PWMG0.  
4 - 0  
-
-
Reserved.  
Note: It’s necessary to write PWMG0 Duty_Value Low Register before writing PWMG0 Duty_Value High Register.  
6.43.PWMG0 Counter Upper Bound High Register (pwmg0cubh), IO address = 0x44  
Bit  
Reset  
-
R/W  
Description  
7 - 0  
WO Bit [10:3] of PWMG0 counter upper bound.  
6.44.PWMG0 Counter Upper Bound Low Register (pwmg0cubl), IO address = 0x45  
Bit  
Reset  
-
R/W  
WO Bit [2:1] of PWMG0 counter upper bound.  
Reserved.  
Description  
7 - 6  
5 - 0  
-
-
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 80 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
6.45.PWMG1 control Register (pwmg1c), IO address = 0x46  
Bit  
7
Reset  
R/W  
R/W  
RO  
Description  
Enable PWMG1. 0 / 1: disable / enable.  
0
-
6
Output of PWMG1.  
5
0
R/W  
Enable to inverse the polarity of PWMG1 output. 0 / 1 : disable / enable.  
PWMG1 counter reset.  
4
3 - 1  
0
0
000  
0
R/W  
R/W  
R/W  
Writing “1” to clear PWMG1 counter.  
Select PWMG1 output pin.  
000: none  
001: PB6  
010: PC3  
011: PA4  
100: PB7  
Others: reserved  
Clock source of PWMG1 generator.  
0: CLK, 1: IHRC or IHRC*2 (by code option PWM_source)  
6.46.PWMG1 Scalar Register (pwmg1s), IO address = 0x47  
Bit  
Reset  
R/W  
Description  
PWMG1 interrupt mode.  
7
0
WO  
0: Generate interrupt when counter matches the duty value.  
1: Generate interrupt when counter is 0.  
PWMG1 clock pre-scalar.  
00 : ÷1  
01 : ÷4  
10 : ÷16  
11 : ÷64  
6 - 5  
4 - 0  
00  
WO  
WO  
00000  
PWMG1 clock divider.  
6.47.PWMG1 Duty Value High Register (pwmg1dth), IO address = 0x48  
Bit  
Reset  
0x00  
R/W  
WO  
Description  
7 - 0  
Duty values bit [10:3] of PWMG1.  
6.48.PWMG1 Duty Value Low Register (pwmg1dtl), IO address = 0x49  
Bit  
Reset  
000  
-
R/W  
W
Description  
7 - 5  
4 - 0  
Duty values bit [2:0] of PWMG1.  
Reserved.  
-
Note: It’s necessary to write PWMG1 Duty_Value Low Register before writing PWMG1 Duty_Value High Register.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 81 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
6.49.PWMG1 Counter Upper Bound High Register (pwmg1cubh), IO address = 0x4a  
Bit  
Reset  
0x00  
R/W  
WO  
Description  
Bit[10:3] of PWMG1 counter upper bound.  
7 - 0  
6.50.PWMG1 Counter Upper Bound Low Register (pwmg1cubl), IO address = 0x04b  
Bit  
Reset  
000  
-
R/W  
WO  
-
Description  
Bit[2:1] of PWMG1 counter upper bound.  
Reserved  
7 - 6  
5 - 0  
6.51.PWMG2 control Register (pwmg2c), IO address = 0x4C  
Bit  
7
Reset  
0
R/W  
R/W  
Description  
Enable PWMG2. 0 / 1 : disable / enable.  
6
5
-
RO  
Output of PWMG2.  
0
R/W  
Enable to inverse the polarity of PWMG2 output. 0 / 1 : disable / enable.  
PWMG2 counter reset.  
4
3 - 1  
0
0
000  
0
R/W  
R/W  
R/W  
Writing “1” to clear PWMG2 counter.  
Select PWMG2 output pin.  
000: disable  
001: PB3  
010: PC0  
011: PA3  
100: PB2  
Others: reserved  
Clock source of PWMG2 generator.  
0: CLK, 1: IHRC or IHRC*2 (by code option PWM_source)  
6.52.PWMG2 Scalar Register (pwmg2s), IO address = 0x4D  
Bit  
Reset  
R/W  
Description  
PWMG2 interrupt mode.  
7
0
WO  
0: Generate interrupt when counter matches the duty value.  
1: Generate interrupt when counter is 0.  
PWMG2 clock pre-scalar.  
00 : ÷1  
6 - 5  
4 - 0  
00  
WO  
WO  
01 : ÷4  
10 : ÷16  
11 : ÷64  
00000  
PWMG2 clock divider.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 82 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
6.53.PWMG2 Duty Value High Register (pwmg2dth), IO address = 0x4E  
Bit  
Reset  
0x00  
R/W  
Description  
7 - 0  
WO Duty values bit [10:3] of PWMG2.  
6.54.PWMG2 Duty Value Low Register (pwmg2dtl), IO address = 0x4F  
Bit  
Reset  
000  
-
R/W  
Description  
7 - 5  
4 - 0  
WO Duty values bit [2:0] of PWMG2.  
-
Reserved.  
Note: It’s necessary to write PWMG2 Duty_Value Low Register before writing PWMG2 Duty_Value High Register.  
6.55.PWMG2 Counter Upper Bound High Register (pwmg2cubh), IO address = 0x50  
Bit  
Reset  
0x00  
R/W  
Description  
7 - 0  
WO Bit [10:3] of PWMG2 counter upper bound.  
6.56.PWMG2 Counter Upper Bound Low Register (pwmg2cubl), IO address = 0x51  
Bit  
Reset  
000  
R/W  
WO Bit [2:1] of PWMG2 counter upper bound.  
Reserved.  
Description  
7 - 6  
5 - 0  
-
-
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 83 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
7. Instructions  
Symbol  
Description  
ACC  
a
Accumulator (Abbreviation of accumulator)  
Accumulator (symbol of accumulator in program)  
sp  
flag  
I
Stack pointer  
ACC status flag register  
Immediate data  
&
Logical AND  
|
Logical OR  
^
Movement  
Exclusive logic OR  
+
Add  
OV  
Z
Subtraction  
NOT (logical complement, 1’s complement)  
NEG (2’s complement)  
Overflow (The operational result is out of range in signed 2’s complement number system)  
Zero (If the result of ALU operation is zero, this bit is set to 1)  
Carry (The operational result is to have carry out for addition or to borrow carry for subtraction in  
unsigned number system)  
C
Auxiliary Carry  
AC  
(If there is a carry out from low nibble after the result of ALU operation, this bit is set to 1)  
Only addressed in 0~0x3F (0~63) is allowed  
M.n  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 84 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
7.1. Data Transfer Instructions  
mov  
mov  
mov  
mov  
mov  
nmov  
a, I  
Move immediate data into ACC.  
Example: mov a, 0x0f;  
Result: a ← 0fh;  
Affected flags: NZ NC NAC NOV  
M, a  
a, M  
Move data from ACC into memory  
Example: mov  
MEM, a;  
Result: MEM ← a  
Affected flags: NZ NC NAC NOV  
Move data from memory into ACC  
Example: mov  
a, MEM ;  
Result: a ← MEM; Flag Z is set when MEM is zero.  
Affected flags: YZ NC NAC NOV  
a, IO  
Move data from IO into ACC  
Example: mov  
a, pa ;  
Result: a ← pa; Flag Z is set when pa is zero.  
Affected flags: YZ NC NAC NOV  
IO, a  
M, a  
Move data from ACC into IO  
Example: mov  
Result: pb ← a  
pb, a;  
Affected flags: NZ NC NAC NOV  
Take the negative logic (2’s complement) of ACC to put on memory  
Example: mov  
MEM, a;  
Result: MEM a  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
a, 0xf5 ;  
ram9, a;  
// ACC is 0xf5  
nmov  
// ram9 is 0x0b, ACC is 0xf5  
------------------------------------------------------------------------------------------------------------------------  
Take the negative logic (2’s complement) of memory to put on ACC  
nmov  
a, M  
Example: mov  
a, MEM ;  
Result: a MEM; Flag Z is set when MEM is zero.  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
nmov  
a, 0xf5 ;  
ram9, a ;  
a, ram9 ;  
// ram9 is 0xf5  
// ram9 is 0xf5, ACC is 0x0b  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 85 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
ldtabh index  
Load high byte data in OTP program memory to ACC by using index as OTP address. It needs  
2T to execute this instruction.  
Example: ldtabh index;  
Result:  
a ← {bit 15~8 of OTP [index]};  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
...  
ROMptr ;  
// declare a pointer of ROM in RAM  
mov  
mov  
mov  
mov  
...  
a, la@TableA ; // assign pointer to ROM TableA (LSB)  
lb@ROMptr, a ; // save pointer to RAM (LSB)  
a, ha@TableA ; // assign pointer to ROM TableA (MSB)  
hb@ROMptr, a ; // save pointer to RAM (MSB)  
ldtabh  
...  
ROMptr ;  
// load TableA MSB to ACC (ACC=0X02)  
TableA :  
dc 0x0234, 0x0042, 0x0024, 0x0018 ;  
------------------------------------------------------------------------------------------------------------------------  
ldtabl index  
Load low byte data in OTP to ACC by using index as OTP address. It needs 2T to execute this  
instruction.  
Example: ldtabl index;  
Result:  
a ← {bit7~0 of OTP [index]};  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
...  
ROMptr ;  
// declare a pointer of ROM in RAM  
mov  
mov  
mov  
mov  
...  
a, la@TableA ; // assign pointer to ROM TableA (LSB)  
lb@ROMptr, a ; // save pointer to RAM (LSB)  
a, ha@TableA ; // assign pointer to ROM TableA (MSB)  
hb@ROMptr, a ; // save pointer to RAM (MSB)  
ldtabl  
...  
ROMptr ;  
dc  
// load TableA LSB to ACC (ACC=0x34)  
TableA :  
0x0234, 0x0042, 0x0024, 0x0018 ;  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 86 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
ldt16 word  
Move 16-bit counting values in Timer16 to memory in word.  
Example: ldt16 word;  
Result:  
word ← 16-bit timer  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
T16val ;  
// declare a RAM word  
clear  
clear  
stt16  
lb@ T16val ;  
hb@ T16val ;  
T16val ;  
// clear T16val (LSB)  
// clear T16val (MSB)  
// initial T16 with 0  
set1  
t16m.5 ;  
// enable Timer16  
set0  
ldt16  
….  
t16m.5 ;  
T16val ;  
// disable Timer 16  
// save the T16 counting value to T16val  
------------------------------------------------------------------------------------------------------------------------  
Store 16-bit data from memory in word to Timer16.  
Example: stt16 word;  
stt16 word  
Result:  
16-bit timer ←word  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
T16val ;  
// declare a RAM word  
mov  
mov  
mov  
mov  
stt16  
a, 0x34 ;  
lb@ T16val , a ; // move 0x34 to T16val (LSB)  
a, 0x12 ;  
hb@ T16val , a ; // move 0x12 to T16val (MSB)  
T16val ;  
// initial T16 with 0x1234  
----------------------------------------------------------------------------------------------------------------------  
xch  
M
Exchange data between ACC and memory  
Example: xch MEM ;  
Result:  
MEM ← a , a ← MEM  
Affected flags: NZ NC NAC NOV  
popaf  
Restore ACC and flag from the memory which address is specified in the stack pointer.  
Example: popaf;  
Result:  
{Flag, ACC} ← [sp] ;  
Affected flags: YZ YC YAC YOV  
sp ← sp - 2  
;
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 87 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Idxm index, a Move data from ACC to specified memory by indirect method. It needs 2T to execute this  
instruction.  
Example: idxm index, a;  
Result:  
[index] ← a; where index is declared by word.  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
RAMIndex ;  
// declare a RAM pointer  
mov  
mov  
mov  
mov  
a, 0x5B ;  
// assign pointer to an address (LSB)  
// save pointer to RAM (LSB)  
lb@RAMIndex, a ;  
a, 0x00 ;  
// assign 0x00 to an address (MSB), should be 0  
hb@RAMIndex, a ; // save pointer to RAM (MSB)  
mov  
idxm  
a, 0xA5 ;  
RAMIndex, a ;  
// mov 0xA5 to memory in address 0x5B  
------------------------------------------------------------------------------------------------------------------------  
idxm a, index Move data from specified memory to ACC by indirect method. It needs 2T to execute this  
instruction.  
Example: idxm a, index;  
Result:  
a ← [index], where index is declared by word.  
Affected flags: NZ NC NAC NOV  
Application Example:  
-----------------------------------------------------------------------------------------------------------------------  
word  
RAMIndex ;  
// declare a RAM pointer  
mov  
mov  
mov  
mov  
a, 0x5B ;  
// assign pointer to an address (LSB)  
// save pointer to RAM (LSB)  
lb@RAMIndex, a ;  
a, 0x00 ;  
// assign 0x00 to an address (MSB), should be 0  
hb@RAMIndex, a ; // save pointer to RAM (MSB)  
idxm  
a, RAMIndex ; // move memory data in address 0x5B to ACC  
------------------------------------------------------------------------------------------------------------------------  
Move the ACC and flag register to memory that address specified in the stack pointer.  
Example: pushaf;  
pushaf  
Result:  
[sp] ← {flag, ACC};  
sp ← sp + 2 ;  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
.romadr 0x10 ;  
// ISR entry address  
pushaf ;  
// put ACC and flag into stack memory  
// ISR program  
// ISR program  
popaf ;  
reti ;  
// restore ACC and flag from stack memory  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 88 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
7.2. Arithmetic Operation Instructions  
add  
add  
add  
a, I  
Add immediate data with ACC, then put result into ACC  
Example: add a, 0x0f ;  
Result: a ← a + 0fh  
Affected flags: YZ YC YAC YOV  
a, M  
M, a  
Add data in memory with ACC, then put result into ACC  
Example: add  
a, MEM ;  
Result: a ← a + MEM  
Affected flags: YZ YC YAC YOV  
Add data in memory with ACC, then put result into memory  
Example: add  
MEM, a;  
Result: MEM ← a + MEM  
Affected flags: YZ YC YAC YOV  
addc a, M  
addc M, a  
Add data in memory with ACC and carry bit, then put result into ACC  
Example: addc  
a, MEM ;  
Result: a ← a + MEM + C  
Affected flags: YZ YC YAC YOV  
Add data in memory with ACC and carry bit, then put result into memory  
Example: addc  
MEM, a ;  
Result: MEM ← a + MEM + C  
Affected flags: YZ YC YAC YOV  
addc  
addc  
a
Add carry with ACC, then put result into ACC  
Example: addc  
a ;  
Result: a ← a + C  
Affected flags: YZ YC YAC YOV  
M
Add carry with memory, then put result into memory  
Example: addc  
MEM ;  
Result: MEM ← MEM + C  
Affected flags: YZ YC YAC YOV  
nadd a, M  
Add negative logic (2’s complement) of ACC with memory  
Example: nadd  
a, MEM ;  
Result: a a + MEM  
Affected flags: YZ YC YAC YOV  
nadd M, a  
Add negative logic (2’s complement) of memory with ACC  
Example: nadd  
MEM, a ;  
Result: MEM ← MEM + a  
Affected flags: YZ YC YAC YOV  
sub  
sub  
a, I  
Subtraction immediate data from ACC, then put result into ACC.  
Example: sub  
a, 0x0f;  
Result: a ← a - 0fh ( a + [2’s complement of 0fh] )  
Affected flags: YZ YC YAC YOV  
a, M  
Subtraction data in memory from ACC, then put result into ACC  
Example: sub  
Result: a ← a - MEM ( a + [2’s complement of M] )  
Affected flags: YZ YC YAC YOV  
a, MEM ;  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 89 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
sub  
M, a  
Subtraction data in ACC from memory, then put result into memory  
Example: sub MEM, a;  
Result: MEM ← MEM - a ( MEM + [2’s complement of a] )  
Affected flags: YZ YC YAC YOV  
subc a, M  
subc M, a  
Subtraction data in memory and carry from ACC, then put result into ACC  
Example: subc  
a, MEM;  
Result: a ← a – MEM - C  
Affected flags: YZ YC YAC YOV  
Subtraction ACC and carry bit from memory, then put result into memory  
Example: subc  
MEM, a ;  
Result: MEM ← MEM – a - C  
Affected flags: YZ YC YAC YOV  
subc  
subc  
a
Subtraction carry from ACC, then put result into ACC  
Example: subc  
a;  
Result: a ← a - C  
Affected flags: YZ YC YAC YOV  
M
Subtraction carry from the content of memory, then put result into memory  
Example: subc  
MEM;  
Result: MEM ← MEM - C  
Affected flags: YZ YC YAC YOV  
inc  
M
Increment the content of memory  
Example: inc  
MEM ;  
Result: MEM ← MEM + 1  
Affected flags: YZ YC YAC YOV  
dec  
M
Decrement the content of memory  
Example: dec  
MEM;  
Result: MEM ← MEM - 1  
Affected flags: YZ YC YAC YOV  
clear  
mul  
M
Clear the content of memory  
Example: clear  
MEM ;  
Result: MEM ← 0  
Affected flags: NZ NC NAC NOV  
Multiplication operation, 8x8 unsigned multiplications will be executed.  
Example: mul  
;
Result: {MulRH,ACC} ACC * MulOp  
Affected flags: NZ NC NAC NOV  
Application Example :  
---------------------------------------------------------------------------------------------------------------------  
mov  
mov  
mov  
mul  
mov  
mov  
a, 0x5a ;  
mulop, a ;  
a, 0xa5 ;  
// 0x5A * 0xA5 = 3A02 (mulrh + ACC)  
// LSB, ram0=0x02  
ram0, a ;  
a, mulrh ;  
// MSB, ACC=0X3A  
---------------------------------------------------------------------------------------------------------------------  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 90 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
7.3. Shift Operation Instructions  
sr  
a
Shift right of ACC, shift 0 to bit 7  
Example: sr a ;  
Result: a (0,b7,b6,b5,b4,b3,b2,b1) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b0)  
Affected flags: NZ YC NAC NOV  
Shift right of ACC with carry bit 7 to flag  
src  
sr  
a
Example: src a ;  
Result: a (c,b7,b6,b5,b4,b3,b2,b1) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b0)  
Affected flags: NZ YC NAC NOV  
Shift right the content of memory, shift 0 to bit 7  
M
Example: sr MEM ;  
Result: MEM(0,b7,b6,b5,b4,b3,b2,b1) ← MEM(b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b0)  
Affected flags: NZ YC NAC NOV  
Shift right of memory with carry bit 7 to flag  
src  
sl  
M
Example: src MEM ;  
Result: MEM(c,b7,b6,b5,b4,b3,b2,b1) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b0)  
Affected flags: NZ YC NAC NOV  
a
Shift left of ACC shift 0 to bit 0  
Example: sl a ;  
Result: a (b6,b5,b4,b3,b2,b1,b0,0) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a (b7)  
Affected flags: NZ YC NAC NOV  
Shift left of ACC with carry bit 0 to flag  
slc  
sl  
a
Example: slc a ;  
Result: a (b6,b5,b4,b3,b2,b1,b0,c) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b7)  
Affected flags: NZ YC NAC NOV  
Shift left of memory, shift 0 to bit 0  
M
Example: sl MEM ;  
Result: MEM (b6,b5,b4,b3,b2,b1,b0,0) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b7)  
Affected flags: NZ YC NAC NOV  
Shift left of memory with carry bit 0 to flag  
slc  
M
Example: slc MEM ;  
Result: MEM (b6,b5,b4,b3,b2,b1,b0,C) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM (b7)  
Affected flags: NZ YC NAC NOV  
Swap the high nibble and low nibble of ACC  
swap  
swap  
a
Example: swap  
a ;  
Result: a (b3,b2,b1,b0,b7,b6,b5,b4) ← a (b7,b6,b5,b4,b3,b2,b1,b0)  
Affected flags: NZ NC NAC NOV  
M
Swap the high nibble and low nibble of memory  
Example: swap  
MEM ;  
Result: MEM (b3,b2,b1,b0,b7,b6,b5,b4) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0)  
Affected flags: NZ NC NAC NOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 91 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
7.4. Logic Operation Instructions  
and  
and  
and  
or  
a, I  
a, M  
M, a  
a, I  
Perform logic AND on ACC and immediate data, then put result into ACC  
Example: and a, 0x0f ;  
Result: a ← a & 0fh  
Affected flags: YZ NC NAC NOV  
Perform logic AND on ACC and memory, then put result into ACC  
Example: and  
a, RAM10 ;  
Result: a ← a & RAM10  
Affected flags: YZ NC NAC NOV  
Perform logic AND on ACC and memory, then put result into memory  
Example: and  
MEM, a ;  
Result: MEM ← a & MEM  
Affected flags: YZ NC NAC NOV  
Perform logic OR on ACC and immediate data, then put result into ACC  
Example: or  
a, 0x0f ;  
Result: a ← a | 0fh  
Affected flags: YZ NC NAC NOV  
or  
a, M  
Perform logic OR on ACC and memory, then put result into ACC  
Example: or  
a, MEM ;  
Result: a ← a | MEM  
Affected flags: YZ NC NAC NOV  
or  
M, a  
a, I  
Perform logic OR on ACC and memory, then put result into memory  
Example: or  
MEM, a ;  
Result: MEM ← a | MEM  
Affected flags: YZ NC NAC NOV  
xor  
xor  
Perform logic XOR on ACC and immediate data, then put result into ACC  
Example: xor  
a, 0x0f ;  
Result: a ← a ^ 0fh  
Affected flags: YZ NC NAC NOV  
a, IO  
Perform logic XOR on ACC and IO register, then put result into ACC  
Example: xor  
a, pa ;  
Result: a ← a ^ pa ; // pa is the data register of port A  
Affected flags: YZ NC NAC NOV  
xor  
xor  
xor  
IO, a  
a, M  
M, a  
Perform logic XOR on ACC and IO register, then put result into IO register  
Example: xor  
pa, a ;  
Result: pa ← a ^ pa ; // pa is the data register of port A  
Affected flags: NZ NC NAC NOV  
Perform logic XOR on ACC and memory, then put result into ACC  
Example: xor  
a, MEM ;  
Result: a ← a ^ RAM10  
Affected flags: YZ NC NAC NOV  
Perform logic XOR on ACC and memory, then put result into memory  
Example:  
xor  
MEM, a ;  
Result:  
MEM ← a ^ MEM  
Affected flags: YZ NC NAC NOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 92 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
not  
a
Perform 1’s complement (logical complement) of ACC  
Example: not a ;  
Result: a a  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
not  
a, 0x38 ;  
a ;  
// ACC=0X38  
// ACC=0XC7  
------------------------------------------------------------------------------------------------------------------------  
Perform 1’s complement (logical complement) of memory  
not  
M
Example: not  
MEM ;  
Result: MEM MEM  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
not  
a, 0x38 ;  
mem, a ;  
mem ;  
// mem = 0x38  
// mem = 0xC7  
------------------------------------------------------------------------------------------------------------------------  
Perform 2’s complement of ACC  
neg  
a
Example: neg  
a;  
Result: a a  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
neg  
a, 0x38 ;  
a ;  
// ACC=0X38  
// ACC=0XC8  
------------------------------------------------------------------------------------------------------------------------  
Perform 2’s complement of memory  
neg  
M
Example: neg  
MEM;  
Result: MEM MEM  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
not  
a, 0x38 ;  
mem, a ;  
mem ;  
// mem = 0x38  
// mem = 0xC8  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 93 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
comp  
a, M  
Compare ACC with the content of memory  
Example: comp a, MEM;  
Result: Flag will be changed by regarding as ( a - MEM )  
Affected flags: YZ YC YAC YOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
comp  
mov  
mov  
mov  
comp  
a, 0x38 ;  
mem, a ;  
a, mem ;  
a, 0x42 ;  
mem, a ;  
a, 0x38 ;  
a, mem ;  
// Z flag is set as 1  
// C flag is set as 1  
------------------------------------------------------------------------------------------------------------------------  
Compare ACC with the content of memory  
comp  
M, a  
Example: comp  
MEM, a;  
Result: Flag will be changed by regarding as ( MEM - a )  
Affected flags: YZ YC YAC YOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 94 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
7.5. Bit Operation Instructions  
set0 IO.n  
set1 IO.n  
swapc IO.n  
Set bit n of IO port to low  
Example: set0 pa.5 ;  
Result: set bit 5 of port A to low  
Affected flags: NZ NC NAC NOV  
Set bit n of IO port to high  
Example: set1 pb.5 ;  
Result: set bit 5 of port B to high  
Affected flags: NZ NC NAC NOV  
Swap the nth bit of IO port with carry bit  
Example: swapc  
IO.0;  
Result: C ← IO.0 , IO.0 ← C  
When IO.0 is a port to output pin, carry C will be sent to IO.0;  
When IO.0 is a port from input pin, IO.0 will be sent to carry C;  
Affected flags: NZ YC NAC NOV  
Application Example1 (serial output) :  
------------------------------------------------------------------------------------------------------------------------  
...  
set1  
...  
pac.0 ;  
// set PA.0 as output  
set0  
swapc  
set1  
swapc  
flag.1 ;  
pa.0 ;  
// C=0  
// move C to PA.0 (bit operation), PA.0=0  
// C=1  
flag.1 ;  
pa.0 ;  
// move C to PA.0 (bit operation), PA.0=1  
------------------------------------------------------------------------------------------------------------------------  
Application Example2 (serial input) :  
------------------------------------------------------------------------------------------------------------------------  
...  
set0  
...  
pac.0 ;  
// set PA.0 as input  
swapc  
src  
pa.0 ;  
a ;  
// read PA.0 to C (bit operation)  
// shift C to bit 7 of ACC  
swapc  
src  
pa.0 ;  
a ;  
// read PA.0 to C (bit operation)  
// shift new C to bit 7, old C  
------------------------------------------------------------------------------------------------------------------------  
Set bit n of memory to low  
set0 M.n  
set1 M.n  
Example: set0 MEM.5 ;  
Result: set bit 5 of MEM to low  
Affected flags: NZ NC NAC NOV  
Set bit n of memory to high  
Example: set1 MEM.5 ;  
Result: set bit 5 of MEM to high  
Affected flags: NZ NC NAC NOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 95 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
7.6. Conditional Operation Instructions  
ceqsn a, I  
Compare ACC with immediate data and skip next instruction if both are equal.  
Flag will be changed like as (a ← a – I)  
Example: ceqsn  
a, 0x55 ;  
MEM ;  
error ;  
inc  
goto  
Result: If a=0x55, then “goto error”; otherwise, “inc MEM”.  
Affected flags: YZ YC YAC YOV  
Compare ACC with memory and skip next instruction if both are equal.  
Flag will be changed like as (a ← a - M)  
ceqsn a, M  
Example: ceqsn  
a, MEM;  
Result: If a=MEM, skip next instruction  
Affected flags: YZ YC YAC YOV  
cneqsn a, M  
Compare ACC with memory and skip next instruction if both are not equal.  
Flag will be changed like as (a ← a - M)  
Example: cneqsn  
a, MEM;  
Result: If a≠MEM, skip next instruction  
Affected flags: YZ YC YAC YOV  
cneqsn a, I  
Compare ACC with immediate data and skip next instruction if both are no equal.  
Flag will be changed like as (a ← a - I)  
Example: cneqsn  
a,0x55 ;  
MEM ;  
error ;  
inc  
goto  
Result: If a≠0x55, then “goto error”; Otherwise, “inc MEM”.  
Affected flags: YZ YC YAC YOV  
Check IO bit and skip next instruction if it’s low  
t0sn IO.n  
t1sn IO.n  
t0sn M.n  
t1sn M.n  
Example: t0sn  
pa.5;  
Result: If bit 5 of port A is low, skip next instruction  
Affected flags: NZ NC NAC NOV  
Check IO bit and skip next instruction if it’s high  
Example: t1sn  
pa.5 ;  
Result: If bit 5 of port A is high, skip next instruction  
Affected flags: NZ NC NAC NOV  
Check memory bit and skip next instruction if it’s low  
Example: t0sn MEM.5 ;  
Result: If bit 5 of MEM is low, then skip next instruction  
Affected flags: NZ NC NAC NOV  
Check memory bit and skip next instruction if it’s high  
EX: t1sn MEM.5 ;  
Result: If bit 5 of MEM is high, then skip next instruction  
Affected flags: NZ NC NAC NOV  
Increment ACC and skip next instruction if ACC is zero  
izsn  
a
Example: izsn  
Result:  
a;  
a
a + 1,skip next instruction if a = 0  
Affected flags: YZ YC YAC YOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 96 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
dzsn  
izsn  
a
Decrement ACC and skip next instruction if ACC is zero  
Example: dzsn  
Result:  
a;  
A
A - 1,skip next instruction if a = 0  
Affected flags: YZ YC YAC YOV  
M
Increment memory and skip next instruction if memory is zero  
Example: izsn  
Result: MEM  
MEM;  
MEM + 1, skip next instruction if MEM= 0  
Affected flags: YZ YC YAC YOV  
dzsn  
M
Decrement memory and skip next instruction if memory is zero  
Example: dzsn  
Result: MEM  
Affected flags: YZ YC YAC YOV  
MEM;  
MEM - 1, skip next instruction if MEM = 0  
7.7. System control Instructions  
call  
label  
Function call, address can be full range address space  
Example: call  
function1;  
pc + 1  
Result: [sp]  
pc  
sp  
function1  
sp + 2  
Affected flags: NZ NC NAC NOV  
goto label  
Go to specific address which can be full range address space  
Example: goto  
error;  
Result: Go to error and execute program.  
Affected flags: NZ NC NAC NOV  
Place immediate data to ACC, then return  
Example: ret 0x55;  
ret  
I
Result:  
A ← 55h  
ret ;  
Affected flags: NZ NC NAC NOV  
Return to program which had function call  
Example: ret;  
ret  
Result:  
sp ← sp - 2  
pc ← [sp]  
Affected flags: NZ NC NAC NOV  
Return to program that is interrupt service routine. After this command is executed, global  
interrupt is enabled automatically.  
reti  
nop  
Example: reti;  
Affected flags: NZ NC NAC NOV  
No operation  
Example: nop;  
Result: nothing changed  
Affected flags: NZ NC NAC NOV  
Next program counter is current program counter plus ACC.  
Example: pcadd a;  
pcadd  
a
Result: pc ← pc + a  
Affected flags: NZ NC NAC NOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 97 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
pcadd  
goto  
goto  
goto  
goto  
a, 0x02 ;  
a ;  
// PC <- PC+2  
// jump here  
err1 ;  
correct ;  
err2 ;  
err3 ;  
correct:  
// jump here  
------------------------------------------------------------------------------------------------------------------------  
Enable global interrupt enable  
engint  
Example: engint;  
Result: Interrupt request can be sent to CPU  
Affected flags: NZ NC NAC NOV  
Disable global interrupt enable  
disgint  
stopsys  
stopexe  
Example: disgint ;  
Result: Interrupt request is blocked from CPU  
Affected flags: NZ NC NAC NOV  
System halt.  
Example: stopsys;  
Result: Stop the system clocks and halt the system  
Affected flags: NZ NC NAC NOV  
CPU halt. The oscillator module is still active to output clock, however, system clock is disabled  
to save power.  
Example: stopexe;  
Result: Stop the system clocks and keep oscillator modules active.  
Affected flags: NZ NC NAC NOV  
Reset the whole chip, its operation will be same as hardware reset.  
Example: reset;  
reset  
Result: Reset the whole chip.  
Affected flags: NZ NC NAC NOV  
Reset Watchdog timer.  
wdreset  
Example: wdreset ;  
Result: Reset Watchdog timer.  
Affected flags: NZ NC NAC NOV  
7.8. Summary of Instructions Execution Cycle  
goto, call, idxm, pcadd, ret, reti, ldtabl , ldtabh  
2T  
2T  
1T  
1T  
Condition is fulfilled  
ceqsn, cneqsn,t0sn, t1sn, dzsn, izsn  
Condition is not fulfilled  
Others  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 98 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
7.9. Summary of affected flags by Instructions  
Instruction  
mov a, I  
Z
-
C
-
AC OV Instruction  
Z
-
C
-
AC OV Instruction  
Z
Y
-
C
-
AC OV  
-
-
-
-
mov M, a  
mov IO, a  
idxm a, index  
pushaf  
-
-
-
-
mov a, M  
ldt16 word  
idxm index, a  
popaf  
-
-
-
-
mov a, IO  
stt16 word  
Y
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
xch  
M
-
-
-
-
-
-
-
-
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
-
add a, I  
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
add a, M  
addc M, a  
nadd a, M  
sub a, M  
subc M, a  
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
add M, a  
addc a, M  
addc  
a
addc  
M
nadd M, a  
sub a, I  
sub M, a  
subc a, M  
subc  
dec  
sr a  
src  
a
subc  
clear  
src  
M
M
inc  
mul  
sr  
M
M
a
-
Y
Y
Y
-
-
-
M
-
Y
Y
-
-
-
M
-
-
-
sl  
a
-
-
-
slc  
a
-
-
-
sl  
M
-
-
-
slc  
and  
M
-
-
-
swap  
and  
a
-
-
-
and  
a, I  
Y
Y
Y
Y
Y
Y
-
-
-
a, M  
Y
Y
-
-
-
M, a  
Y
Y
Y
Y
Y
-
-
-
-
or a, I  
-
-
-
or a, M  
-
-
-
or M, a  
-
-
-
xor  
xor  
neg  
a, I  
-
-
-
xor  
not  
neg  
IO, a  
-
-
-
xor  
not  
a, M  
-
-
-
M, a  
a
-
-
-
a
Y
Y
-
-
-
-
M
-
-
-
-
-
-
M
-
-
-
comp a, M  
set1 IO.n  
Y
-
Y
-
Y
-
comp M, a  
set0 M.n  
Y
-
Y
-
Y
-
set0 IO.n  
set1 M.n  
ceqsn a, M  
t0sn IO.n  
t1sn M.n  
-
-
-
-
-
-
-
swapc IO.n  
cneqsn a,M  
T1sn IO.n  
-
Y
Y
-
-
-
ceqsn a, I  
cneqsn a, I  
t0sn M.n  
Y
Y
-
Y
Y
-
Y
Y
-
Y
Y
-
Y
-
Y
-
Y
-
Y
-
Y
-
Y
-
Y
-
-
-
-
-
izsn  
dzsn  
ret  
a
Y
Y
-
Y
Y
-
Y
Y
-
Y
Y
-
dzsn  
call  
a
Y
-
Y
-
Y
-
Y
-
izsn  
M
Y
-
Y
-
Y
-
Y
-
M
label  
goto label  
reti  
I
ret  
-
-
-
-
-
-
-
-
nop  
-
-
-
-
pcadd  
a
-
-
-
-
engint  
-
-
-
-
disgint  
reset  
-
-
-
-
stopsys  
wdreset  
-
-
-
-
stopexe  
ldtabl index  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ldtabh index  
nmov M, a  
-
-
-
-
xor  
a, IO  
a, M  
Y
Y
-
-
-
swap  
M
-
-
-
-
-
-
-
-
nmov  
-
-
-
7.10.BIT definition  
Bit access of RAM is only available for address from 0x00 to 0x7F.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 99 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
8. Code Options  
Option  
Selection  
Description  
Security Enable  
Enable  
Disable  
4.0V  
Security  
Security Disable  
Select LVR = 4.0V  
3.5V  
Select LVR = 3.5V  
3.0V  
Select LVR = 3.0V  
2.75V  
2.5V  
Select LVR = 2.75V  
Select LVR = 2.5V  
LVR  
2.2V  
Select LVR = 2.2V  
2.0V  
Select LVR = 2.0V  
1.8V  
Select LVR = 1.8V  
Slow  
Please refer to tWUP and tSBP in Section 4.1  
Please refer to tWUP and tSBP in Section 4.1  
VDD/2 LCD bias voltage generator disabled. All are normal IO pins  
VDD/2 LCD bias voltage generator enabled, PB0 PA[0,3,4] are VDD/2 if input  
mode  
Boot-up_Time  
Fast  
Disable  
LCD2  
(please refer to  
MISC.4)  
PB0_A034  
PB1256  
VDD/2 LCD bias voltage generator enabled, PB[1,2,5,6] are VDD/2 if input  
mode  
PA.0  
PB.5  
PA.2  
PA.7  
PB.0  
PA.4  
PA.3  
PB.6  
INTEN/ INTRQ.Bit0 is from PA.0  
INTEN/ INTRQ.Bit0 is from PB.5  
INTEN/ INTRQ.Bit0 is from PA.2  
INTEN/ INTRQ.Bit0 is from PA.7  
INTEN/ INTRQ.Bit1 is from PB.0  
INTEN/ INTRQ.Bit1 is from PA.4  
INTEN/ INTRQ.Bit1 is from PA.3  
INTEN/ INTRQ.Bit1 is from PB.6  
Interrupt Src0  
Interrupt Src1  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 100 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Option  
Selection  
Normal  
Description  
PB4 & PB7 Drive/ Sink Current is Normal  
PB4 & PB7 Drive/ Sink Current is Strong  
The comparator will trigger an interrupt on both the rising edge or  
falling edge  
PB4_PB7_Drive  
Strong  
All_Edge  
Comparator  
Edge  
Rising_Edge The comparator will trigger an interrupt on the rising edge  
Falling_Edge The comparator will trigger an interrupt on the falling edge  
Disable  
Comparator does not control all PWM outputs  
Comparator controls all PWM outputs (ICE does NOT Support.)  
When pwmg0c.0= 1, PWMG0 clock source = IHRC = 16MHZ  
When pwmg1c.0= 1, PWMG1 clock source = IHRC = 16MHZ  
When pwmg2c.0= 1, PWMG2 clock source = IHRC = 16MHZ  
When pwmg0c.0= 1, PWMG0 clock source = IHRC*2 = 32MHZ  
When pwmg1c.0= 1, PWMG1 clock source = IHRC*2 = 32MHZ  
When pwmg2c.0= 1, PWMG2 clock source = IHRC*2 = 32MHZ  
(ICE does NOT Support.)  
GPC_PWM  
Enable  
16MHZ  
PWM_Source  
32MHZ  
When tm2c[7:4]= 0010, TM2 clock source = IHRC = 16MHZ  
When tm3c[7:4]= 0010, TM3 clock source = IHRC = 16MHZ  
When tm2c[7:4]= 0010, TM2 clock source = IHRC*2 = 32MHZ  
When tm3c[7:4]= 0010, TM3 clock source = IHRC*2 = 32MHZ  
(ICE does NOT Support.)  
16MHZ  
32MHZ  
6 Bit  
TMx_Source  
When tm2s.7=1, TM2 PWM resolution is 6 Bit  
When tm3s.7=1, TM3 PWM resolution is 6 Bit  
TMx_Bit  
When tm2s.7=1, TM2 PWM resolution is 7 Bit  
7 Bit  
When tm3s.7=1, TM3 PWM resolution is 7 Bit  
(ICE does NOT Support.)  
Note: The Bolded options are the default options.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 101 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
9. Special Notes  
This chapter is to remind user who use PMS133/PMS134 series IC in order to avoid frequent errors upon  
operation.  
9.1. Warning  
User must read all application notes of the IC by detail before using it. Please download the related application  
notes from the following link:  
http://www.padauk.com.tw/tw/technical/index.aspx  
9.2. Using IC  
9.2.1. IO pin usage and setting  
(1) IO pin is set to be digital input  
When IO is set as digital input, the level of Vih and Vil would changes with the voltage and temperature.  
Please follow the minimum value of Vih and the maximum value of Vil.  
The value of internal pull high resistor would also changes with the voltage, temperature and pin voltage.  
It is not the fixed value.  
(2) If IO pin is set to be digital input and enable wake-up function  
Configure IO pin as input.  
Set corresponding bit to “1” in PXDIER.  
(3) PA5 is set to be output pin  
PA5 can be set to be Open-Drain output pin only, output high requires adding pull-up resistor.  
(4) PA5 is set to be PRST# input pin  
Configure PA5 as input.  
Set CLKMD.0=1 to enable PA5 as PRST# input pin.  
(5) PA5 is set to be input pin and to connect with a push button or a switch by a long wire  
Needs to put a >10Ω resistor in between PA5 and the long wire.  
Avoid using PA5 as input in such application.  
(6) PA7 and PA6 as external crystal oscillator  
Configure PA7 and PA6 as input  
Disable PA7 and PA6 internal pull-up resistor  
Configure PADIER register to set PA6 and PA7 as analog input  
EOSCR register bit [6:5] selects corresponding crystal oscillator frequency :  
01 : for lower frequency, ex : 32KHz  
10 : for middle frequency, ex : 455KHz, 1MHz  
11 : for higher frequency, ex : 4MHz  
Program EOSCR.7 =1 to enable crystal oscillator  
Ensure EOSC working well before switching from IHRC or ILRC to EOSC  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 102 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Note: Please read the PMC-APN013 carefully. According to PMC-APN013,, the crystal oscillator should be  
used reasonably. If the following situations happen to cause IC start-up slowly or non-startup, PADAUK  
Technology is not responsible for this: the quality of the user's crystal oscillator is not good, the usage  
conditions are unreasonable, the PCB cleaner leakage current, or the PCB layouts are unreasonable.  
9.2.2. Interrupt  
(1) When using the interrupt function, the procedure should be:  
Step1: Set INTEN register, enable the interrupt control bit  
Step2: Clear INTRQ register  
Step3: In the main program, using ENGINT to enable CPU interrupt function  
Step4: Wait for interrupt. When interrupt occurs, enter to Interrupt Service Routine  
Step5: After the Interrupt Service Routine being executed, return to the main program  
* Use DISGINT in the main program to disable all interrupts  
* When interrupt service routine starts, use PUSHAF instruction to save ALU and FLAG  
register. POPAF instruction is to restore ALU and FLAG register before RETI as below:  
void Interrupt (void)  
{
// Once the interrupt occurs, jump to interrupt service routine  
// enter DISGINT status automatically, no more interrupt is  
accepted  
PUSHAF;  
POPAF;  
}
// RETI will be added automatically. After RETI being executed, ENGINT status  
will be restored  
(2) INTEN and INTRQ have no initial values. Please set required value before enabling interrupt function.  
(3) There are two sets of external IO pin interrupt source. Every set is decided by code option Interrupt Src0  
and Interrupt Src1 corresponding to the unique interrupt pin. Please comply with the inten / intrq / integs  
register when selecting IO pin.  
9.2.3. System clock switching  
System clock can be switched by CLKMD register. Please notice that, NEVER switch the system clock and  
turn off the original clock source at the same time. For example: When switching from clock A to clock B,  
please switch to clock B first; and after that turn off the clock A oscillator through CLKMD.  
Example : Switch system clock from ILRC to IHRC/2  
CLKMD  
=
0x36;  
0;  
// switch to IHRC, ILRC can not be disabled here  
// ILRC can be disabled at this time  
CLKMD.2 =  
ERROR: Switch ILRC to IHRC and turn off ILRC simultaneously  
CLKMD 0x50; // MCU will hang  
=
9.2.4. Watchdog  
Watchdog will be inactive once ILRC is disabled.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 103 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
9.2.5. TIMER time out  
When select $ INTEGS BIT_R (default value) and T16M counter BIT8 to generate interrupt, if T16M counts  
from 0, the first interrupt will occur when the counter reaches to 0x100 (BIT8 from 0 to 1) and the second  
interrupt will occur when the counter reaches 0x300 (BIT8 from 0 to 1). Therefore, selecting BIT8 as 1 to  
generate interrupt means that the interrupt occurs every 512 counts. Please notice that if T16M counter is  
restarted, the next interrupt will occur once Bit8 turns from 0 to 1.  
If select $ INTEGS BIT_F(BIT triggers from 1 to 0) and T16M counter BIT8 to generate interrupt, the T16M  
counter changes to an interrupt every 0x200/0x400/0x600/. Please pay attention to two differences with  
setting INTEGS methods.  
9.2.6. IHRC  
(1) The IHRC frequency calibration is performed when IC is programmed by the writer.  
(2) Because the characteristic of the Epoxy Molding Compound (EMC) would some degrees affects the  
IHRC frequency (either for package or COB), if the calibration is done before molding process, the actual  
IHRC frequency after molding may be deviated or becomes out of spec. Normally , the frequency is  
getting slower a bit.  
(3) It usually happens in COB package or Quick Turnover Programming (QTP). And PADAUK would not  
take any responsibility for this situation.  
(4) Users can make some compensatory adjustments according to their own experiences. For example,  
users can set IHRC frequency to be 0.5% ~ 1% higher and aim to get better re-targeting after molding.  
9.2.7. LVR  
User can set MISC.2 as “1” to disable LVR. However, VDD must be kept as exceeding the lowest working  
voltage of chip; Otherwise IC may work abnormally.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 104 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
9.2.8. Programming Writing  
There are different ways to program for each package when using program writer version differently. In  
PDK3S-P-002, for 8pin package, please put the IC downwards by four spaces from the top of the Textool, and  
the back is CN39[1, 8] and CN38[3 to 6]. In PDK5S-P-003, please put the IC at the very top of the Textool.  
And using JP7(16A) at the other side. Other packages show as follows:  
PDK3S-P-002  
back  
PDK5S-P-003  
back  
package  
SOP8  
front  
shift-4  
shift-3  
shift-3  
shift-3  
shift-2  
shift-0  
shift-0  
shift-4  
shift-0  
shift-4  
shift-3  
shift-3  
shift-0  
front  
CN39[1,8], CN38[3~6]  
CN38  
X (top)  
JP7(16A)  
SOP14  
shift-4  
JP2  
SOP16A  
CN38  
shift-4  
JP2  
SOP16B  
CN33[1,8], CN38[3~6]  
CN38[1,8], CN39[3~6]  
CN41[1,8], CN38[4,6], CN39[3,5]  
CN41[1,8], CN38[4,6], CN39[3,5]  
CN39[1~4,8], CN38[5,6]  
CN38  
X
JP7 (16B)  
JP1 (19-20P)  
JP7 ( P003-19-28)  
JP7 ( P003-19-28)  
JP7(MSOP10)  
JP7  
SOP20  
X
SOP24  
X
SSOP24  
X
MSOP10  
X
SOT23-6  
X
X
DFN3*3-10PIN  
QFN3*3-16PIN  
QFN4*4-16PIN  
QFN4*4-24PIN  
CN39[1~4,8], CN38[5,6]  
CN38  
JP7(MSOP10)  
JP7  
X
CN38  
shift-4  
X
JP2  
CN41[1,8], CN38[3~6]  
JP7 ( P003-19-28)  
In PDK3S-P-002, for  
8Pin package, put the  
jumper over CN39[1, 8]  
and CN38[3 to 6]  
8Pin: IC downwards  
by four spaces from  
the top of the Textool  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 105 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
PMS133/PMS134  
8bit OTP MCU with 12-bit ADC  
Special notes about voltage and current while Multi-Chip-Package(MCP) or On-Board Programming  
(1) PA5 (VPP) may be higher than 11V.  
(2) VDD may be higher than 6.5V, and its maximum current may reach about 20mA.  
(3) All other signal pins level (except GND) are the same as VDD.  
User should confirm when using this product in MCP or On-Board Programming, the peripheral circuit or  
components will not be destroyed or limit the above voltages.  
9.2.9. Programming Compatibility  
PMS133 and PMS134 are directional compatible. PMS133 program can write into PMS134 real chip, but not  
vice versa.  
9.3 Using ICE  
(1) PDK5S-I-S01/2(B) supports PMS133/PMS134 MCU emulation, the following items should be noted when  
using PDK5S-I-S01/2(B) to emulate PMS133/PMS134:  
PDK5S-I-S01/2(B) doesn’t support the instruction NMOV/SWAP/NADD/COMP with RAM.  
PDK5S-I-S01/2(B) doesn’t support SYSCLK=ILRC/16.  
PDK5S-I-S01/2(B) doesn’t support the dynamic setting of function misc.4 (Only fix to 0 or 1)  
PDK5S-I-S01/2(B) doesn’t support the function Tm2.gpcrs/Tm3.gpcrs.  
PDK5S-I-S01/2(B) doesn’t support band-gap reference voltage for ADC channel F of ADCRGC [3:2].  
Only 1.2V exists and is fixed.  
PDK5S-I-S01/2(B) has different setting of PC2 and PC1 in adcc.  
Fast Wakeup time is different from PDK5S-I-S01/2(B): 128 SysClk, PMS133/PMS134: 45 ILRC  
Watch dog time out period is different from PDK5S-I-S01/2(B):  
WDT period  
misc[1:0]=00  
misc[1:0]=01  
misc[1:0]=10  
misc[1:0]=11  
PDK5S-I-S01/2(B)  
2048 * TILRC  
PMS133/PMS134  
8192 * TILRC  
4096 * TILRC  
16384 * TILRC  
65536 * TILRC  
262144 * TILRC  
16384 * TILRC  
256 * TILRC  
PDK5S-I-S01/2(B) doesn’t support the code options: GPC_PWM, TMx_source, PWM_Source and  
TMx_bit.  
PDK5S-I-S01/2(B) only has 240 bytes RAM for data memory.  
PDK5S-I-S01/2(B) only has 0xF00 program memory.  
The PCDIER register of the PDK5S-I-S01/2(B) emulator is different from the real chip. The PCDIER[0]  
of the PDK5S-I-S01/2(B) is used to set PC0~PC3 to be digital input whereas PCDIER[1] is used to set  
PC4~ PC7 to be digital input. It is recommended not to set PCDIER.  
When using PB1 in ADCRGC, PA1 must float.  
When using GPCC output, PA3 will be influenced.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 106 of 106  
PDK-DS-PMS133/134-EN_V103 – Nov. 13, 2018  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY