PMS150C [PADAUK]

8bit OTP Type IO Controller;
PMS150C
型号: PMS150C
厂家: PADAUK Technology    PADAUK Technology
描述:

8bit OTP Type IO Controller

文件: 总67页 (文件大小:1845K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PMS150C  
8bit OTP Type IO Controller  
Data Sheet  
Version 0.04 – Jan. 24, 2018  
Copyright 2018 by PADAUK Technology Co., Ltd., all rights reserved  
6F-6, No.1, Sec. 3, Gongdao 5th Rd., Hsinchu City 30069, Taiwan, R.O.C.  
TEL: 886-3-572-8688 www.padauk.com.tw  
PMS150C  
8 bit IO-Type Controller  
IMPORTANT NOTICE  
PADAUK Technology reserves the right to make changes to its products or to terminate  
production of its products at any time without notice. Customers are strongly  
recommended to contact PADAUK Technology for the latest information and verify  
whether the information is correct and complete before placing orders.  
PADAUK Technology products are not warranted to be suitable for use in life-support  
applications or other critical applications. PADAUK Technology assumes no liability for  
such applications. Critical applications include, but are not limited to, those that may  
involve potential risks of death, personal injury, fire or severe property damage.  
PADAUK Technology assumes no responsibility for any issue caused by a customer’s  
product design. Customers should design and verify their products within the ranges  
guaranteed by PADAUK Technology. In order to minimize the risks in customers’ products,  
customers should design a product with adequate operating safeguards.  
PMS150C is NOT designed for AC RC step-down powered, high power ripple or high EFT  
requirement application, please do NOT apply PMS150C to those application products.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 2 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
PMS150C  
8 bit IO-Type Controller  
Table of Contents  
1. Features...............................................................................................................................8  
1.1.  
1.2.  
1.3.  
System Features...................................................................................................................8  
CPU Features .......................................................................................................................8  
Package Information .............................................................................................................8  
2. General Description and Block Diagram ..........................................................................9  
3. Pin Functional Description ..............................................................................................10  
4. Device Characteristics .....................................................................................................12  
4.1.  
4.2.  
4.3.  
4.4.  
4.5.  
4.6.  
4.7.  
4.8.  
4.9.  
DC/AC Characteristics ........................................................................................................12  
Absolute Maximum Ratings.................................................................................................13  
Typical IHRC Frequency vs. VDD (calibrated to 16MHz).....................................................14  
Typical ILRC Frequency vs. VDD........................................................................................14  
Typical IHRC Frequency vs. Temperature (calibrated to 16MHz)........................................15  
Typical ILRC Frequency vs. Temperature ...........................................................................15  
Typical Operating Current vs. VDD and CLK=IHRC/n.........................................................16  
Typical Operating Current vs. VDD and CLK=ILRC/n..........................................................16  
Typical IO pull high resistance.............................................................................................17  
4.10. Typical IO driving current (IOH) and sink current (IOL) ...........................................................17  
4.11. Typical IO input high/low threshold voltage (VIH/VIL) ............................................................18  
4.12. Typical power down current (IPD) and power save current (IPS)............................................19  
5. Functional Description.....................................................................................................20  
5.1.  
5.2.  
Program Memory – OTP .....................................................................................................20  
Boot Procedure...................................................................................................................20  
5.2.1. Timing charts for reset conditions ...........................................................................21  
Data Memory – SRAM ........................................................................................................22  
Oscillator and clock.............................................................................................................22  
5.4.1. Internal High RC oscillator and Internal Low RC oscillator ......................................22  
5.4.2. IHRC calibration .....................................................................................................22  
5.4.3. IHRC Frequency Calibration and System Clock......................................................23  
5.4.4. System Clock and LVR levels.................................................................................24  
Comparator.........................................................................................................................25  
5.3.  
5.4.  
5.5.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 3 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
PMS150C  
8 bit IO-Type Controller  
5.5.1. Internal reference voltage (Vinternal R)........................................................................26  
5.5.2. Using the comparator .............................................................................................28  
5.5.3. Using the comparator and band-gap 1.20V ............................................................29  
16-bit Timer (Timer16).........................................................................................................30  
8-bit timer (Timer2) with PWM generation ...........................................................................31  
5.7.1. Using the Timer2 to generate periodical waveform .................................................32  
5.7.2. Using the Timer2 to generate 8-bit PWM waveform................................................33  
5.7.3. Using the Timer2 to generate 6-bit PWM waveform................................................34  
Watchdog Timer..................................................................................................................36  
Interrupt...............................................................................................................................37  
5.6.  
5.7.  
5.8.  
5.9.  
5.10. Power-Save and Power-Down ............................................................................................40  
5.10.1. Power-Save mode (“stopexe)................................................................................40  
5.10.2. Power-Down mode (“stopsys”)................................................................................41  
5.10.3. Wake-up.................................................................................................................42  
5.11. IO Pins................................................................................................................................43  
5.12. Reset ..................................................................................................................................44  
6. IO Registers.......................................................................................................................44  
6.1.  
6.2.  
6.3.  
6.4.  
6.5.  
6.6.  
6.7.  
6.8.  
6.9.  
ACC Status Flag Register (flag), IO address = 0x00 ...........................................................44  
Stack Pointer Register (sp), IO address = 0x02...................................................................44  
Clock Mode Register (clkmd), IO address = 0x03................................................................44  
Interrupt Enable Register (inten), IO address = 0x04...........................................................45  
Interrupt Request Register (intrq), IO address = 0x05 .........................................................45  
Timer 16 mode Register (t16m), IO address = 0x06............................................................45  
External Oscillator setting Register (eoscr, write only), IO address = 0x0a..........................46  
Interrupt Edge Select Register (integs), IO address = 0x0c.................................................46  
Port A Digital Input Enable Register (padier), IO address = 0x0d ........................................46  
6.10. Port A Data Registers (pa), IO address = 0x10 ...................................................................46  
6.11. Port A Control Registers (pac), IO address = 0x11..............................................................46  
6.12. Port A Pull-High Registers (paph), IO address = 0x12.........................................................46  
6.13. MISC Register (misc), IO address = 0x1b ...........................................................................47  
6.14. Comparator Control Register (gpcc), IO address = 0x1A.....................................................47  
6.15. Comparator Selection Register (gpcs), IO address = 0x1E .................................................48  
6.16. Timer2 Control Register (tm2c), IO address = 0x1C............................................................48  
6.17. Timer2 Counter Register (tm2ct), IO address = 0x1D..........................................................48  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 4 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
PMS150C  
8 bit IO-Type Controller  
6.18. Timer2 Bound Register (tm2b), IO address = 0x09 .............................................................49  
6.19. Timer2 Scalar Register (tm2s), IO address = 0x17..............................................................49  
7. Instructions .......................................................................................................................50  
7.1.  
7.2.  
7.3.  
7.4.  
7.5.  
7.6.  
7.7.  
7.8.  
7.9.  
Data Transfer Instructions...................................................................................................51  
Arithmetic Operation Instructions ........................................................................................54  
Shift Operation Instructions .................................................................................................55  
Logic Operation Instructions................................................................................................56  
Bit Operation Instructions....................................................................................................58  
Conditional Operation Instructions.......................................................................................58  
System control Instructions .................................................................................................59  
Summary of Instructions Execution Cycle ...........................................................................61  
Summary of affected flags by Instructions...........................................................................62  
8. Code Options ....................................................................................................................63  
9. Special Notes ....................................................................................................................64  
9.1.  
9.2.  
Warning...............................................................................................................................64  
Using IC..............................................................................................................................64  
9.2.1. IO pin usage and setting.........................................................................................64  
9.2.2. Interrupt..................................................................................................................64  
9.2.3. System clock switching...........................................................................................65  
9.2.4. Power down mode, wakeup and watchdog.............................................................65  
9.2.5. TIMER time out.......................................................................................................65  
9.2.6. IHRC.......................................................................................................................65  
9.2.7. LVR ........................................................................................................................66  
9.2.8. Instructions.............................................................................................................66  
9.2.9. RAM definition ........................................................................................................66  
9.2.10. Program writing ......................................................................................................66  
Using ICE............................................................................................................................67  
9.3.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 5 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
PMS150C  
8 bit IO-Type Controller  
Revision History:  
Revision  
Date  
Description  
0.01  
2016/03/09 1st version  
1. Amend Chapter 2 Block Diagram  
2. Amend Chapter 4.1 Pull-high Resistance typical value  
3. Add Chapter 5.5 and all descriptions about the Comparator  
4. Add Chapter 5.7 and all descriptions about Timer2 with PWM generation  
1. Amend Section 1.1 System Features  
0.02  
2016/11/03  
2. Add Section 1.3 Package Information  
3. Amend Chapter 3 Pin Functional Description: PMS150C-U06, PMS150C-S08,  
PMS150C-D08  
4. Amend Section 4.1 DC/AC Characteristics: “VIL” and “VIH”  
5. Amend Section 4.11 Typical IO input high/low threshold voltage  
6. Add Section 4.12. Typical power down current (IPD) and power save current (IPS)  
7. Add Section 5.2.1 Timing charts for reset conditions  
8. Amend Section 5.4 Oscillator and clock  
9. Amend Section 5.4.3 IHRC Frequency Calibration and System Clock  
10. Amend Section 5.4.4 System Clock and LVR levels  
11. Amend Fig.2 Options of System Clock  
12. Amend Section 5.5.2 description about the comparator Case A and Case B  
13. Amend Section 5.6 16-bit Timer  
14. Amend Section 5.8 Watchdog Timer  
0.03  
2017/12/04 15. Amend Section 5.9 Interrupt  
16. Amend Fig.12 Hardware diagram of Interrupt controller  
17. Amend Section 5.10.1 Power-Save mode  
18. Amend Section 5.10.3 Wake-up  
19. Amend Section 6.3 Clock Mode Register  
20. Amend Section 6.13 MISC Register  
21. Amend Section 6.14. Comparator Control Register  
22. Amend Section 6.16. Timer2 Control Register  
23. Delete the Symbol “pc0” in Chapter 7  
24. Add Chapter 8 Code Options  
25. Amend Section 9.2.1 IO pin usage and setting  
26. Amend Section 9.2.4 Power down mode, wakeup and watchdog  
27. Add Section 9.2.6 IHRC  
28. Amend Section 9.2.7 LVR  
29. Amend Section 9.2.10 Program writing  
30. Amend Section 9.3 Using ICE  
1. Amend the address and phone number of PADAUK Technology Co.,Ltd.  
2. Amend Section 1.2 CPU Features  
3. Amend Section 5.4.4 System Clock and LVR levels  
4. Amend Section 5.5.2 Using the comparator  
5. Amend Section 5.5.3 Using the comparator and band-gap 1.20V  
6. Amend Section 5.9 Interrupt  
0.04  
2018/01/24  
7. Amend Section 5.10.1 Power-Save mode  
8. Amend Section 5.10.2 Power-Down mode  
9. Amend Section 5.10.3 Wake-up  
10. Amend Section 6.15 Comparator Selection Register (gpcs)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 6 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
PMS150C  
8 bit IO-Type Controller  
Major Differences between PMS150B and PMS150C  
Item  
Function  
PMS150B  
110KHz@5V, 25 oC  
PMS150C  
62KHz@5V, 25 oC  
1
Frequency of ILRC  
(much smaller variant with VDD (much smaller variant with VDD  
changes)  
changes)  
4.0V, 3.5V, 3.0V, 2.75V,  
2.5V, 2.2V, 2.0V, 1.8V  
64 bytes  
2
LVR levels  
2.8V, 2.2V, 2.0V  
3
4
5
6
Data RAM  
60 bytes  
No  
0 oC ~70 oC  
Input pull-up resistor of PA5  
Operation temperature  
Yes  
-20 oC ~70 oC  
Power save current (stopexe) 40uA@3.3V  
3uA @3.3V  
Normal: 14.5mA / -10.5mA@5V  
Low: 5mA / -3.5mA@5V  
8k, 16k, 64k, 256k TILRC  
Fast: 32 TILRC  
7
8
9
IO Sink / Drive current  
17mA / -7mA@5V  
Watchdog timeout period  
4096, 16384, 65536 TILRC  
Fast: 1024 TIHRC  
Slow: 1024 TILRC  
Fast: 2048 TIHRC  
Slow: 1024 TILRC  
0x3F8 ~ 0x3FF (8 words)  
ILRC, ILRC/4  
Wake-up time (tWUP  
Boot-up time  
)
Slow: 2048 TILRC  
Fast: 32 TILRC  
10  
Slow: 2048 TILRC  
0x3F0 ~ 0x3FF (16 words)  
ILRC, ILRC/4, ILRC/16  
11  
12  
System reserved OTP area  
ILRC modes for system CLK  
PDK3S-I-00x  
13  
Supporting ICE  
(recommended not to use)  
5S-I-S0xx  
5S-I-S0xx  
14  
15  
8-bit Timer2 with PWM  
Comparator  
No  
Yes  
Yes  
No  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 7 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
PMS150C  
8 bit IO-Type Controller  
1. Features  
1.1. System Features  
1KW OTP program memory  
64 Bytes data RAM  
One hardware 16-bit timer  
One hardware 8-bit timer with PWM generation  
One general purpose comparator  
Support fast wake-up  
Every IO pin can be configured to enable wake-up function  
6 IO pins with optional drive/sink current and pull-high resistor  
Clock sources: internal high RC oscillator and internal low RC oscillator  
Eight levels of LVR ~ 4.0V, 3.5V, 3.0V, 2.75V, 2.5V, 2.2V, 2.0V, 1.8V  
One external interrupt pin  
1.2. CPU Features  
One processing unit operating mode  
79 Powerful instructions  
Most instructions are 1T execution cycle  
Programmable stack pointer and adjustable stack level  
All data memories are available for use as an index pointer  
IO space and memory space are independent  
1.3. Package Information  
PMS150C Series  
PMS150C - U06: SOT23-6 (60mil);  
PMS150C - S08: SOP8 (150mil);  
PMS150C - D08: DIP8 (300mil)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 8 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
 
 
PMS150C  
8 bit IO-Type Controller  
2. General Description and Block Diagram  
The PMS150C is an IO-Type, fully static, OTP-based controller; it employs RISC architecture and most the  
instructions are executed in one cycle except that few instructions are two cycles that handle indirect memory  
access. 1KW bits OTP program memory and 64 bytes data SRAM are inside. Besides, one hardware 16-bit  
timer, one hardware 8-bit timer with PWM generation and one general purpose comparator are also provided  
in the PMS150C.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 9 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
3. Pin Functional Description  
Pin & Buffer  
Pin Name  
Type  
Description  
This pin can be used as:  
(1) Bit 7 of port A. It can be configured as digital input, two-state output with pull-up  
resistor by software independently.  
IO  
ST /  
PA7 /  
(2) Minus input source 3 of comparator.  
CIN3-  
CMOS /  
Analog  
When this pin is configured as analog input, please use bit 7 of register padier to  
disable the digital input to prevent current leakage. This pin can be used to  
wake-up system during sleep mode; however, wake-up function is also disabled if  
bit 7 of padier register is “0”.  
This pin can be used as:  
(1) Bit 6 of port A. It can be configured as digital input, two-state output with pull-up  
resistor by software independently.  
IO  
ST /  
PA6 /  
(2) Minus input source 2 of comparator.  
CIN2-  
CMOS /  
Analog  
When this pin is configured as analog input, please use bit 6 of register padier to  
disable the digital input to prevent current leakage. This pin can be used to  
wake-up system during sleep mode; however, wake-up function is also disabled if  
bit 6 of padier register is “0”.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 10 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
Pin & Buffer  
Type  
Pin Name  
Description  
The functions of this pin can be:  
(1) Bit 5 of port A. It can be configured as input or open-drain output pin with  
pull-up resistor.  
IO  
(2) Hardware reset.  
PA5 /  
ST /  
This pin can be used to wake-up system during sleep mode; however, wake-up  
function is also disabled if bit 5 of padier register is “0”.  
Please put 33Ω resistor in series to have high noise immunity when this pin is in  
input mode.  
PRST#  
CMOS  
This pin can be used as:  
(1) Bit 4 of port A. It can be configured as digital input, two-state output with pull-up  
resistor by software independently.  
IO  
PA4 /  
CIN+ /  
(2) Plus input source of comparator.  
ST /  
(3) Minus input source 4 of comparator.  
CIN4- /  
TM2PWM  
CMOS /  
Analog  
(4) Output of 8-bit Timer2 (TM2)  
When this pin is configured as analog input, please use bit 4 of register padier to  
disable the digital input to prevent current leakage. This pin can be used to  
wake-up system during sleep mode; however, wake-up function is also disabled if  
bit 4 of padier register is “0”.  
This pin can be used as:  
(1) Bit 3 of port A. It can be configured as digital input, two-state output with pull-up  
resistor by software independently.  
IO  
PA3 /  
CIN1- /  
(2) Minus input source 1 of comparator.  
ST /  
(3) Output of 8-bit Timer2 (TM2)  
CMOS /  
Analog  
TM2PWM  
When this pin is configured as analog input, please use bit 3 of register padier to  
disable the digital input to prevent current leakage. This pin can be used to  
wake-up system during sleep mode; however, wake-up function is also disabled if  
bit 3 of padier register is “0”.  
The functions of this pin can be:  
(1) Bit 0 of port A. It can be configured as input or output with pull-up resistor.  
(2) External interrupt line 0. Both rising edge and falling edge are accepted to  
request interrupt service.  
PA0 /  
INT0 /  
CO  
IO  
ST /  
CMOS  
(3) Output of comparator  
This pin can be used to wake up system during sleep mode; however, wake-up  
function from this pin is also disabled when bit 0 of padier register is “0”.  
VDD  
GND  
Positive power  
Ground  
Notes: IO: Input/Output; ST: Schmitt Trigger input; Analog: Analog input pin; CMOS: CMOS voltage level  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 11 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
PMS150C  
8 bit IO-Type Controller  
4. Device Characteristics  
4.1. DC/AC Characteristics  
All data are acquired under the conditions of VDD=5.0V, fSYS=2MHz unless noted.  
Symbol  
VDD  
Description  
Operating Voltage  
Min  
2.0*  
-5  
Typ  
Max  
5.5  
5
Unit  
V
Conditions  
* Subject to LVR tolerance  
Low Voltage Reset tolerance  
%
LVR%  
System clock (CLK)* =  
IHRC/2  
0
0
0
8M  
4M  
2M  
VDD 3.0V  
VDD 2.2V  
VDD 2.0V  
VDD =5.0V  
IHRC/4  
fSYS  
Hz  
IHRC/8  
ILRC  
62K  
2.0  
0.3  
13  
VPOR Power On Reset Voltage  
1.9  
2.1  
V
fSYS=IHRC/16=1MIPS@3.3V  
fSYS=ILRC=62kHz@3.3V  
mA  
uA  
IOP  
IPD  
Operating Current  
Power Down Current  
0.5  
uA  
fSYS= 0Hz, VDD =3.3V  
(by stopsys command)  
VDD =3.3V;  
Power Save Current  
IPS  
3
uA  
Band-gap, LVR, IHRC are  
OFF, ILRC module is ON.  
(by stopexe command)  
VIL  
VIH  
Input low voltage for IO lines  
Input high voltage for IO lines  
0
0.1 VDD  
VDD  
V
V
0.8 VDD  
0.6 VDD  
PA5  
VDD  
Others IO  
IO lines sink current  
Normal  
IOL  
10  
14.5  
5.0  
19  
mA  
mA  
VDD=5.0V, VOL=0.5V  
VDD=5.0V, VOH=4.5V  
Low  
3.5  
6.5  
IO lines drive current  
Normal  
IOH  
-7.5  
-2.6  
-0.3  
-10.5  
-3.5  
-13.5  
-4.4  
Low  
Input voltage  
VDD+0.3  
1
V
VIN  
VDD +0.3VIN-0.3  
VDD=5.0V  
IINJ (PIN) Injected current on pin  
mA  
100  
220  
16*  
RPH  
Pull-high Resistance  
KΩ  
VDD=3.3V  
@25oC  
15.76*  
15.20*  
16.24*  
16.80*  
Frequency of IHRC after  
fIHRC  
MHz  
VDD =2.0V~5.5V,  
calibration*  
16*  
62*  
-20oC<Ta<70oC*  
VDD =5.0V, -20oC <Ta<70oC*  
VDD =5.0V  
fILRC  
tINT  
Frequency of ILRC*  
KHz  
ns  
Interrupt pulse width  
30  
In power-down mode.  
misc[1:0]=00 (default)  
misc[1:0]=01  
VDR  
RAM data retention voltage*  
1.5  
V
8k  
16k  
64k  
256k  
ILRC  
clock  
tWDT  
Watchdog timeout period  
misc[1:0]=10  
period  
misc[1:0]=11  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 12 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
PMS150C  
8 bit IO-Type Controller  
Symbol  
Description  
System boot-up period from  
power-on (Fast boot up)  
System boot-up period from  
power-on (Slow boot up)  
Wake-up time for fast wake-up  
(misc.5=1)  
Min  
Typ  
780  
780  
47  
Max  
Unit  
Conditions  
@ VDD =5V  
us  
@ VDD =2.5V  
tSBP  
@ VDD =5V  
ms  
47  
@ VDD =2.5V  
Where TILRC is the clock  
period of ILRC  
Where TILRC is the clock  
period of ILRC  
@ VDD =5V  
32  
TILRC  
TILRC  
tWUP  
Wake-up time for normal wake-up  
(misc.5=0)  
2048  
tRST  
External reset pulse width  
120  
0
us  
mV  
V
CPos Comparator offset*  
±10  
±20  
VDD+1.5  
500  
CPcm Comparator input common mode*  
CPspt Comparator response time*  
100  
2.5  
20  
ns  
Both Rising and Falling  
VDD = 3.3V  
Stable time to change comparator  
CPmc  
mode  
7.5  
us  
CPcs Comparator current consumption  
uA  
*These parameters are for design reference, not tested for every chip.  
4.2. Absolute Maximum Ratings  
Supply Voltage ……………………………......  
2.0V ~ 5.5V (Maximum Rating: 5.5V)  
*If VDD over maximum rating, it may lead to a permanent damage of IC.  
Input Voltage …………………………………..  
Operating Temperature ………………………  
Storage Temperature …………………………  
Junction Temperature ………………………..  
-0.3V ~ VDD + 0.3V  
-20°C ~ 70°C  
-50°C ~ 125°C  
150°C  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 13 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
4.3. Typical IHRC Frequency vs. VDD (calibrated to 16MHz)  
IHRC Frequency vs. VDD  
16.05  
16.00  
15.95  
15.90  
15.85  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (Volt)  
4.4. Typical ILRC Frequency vs. VDD  
ILRC Frequency Deviation vs. VDD  
66  
65  
64  
63  
62  
61  
60  
59  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (Volt)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 14 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
PMS150C  
8 bit IO-Type Controller  
4.5. Typical IHRC Frequency vs. Temperature (calibrated to 16MHz)  
IHRC Drift  
2.5  
2
1.5  
1
0.5  
VDD=5.0V  
0
-0.5  
-1  
VDD=4.0V  
VDD=3.3V  
VDD=2.5V  
-1.5  
-2  
-2.5  
-3  
-40 -30 -20 -10  
0
10  
25  
35  
45  
55  
65  
75  
85  
Temperature (degree C)  
4.6. Typical ILRC Frequency vs. Temperature  
ILRC Drift  
VDD=5.0V  
VDD=4.0V  
VDD=3.3V  
VDD=2.5V  
VDD=2.0V  
75  
70  
65  
60  
55  
50  
-40 -30 -20 -10 0 10 25 35 45 55 65 75 85  
Temperature (degree C)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 15 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
PMS150C  
8 bit IO-Type Controller  
4.7. Typical Operating Current vs. VDD and CLK=IHRC/n  
Conditions: ON: Band-gap, LVR, IHRC, T16 modules; OFF: ILRC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
IHRC/n vs. VDD  
1.4  
1.2  
1
IHRC/2  
IHRC/4  
IHRC/8  
IHRC/16  
IHRC/32  
IHRC/64  
0.8  
0.6  
0.4  
0.2  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
4.8. Typical Operating Current vs. VDD and CLK=ILRC/n  
Conditions: ON: T16 modules; OFF: Band-gap, LVR, ILRC, IHRC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
ILRC/n vs. VDD  
20  
18  
16  
14  
12  
10  
8
ILRC/1  
ILRC/4  
ILRC/16  
6
4
2
0
2
2.5  
3
3.5  
VDD (V)  
4
4.5  
5
5.5  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 16 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
PMS150C  
8 bit IO-Type Controller  
4.9. Typical IO pull high resistance  
Pull High Resistor  
600.0  
500.0  
400.0  
300.0  
200.0  
100.0  
0.0  
Avg.  
PA5  
2.0  
3.0  
4.0  
5.0  
VDD (V)  
4.10.Typical IO driving current (IOH) and sink current (IOL)  
Avg. IoH, IoL vs. VDD (Drive = Normal)  
18  
16  
14  
12  
10  
8
IoH  
IoL  
6
4
2
0
2.0  
3.0  
4.0  
VDD (V)  
5.0  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 17 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
PMS150C  
8 bit IO-Type Controller  
Avg. IoH, IoL vs. VDD (Drive = Low)  
7
6
5
4
3
2
1
0
IoH  
IoL  
2.0  
3.0  
4.0  
VDD (V)  
5.0  
4.11.Typical IO input high/low threshold voltage (VIH/VIL)  
Vih, Vil vs. VDD  
4.0  
Vih other IO  
Vih PA5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Vil PA5  
Vil other IO  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 18 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
4.12.Typical power down current (IPD) and power save current (IPS)  
stopsys power down current vs. VDD  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
stopsts  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
stopexe power save current vs. VDD  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
stopexe  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 19 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
5. Functional Description  
5.1. Program Memory – OTP  
The OTP (One Time Programmable) program memory is used to store the program instructions to be  
executed. The OTP program memory may contains the data, tables and interrupt entry. After reset, the initial  
address for FPP0 is 0x000. The interrupt entry is 0x010 if used, the last 16 addresses are reserved for system  
using, like checksum, serial number, etc. The OTP program memory for PMS150C is 1KW that is partitioned  
as Table 1. The OTP memory from address 0x3F0 to 0x3FF is for system using, address space from 0x001 to  
0x00F and from 0x011 to 0x3EF is user program space.  
Address  
0x000  
0x001  
Function  
FPP0 reset – goto instruction  
User program  
0x00F  
0x010  
0x011  
User program  
Interrupt entry address  
User program  
0x3EF  
0x3F0  
User program  
System Using  
0x3FF  
System Using  
Table 1: Program Memory Organization  
5.2. Boot Procedure  
POR (Power-On-Reset) is used to reset PMS150C when power up, the boot up time can be optional fast or  
slow, time for fast boot-up is about 32 ILRC clock cycles and 2048 ILRC clock cycles for slow boot-up.  
Customer must ensure the stability of supply voltage after power up no matter which option is chosen, the  
power up sequence is shown in the Fig. 1 and tSBP is the boot-up time.  
Please noted, during Power-On-Reset, the VDD must go higher than VPOR to boot-up the MCU.  
Fig. 1: Power Up Sequence  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 20 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
 
PMS150C  
8 bit IO-Type Controller  
5.2.1. Timing charts for reset conditions  
LVR level  
VDD  
LVR  
SBP  
t
Program  
Execution  
Boot up from LVR detection  
VDD  
t
SBP  
WD  
Time Out  
Program  
Execution  
Boot up from Watch Dog Time Out  
VDD  
Reset#  
t
SBP  
Program  
Execution  
Boot up from Reset Pad reset  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 21 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
5.3. Data Memory – SRAM  
The access of data memory can be byte or bit operation. Besides data storage, the SRAM data memory is  
also served as data pointer of indirect access method and the stack memory.  
The stack memory is defined in the data memory. The stack pointer is defined in the stack pointer register; the  
depth of stack memory of each processing unit is defined by the user. The arrangement of stack memory fully  
flexible and can be dynamically adjusted by the user.  
For indirect memory access mechanism, the data memory is used as the data pointer to address the data  
byte. All the data memory could be the data pointer; it’s quite flexible and useful to do the indirect memory  
access. All the 64 bytes data memory of PMS150C can be accessed by indirect access mechanism.  
5.4. Oscillator and clock  
There are two oscillator circuits provided by PMS150C: internal high RC oscillator (IHRC) and internal low RC  
oscillator (ILRC), and these two oscillators are enabled or disabled by registers clkmd.4 and clkmd.2  
independently. User can choose one of these two oscillators as system clock source and use clkmd register  
to target the desired frequency as system clock to meet different application.  
Oscillator Module  
Enable/Disable  
clkmd.4  
IHRC  
ILRC  
clkmd.2  
5.4.1. Internal High RC oscillator and Internal Low RC oscillator  
After boot-up, the IHRC and ILRC oscillators are enabled. The frequency of IHRC can be calibrated to  
eliminate process variation by ihrcr register; normally it is calibrated to 16MHz. The frequency deviation can  
be within 2% normally after calibration and it still drifts slightly with supply voltage and operating temperature,  
the total drift rate is about ±5% for VDD=2.0V~5.5V and -20oC~70oC operating conditions. Please refer to the  
measurement chart for IHRC frequency verse VDD and IHRC frequency verse temperature.  
The frequency of ILRC will vary by process, supply voltage and temperature, please refer to DC  
specification and do not use for accurate timing application.  
5.4.2. IHRC calibration  
The IHRC frequency may be different chip by chip due to manufacturing variation, PMS150C provide the  
IHRC frequency calibration to eliminate this variation, and this function can be selected when compiling  
user’s program and the command will be inserted into user’s program automatically. The calibration  
command is shown as below:  
.ADJUST_IC  
SYSCLK=IHRC/(p1), IHRC=(p2)MHz, VDD=(p3)V  
Where,  
p1=2, 4, 8, 16, 32; In order to provide different system clock.  
p2=14 ~ 18; In order to calibrate the chip to different frequency, 16MHz is the usually one.  
p3=2.2 ~ 5.5; In order to calibrate the chip under different supply voltage.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 22 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
 
 
PMS150C  
8 bit IO-Type Controller  
5.4.3. IHRC Frequency Calibration and System Clock  
During compiling the user program, the options for IHRC calibration and system clock are shown as Table 2:  
SYSCLK  
○ Set IHRC / 2  
Set IHRC / 4  
Set IHRC / 8  
Set IHRC / 16  
Set IHRC / 32  
○ Set ILRC  
CLKMD  
IHRCR  
Description  
= 34h (IHRC / 2)  
= 14h (IHRC / 4)  
= 3Ch (IHRC / 8)  
= 1Ch (IHRC / 16)  
= 7Ch (IHRC / 32)  
= E4h (ILRC / 1)  
No change  
Calibrated  
Calibrated  
Calibrated  
Calibrated  
Calibrated  
Calibrated  
No Change  
IHRC calibrated to 16MHz, CLK=8MHz (IHRC/2)  
IHRC calibrated to 16MHz, CLK=4MHz (IHRC/4)  
IHRC calibrated to 16MHz, CLK=2MHz (IHRC/8)  
IHRC calibrated to 16MHz, CLK=1MHz (IHRC/16)  
IHRC calibrated to 16MHz, CLK=0.5MHz (IHRC/32)  
IHRC calibrated to 16MHz, CLK=ILRC  
○ Disable  
IHRC not calibrated, CLK not changed  
Table 2: Options for IHRC Frequency Calibration  
Usually, .ADJUST_IC will be the first command after boot up, in order to set the target operating frequency  
whenever stating the system. The program code for IHRC frequency calibration is executed only one time  
that occurs in writing the codes into OTP memory; after then, it will not be executed again. If the different  
option for IHRC calibration is chosen, the system status is also different after boot. The following shows the  
status of PMS150C for different option:  
(1) .ADJUST_IC  
SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V  
After boot up, CLKMD = 0x34:  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is enabled  
System CLK = IHRC/2 = 8MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(2) .ADJUST_IC  
SYSCLK=IHRC/4, IHRC=16MHz, VDD=3.3V  
After boot, CLKMD = 0x14:  
IHRC frequency is calibrated to 16MHz@VDD=3.3V and IHRC module is enabled  
System CLK = IHRC/4 = 4MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(3) .ADJUST_IC  
SYSCLK=IHRC/8, IHRC=16MHz, VDD=2.5V  
After boot, CLKMD = 0x3C:  
IHRC frequency is calibrated to 16MHz@VDD=2.5V and IHRC module is enabled  
System CLK = IHRC/8 = 2MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(4) .ADJUST_IC  
SYSCLK=IHRC/16, IHRC=16MHz, VDD=2.2V  
After boot, CLKMD = 0x1C:  
IHRC frequency is calibrated to 16MHz@VDD=2.2V and IHRC module is enabled  
System CLK = IHRC/16 = 1MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 23 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
(5) .ADJUST_IC  
SYSCLK=IHRC/32, IHRC=16MHz, VDD=5V  
After boot, CLKMD = 0x7C:  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is enabled  
System CLK = IHRC/32 = 500KHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(6) .ADJUST_IC  
SYSCLK=ILRC, IHRC=16MHz, VDD=5V  
After boot, CLKMD = 0XE4:  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is disabled  
System CLK = ILRC  
Watchdog timer is disabled, ILRC is enabled, PA5 is input mode  
(7) .ADJUST_IC DISABLE  
After boot, CLKMD is not changed (Do nothing):  
IHRC is not calibrated.  
System CLK = ILRC or IHRC/64 (by Boot-up_Time)  
Watchdog timer is enabled, ILRC is enabled, PA5 is in input mode  
5.4.4. System Clock and LVR levels  
The clock source of system clock comes from IHRC or ILRC, the hardware diagram of system clock in the  
PMS150C is shown as Fig. 2.  
Fig. 2: Options of System Clock  
User can choose different operating system clock depends on its requirement; the selected operating  
system clock should be combined with supply voltage and LVR level to make system stable. The LVR level  
will be selected during compilation, and the lowest LVR levels can be chosen for different operating  
frequencies. Please refer to Section 4.1.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 24 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
5.5. Comparator  
One hardware comparator is built inside the PMS150C; Fig. 3 shows its hardware diagram. It can compare  
signals between two pins or with either internal reference voltage Vinternal R or internal band-gap reference  
voltage. The two signals to be compared, one is the plus input and the other one is the minus input. For the  
minus input of comparator can be PA3, PA4, Internal band-gap 1.20V, PA6, PA7 or Vinternal R selected by bit  
[3:1] of gpcc register, and the plus input of comparator can be PA4 or Vinternal R selected by bit 0 of gpcc  
register. The output result can be enabled to output to PA0 directly, or sampled by Timer2 clock (TM2_CLK)  
which comes from Timer2 module. The output can be also inversed the polarity by bit 4 of gpcc register, the  
comparator output can be used to request interrupt service.  
Fig. 3: Hardware diagram of comparator  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 25 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
5.5.1. Internal reference voltage (Vinternal R  
)
The internal reference voltage Vinternal R is built by series resistance to provide different level of reference  
voltage, bit 4 and bit 5 of gpcs register are used to select the maximum and minimum values of Vinternal R and  
bit [3:0] of gpcs register are used to select one of the voltage level which is deivided-by-16 from the defined  
maximum level to minimum level. Fig. 4 to Fig. 7 shows four conditions to have different reference voltage  
Vinternal R. By setting the gpcs register, the internal reference voltage Vinternal R can be ranged from (1/32)*VDD  
to (3/4)*VDD.  
Case 1 : gpcs.5=0 & gpcs.4=0  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.4=0  
gpcs.4=1  
gpcs.5=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V
internal R = (3/4) VDD ~ (1/4) VDD + (1/32) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
1
4
(n+1)  
32  
V internal R  
=
*
VDD +  
*
VDD, n = gpcs[3:0] in decimal  
Fig. 4: Vinternal R hardware connection if gpcs.5=0 and gpcs.4=0  
Case 2 : gpcs.5=0 & gpcs.4= 1  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.4=0  
gpcs.4=1  
gpcs.5=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (2/3) VDD ~ (1/24) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
(n+1)  
V internal R  
=
*
VDD, n = gpcs[3:0] in decimal  
24  
Fig. 5: Vinternal R hardware connection if gpcs.5=0 and gpcs.4=1  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 26 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
Case 3 : gpcs.5=1 & gpcs.4= 0  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.5=1  
gpcs.4=0  
gpcs.4=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (3/5) VDD ~ (1/5) VDD + (1/40) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
1
5
(n+1)  
40  
V internal R  
=
*
VDD +  
*
VDD, n = gpcs[3:0] in decimal  
Fig.6: Vinternal R hardware connection if gpcs.5=1 and gpcs.4=0  
Case 4 : gpcs.5=1 & gpcs.4=1  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.4=0  
gpcs.4=1  
gpcs.5=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (1/2) VDD ~ (1/32) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
(n+1)  
V internal R  
=
*
VDD, n = gpcs[3:0] in decimal  
32  
Fig.7: Vinternal R hardware connection if gpcs.5=1 and gpcs.4=1  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 27 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
PMS150C  
8 bit IO-Type Controller  
5.5.2. Using the comparator  
Case A:  
Choosing PA3 as minus input and Vinternal R with (18/32)*VDD voltage level as plus input. Vinternal R is  
configured as the above Figure “gpcs[5:4] = 2b’00” and gpcs [3:0] = 4b’1001 (n=9) to have Vinternal R  
(1/4)*VDD + [(9+1)/32]*VDD = [(9+9)/32]*VDD = (18/32)*VDD.  
=
gpcs  
gpcc  
padier  
= 0b1_0_00_1001;  
= 0b1_0_0_0_000_0;  
= 0bxxxx_0_xxx;  
// Vinternal R = VDD*(18/32)  
// enable comp, - input: PA3, + input: Vinternal R  
// disable PA3 digital input to prevent leakage current  
or  
$ GPCS  
VDD*18/32;  
$ GPCC Enable, N_PA3, P_R;  
PADIER = 0bxxxx_0_xxx;  
// - input: N_xx+ input: P_R(Vinternal R)  
Case B:  
Choosing Vinternal R as minus input with (14/32)*VDD voltage level and PA4 as plus input, the comparator  
result will be inversed and then output to PA0. Vinternal R is configured as the above Figure “gpcs[5:4] = 2b’10”  
and gpcs [3:0] = 4b’1101 (n=13) to have Vinternal R = (1/5)*VDD + [(13+1)/40]*VDD = [(13+9)/40]*VDD  
(22/40)*VDD.  
=
gpcs  
gpcc  
padier  
= 0b1_0_10_1101;  
= 0b1_0_0_1_011_1;  
= 0bxxx_0_xxxx;  
// output to PA0, Vinternal R = VDD*(22/40)  
// Inverse output, - input: Vinternal R, + input: PA4  
// disable PA4 digital input to prevent leakage current  
or  
$ GPCS  
$ GPCC  
Output, VDD*22/40;  
Enable, Inverse, N_R, P_PA4; // - input: N_R(Vinternal R)+ input: P_xx  
PADIER = 0bxxx_0_xxxx;  
Note: When selecting output to PA0 output, GPCS will affect the PA3 output function in ICE. Though the IC  
is fine, be careful to avoid this error during emulation.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 28 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
5.5.3. Using the comparator and band-gap 1.20V  
The internal band-gap module provides a stable 1.20V output, and it can be used to measure the external  
supply voltage level. The band-gap 1.20V is selected as minus input of comparator and Vinternal R is selected  
as plus input, the supply voltage of Vinternal R is VDD, the VDD voltage level can be detected by adjusting the  
voltage level of Vinternal R to compare with band-gap. If N (gpcs[3:0] in decimal) is the number to let Vinternal R  
closest to band-gap 1.20 volt, the supply voltage VDD can be calculated by using the following equations:  
For using Case 1: VDD = [ 32 / (N+9) ] * 1.20 volt ;  
For using Case 2: VDD = [ 24 / (N+1) ] * 1.20 volt ;  
For using Case 3: VDD = [ 40 / (N+9) ] * 1.20 volt ;  
For using Case 4: VDD = [ 32 / (N+1) ] * 1.20 volt ;  
Case 1:  
$ GPCS  
VDD*12/40;  
// 4.0V * 12/40 = 1.2V  
$ GPCC Enable, BANDGAP, P_R; // - input: BANDGAP, + input: P_R(Vinternal R  
)
….  
if (GPC_Out)  
// or GPCC.6  
{
// when VDD4V  
}
else  
{
}
// when VDD4V  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 29 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
5.6. 16-bit Timer (Timer16)  
PMS150C provide a 16-bit hardware timer (Timer16) and its clock source may come from system clock (CLK),  
internal high RC oscillator (IHRC), internal low RC oscillator (ILRC), PA0 or PA4. Before sending clock to the  
16-bit counter, a pre-scaling logic with divided-by-1, 4, 16 or 64 is selectable for wide range counting. The  
16-bit counter performs up-counting operation only, the counter initial values can be stored from data memory  
by issuing the stt16 instruction and the counting values can be loaded to data memory by issuing the ldt16  
instruction. The interrupt request from Timer16 will be triggered by the selected bit which comes from bit[15:8]  
of this 16-bit counter, rising edge or falling edge can be optional chosen by register integs.4. The hardware  
diagram of Timer16 is shown as Fig. 8.  
stt16 command  
DATA Memory  
t16m[7:5]  
t16m[4:3]  
ldt16 command  
CLK  
IHRC  
ILRC  
PA0  
M
U
X
Pre-  
scalar  
÷
1, 4,  
16, 64  
16-bit  
up  
counter  
Bit[15:0]  
Data Bus  
PA4  
Bit[15:8]  
M
U
X
To set  
interrupt  
request flag  
or  
t16m[2:0]  
integs.4  
Fig. 8: Hardware diagram of Timer16  
When using the Timer16, the syntax for Timer16 has been defined in the .INC file. There are three  
parameters to define the Timer16 using; 1st parameter is used to define the clock source of Timer16, 2nd  
parameter is used to define the pre-scalar and the 3rd one is to define the interrupt source.  
T16M  
$ 7~5:  
IO_RW  
0x06  
STOP, SYSCLK, X, PA4_F, IHRC, X, ILRC, PA0_F  
/1, /4, /16, /64  
// 1st par.  
// 2nd par.  
// 3rd par.  
$ 4~3:  
$ 2~0:  
BIT8, BIT9, BIT10, BIT11, BIT12, BIT13, BIT14, BIT15  
User can choose the proper parameters of T16M to meet system requirement, examples as below:  
$
T16M  
SYSCLK, /64, BIT15;  
// choose (SYSCLK/64) as clock source, every 2^16 clock to set INTRQ.2=1  
// if system clock SYSCLK = IHRC / 2 = 8 MHz  
// SYSCLK/64 = 8 MHz/64 = 8 uS, about every 524 mS to generate INTRQ.2=1  
$
$
T16M  
PA0, /1, BIT8;  
// choose PA0 as clock source, every 2^9 to generate INTRQ.2=1  
// receiving every 512 times PA0 to generate INTRQ.2=1  
T16M  
STOP;  
// stop Timer16 counting  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 30 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
5.7. 8-bit timer (Timer2) with PWM generation  
One 8-bit hardware timer (Timer2/TM2) with PWM generation is implemented in the PMS150C. Please refer  
to Fig. 9 shown its hardware diagram, the clock sources of Timer2 may come from system clock, internal high  
RC oscillator (IHRC) or, internal low RC oscillator (ILRC), PA0 or PA4. Bit[7:4] of register tm2c are used to  
select the clock source of Timer2. Please notice that if IHRC is selected for Timer2 clock source, the clock  
sent to Timer2 will keep running when using ICE in halt state. The output of Timer2 can be sent to pin PA3 or  
PA4, depending on bit [3-2] of tm2c register. A clock pre-scaling module is provided with divided-by-1, 4, 16,  
and 64 options, controlled by bit [6:5] of tm2s register; one scaling module with divided-by-1~31 is also  
provided and controlled by bit [4:0] of tm2s register. In conjunction of pre-scaling function and scaling function,  
the frequency of Timer2 clock (TM2_CLK) can be wide range and flexible.  
The Timer2 counter performs 8-bit up-counting operation only; the counter values can be set or read back by  
tm2ct register. The 8-bit counter will be clear to zero automatically when its values reach for upper bound  
register, the upper bound register is used to define the period of timer or duty of PWM. There are two  
operating modes for Timer2: period mode and PWM mode; period mode is used to generate periodical output  
waveform or interrupt event; PWM mode is used to generate PWM output waveform with optional 6-bit or  
8-bit PWM resolution, Fig. 10 shows the timing diagram of Timer2 for both period mode and PWM mode.  
TM2_CLK  
tm2s.7  
tm2c.1  
tm2c[7:4]  
tm2s[6:5] tm2s[4:0]  
Pre-  
edge to  
interrupt  
8-bit  
up  
counter  
CLK,  
IHRC,  
ILRC,  
Cmp,  
PA0,  
~PA0,  
PA4,  
~PA4  
tm2ct[7:0]  
PA4  
scalar  
÷
Scalar  
÷
M
U
X
1, 4,  
16, 64  
1 ~ 31  
X
O
R
D
E
M
U
X
PA3  
upper  
bound  
register  
tm2c.0  
tm2b[7:0]  
tm2c[3:2]  
Fig. 9: Timer2 hardware diagram  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 31 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
Time out and  
Interrupt request  
Time out and  
Interrupt request  
Time out and  
Interrupt request  
Counter  
0xFF  
bound  
Counter  
0xFF  
Counter  
0x3F  
bound  
bound  
Time  
Time  
Time  
Time  
Time  
Event Trigger  
Event Trigger  
Event Trigger  
Output-pin  
Output-pin  
Output-pin  
Time  
Mode 0 – Period Mode  
Mode 1 – 8-bit PWM Mode  
Mode 1 – 6-bit PWM Mode  
Fig. 10: Timing diagram of Timer2 in period mode and PWM mode (tm2c.1=1)  
5.7.1. Using the Timer2 to generate periodical waveform  
If periodical mode is selected, the duty cycle of output is always 50%; its frequency can be summarized as  
below:  
Frequency of Output = Y ÷ [2 × (K+1) × S1 × (S2+1) ]  
Where,  
Y = tm2c[7:4] : frequency of selected clock source  
K = tm2b[7:0] : bound register in decimal  
S1 = tm2s[6:5] : pre-scalar (1, 4, 16, 64)  
S2 = tm2s[4:0] : scalar register in decimal (1 ~ 31)  
Example 1:  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ [ 2 × (127+1) × 1 × (0+1) ] = 31.25kHz  
Example 2:  
Example 3:  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s[7:0] = 0b0_11_11111, S1=64 , S2 = 31  
frequency = 8MHz ÷ ( 2 × (127+1) × 64 × (31+1) ) =15.25Hz  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0000_1111, K=15  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency = 8MHz ÷ ( 2 × (15+1) × 1 × (0+1) ) = 250kHz  
Example 4:  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0000_0001, K=1  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency = 8MHz ÷ ( 2 × (1+1) × 1 × (0+1) ) =2MHz  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 32 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
The sample program for using the Timer2 to generate periodical waveform to PA3 is shown as below:  
void FPPA0 (void)  
{
. ADJUST_IC  
SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V  
tm2ct = 0x0;  
tm2b = 0x7f;  
tm2s = 0b0_00_00001;  
tm2c = 0b0001_10_0_0;  
//  
//  
8-bit PWM, pre-scalar = 1, scalar = 2  
system clock, output=PA3, period mode  
while(1)  
{
nop;  
}
}
5.7.2. Using the Timer2 to generate 8-bit PWM waveform  
If 8-bit PWM mode is selected, it should set tm2c[1]=1 and tm2s[7]=0, the frequency and duty cycle of output  
waveform can be summarized as below:  
Frequency of Output = Y ÷ [256 × S1 × (S2+1) ]  
Duty of Output = ( K+1 ) ÷ 256  
Where, Y = tm2c[7:4] : frequency of selected clock source  
K = tm2b[7:0] : bound register in decimal  
S1= tm2s[6:5] : pre-scalar (1, 4, 16, 64)  
S2 = tm2s[4:0] : scalar register in decimal (1 ~ 31)  
Example 1:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 256 × 1 × (0+1) ) = 31.25kHz  
duty of output = [(127+1) ÷ 256] × 100% = 50%  
Example 2:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0_11_11111, S1=64, S2=31  
frequency of output = 8MHz ÷ ( 256 × 64 × (31+1) ) = 15.25Hz  
duty of output = [(127+1) ÷ 256] × 100% = 50%  
Example 3:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b1111_1111, K=255  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 256 × 1 × (0+1) ) = 31.25kHz  
duty of output = [(255+1) ÷ 256] × 100% = 100%  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 33 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
Example 4:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0000_1001, K = 9  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 256 × 1 × (0+1) ) = 31.25kHz  
duty of output = [(9+1) ÷ 256] × 100% = 3.9%  
The sample program for using the Timer2 to generate PWM waveform from PA3 is shown as below:  
void  
{
FPPA0 (void)  
.ADJUST_IC SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V  
wdreset;  
tm2ct = 0x0;  
tm2b = 0x7f;  
tm2s = 0b0_00_00001;  
//  
//  
8-bit PWM, pre-scalar = 1, scalar = 2  
system clock, output=PA3, PWM mode  
tm2c = 0b0001_10_1_0;  
while(1)  
{
nop;  
}
}
5.7.3. Using the Timer2 to generate 6-bit PWM waveform  
If 6-bit PWM mode is selected, it should set tm2c[1]=1 and tm2s[7]=1, the frequency and duty cycle of output  
waveform can be summarized as below:  
Frequency of Output = Y ÷ [64 × S1 × (S2+1) ]  
Duty of Output = [( K1 ) ÷ 64] × 100%  
Where, tm2c[7:4] = Y : frequency of selected clock source  
tm2b[7:0] = K : bound register in decimal  
tm2s[6:5] = S1 : pre-scalar (1, 4, 16, 64)  
tm2s[4:0] = S2 : scalar register in decimal (1 ~ 31)  
Example 1:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0001_1111, K=31  
tm2s = 0b1_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 64 × 1 × (0+1) ) = 125kHz  
duty = [(31+1) ÷ 64] × 100% = 50%  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 34 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
Example 2:  
Example 3:  
Example 4:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0001_1111, K=31  
tm2s = 0b1_11_11111, S1=64, S2=31  
frequency of output = 8MHz ÷ ( 64 × 64 × (31+1) ) = 61.03 Hz  
duty of output = [(31+1) ÷ 64] × 100% = 50%  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0011_1111, K=63  
tm2s = 0b1_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 64 × 1 × (0+1) ) = 125kHz  
duty of output = [(63+1) ÷ 64] × 100% = 100%  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0000_0000, K=0  
tm2s = 0b1_00_00000, S1=1, S2=0  
frequency = 8MHz ÷ ( 64 × 1 × (0+1) ) = 125kHz  
duty = [(0+1) ÷ 64] × 100% =1.5%  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 35 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
PMS150C  
8 bit IO-Type Controller  
5.8. Watchdog Timer  
The watchdog timer (WDT) is a counter with clock coming from ILRC and its frequency is about 62KHz@5V.  
There are 4 different timeout periods of watchdog timer can be chosen by setting the misc register, it is:  
256k ILRC clock period when misc[1:0]=11  
64k ILRC clock period when misc[1:0]=10  
16k ILRC clock period when misc[1:0]=01  
8k ILRC clock period when misc[1:0]=00 (default)  
The frequency of ILRC may drift a lot due to the variation of manufacture, supply voltage and temperature;  
user should reserve guard band for safe operation. WDT can be cleared by power-on-reset or by command  
wdreset at any time. When WDT is timeout, PMS150C will be reset to restart the program execution. The  
relative timing diagram of watchdog timer is shown as Fig. 11.  
VDD  
t
SBP  
WD  
Time Out  
Program  
Execution  
Watch Dog Time Out Sequence  
Fig. 11: Sequence of Watch Dog Time Out  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 36 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
5.9. Interrupt  
There are four interrupt lines for PMS150C:  
External interrupt PA0  
GPC interrupt  
Timer16 interrupt  
Timer2 interrupt  
Every interrupt request line has its own corresponding interrupt control bit to enable or disable it; the hardware  
diagram of interrupt function is shown as Fig. 12. All the interrupt request flags are set by hardware and  
cleared by writing intrq register. When the request flags are set, it can be rising edge, falling edge or both,  
depending on the setting of register integs. All the interrupt request lines are also controlled by engint  
instruction (enable global interrupt) to enable interrupt operation and disgint instruction (disable global  
interrupt) to disable it. The stack memory for interrupt is shared with data memory and its address is specified  
by stack register sp. Since the program counter is 16 bits width, the bit 0 of stack register sp should be kept 0.  
Moreover, user can use pushaf / popaf instructions to store or restore the values of ACC and flag register to  
/ from stack memory.  
Since the stack memory is shared with data memory, the stack position and level are arranged by the  
compiler in Mini-C project. When defining the stack level in ASM project, users should arrange their locations  
carefully to prevent address conflicts.  
Fig. 12: Hardware diagram of Interrupt controller  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 37 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
Once the interrupt occurs, its operation will be:  
The program counter will be stored automatically to the stack memory specified by register sp.  
New sp will be updated to sp+2.  
Global interrupt will be disabled automatically.  
The next instruction will be fetched from address 0x010.  
During the interrupt service routine, the interrupt source can be determined by reading the intrq register.  
Note: Even if INTEN=0, INTRQ will be still triggered by the interrupt source.  
After finishing the interrupt service routine and issuing the reti instruction to return back, its operation will be:  
The program counter will be restored automatically from the stack memory specified by register sp.  
New sp will be updated to sp-2.  
Global interrupt will be enabled automatically.  
The next instruction will be the original one before interrupt.  
User must reserve enough stack memory for interrupt, two bytes stack memory for one level interrupt and four  
bytes for two levels interrupt. And so on, two bytes stack memory is for pushaf. For interrupt operation, the  
following sample program shows how to handle the interrupt, noticing that it needs four bytes stack memory  
to handle interrupt and pushaf.  
void  
{
FPPA0  
(void)  
...  
$
INTEN PA0;  
// INTEN =1; interrupt request when PA0 level changed  
// clear INTRQ  
INTRQ  
ENGINT  
...  
=
0;  
// global interrupt enable  
DISGINT  
...  
// global interrupt disable  
}
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 38 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
PMS150C  
8 bit IO-Type Controller  
void Interrupt (void)  
// interrupt service routine  
{
PUSHAF  
// store ALU and FLAG register  
// If INTEN.PA0 will be opened and closed dynamically,  
// user can judge whether INTEN.PA0 =1 or not.  
// Example: If (INTEN.PA0 && INTRQ.PA0) {…}  
// If INTEN.PA0 is always enable,  
// user can omit the INTEN.PA0 judgement to speed up interrupt service routine.  
If (INTRQ.PA0)  
{
// Here for PA0 interrupt service routine  
INTRQ.PA0 = 0;  
...  
// Delete corresponding bit (take PA0 for example)  
}
...  
// X : INTRQ = 0;  
// It is not recommended to use INTRQ = 0 to clear all at the end of  
// the interrupt service routine.  
// It may accidentally clear out the interrupts that have just occurred  
// and are not yet processed.  
POPAF  
// restore ALU and FLAG register  
}
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 39 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
PMS150C  
8 bit IO-Type Controller  
5.10.Power-Save and Power-Down  
There are three operational modes defined by hardware: ON mode, Power-Save mode and Power-Down  
modes. ON mode is the state of normal operation with all functions ON, Power-Save mode (“stopexe”) is the  
state to reduce operating current and CPU keeps ready to continue, Power-Down mode (“stopsys”) is used  
to save power deeply. Therefore, Power-Save mode is used in the system which needs low operating power  
with wake-up occasionally and Power-Down mode is used in the system which needs power down deeply  
with seldom wake-up. Table 3 shows the differences in oscillator modules between Power-Save mode  
(“stopexe”) and Power-Down mode (“stopsys”).  
Differences in oscillator modules between STOPSYS and STOPEXE  
IHRC  
Stop  
ILRC  
Stop  
STOPSYS  
STOPEXE  
No Change  
No Change  
Table 3: Differences in oscillator modules between STOPSYS and STOPEXE  
5.10.1. Power-Save mode (“stopexe”)  
Using “stopexe” instruction to enter the Power-Save mode, only system clock is disabled, remaining all the  
oscillator modules be active. For CPU, it stops executing; however, for Timer16, counter keep counting if its  
clock source is not the system clock. The wake-up sources for “stopexe” can be IO-toggle or Timer16  
counts to set values when the clock source of Timer16 is IHRC or ILRC modules. Wake-up from input pins  
can be considered as a continuation of normal execution, the detail information for Power-Save mode  
shown below:  
IHRC and ILRC oscillator modules: No change, keep active if it was enabled.  
System clock: Disable, therefore, CPU stops execution.  
OTP memory is turned off.  
Timer16, Timer2: Stop counting if system clock is selected by clock source or the corresponding  
oscillator module is disabled; otherwise, it keeps counting.  
Wake-up sources: IO toggle in digital mode (PxDIER bit is 1) or Timer16 or Timer2.  
The watchdog timer must be disabled before issuing the “stopexe” command, the example is shown as  
below:  
CLKMD.En_WatchDog  
stopexe;  
….  
Wdreset;  
CLKMD.En_WatchDog  
=
=
0;  
1;  
// disable watchdog timer  
// power saving  
// enable watchdog timer  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 40 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
PMS150C  
8 bit IO-Type Controller  
Another example shows how to use Timer16 to wake-up from “stopexe”:  
$ T16M ILRC, /1, BIT8  
// Timer16 setting  
WORD  
STT16  
stopexe;  
count  
count;  
=
0;  
The initial counting value of Timer16 is zero and the system will be waken up after the Timer16 counts 256  
ILRC clocks.  
5.10.2. Power-Down mode (“stopsys”)  
Power-Down mode is the state of deeply power-saving with turning off all the oscillator modules. By using  
the “stopsys” instruction, this chip will be put on Power-Down mode directly. The following shows the internal  
status of PMS150C in detail when “stopsys” command is issued:  
All the oscillator modules are turned off.  
OTP memory is turned off.  
The contents of SRAM and registers remain unchanged.  
Wake-up sources: IO toggle in digital mode (PxDIER bit is 1)  
Wake-up from input pins can be considered as a continuation of normal execution. To minimize power  
consumption, all the I/O pins should be carefully manipulated before entering power-down mode. The  
reference sample program for power down is shown as below:  
CMKMD  
=
0xF4;  
0;  
//  
//  
Change clock from IHRC to ILRC, disable watchdog timer  
disable IHRC  
CLKMD.4 =  
while (1)  
{
STOPSYS;  
//  
//  
//  
enter power-down  
if (…) break;  
if wakeup happen and check OK, then return to high speed,  
else stay in power-down mode again.  
}
CLKMD  
=
0x34;  
//  
Change clock from ILRC to IHRC/2  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 41 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
5.10.3. Wake-up  
After entering the Power-Down or Power-Save modes, the PMS150C can be resumed to normal operation  
by toggling IO pins, Timer16, Timer2 interrupt is available for Power-Save mode ONLY. Table 4 shows the  
differences in wake-up sources between STOPSYS and STOPEXE.  
Differences in wake-up sources between STOPSYS and STOPEXE  
IO Toggle  
Yes  
T16 Interrupt  
STOPSYS  
STOPEXE  
No  
Yes  
Yes  
Table 4: Differences in wake-up sources between Power-Save mode and Power-Down mode  
When using the IO pins to wake-up the PMS150C, registers padier should be properly set to enable the  
wake-up function for every corresponding pin. The time for normal wake-up is about 2048 ILRC clocks  
counting from wake-up event; fast wake-up can be selected to reduce the wake-up time by misc register,  
and the time for fast wake-up is 32 ILRC clocks from IO toggling.  
Suspend mode  
Wake-up mode  
Wake-up time (tWUP) from IO toggle  
STOPEXE suspend  
or  
32 * TILRC,  
Where TILRC is the time period of ILRC  
fast wake-up  
STOPSYS suspend  
STOPEXE suspend  
or  
2048 * TILRC  
,
normal wake-up  
Where TILRC is the clock period of ILRC  
STOPSYS suspend  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 42 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
5.11.IO Pins  
Other than PA5, all the pins can be independently set into two states output or input by configuring the data  
registers (pa), control registers (pac) and pull-high registers (paph). All these pins have Schmitt-trigger input  
buffer and output driver with CMOS level. When it is set to output low, the pull-up resistor is turned off  
automatically. If user wants to read the pin state, please notice that it should be set to input mode before  
reading the data port; if user reads the data port when it is set to output mode, the reading data comes from  
data register, NOT from IO pad. As an example, Table 5 shows the configuration table of bit 0 of port A. The  
hardware diagram of IO buffer is also shown as Fig. 13.  
pa.0 pac.0 paph.0  
Description  
X
X
0
1
1
0
0
1
1
1
0
1
X
0
1
Input without pull-up resistor  
Input with pull-up resistor  
Output low without pull-up resistor  
Output high without pull-up resistor  
Output high with pull-up resistor  
Table 5: PA0 Configuration Table  
RD pull-high latch  
WR pull-high latch  
D
D
D
Q
(weak P-MOS)  
pull-high  
latch  
Q
Data  
latch  
Q1  
PAD  
WR data latch  
RD control latch  
Q
WR control latch  
Control  
latch  
M
U
X
RD Port  
Data Bus  
padier.x  
Wakeup module  
Interrupt module  
(PA0 only)  
Analog Module  
Fig. 13: Hardware diagram of IO buffer  
Most IOs can be adjusted their Driving or Sinking current capability to Normal or Low by code option Drive.  
Other than PA5, all the IO pins have the same structure; PA5 can be open-drain ONLY when setting to output  
mode (without Q1). When PMS150C is put in power-down or power-save mode, every pin can be used to  
wake-up system by toggling its state. Therefore, those pins needed to wake-up system must be set to input  
mode and set the corresponding bits of registers padier to high. The same reason, padier.0 should be set to  
high when PA0 is used as external interrupt pin.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 43 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
5.12. Reset  
There are many causes to reset the PMS150C, once reset is asserted, all the registers in PMS150C will be  
set to default values, system should be restarted once abnormal cases happen, or by jumping program  
counter to address ’h0. The data memory is in uncertain state when reset comes from power-up and LVR;  
however, the content will be kept when reset comes from PRST# pin or WDT timeout.  
6. IO Registers  
6.1. ACC Status Flag Register (flag), IO address = 0x00  
Bit  
7 - 4  
3
Reset R/W  
Description  
-
-
-
Reserved. These four bits are “1” when read.  
R/W OV (Overflow). This bit is set whenever the sign operation is overflow.  
AC (Auxiliary Carry). There are two conditions to set this bit, the first one is carry out of low  
R/W nibble in addition operation, and the other one is borrow from the high nibble into low nibble  
in subtraction operation.  
2
-
C (Carry). There are two conditions to set this bit, the first one is carry out in addition  
R/W operation, and the other one is borrow in subtraction operation. Carry is also affected by  
shift with carry instruction.  
1
0
-
-
Z (Zero). This bit will be set when the result of arithmetic or logic operation is zero;  
R/W  
Otherwise, it is cleared.  
6.2. Stack Pointer Register (sp), IO address = 0x02  
Bit  
Reset R/W  
Description  
Stack Pointer Register. Read out the current stack pointer, or write to change the stack  
pointer. Please notice that bit 0 should be kept 0 due to program counter is 16 bits.  
7 - 0  
-
R/W  
6.3. Clock Mode Register (clkmd), IO address = 0x03  
Bit  
Reset R/W  
Description  
System clock selection:  
Type 0, clkmd[3]=0  
Type 1, clkmd[3]=1  
000: IHRC÷ 4  
001: IHRC÷ 2  
01x: reserved  
10x: reserved  
000: IHRC÷ 16  
001: IHRC÷ 8  
7 - 5  
111 R/W  
010: ILRC÷ 16 (ICE does NOT Support.)  
011: IHRC÷ 32  
110: ILRC÷ 4  
100: IHRC÷ 64  
111: ILRC (default)  
1xx: reserved  
4
3
1
0
R/W IHRC oscillator Enable. 0 / 1: disable / enable  
Clock Type Select. This bit is used to select the clock type in bit [7:5].  
0 / 1: Type 0 / Type 1  
RW  
ILRC Enable. 0 / 1: disable / enable  
2
1
R/W  
If ILRC is disabled, watchdog timer is also disabled.  
1
0
1
0
R/W Watch Dog Enable. 0 / 1: disable / enable  
R/W Pin PA5/PRST# function. 0 / 1: PA5 / PRST#  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 44 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
 
 
 
PMS150C  
8 bit IO-Type Controller  
6.4. Interrupt Enable Register (inten), IO address = 0x04  
Bit  
Reset R/W  
Description  
7,5,3,1  
-
-
-
-
-
-
Reserved.  
6
4
2
0
R/W Enable interrupt from Timer2. 0 / 1: disable / enable.  
R/W Enable interrupt from comparator. 0 / 1: disable / enable.  
R/W Enable interrupt from Timer16 overflow. 0 / 1: disable / enable.  
R/W Enable interrupt from PA0. 0 / 1: disable / enable.  
6.5. Interrupt Request Register (intrq), IO address = 0x05  
Bit  
Reset R/W  
Description  
7,5,3,1  
-
-
Reserved.  
Interrupt Request from Timer2, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
6
4
2
0
-
R/W  
Interrupt Request from comparator, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
-
-
-
R/W  
R/W  
R/W  
Interrupt Request from Timer16, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
Interrupt Request from pin PA0, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
6.6. Timer 16 mode Register (t16m), IO address = 0x06  
Bit  
Reset R/W  
Description  
Timer Clock source selection  
000: Timer 16 is disabled  
001: CLK (system clock)  
010: reserved  
7 - 5  
000 R/W 011: PA4 falling edge (from external pin)  
100: IHRC  
101: reserved  
110: ILRC  
111: PA0 falling edge (from external pin)  
Internal clock divider.  
00: ÷ 1  
4 - 3  
00  
R/W 01: ÷ 4  
10: ÷ 16  
11: ÷ 64  
Interrupt source selection. Interrupt event happens when selected bit is changed.  
0 : bit 8 of Timer16  
1 : bit 9 of Timer16  
2 : bit 10 of Timer16  
2 - 0  
000 R/W 3 : bit 11 of Timer16  
4 : bit 12 of Timer16  
5 : bit 13 of Timer16  
6 : bit 14 of Timer16  
7 : bit 15 of Timer16  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 45 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
 
PMS150C  
8 bit IO-Type Controller  
6.7. External Oscillator setting Register (eoscr, write only), IO address = 0x0a  
Bit  
7 - 1  
0
Reset R/W  
Description  
-
-
Reserved. Please keep 0.  
0
WO Power-down the LVR hardware modules. 0 / 1: normal / power-down.  
6.8. Interrupt Edge Select Register (integs), IO address = 0x0c  
Bit  
Reset R/W  
Description  
Comparator edge selection.  
00 : both rising edge and falling edge to trigger interrupt  
7 - 6  
00  
WO 01 : rising edge to trigger interrupt  
10 : falling edge to trigger interrupt  
11 : reserved.  
5
4
-
0
-
-
Reserved. Please keep 0.  
Timer16 edge selection.  
WO 0 : rising edge to trigger interrupt  
1 : falling edge to trigger interrupt  
3 - 2  
-
Reserved.  
PA0 edge selection.  
00 : both rising edge and falling edge to trigger interrupt  
1 - 0  
00  
WO 01 : rising edge to trigger interrupt  
10 : falling edge to trigger interrupt  
11 : reserved.  
6.9. Port A Digital Input Enable Register (padier), IO address = 0x0d  
Bit  
Reset R/W  
Description  
Enable PA7~PA3 wake up event. 1 / 0 : enable / disable.  
These bits can be set to low to disable wake up from PA7~PA3 toggling.  
7 - 3 11111 WO  
2 - 1  
0
-
-
Reserved.  
Enable PA0 wake up event and interrupt request. 1 / 0 : enable / disable.  
This bit can be set to low to disable wake up from PA0 toggling and interrupt request from  
this pin.  
1
WO  
6.10.Port A Data Registers (pa), IO address = 0x10  
Bit  
Reset R/W  
Description  
7 - 0 8’h00 R/W Data registers for Port A.  
6.11.Port A Control Registers (pac), IO address = 0x11  
Bit  
Reset R/W  
Description  
Port A control registers. This register is used to define input mode or output mode for each  
corresponding pin of port A. 0 / 1: input / output.  
7 - 0 8’h00 R/W  
6.12.Port A Pull-High Registers (paph), IO address = 0x12  
Bit  
Reset R/W  
Description  
Port A pull-high registers. This register is used to enable the internal pull-high device on  
each corresponding pin of port A. 0 / 1 : disable / enable  
7 - 0 8’h00 R/W  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 46 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
 
 
 
 
PMS150C  
8 bit IO-Type Controller  
6.13.MISC Register (misc), IO address = 0x1b  
Bit  
Reset R/W  
Description  
7 - 6  
-
-
WO  
-
Reserved  
Enable fast Wake up.  
0: Normal wake up.  
The wake-up time is 2048 ILRC clocks if normal boot up is selected.  
The wake-up time is 32 ILRC clocks if fast boot up is selected.  
5
0
1: Fast wake up.  
The wake-up time is 32 ILRC clocks for both normal boot up and fast boot up.  
Reserved  
4
3
-
0
WO Reserved.  
Disable LVR function.  
2
0
WO  
0 / 1 : Enable / Disable  
Watch dog time out period  
00: 8k ILRC clock period  
1 - 0  
00  
WO 01: 16k ILRC clock period  
10: 64k ILRC clock period  
11: 256k ILRC clock period  
6.14.Comparator Control Register (gpcc), IO address = 0x1A  
Bit  
Reset R/W  
Description  
Enable comparator.  
0 / 1 : disable / enable  
7
0
R/W  
RO  
When this bit is set to enable, please also set the corresponding analog input pins to be  
digital disable to prevent IO leakage.  
Comparator result of comparator.  
6
5
4
-
0: plus input < minus input  
1: plus input > minus input  
Select whether the comparator result output will be sampled by TM2_CLK?  
0
0
R/W 0: result output NOT sampled by TM2_CLK  
1: result output sampled by TM2_CLK  
Inverse the polarity of result output of comparator.  
R/W 0: polarity is NOT inversed.  
1: polarity is inversed.  
Selection the minus input (-) of comparator.  
000 : PA3  
001 : PA4  
010 : Internal 1.20 volt band-gap reference voltage  
3 - 1  
000  
R/W  
011 : Vinternal R  
100 : PA6 (not for 5S-I-S0xx)  
101 : PA7 (not for 5S-I-S0xx)  
11X : reserved  
Selection the plus input (+) of comparator.  
R/W 0 : Vinternal R  
0
0
1 : PA4  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 47 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
PMS150C  
8 bit IO-Type Controller  
6.15.Comparator Selection Register (gpcs), IO address = 0x1E  
Bit  
Reset R/W  
Description  
Comparator output enable (to PA0).  
0 / 1 : disable / enable  
7
0
WO  
(Please avoid this situation: GPCS will affect the PA3 output function when selecting  
output to PA0 output in ICE.)  
Wakeup by comparator enable.  
6
0
WO  
0 / 1 : disable / enable  
5
4
0
0
WO Selection of high range of comparator.  
WO Selection of low range of comparator.  
Selection the voltage level of comparator.  
3 - 0  
0000  
WO  
0000 (lowest) ~ 1111 (highest)  
6.16.Timer2 Control Register (tm2c), IO address = 0x1C  
Bit Reset  
R/W  
Description  
Timer2 clock selection.  
0000 : disable  
0001 : CLK  
0010 : IHRC  
0011 : reserved  
0100 : ILRC  
0101 : comparator output  
1000 : PA0 (rising edge)  
1001 : ~PA0 (falling edge)  
1100 : PA4 (rising edge)  
1101 : ~PA4 (falling edge)  
Others: reserved  
7 - 4  
0000 R/W  
Notice: In ICE mode and IHRC is selected for Timer2 clock, the clock sent to Timer2  
does NOT be stopped, Timer2 will keep counting when ICE is in halt state.  
Timer2 output selection.  
00 : disable  
3 - 2  
00  
R/W 01 : reserved  
10 : PA3  
11 : PA4 (not for 5S-I-S0xx)  
Timer2 mode selection.  
1
0
0
0
R/W  
R/W  
0 / 1 : period mode / PWM mode  
Enable to inverse the polarity of Timer2 output.  
0 / 1: disable / enable  
6.17.Timer2 Counter Register (tm2ct), IO address = 0x1D  
Bit  
Reset R/W  
Description  
7 - 0  
0x00 R/W Bit [7:0] of Timer2 counter register.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 48 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
 
PMS150C  
8 bit IO-Type Controller  
6.18.Timer2 Bound Register (tm2b), IO address = 0x09  
Bit  
Reset R/W  
Description  
7 - 0  
0x00 WO Timer2 bound register.  
6.19.Timer2 Scalar Register (tm2s), IO address = 0x17  
Bit  
Reset R/W  
Description  
PWM resolution selection.  
1 : 6-bit  
7
0
WO 0 : 8-bit  
Timer2 clock pre-scalar.  
00 : ÷ 1  
6 - 5  
00  
WO 01 : ÷ 4  
10 : ÷ 16  
11 : ÷ 64  
4 - 0 00000 WO Timer2 clock scalar.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 49 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
PMS150C  
8 bit IO-Type Controller  
7. Instructions  
Symbol  
Description  
ACC  
a
Accumulator ( Abbreviation of accumulator )  
Accumulator ( Symbol of accumulator in program )  
sp  
flag  
I
Stack pointer  
ACC status flag register  
Immediate data  
&
Logical AND  
|
Logical OR  
Movement  
^
Exclusive logic OR  
+
Add  
OV  
Z
Subtraction  
NOT (logical complement, 1’s complement)  
NEG (2’s complement)  
Overflow (The operational result is out of range in signed 2’s complement number system)  
Zero (If the result of ALU operation is zero, this bit is set to 1)  
Carry (The operational result is to have carry out for addition or to borrow carry for subtraction  
in unsigned number system)  
C
Auxiliary Carry (If there is a carry out from low nibble after the result of ALU operation, this bit is  
set to 1)  
AC  
word  
M.n  
Only addressed in 0~0x1F (0~31) is allowed  
Only addressed in 0~0xF (0~15) is allowed  
The bit of register  
IO.n  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 50 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
7.1. Data Transfer Instructions  
mov  
mov  
mov  
mov  
mov  
a, I  
Move immediate data into ACC.  
Example: mov a, 0x0f;  
Result: a ← 0fh;  
Affected flags: NZ NC NAC NOV  
M, a  
a, M  
Move data from ACC into memory  
Example: mov  
MEM, a;  
Result: MEM ← a  
Affected flags: NZ NC NAC NOV  
Move data from memory into ACC  
Example: mov  
a, MEM ;  
Result: a ← MEM; Flag Z is set when MEM is zero.  
Affected flags: YZ NC NAC NOV  
a, IO  
Move data from IO into ACC  
Example: mov  
a, pa ;  
Result: a ← pa; Flag Z is set when pa is zero.  
Affected flags: YZ NC NAC NOV  
IO, a  
Move data from ACC into IO  
Example: mov  
Result: pa ← a  
pa, a;  
Affected flags: NZ NC NAC NOV  
Move 16-bit counting values in Timer16 to memory in word.  
Example: ldt16 word;  
ldt16 word  
Result:  
word ← 16-bit timer  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
T16val ;  
// declare a RAM word  
clear  
clear  
stt16  
lb@ T16val ;  
hb@ T16val ;  
T16val ;  
// clear T16val (LSB)  
// clear T16val (MSB)  
// initial T16 with 0  
set1  
t16m.5 ;  
// enable Timer16  
set0  
ldt16  
….  
t16m.5 ;  
T16val ;  
// disable Timer 16  
// save the T16 counting value to T16val  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 51 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
stt16 word  
Store 16-bit data from memory in word to Timer16.  
Example: stt16 word;  
Result:  
16-bit timer ←word  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
T16val ;  
// declare a RAM word  
mov  
mov  
mov  
mov  
stt16  
a, 0x34 ;  
lb@ T16val , a ;  
a, 0x12 ;  
// move 0x34 to T16val (LSB)  
hb@ T16val , a ; // move 0x12 to T16val (MSB)  
T16val ; // initial T16 with 0x1234  
----------------------------------------------------------------------------------------------------------------------  
idxm a, index Move data from specified memory to ACC by indirect method. It needs 2T to execute this  
instruction.  
Example: idxm a, index;  
Result:  
a ← [index], where index is declared by word.  
Affected flags: NZ NC NAC NOV  
Application Example:  
-----------------------------------------------------------------------------------------------------------------------  
word  
RAMIndex ;  
// declare a RAM pointer  
mov  
mov  
mov  
mov  
a, 0x5B ;  
// assign pointer to an address (LSB)  
// save pointer to RAM (LSB)  
lb@RAMIndex, a ;  
a, 0x00 ;  
// assign 0x00 to an address (MSB), should be 0  
hb@RAMIndex, a ; // save pointer to RAM (MSB)  
idxm  
a, RAMIndex ; // move memory data in address 0x5B to ACC  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 52 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
PMS150C  
8 bit IO-Type Controller  
Idxm index, a Move data from ACC to specified memory by indirect method. It needs 2T to execute this  
instruction.  
Example: idxm index, a;  
Result:  
[index] ← a; where index is declared by word.  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
RAMIndex ;  
// declare a RAM pointer  
mov  
mov  
mov  
mov  
a, 0x5B ;  
// assign pointer to an address (LSB)  
// save pointer to RAM (LSB)  
lb@RAMIndex, a ;  
a, 0x00 ;  
// assign 0x00 to an address (MSB), should be 0  
hb@RAMIndex, a ; // save pointer to RAM (MSB)  
mov  
idxm  
a, 0xA5 ;  
RAMIndex, a ;  
// move 0xA5 to memory in address 0x5B  
------------------------------------------------------------------------------------------------------------------------  
Exchange data between ACC and memory  
xch  
M
Example: xch MEM ;  
Result:  
MEM ← a , a ← MEM  
Affected flags: NZ NC NAC NOV  
Move the ACC and flag register to memory that address specified in the stack pointer.  
Example: pushaf;  
pushaf  
Result:  
[sp] {flag, ACC};  
sp ← sp + 2 ;  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
.romadr 0x10 ;  
// ISR entry address  
pushaf ;  
// put ACC and flag into stack memory  
// ISR program  
// ISR program  
popaf ;  
reti ;  
// restore ACC and flag from stack memory  
------------------------------------------------------------------------------------------------------------------------  
Restore ACC and flag from the memory which address is specified in the stack pointer.  
Example: popaf;  
popaf  
Result:  
sp ← sp - 2  
{Flag, ACC} [sp] ;  
Affected flags: YZ YC YAC YOV  
;
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 53 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
PMS150C  
8 bit IO-Type Controller  
7.2. Arithmetic Operation Instructions  
add  
add  
add  
a, I  
Add immediate data with ACC, then put result into ACC  
Example: add a, 0x0f ;  
Result: a ← a + 0fh  
Affected flags: YZ YC YAC YOV  
a, M  
M, a  
Add data in memory with ACC, then put result into ACC  
Example: add  
a, MEM ;  
Result: a ← a + MEM  
Affected flags: YZ YC YAC YOV  
Add data in memory with ACC, then put result into memory  
Example: add  
MEM, a;  
Result: MEM ← a + MEM  
Affected flags: YZ YC YAC YOV  
addc a, M  
addc M, a  
Add data in memory with ACC and carry bit, then put result into ACC  
Example: addc  
a, MEM ;  
Result: a ← a + MEM + C  
Affected flags: YZ YC YAC YOV  
Add data in memory with ACC and carry bit, then put result into memory  
Example: addc  
MEM, a ;  
Result: MEM ← a + MEM + C  
Affected flags: YZ YC YAC YOV  
addc  
addc  
sub  
a
Add carry with ACC, then put result into ACC  
Example: addc  
a ;  
Result: a ← a + C  
Affected flags: YZ YC YAC YOV  
M
Add carry with memory, then put result into memory  
Example: addc  
MEM ;  
Result: MEM ← MEM + C  
Affected flags: YZ YC YAC YOV  
a, I  
a, M  
M, a  
Subtraction immediate data from ACC, then put result into ACC.  
Example: sub  
a, 0x0f;  
Result: a ← a - 0fh ( a + [2’s complement of 0fh] )  
Affected flags: YZ YC YAC YOV  
sub  
Subtraction data in memory from ACC, then put result into ACC  
Example: sub  
a, MEM ;  
Result: a ← a - MEM ( a + [2’s complement of M] )  
Affected flags: YZ YC YAC YOV  
sub  
Subtraction data in ACC from memory, then put result into memory  
Example: sub  
MEM, a;  
Result: MEM ← MEM - a ( MEM + [2’s complement of a] )  
Affected flags: YZ YC YAC YOV  
subc a, M  
Subtraction data in memory and carry from ACC, then put result into ACC  
Example: subc  
Result: a ← a – MEM - C  
Affected flags: YZ YC YAC YOV  
a, MEM;  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 54 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
subc M, a  
Subtraction ACC and carry bit from memory, then put result into memory  
Example: subc  
MEM, a ;  
Result: MEM ← MEM – a - C  
Affected flags: YZ YC YAC YOV  
subc  
subc  
inc  
a
Subtraction carry from ACC, then put result into ACC  
Example: subc  
a;  
Result: a ← a - C  
Affected flags: YZ YC YAC YOV  
M
Subtraction carry from the content of memory, then put result into memory  
Example: subc  
MEM;  
Result: MEM ← MEM - C  
Affected flags: YZ YC YAC YOV  
M
Increment the content of memory  
Example: inc  
MEM ;  
Result: MEM ← MEM + 1  
Affected flags: YZ YC YAC YOV  
dec  
M
Decrement the content of memory  
Example: dec  
MEM;  
Result: MEM ← MEM - 1  
Affected flags: YZ YC YAC YOV  
clear  
M
Clear the content of memory  
Example: clear  
Result: MEM ← 0  
Affected flags: NZ NC NAC NOV  
MEM ;  
7.3. Shift Operation Instructions  
sr  
a
Shift right of ACC, shift 0 to bit 7  
Example: sr a ;  
Result: a (0,b7,b6,b5,b4,b3,b2,b1) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b0)  
Affected flags: NZ YC NAC NOV  
Shift right of ACC with carry bit 7 to flag  
src  
sr  
a
Example: src a ;  
Result: a (c,b7,b6,b5,b4,b3,b2,b1) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b0)  
Affected flags: NZ YC NAC NOV  
Shift right the content of memory, shift 0 to bit 7  
M
Example: sr MEM ;  
Result: MEM(0,b7,b6,b5,b4,b3,b2,b1) ← MEM(b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b0)  
Affected flags: NZ YC NAC NOV  
Shift right of memory with carry bit 7 to flag  
src  
sl  
M
Example: src MEM ;  
Result: MEM(c,b7,b6,b5,b4,b3,b2,b1) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b0)  
Affected flags: NZ YC NAC NOV  
Shift left of ACC shift 0 to bit 0  
a
Example: sl a ;  
Result: a (b6,b5,b4,b3,b2,b1,b0,0) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a (b7)  
Affected flags: NZ YC NAC NOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 55 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
slc  
sl  
a
Shift left of ACC with carry bit 0 to flag  
Example: slc a ;  
Result: a (b6,b5,b4,b3,b2,b1,b0,c) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b7)  
Affected flags: NZ YC NAC NOV  
Shift left of memory, shift 0 to bit 0  
M
Example: sl MEM ;  
Result: MEM (b6,b5,b4,b3,b2,b1,b0,0) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b7)  
Affected flags: NZ YC NAC NOV  
Shift left of memory with carry bit 0 to flag  
slc  
M
Example: slc MEM ;  
Result: MEM (b6,b5,b4,b3,b2,b1,b0,C) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM (b7)  
Affected flags: NZ YC NAC NOV  
Swap the high nibble and low nibble of ACC  
swap  
a
Example: swap  
Result: a (b3,b2,b1,b0,b7,b6,b5,b4) ← a (b7,b6,b5,b4,b3,b2,b1,b0)  
Affected flags: NZ NC NAC NOV  
a ;  
7.4. Logic Operation Instructions  
and  
and  
and  
a, I  
a, M  
M, a  
a, I  
Perform logic AND on ACC and immediate data, then put result into ACC  
Example: and a, 0x0f ;  
Result: a ← a & 0fh  
Affected flags: YZ NC NAC NOV  
Perform logic AND on ACC and memory, then put result into ACC  
Example: and  
a, RAM10 ;  
Result: a ← a & RAM10  
Affected flags: YZ NC NAC NOV  
Perform logic AND on ACC and memory, then put result into memory  
Example: and  
MEM, a ;  
Result: MEM ← a & MEM  
Affected flags: YZ NC NAC NOV  
or  
or  
or  
Perform logic OR on ACC and immediate data, then put result into ACC  
Example: or  
a, 0x0f ;  
Result: a ← a | 0fh  
Affected flags: YZ NC NAC NOV  
a, M  
Perform logic OR on ACC and memory, then put result into ACC  
Example: or  
a, MEM ;  
Result: a ← a | MEM  
Affected flags: YZ NC NAC NOV  
M, a  
a, I  
Perform logic OR on ACC and memory, then put result into memory  
Example: or  
MEM, a ;  
Result: MEM ← a | MEM  
Affected flags: YZ NC NAC NOV  
xor  
Perform logic XOR on ACC and immediate data, then put result into ACC  
Example: xor  
Result: a ← a ^ 0fh  
Affected flags: YZ NC NAC NOV  
a, 0x0f ;  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 56 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
xor  
xor  
xor  
not  
IO, a  
a, M  
M, a  
a
Perform logic XOR on ACC and IO register, then put result into IO register  
Example: xor  
pa, a ;  
Result: pa ← a ^ pa ; // pa is the data register of port A  
Affected flags: NZ NC NAC NOV  
Perform logic XOR on ACC and memory, then put result into ACC  
Example: xor  
a, MEM ;  
Result: a ← a ^ RAM10  
Affected flags: YZ NC NAC NOV  
Perform logic XOR on ACC and memory, then put result into memory  
Example:  
xor  
MEM, a ;  
Result:  
MEM ← a ^ MEM  
Affected flags: YZ NC NAC NOV  
Perform 1’s complement (logical complement) of ACC  
Example: not  
a ;  
Result: a a  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
not  
a, 0x38 ;  
a ;  
// ACC=0X38  
// ACC=0XC7  
------------------------------------------------------------------------------------------------------------------------  
Perform 1’s complement (logical complement) of memory  
not  
M
Example: not  
MEM ;  
Result: MEM MEM  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
not  
a, 0x38 ;  
mem, a ;  
mem ;  
// mem = 0x38  
// mem = 0xC7  
------------------------------------------------------------------------------------------------------------------------  
Perform 2’s complement of ACC  
neg  
a
Example: neg  
a;  
Result: a a  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
neg  
a, 0x38 ;  
a ;  
// ACC=0X38  
// ACC=0XC8  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 57 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
PMS150C  
8 bit IO-Type Controller  
neg  
M
Perform 2’s complement of memory  
Example: neg MEM;  
Result: MEM MEM  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
not  
a, 0x38 ;  
mem, a ;  
mem ;  
// mem = 0x38  
// mem = 0xC8  
------------------------------------------------------------------------------------------------------------------------  
7.5. Bit Operation Instructions  
set0 IO.n  
set1 IO.n  
set0 M.n  
set1 M.n  
Set bit n of IO port to low  
Example: set0 pa.5 ;  
Result: set bit 5 of port A to low  
Affected flags: NZ NC NAC NOV  
Set bit n of IO port to high  
Example: set1 pa.5 ;  
Result: set bit 5 of port A to high  
Affected flags: NZ NC NAC NOV  
Set bit n of memory to low  
Example: set0 MEM.5 ;  
Result: set bit 5 of MEM to low  
Affected flags: NZ NC NAC NOV  
Set bit n of memory to high  
Example: set1 MEM.5 ;  
Result: set bit 5 of MEM to high  
Affected flags: NZ NC NAC NOV  
7.6. Conditional Operation Instructions  
ceqsn a, I  
Compare ACC with immediate data and skip next instruction if both are equal.  
Flag will be changed like as (a ← a - I)  
Example: ceqsn  
a, 0x55 ;  
MEM ;  
error ;  
inc  
goto  
Result: If a=0x55, then “goto error”; otherwise, “inc MEM”.  
Affected flags: YZ YC YAC YOV  
Compare ACC with memory and skip next instruction if both are equal.  
Flag will be changed like as (a ← a - M)  
ceqsn a, M  
Example: ceqsn  
a, MEM;  
Result: If a=MEM, skip next instruction  
Affected flags: YZ YC YAC YOV  
t0sn IO.n  
Check IO bit and skip next instruction if it’s low  
Example: t0sn  
pa.5;  
Result: If bit 5 of port A is low, skip next instruction  
Affected flags: NZ NC NAC NOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 58 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
PMS150C  
8 bit IO-Type Controller  
t1sn IO.n  
t0sn M.n  
t1sn M.n  
Check IO bit and skip next instruction if it’s high  
Example: t1sn pa.5 ;  
Result: If bit 5 of port A is high, skip next instruction  
Affected flags: NZ NC NAC NOV  
Check memory bit and skip next instruction if it’s low  
Example: t0sn MEM.5 ;  
Result: If bit 5 of MEM is low, then skip next instruction  
Affected flags: NZ NC NAC NOV  
Check memory bit and skip next instruction if it’s high  
EX: t1sn MEM.5 ;  
Result: If bit 5 of MEM is high, then skip next instruction  
Affected flags: NZ NC NAC NOV  
Increment ACC and skip next instruction if ACC is zero  
izsn  
dzsn  
izsn  
dzsn  
a
Example: izsn  
Result:  
a;  
a
a + 1,skip next instruction if a = 0  
Affected flags: YZ YC YAC YOV  
a
Decrement ACC and skip next instruction if ACC is zero  
Example: dzsn  
Result:  
a;  
A
A - 1,skip next instruction if a = 0  
Affected flags: YZ YC YAC YOV  
M
Increment memory and skip next instruction if memory is zero  
Example: izsn  
Result: MEM  
MEM;  
MEM + 1, skip next instruction if MEM= 0  
Affected flags: YZ YC YAC YOV  
M
Decrement memory and skip next instruction if memory is zero  
Example: dzsn  
Result: MEM  
Affected flags: YZ YC YAC YOV  
MEM;  
MEM - 1, skip next instruction if MEM = 0  
7.7. System control Instructions  
call  
label  
Function call, address can be full range address space  
Example: call  
function1;  
pc + 1  
Result: [sp]  
pc  
sp  
function1  
sp + 2  
Affected flags: NZ NC NAC NOV  
goto label  
Go to specific address which can be full range address space  
Example: goto  
error;  
Result: Go to error and execute program.  
Affected flags: NZ NC NAC NOV  
Place immediate data to ACC, then return  
Example: ret 0x55;  
ret  
I
Result:  
A ← 55h  
ret ;  
Affected flags: NZ NC NAC NOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 59 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
ret  
Return to program which had function call  
Example: ret;  
Result: sp ← sp - 2  
pc ← [sp]  
Affected flags: NZ NC NAC NOV  
reti  
Return to program that is interrupt service routine. After this command is executed, global  
interrupt is enabled automatically.  
Example: reti;  
Affected flags: NZ NC NAC NOV  
nop  
No operation  
Example: nop;  
Result: nothing changed  
Affected flags: NZ NC NAC NOV  
pcadd  
a
Next program counter is current program counter plus ACC.  
Example: pcadd a;  
Result: pc ← pc + a  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
pcadd  
goto  
goto  
goto  
goto  
a, 0x02 ;  
a ;  
// PC <- PC+2  
// jump here  
err1 ;  
correct ;  
err2 ;  
err3 ;  
correct:  
// jump here  
------------------------------------------------------------------------------------------------------------------------  
Enable global interrupt enable  
engint  
Example: engint;  
Result: Interrupt request can be sent to FPP0  
Affected flags: NZ NC NAC NOV  
Disable global interrupt enable  
disgint  
stopsys  
stopexe  
Example: disgint ;  
Result: Interrupt request is blocked from FPP0  
Affected flags: NZ NC NAC NOV  
System halt.  
Example: stopsys;  
Result: Stop the system clocks and halt the system  
Affected flags: NZ NC NAC NOV  
CPU halt. The oscillator module is still active to output clock, however, system clock is disabled  
to save power.  
Example: stopexe;  
Result: Stop the system clocks and keep oscillator modules active.  
Affected flags: NZ NC NAC NOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 60 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
PMS150C  
8 bit IO-Type Controller  
reset  
Reset the whole chip, its operation will be same as hardware reset.  
Example: reset;  
Result: Reset the whole chip.  
Affected flags: NZ NC NAC NOV  
Reset Watchdog timer.  
wdreset  
Example: wdreset ;  
Result: Reset Watchdog timer.  
Affected flags: NZ NC NAC NOV  
7.8. Summary of Instructions Execution Cycle  
2T  
goto, call, pcadd, ret, reti, idxm  
ceqsn, cneqsn, t0sn, t1sn, dzsn, izsn  
Others  
1T/2T  
1T  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 61 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
7.9. Summary of affected flags by Instructions  
Instruction  
mov a, I  
Z
-
C
-
AC OV Instruction  
Z
-
C
-
AC OV Instruction  
Z
Y
-
C
-
AC OV  
-
-
-
-
mov M, a  
mov IO, a  
idxm a, index  
pushaf  
-
-
-
-
mov a, M  
ldt16 word  
idxm index, a  
popaf  
-
-
-
-
mov a, IO  
stt16 word  
Y
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
xch  
M
-
-
-
-
-
-
-
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
add a, I  
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
add a, M  
addc M, a  
sub a, I  
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
-
add M, a  
addc a, M  
addc  
a
addc  
M
sub a, M  
sub M, a  
subc a, M  
subc M, a  
subc  
dec  
src  
a
subc  
clear  
M
M
inc  
sr a  
src  
sl  
M
M
M
a
sr  
M
-
Y
Y
-
-
-
-
-
-
sl  
a
-
-
-
slc  
a
-
-
-
M
-
-
-
slc  
and  
M
-
-
-
swap  
and  
a
-
-
-
and  
a, I  
Y
Y
Y
Y
Y
-
-
-
a, M  
Y
Y
-
-
-
M, a  
Y
Y
Y
Y
-
-
-
-
or a, I  
-
-
-
or a, M  
-
-
-
or M, a  
-
-
-
xor  
xor  
neg  
a, I  
-
-
-
xor  
not  
neg  
IO, a  
-
-
-
xor  
not  
a, M  
-
-
-
M, a  
a
-
-
-
a
Y
Y
-
-
-
-
M
-
-
-
-
-
-
M
-
-
-
set0 IO.n  
set1 M.n  
t0sn IO.n  
t1sn M.n  
-
-
-
set1 IO.n  
ceqsn a, I  
t1sn IO.n  
-
-
-
set0 M.n  
ceqsn a, M  
t0sn M.n  
-
-
-
-
-
-
-
Y
-
Y
-
Y
-
Y
-
Y
-
Y
-
Y
-
Y
-
-
-
-
-
-
-
-
-
izsn  
dzsn  
ret  
a
Y
Y
-
Y
Y
-
Y
Y
-
Y
Y
-
dzsn  
call  
a
Y
-
Y
-
Y
-
Y
-
izsn  
M
Y
-
Y
-
Y
-
Y
-
M
label  
goto label  
reti  
I
ret  
-
-
-
-
-
-
-
-
nop  
-
-
-
-
pcadd  
a
-
-
-
-
engint  
-
-
-
-
disgint  
reset  
-
-
-
-
stopsys  
wdreset  
-
-
-
-
stopexe  
-
-
-
-
-
-
-
-
-
-
-
-
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 62 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
8. Code Options  
Option  
Selection  
Enable  
Disable  
4.0V  
Description  
Security Enable  
Security  
Security Disable  
Select LVR = 4.0V  
3.5V  
Select LVR = 3.5V  
3.0V  
Select LVR = 3.0V  
2.75V  
2.5V  
Select LVR = 2.75V  
LVR  
Select LVR = 2.5V  
2.2V  
Select LVR = 2.2V  
2.0V  
Select LVR = 2.0V  
1.8V  
Select LVR = 1.8V  
Slow  
Please refer to tWUP and tSBP in Section 4.1  
Please refer to tWUP and tSBP in Section 4.1  
IO Low driving and sinking current  
IO Normal driving and sinking current  
Boot-up_Time  
Drive  
Fast  
Low  
Normal  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 63 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
PMS150C  
8 bit IO-Type Controller  
9. Special Notes  
This chapter is to remind user who use PMS150C series IC in order to avoid frequent errors upon operation.  
9.1. Warning  
User must read all application notes of the IC by detail before using it. Please download the relative  
application notes from the following link:  
http://www.padauk.com.tw/technical-application.php  
9.2. Using IC  
9.2.1. IO pin usage and setting  
(1) IO pin as digital input  
When IO is set as digital input, the level of Vih and Vil would changes with the voltage and temperature.  
Please follow the minimum value of Vih and the maximum value of Vil.  
The value of internal pull high resistor would also changes with the voltage, temperature and pin  
voltage. It is not the fixed value.  
(2) If IO pin is set to be digital input and enable wake-up function  
Configure IO pin as input  
Set corresponding bit to “1” in PADIER  
For those IO pins of PA that are not used, PADIER[1:2] should be set low in order to prevent them from  
leakage.  
(3) PA5 is set to be output pin  
PA5 can be set to be Open-Drain output pin only, output high requires adding pull-up resistor.  
(4) PA5 is set to be PRST# input pin  
Configure PA5 as input  
Set CLKMD.0=1 to enable PA5 as PRST# input pin  
(5) PA5 is set to be input pin and to connect with a push button or a switch by a long wire  
Needs to put a >10Ω resistor in between PA5 and the long wire  
Avoid using PA5 as input in such application.  
9.2.2. Interrupt  
(1) When using the interrupt function, the procedure should be:  
Step1: Set INTEN register, enable the interrupt control bit  
Step2: Clear INTRQ register  
Step3: In the main program, using ENGINT to enable CPU interrupt function  
Step4: Wait for interrupt. When interrupt occurs, enter to Interrupt Service Routine  
Step5: After the Interrupt Service Routine being executed, return to the main program  
* Use DISGINT in the main program to disable all interrupts  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 64 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
 
 
 
PMS150C  
8 bit IO-Type Controller  
* When interrupt service routine starts, use PUSHAF instruction to save ALU and FLAG register.  
POPAF instruction is to restore ALU and FLAG register before RETI as below:  
void Interrupt (void)  
// Once the interrupt occurs, jump to interrupt service routine  
{
// enter DISGINT status automatically, no more interrupt is accepted  
PUSHAF;  
POPAF;  
}
// RETI will be added automatically. After RETI being executed, ENGINT status will be restored.  
(2) INTEN and INTRQ have no initial values. Please set required value before enabling interrupt function.  
9.2.3. System clock switching  
System clock can be switched by CLKMD register. Please notice that, NEVER switch the system clock and  
turn off the original clock source at the same time. For example: When switching from clock A to clock B,  
please switch to clock B first; and after that turn off the clock A oscillator through CLKMD.  
Example : Switch system clock from ILRC to IHRC/2  
CLKMD  
=
0x36;  
0;  
// switch to IHRC, ILRC can not be disabled here  
CLKMD.2 =  
// ILRC can be disabled at this time  
ERROR: Switch ILRC to IHRC and turn off ILRC simultaneously  
CLKMD 0x50; // MCU will hang  
=
9.2.4. Power down mode, wakeup and watchdog  
Watchdog will be inactive once ILRC is disabled.  
9.2.5. TIMER time out  
When select T16M counter BIT8 as 1 to generate interrupt, the first interrupt will occur when the counter  
reaches to 0x100 ( BIT8 from 0 to 1) and the second interrupt will occur when the counter reaches 0x300 (BIT8  
from 0 to 1). Therefore, selecting BIT8 as 1 to generate interrupt means that the interrupt occurs every 512  
counts. Please notice that if T16M counter is restarted, the next interrupt will occur once BIT8 turns from 0 to 1.  
9.2.6. IHRC  
(1) The IHRC frequency calibration is performed when IC is programmed by the writer.  
(2) Because the characteristic of the Epoxy Molding Compound (EMC) would some degrees affects the IHRC  
frequency (either for package or COB), if the calibration is done before molding process, the actual IHRC  
frequency after molding may be deviated or becomes out of spec. Normally , the frequency is getting  
slower a bit.  
(3) It usually happens in COB package or Quick Turnover Programming (QTP). And PADAUK would not take  
any responsibility for this situation.  
(4) Users can make some compensatory adjustments according to their own experiences. For example, users  
can set IHRC frequency to be 0.5% ~ 1% higher and aim to get better re-targeting after molding.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 65 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
 
 
PMS150C  
8 bit IO-Type Controller  
9.2.7. LVR  
(1) VDD must reach or above 2.0V for successful power-on process; otherwise IC will be inactive.  
(2) The setting of LVR (1.8V ~ 4.0V) will be valid just after successful power-on process.  
(3) User can set MISC.2 as “1” to disable LVR. However, VDD must be kept as exceeding the lowest working  
voltage of chip; Otherwise IC may work abnormally.  
9.2.8. Instructions  
(1) There are 79 instructions are provided by PMS150C.  
(2) Only single FPPA is built inside the PMS150C, the executing cycles for different instructions are shown as  
below:  
Instruction  
goto, call, pcadd, ret, reti  
ceqsn, cneqsn, t0sn, t1sn,  
dzsn, izsn  
Condition  
CPU  
2T  
Condition is fulfilled  
2T  
Condition is not fulfilled  
1T  
idxm  
2T  
1T  
Others  
9.2.9. RAM definition  
(1) Bit defined: Only addressed at 0x00 ~ 0x0F  
(2) WORD defined : Only addressed at 0x00 ~ 0x1E  
9.2.10. Program writing  
There are 6 pins for using the writer to program: PA3, PA4, PA5, PA6, VDD and GND.  
Please use PDK3S-P-002 for program real chip and just use the CN38 jumper (at the back for the writer) with  
putting the PMS150-S08/DIP8 IC downward three spaces on the Textool . Other packages could be  
programmed by connecting the signals correspondingly. All the signals of the left side of the jumpers are the  
same and as the descriptions at the left bottom corner. They are VDD, PA0(not used), PA3, PA4, PA5, PA6,  
PA7(not used), and GND).  
If user use PDK5S-P-003 or above to program, please follow the instructions for connecting jumpers  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 66 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 
 
 
 
PMS150C  
8 bit IO-Type Controller  
9.3. Using ICE  
Please use 5S-I-S0xx ICE to emulate most of PMS150C function except as the list below:  
(1) 5S-I-S0xx doesn’t support SYSCLK=ILRC/16  
(2) 5S-I-S0xx doesn’t support PA6 and PA7 as the CIN2- and CIN3- of the comparator.  
(3) 5S-I-S0xx doesn’t support TM2PWM output of PA4.  
(4) 5S-I-S0xx doesn’t support the INTEGS the Bit[7:6] dynamically switched.  
(5) When GPCS[7]=1, the output of PA0 will affect the High function of PA3.  
(6) Fast Wakeup time is different from PDK5S-I-S0xx: 128 SysClk, PMS150C: 32 ILRC  
(7) Watch dog time out period is different from PDK5S-I-S0xx:  
WDT period  
PMS150C  
PDK5S-I-S0xx  
2048* TILRC  
misc[1:0]=00  
8K* TILRC  
4096* TILRC  
misc[1:0]=01  
misc[1:0]=10  
misc[1:0]=11  
16K* TILRC  
64K* TILRC  
256K* TILRC  
16384* TILRC  
256* TILRC  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 67 of 67  
PDK-DS-PMS150C-EN-V004 – Jan. 24, 2018  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY