PMS152-S14 [PADAUK]

8bit OTP Type SuLED IO Controller;
PMS152-S14
型号: PMS152-S14
厂家: PADAUK Technology    PADAUK Technology
描述:

8bit OTP Type SuLED IO Controller

文件: 总91页 (文件大小:2295K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PMS152  
8bit OTP Type SuLED IO Controller  
Datasheet  
Version 1.05 – June 9, 2020  
Copyright 2020by PADAUK Technology Co., Ltd., all rights reserved  
6F-6, No.1, Sec. 3, Gongdao 5th Rd., Hsinchu City 30069, Taiwan, R.O.C.  
TEL: 886-3-572-8688 www.padauk.com.tw  
PMS152  
8bit OTP Type SuLED IO Controller  
IMPORTANT NOTICE  
PADAUK Technology reserves the right to make changes to its products or to terminate  
production of its products at any time without notice. Customers are strongly  
recommended to contact PADAUK Technology for the latest information and verify  
whether the information is correct and complete before placing orders.  
PADAUK Technology products are not warranted to be suitable for use in life-support  
applications or other critical applications. PADAUK Technology assumes no liability for  
such applications. Critical applications include, but are not limited to, those which may  
involve potential risks of death, personal injury, fire or severe property damage.  
PADAUK Technology assumes no responsibility for any issue caused by a customer’s  
product design. Customers should design and verify their products within the ranges  
guaranteed by PADAUK Technology. In order to minimize the risks in customers’ products,  
customers should design a product with adequate operating safeguards.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 2 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
Table of content  
1. Features.................................................................................................................................9  
1.1.  
1.2.  
1.3.  
1.4.  
Special Features.....................................................................................................................9  
System Features.....................................................................................................................9  
CPU Features.........................................................................................................................9  
Package Information ...............................................................................................................9  
2. General Description and Block Diagram..........................................................................10  
3. Pin Definition and Functional Description .......................................................................11  
4. Device Characteristics.......................................................................................................17  
4.1.  
4.2.  
4.3.  
4.4.  
4.5.  
4.6.  
4.7.  
4.8.  
4.9.  
AC/DC Device Characteristics ..............................................................................................17  
Absolute Maximum Ratings...................................................................................................18  
Typical ILRC frequency vs. VDD...........................................................................................19  
Typical IHRC frequency deviation vs. VDD(calibrated to 16MHz)..........................................19  
Typical ILRC Frequency vs. Temperature.............................................................................20  
Typical IHRC Frequency vs. Temperature (calibrated to 16MHz)..........................................20  
Typical operating current vs. VDD @ system clock = ILRC/n................................................21  
Typical operating current vs. VDD @ system clock = IHRC/n ...............................................21  
Typical operating current vs. VDD @ system clock = 4MHz EOSC / n..................................22  
4.10. Typical operating current vs. VDD @ system clock = 32KHz EOSC / n.................................22  
4.11. Typical operating current vs. VDD @ system clock = 1MHz EOSC / n..................................23  
4.12. Typical IO driving current (IOH) and sink current (IOL) .............................................................23  
4.13. Typical IO input high/low threshold voltage (VIH/VIL) ..............................................................24  
4.14. Typical resistance of IO pull high device ...............................................................................25  
4.15. Typical power down current (IPD) and power save current (IPS)..............................................25  
5. Functional Description.......................................................................................................27  
5.1.  
5.2.  
Program Memory - OTP........................................................................................................27  
Boot Procedure.....................................................................................................................27  
5.2.1. Timing charts for reset conditions.................................................................................28  
Data Memory - SRAM...........................................................................................................29  
Oscillator and Clock ..............................................................................................................29  
5.4.1. Internal High RC oscillator and Internal Low RC oscillator.........................................29  
5.4.2. Chip calibration..........................................................................................................29  
5.4.3. IHRC Frequency Calibration and System Clock ........................................................30  
5.3.  
5.4.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 3 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
5.4.4. External Crystal Oscillator .........................................................................................31  
5.4.5. System Clock and LVR level .....................................................................................33  
5.4.6. System Clock Switching ............................................................................................34  
Comparator...........................................................................................................................35  
5.5.1 Internal reference voltage (Vinternal R)...........................................................................36  
5.5.2 Using the comparator ................................................................................................38  
5.5.3 Using the comparator and band-gap 1.20V ...............................................................39  
16-bit Timer (Timer16) ..........................................................................................................40  
8-bit Timer (Timer2) with PWM generation............................................................................42  
5.7.1 Using the Timer2 to generate periodical waveform....................................................43  
5.7.2 Using the Timer2 to generate 8-bit PWM waveform...................................................45  
5.7.3 Using the Timer2 to generate 6-bit PWM waveform...................................................46  
11-bit PWM Generators ........................................................................................................47  
5.8.1 PWM Waveform ........................................................................................................47  
5.8.2 Hardware Diagram ....................................................................................................48  
5.8.3 Equations for 11-bit PWM Generator.........................................................................49  
5.8.4 PWM Waveforms with Complementary Dead Zones .................................................49  
WatchDog Timer...................................................................................................................52  
5.5.  
5.6  
5.7  
5.8  
5.9  
5.10 . Interrupt ..............................................................................................................................53  
5.11 . Power-Save and Power-Down ............................................................................................55  
5.11.1 Power-Save mode (“stopexe)...................................................................................55  
5.11.2 Power-Down mode (“stopsys”) ..................................................................................56  
5.11.3 Wake-up....................................................................................................................56  
5.12 IO Pins..................................................................................................................................58  
5.13 Reset and LVR......................................................................................................................59  
5.13.1 Reset.........................................................................................................................59  
5.13.2 LVR reset ..................................................................................................................59  
6. IO Registers ........................................................................................................................60  
6.1.  
6.2.  
6.3.  
6.4.  
6.5.  
6.6.  
6.7.  
6.8.  
6.9.  
ACC Status Flag Register (flag), IO address = 0x00 .............................................................60  
Stack Pointer Register (sp), IO address = 0x02 ....................................................................60  
Clock Mode Register (clkmd), IO address = 0x03 .................................................................60  
Interrupt Enable Register (inten), IO address = 0x04 ............................................................61  
Interrupt Request Register (intrq), IO address = 0x05...........................................................61  
Timer16 mode Register (t16m), IO address = 0x06...............................................................62  
MISC Register (misc), IO address = 0x08.............................................................................62  
External Oscillator setting Register (eoscr), IO address = 0x0a.............................................63  
Interrupt Edge Select Register (integs), IO address = 0x0c...................................................63  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 4 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
6.10. Port A Digital Input Enable Register (padier), IO address = 0x0d..........................................63  
6.11. Port B Digital Input Enable Register (pbdier), IO address = 0x0e..........................................64  
6.12. Port A Data Register (pa), IO address = 0x10.......................................................................64  
6.13. Port A Control Register (pac), IO address = 0x11 .................................................................64  
6.14. Port A Pull-High Register (paph), IO address = 0x12 ............................................................64  
6.15. Port B Data Register (pb), IO address = 0x14.......................................................................64  
6.16. Port B Control Register (pbc), IO address = 0x15 .................................................................64  
6.17. Port B Pull-High Register (pbph), IO address = 0x16 ............................................................65  
6.18. Comparator Control Register (gpcc), IO address = 0x18.......................................................65  
6.19. Comparator Selection Register (gpcs), IO address = 0x19....................................................65  
6.20. Timer2 Control Register (tm2c), IO address = 0x1c ..............................................................66  
6.21. Timer2 Scalar Register (tm2s), IO address = 0x17................................................................66  
6.22. Timer2 Counter Register (tm2ct), IO address = 0x1d............................................................67  
6.23. Timer2 Bound Register (tm2b), IO address = 0x09 ...............................................................67  
6.24. PWMG0 control Register (pwmg0c), IO address = 0x20 .......................................................67  
6.25. PWMG Clock Register (pwmgclk), IO address = 0x21 ..........................................................68  
6.26. PWMG0 Duty Value High Register (pwmg0dth), IO address = 0x22 .....................................68  
6.27. PWMG0 Duty Value Low Register (pwmg0dtl), IO address = 0x23 .......................................68  
6.28. PWMG Counter Upper Bound High Register (pwmgcubh ), IO address = 0x24 ....................68  
6.29. PWMG Counter Upper Bound Low Register (pwmgcubl ), IO address = 0x25 ......................68  
6.30. PWMG1 control Register (pwmg1c), IO address = 0x26 .......................................................69  
6.31. PWMG1 Duty Value High Register (pwmg1dth), IO address = 0x28 .....................................69  
6.32. PWMG1 Duty Value Low Register (pwmg1dtl), IO address = 0x29 .......................................69  
6.33. PWMG2 control Register (pwmg2c), IO address = 0x2C.......................................................70  
6.34. PWMG2 Duty Value High Register (pwmg2dth), IO address = 0x2E.....................................70  
6.35. PWMG2 Duty Value Low Register (pwmg2dtl), IO address = 0x2F .......................................70  
7. Instructions.........................................................................................................................71  
7.1.  
7.2.  
7.3.  
7.4.  
7.5.  
7.6.  
7.7.  
7.8.  
7.9.  
Data Transfer Instructions.....................................................................................................72  
Arithmetic Operation Instructions ..........................................................................................75  
Shift Operation Instructions...................................................................................................77  
Logic Operation Instructions..................................................................................................78  
Bit Operation Instructions......................................................................................................81  
Conditional Operation Instructions ........................................................................................82  
System control Instructions ...................................................................................................83  
Summary of Instructions Execution Cycle .............................................................................84  
Summary of affected flags by Instructions.............................................................................85  
7.10. BIT definition.........................................................................................................................85  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 5 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
8. Code Options......................................................................................................................86  
9. Special Notes......................................................................................................................87  
9.1.  
9.2.  
Warning ................................................................................................................................87  
Using IC................................................................................................................................87  
9.2.1. IO pin usage and setting............................................................................................87  
9.2.2. Interrupt.....................................................................................................................88  
9.2.3. System clock switching..............................................................................................88  
9.2.4. Watchdog..................................................................................................................88  
9.2.5. TIMER time out .........................................................................................................89  
9.2.6. IHRC .........................................................................................................................89  
9.2.7. LVR...........................................................................................................................89  
9.2.8. Programming Writing.................................................................................................89  
Using ICE..............................................................................................................................91  
9.3.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 6 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
Revision History:  
Revision  
Date  
Description  
0.01  
2017/07/21 1st version  
1. Amend the address and phone number of PADAUK Technology Co.,Ltd.  
2. Amend Section 1.3 CPU Features  
3. Amend Section 4.1 AC/DC Device Characteristics  
4. Amend Section 4.3 Typical ILRC frequency vs. VDD  
5. Amend Section 4.4 Typical IHRC frequency deviation vs. VDD  
6. Amend Section 4.5 Typical ILRC Frequency vs. Temperature  
7. Amend Section 4.6 Typical IHRC Frequency vs. Temperature  
8. Amend Section 4.7 Typical operating current vs. VDD @ system clock = ILRC/n  
9. Amend Section 4.8 Typical operating current vs. VDD @ system clock = IHRC/n  
10. Amend Section 4.9 Typical operating current vs. VDD @ system clock = 4MHz EOSC / n  
11. Amend Section 4.10 Typical operating current vs. VDD @ system clock = 32KHz EOSC / n  
12. Amend Section 4.11 Typical operating current vs. VDD @ system clock = 1MHz EOSC / n  
13. Amend Section 4.13 Typical IO input high/low threshold voltage (VIH/VIL)  
14. Amend Section 4.15 Typical power down current and power save current  
15. Delete Section 4.16 Timing charts for boot up conditions  
16. Amend Section 5.1. Program Memory – OTP  
17. Add Section 5.2.1 Timing charts for reset conditions  
18. Amend Table 2: Three oscillation circuits  
19. Amend Section 5.4.3. IHRC Frequency Calibration and System Clock  
20. Amend Section 5.4.4. External Crystal Oscillator  
21. Amend Section 5.4.5. System Clock and LVR level  
22. Amend Fig.3: Options of System Clock  
0.02  
2018/01/24  
23. Amend Section 5.5.2. Using the comparator  
24. Amend Section 5.5.3 Using the comparator and band-gap 1.20V  
25. Amend Section 5.10 Interrupt  
26. Amend Section 5.11.1 Power-Save mode  
27. Amend Section 5.11.2 Power-Down mode  
28. Amend Section 5.11.3 Wake-up  
29. Amend Section 6.3. Clock Mode Register  
30. Amend Section 6.7 MISC Register  
31. Amend Section 6.10. Port A Digital Input Enable Register  
32. Amend Section 6.11. Port B Digital Input Enable Register  
33. Delete Section 6.13. MISC2 Register  
34. Amend Section 6.14. Port A Pull-High Register  
35. Amend Section 6.19. Comparator Selection Register.  
36. Amend Section 6.20. Timer2 Control Register  
37. Amend Section 6.21. Timer2 Scalar Register  
38. Delete the Symbol “pc0” in Chapter 7  
39. Amend Chapter 8 Code Options  
40. Amend Section 9.2.1. IO pin usage and setting  
41. Amend Section 9.2.7 LVR  
42. Amend Section 9.2.9 BIT definition  
43. Amend Section 9.2.10. Programming Writing  
44. Amend Section 9.3. Using ICE  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 7 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
1. Amend Section 1.1 Special Features  
2. Open 32KHz EOSC mode  
3. Amend Section 5.4.4 External Crystal Oscillator  
4. Amend Section 5.7 8-bit Timer (Timer2) with PWM generation  
5. Add Fig.12Comparator controls the output of PWM waveform  
6. Amend Section 5.8.3 Equations for 11-bit PWM Generator  
7. Amend Section 5.10 Interrupt  
8. Amend Section 5.11.1 Power-Save mode  
9. Amend Table 6: Differences in wake-up sources between Power-Save mode and  
Power-Down mode  
1.03  
2018/11/13  
10. Amend Section 6.29 PWMG Counter Upper Bound Low Register  
11. Amend Section 7.8 Summary of Instructions Execution Cycle and delete 9.2.8  
12. Move Section 9.2.9 BIT definition to Section 7.10  
13. Updated the link in Section 9.1  
14. Amend Section 9.2.5 TIMER time out  
15. Amend Section 9.2.8 Programming Writing  
16. Amend Section 9.3 Using ICE  
1. Amend Section 1.2 System Features  
2. Amend SOP14 Pin Definition and Functional Description  
3. Amend Section 4.1 and 4.6  
4. Amend Section 5.2.1 Timing charts for reset conditions  
5. Amend Section 5.7, 5.7.1, 5.7.2, 5.7.3  
1.04  
2019/10/17 6. Amend Section 5.8.3 Equations for 11-bit PWM Generator  
7. Add Section 5.8.4 PWM Waveforms with Complementary Dead Zones  
8. Amend Section 5.11.1, 5.11.2, 5.11.3  
9. Amend Section 6.3 , 6.10, 6.11,  
10. Amend Chapter 8 Code Options  
11. Amend Section 9.2.8 Programming Writing  
1. Amend 4.1 AC/DC Device Characteristics: tWUP, tSBP  
2020/06/09 2. Amend Chapter 8  
1.05  
3. Amend 5.4.6, 5.8, 5.8.3, 5.12, 5.13.2, 6.18, 9.3  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 8 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
1. Features  
1.1. Special Features  
General purpose series  
Not supposed to use in AC RC step-down powered or high EFT requirement applications.  
PADAUK assumes no liability if such kind of applications can not pass the safety regulation tests.  
Operating temperature range: -20°C ~ 70°C  
1.2. System Features  
1.25KW OTP program memory  
80 Bytes data RAM  
One hardware 16-bit timer  
One hardware 8-bit timers with 6/7/8-bit PWM generation  
One set triple 11bit SuLED (Super LED) PWM generators and timers  
One hardware comparator  
14 IO pins with optional pull-high resistor  
Three different IO Driving capability group to meet different application requirements  
(1) PB3, PB5, PB7 Drive/ Sink Current= 7mA/30mA  
(2) Other IOs (except PA5) Drive/ Sink Current = 7mA/14mA  
(3) PA5 Sink Current = 4mA  
Every IO pin can be configured to enable wake-up function  
Clock sources: IHRC, ILRC & EOSC(XTAL mode)  
For every wake-up enabled IO, two optional wake-up speed are supported: normal and fast  
Eight levels of LVR: 4.5V, 3.5V, 3.0V, 2.7V, 2.5V, 2.2V, 2.0V and 1.8V  
Two selectable external interrupt pins: PA0/PB5, PB0/PA4  
Band-gap circuit to provide 1.20V reference voltage  
1.3. CPU Features  
One processing unit operating mode  
86 powerful instructions  
Most instructions are 1T execution cycle  
Programmable stack pointer to provide adjustable stack level  
Direct and indirect addressing modes for data access. Data memories are available for use as an index pointer  
of Indirect addressing mode  
IO space and memory space are independent  
1.4. Package Information  
PMS152-S16: SOP16 (150mil)  
PMS152-1J16A: QFN3*3-16pin (0.5mm pitch)  
PMS152-S14: SOP14 (150mil)  
PMS152-M10: MSOP10 (118mil)  
PMS152-S08: SOP8 (150mil)  
PMS152-U06: SOT23-6 (60mil)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 9 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
 
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
2. General Description and Block Diagram  
The PMS152 family is an IO-Type, fully static, OTP-based CMOS 8-bit microcontroller. It employs RISC  
architecture and all the instructions are executed in one cycle except that some instructions are two cycles that  
handle indirect memory access.  
1.25KW bits OTP program memory and 80 bytes data SRAM are inside, one hardware comparator is built inside  
the chip to compare signal between two pin or with either internal reference voltage VinternalR or internal band-gap  
reference voltage. PMS152 also provides three hardware timers: one 16-bit timer, one 8-bit timer with PWM  
generation, and one new triple 11-bit timer with SuLED PWM generation (PWMG0, PWMG1 & PWMG2) are  
included.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 10 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
3. Pin Definition and Functional Description  
PMS152-S16 (SOP16-150mil)  
PMS152-1J16A (QFN3*3-16P-0.5pitch)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 11 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
PMS152-S14 (SOP14-150mil)  
PMS152-M10 (MSOP10-118mil)  
PMS152-S08 (SOP8-150mil)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 12 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
PMS152-U06 (SOT23-6 60mil)  
Description  
Pin Type &  
Buffer Type  
Pin Name  
The functions of this pin can be:  
(1) Bit 7 of port A. It can be configured as digital input or two-state output, with  
pull-high resistor.  
IO  
PA7 /  
X1  
ST /  
(2) X1 is Crystal XIN when crystal oscillator is used.  
CMOS  
If this pin is used for crystal oscillator, bit 7 of padier register must be programmed “0”  
to avoid leakage current. This pin can be used to wake-up system during sleep mode;  
however, wake-up function is also disabled if bit 7 of padier register is “0”.  
The functions of this pin can be:  
(1) Bit 6 of port A. It can be configured as digital input or two-state output, with  
pull-high resistor.  
IO  
PA6 /  
X2  
ST /  
(2) X2 is Crystal XOUT when crystal oscillator is used.  
CMOS  
If this pin is used for crystal oscillator, bit 6 of padier register must be programmed “0”  
to avoid leakage current. This pin can be used to wake-up system during sleep mode;  
however, wake-up function is also disabled if bit 6 of padier register is “0”.  
The functions of this pin can be:  
(1) Bit 5 of port A. It can be configured as digital input or open-drain output, with  
pull-high resistor.  
PA5 /  
IO (OD)  
ST /  
PRSTB /  
PG2PWM  
(2) Hardware reset.  
(3) Output of 11-bit PWM generator PWMG2.  
CMOS  
This pin can be used to wake-up system during sleep mode; however, wake-up  
function is also disabled if bit 5 of padier register is “0”. Please put 33Ω resistor in  
series to have high noise immunity when this pin is in input mode.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 13 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
Pin Type &  
Buffer Type  
Pin Name  
Description  
The functions of this pin can be:  
(1) Bit 4 of port A. It can be configured as digital input or two-state output, with  
pull-high resistor.  
PA4 /  
CIN+ /  
(2) Plus input source of comparator.  
(3) Minus input source 1 of comparator.  
IO  
CIN1- /  
INT1A /  
PG1PWM  
(4) External interrupt line 1A. It can be used as an external interrupt line 1. Both rising  
edge and falling edge are accepted to request interrupt service and configurable  
by register setting  
ST /  
CMOS /  
Analog  
(5) Output of 11-bit PWM generator PWMG1.  
When this pin is configured as analog input, please use bit 4 of register padier to  
disable the digital input to prevent current leakage. The bit 4 of padier register can be  
set to “0” to disable digital input; wake-up from power-down by toggling this pin is also  
disabled.  
The functions of this pin can be:  
(1) Bit 3 of port A. It can be configured as digital input or two-state output, with  
pull-high resistor.  
PA3 /  
IO  
(2) Minus input source 0 of comparator.  
CIN0- /  
ST /  
(3) PWM output from Timer2  
TM2PWM /  
PG2PWM  
CMOS /  
Analog  
(4) Output of 11-bit PWM generator PWMG2  
When this pin is configured as analog input, please use bit 3 of register padier to  
disable the digital input to prevent current leakage. The bit 3 of padier register can be  
set to “0” to disable digital input; wake-up from power-down by toggling this pin is also  
disabled.  
The functions of this pin can be:  
(1) Bit 0 of port A. It can be configured as digital input or two-state output, with  
pull-high resistor.  
PA0 /  
CO /  
(2) Output of comparator.  
IO  
(3) Output of 11-bit PWM generator PWMG0.  
(4) External interrupt line 0. It can be used as an external interrupt line 0. Both rising  
edge and falling edge are accepted to request interrupt service and configurable  
by register setting  
ST /  
PG0PWM /  
INT0  
CMOS  
The bit 0 of padier register can be set to “0” to disable wake-up from power-down by  
toggling this pin.  
The functions of this pin can be:  
(1) Bit 7 of port B. It can be configured as digital input or two-state output, with  
pull-high resistor.  
IO  
PB7 /  
CIN5- /  
(2) Minus input source 5 of comparator.  
ST /  
(3) Output of 11-bit PWM generator PWMG1.  
CMOS /  
Analog  
PG1PWM  
When this pin is configured as analog input, please use bit 7 of register pbdier to  
disable the digital input to prevent current leakage. The bit 7 of pbdier register can  
be set to “0” to disable digital input; wake-up from power-down by toggling this pin is  
also disabled.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 14 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
Pin Type &  
Buffer Type  
Pin Name  
Description  
The functions of this pin can be:  
(1) Bit 6 of port B. It can be configured digital input or two-state output, with pull-high  
resistor.  
PB6 /  
CIN4- /  
IO  
(2) Minus input source 4 of comparator.  
ST /  
(3) Output of 11-bit PWM generator PWMG1.  
PG1PWM  
CMOS /  
Analog  
When this pin is configured as analog input, please use bit 6 of register pbdier to  
disable the digital input to prevent current leakage. The bit 6 of pbdier register can  
be set to “0” to disable digital input; wake-up from power-down by toggling this pin is  
also disabled.  
The functions of this pin can be:  
(1) Bit 5 of port B. It can be configured as digital input or two-state output, with  
pull-high resistor.  
PB5 /  
PG0PWM /  
INT0A  
IO  
(2) Output of 11-bit PWM generator PWMG0.  
ST /  
(3) External interrupt line 0A. It can be used as an external interrupt line 0. Both  
rising edge and falling edge are accepted to request interrupt service and  
configurable by register setting.  
CMOS  
The bit 5 of pbdier register can be set to “0” to disable digital input; wake-up from  
power-down by toggling this pin is also disabled.  
The functions of this pin can be:  
(1) Bit 4 of port B. It can be configured as digital input or two-state output, with  
pull-high resistor.  
PB4 /  
IO  
TM2PWM /  
PG0PWM  
ST /  
(2) PWM output from Timer2  
CMOS  
(3) Output of 11-bit PWM generator PWMG0.  
The bit 4 of pbdier register can be set to “0” to disable digital input; wake-up from  
power-down by toggling this pin is also disabled.  
The functions of this pin can be:  
(1) Bit 3 of port B. It can be configured as digital input or two-state output, with  
pull-high resistor.  
IO  
PB3 /  
ST /  
PG2PWM  
(2) Output of 11-bit PWM generator PWMG2  
CMOS  
The bit 3 of pbdier register can be set to “0” to disable digital input; wake-up from  
power-down by toggling this pin is also disabled.  
The functions of this pin can be:  
(1) Bit 2 of port B. It can be configured as digital input or two-state output, with  
pull-high resistor.  
PB2 /  
IO  
TM2PWM /  
PG2PWM  
ST /  
(2) PWM output from Timer2  
CMOS  
(3) Output of 11-bit PWM generator PWMG2  
The bit 2 of pbdier register can be set to “0” to disable digital input; wake-up from  
power-down by toggling this pin is also disabled.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 15 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
Pin Type &  
Buffer Type  
Pin Name  
Description  
The functions of this pin can be:  
IO  
Bit 1 of port B. It can be configured as digital input or two-state output, with pull-high  
resistor.  
PB1  
ST /  
CMOS  
The bit 1 of pbdier register can be set to “0” to disable digital input; wake-up from  
power-down by toggling this pin is also disabled.  
The functions of this pin can be:  
(1) Bit 0 of port B. It can be configured as digital input or two-state output, with  
pull-high resistor.  
IO  
PB0 /  
INT1  
(2) External interrupt line 1. It can be used as an external interrupt line 1. Both rising  
edge and falling edge are accepted to request interrupt service and configurable  
by register setting.  
ST /  
CMOS  
If bit 0 of pbdier register is set to “0” to disable digital input, wake-up from  
power-down by toggling this pin is also disabled.  
VDD  
GND  
VDD  
GND  
Positive power  
Ground  
Notes: IO: Input/Output; ST: Schmitt Trigger input; OD: Open Drain; Analog: Analog input pin  
CMOS: CMOS voltage level  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 16 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
4. Device Characteristics  
4.1. AC/DC Device Characteristics  
All data are acquired under the conditions of Ta= -20 oC ~ 70 oC, VDD=5.0V, fSYS =2MHz unless noted.  
Symbol  
Description  
Operating Voltage  
Min  
1.8*  
-5  
Typ  
Max  
5.5  
5
Unit  
V
Conditions (Ta=25oC)  
VDD  
5.0  
* Subject to LVR tolerance  
LVR% Low Voltage Reset Tolerance  
System clock (CLK)* =  
IHRC/2  
%
0
0
0
8M  
4M  
2M  
V
V
V
DD 3.5V  
DD 2.5V  
DD 1.8V  
fSYS  
IHRC/4  
Hz  
IHRC/8  
ILRC  
55K  
1.8*  
1
VDD = 3.0V  
VPOR  
IOP  
Power On Reset Voltage  
V
* Subject to LVR tolerance  
mA fSYS=IHRC/16=1MIPS@5.0V  
uA fSYS=ILRC=55KHz@3.3V  
uA fSYS= 0Hz, VDD =5.0V  
Operating Current  
15  
1
Power Down Current  
(by stopsys command)  
Power Save Current  
(by stopexe command)  
IPD  
0.6  
uA fSYS= 0Hz, VDD =3.3V  
VDD =5.0V; fSYS= ILRC  
IPS  
VIL  
5
uA  
V
Only ILRC module is enabled.  
Input low voltage for IO lines  
0
0.1 VDD  
VDD  
0.8 VDD  
0.7 VDD  
PA5  
VIH  
Input high voltage for IO lines  
V
VDD  
Others IO  
IO lines sink current  
PA7, PA6, PA4, PA3, PA0  
PB6, PB4, PB2, PB1, PB0  
PB7, PB5, PB3  
14  
IOL  
14  
mA VDD=5.0V, VOL=0.5V  
30  
PA5  
4
IO lines drive current  
PA5  
0
PA7, PA6, PA4, PA3, PA0  
PB7, PB6, PB5, PB4, PB3  
PB2, PB1, PB0  
-7  
-7  
-7  
IOH  
mA VDD=5.0V, VOH=4.5V  
VIN  
Input voltage  
-0.3  
VDD +0.3  
V
VDD +0.3VIN-0.3  
IINJ (PIN) Injected current on pin  
mA  
1
100  
200  
VDD =5.0V  
VDD =3.0V  
RPH  
VBG  
Pull-high Resistance  
KΩ  
V
DD =2.2V ~ 5.5V  
Band-gap Reference Voltage  
1.145*  
15.76*  
15.20*  
1.20*  
16*  
1.255*  
16.24*  
16.80*  
V
-20oC <Ta<70oC*  
25oC, VDD =2.2V~5.5V  
MHz  
VDD =2.2V~5.5V,  
Frequency of IHRC after  
16*  
fIHRC  
-20oC <Ta<70oC*  
VDD =1.8V~5.5V,  
-20oC <Ta<70oC  
calibration *  
13.60*  
16*  
18.40*  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 17 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
Symbol  
tINT  
Description  
Interrupt pulse width  
Min  
30  
Typ  
Max  
Unit  
ns  
Conditions (Ta=25oC)  
VDD = 5.0V  
VDR  
RAM data retention voltage*  
1.5  
V
in stop mode  
8k  
misc[1:0]=00 (default)  
misc[1:0]=01  
16k  
64k  
tWDT  
Watchdog timeout period  
TILRC  
misc[1:0]=10  
256k  
misc[1:0]=11  
Wake-up time period for fast  
wake-up  
45  
Where TILRC is the time  
period of ILRC  
tWUP  
TILRC  
Wake-up time period for slow  
wake-up  
3000  
System boot-up period from  
power-on for Slow boot-up  
System boot-up period from  
power-on for Fast boot-up  
External reset pulse width  
55  
ms  
us  
tSBP  
VDD =5V  
820  
tRST  
120  
0
us  
mV  
V
@ VDD =5V  
CPos  
CPcm  
CPspt  
Comparator offset*  
±10  
±20  
VDD -1.5  
500  
Comparator input common mode*  
Comparator response time**  
Stable time to change comparator  
mode  
100  
2.5  
20  
ns  
Both Rising and Falling  
VDD = 3.3V  
CPmc  
CPcs  
7.5  
us  
Comparator current consumption  
uA  
*These parameters are for design reference, not tested for each chip.  
4.2. Absolute Maximum Ratings  
Supply Voltage ............................................  
1.8V ~ 5.5V (Maximum Rating: 5.5V)  
*If VDD is over the maximum rating, it may lead to a permanent damage of IC.  
Input Voltage …………………………………..  
Operating Temperature ………………………  
Storage Temperature …………………………  
Junction Temperature ………………………..  
-0.3V ~ VDD + 0.3V  
-20°C ~ 70°C  
-50°C ~ 125°C  
150°C  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 18 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
4.3. Typical ILRC frequency vs. VDD  
4.4. Typical IHRC frequency deviation vs. VDD(calibrated to 16MHz)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 19 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
4.5. Typical ILRC Frequency vs. Temperature  
4.6. Typical IHRC Frequency vs. Temperature (calibrated to 16MHz)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 20 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
4.7. Typical operating current vs. VDD @ system clock = ILRC/n  
Conditions:  
ON: Band-gap, LVR, ILRC; OFF: IHRC, EOSC, T16, TM2;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
ILRC/n vs. VDD  
45  
ILRC/1  
40  
ILRC/4  
ILRC/16  
35  
30  
25  
20  
15  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
4.8. Typical operating current vs. VDD @ system clock = IHRC/n  
Conditions:  
ON: Band-gap, LVR, IHRC; OFF: ILRC, EOSC, T16, TM2;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
IHRC/n vs. VDD  
1.4  
1.2  
1
IHRC/2  
IHRC/4  
IHRC/8  
IHRC/16  
IHRC/32  
IHRC/64  
0.8  
0.6  
0.4  
0.2  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD (V)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 21 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
4.9. Typical operating current vs. VDD @ system clock = 4MHz EOSC / n  
Conditions:  
ON: Band-gap, LVR , EOSC; OFF:, IHRC, ILRC, T16, TM2;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
4.10.Typical operating current vs. VDD @ system clock = 32KHz EOSC / n  
Conditions:  
ON: Band-gap, LVR, EOSC; OFF: IHRC, ILRC, T16, TM2;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 22 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
4.11.Typical operating current vs. VDD @ system clock = 1MHz EOSC / n  
Conditions:  
ON: Band-gap, LVR, EOSC; OFF: IHRC, ILRC, T16, TM2;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
4.12.Typical IO driving current (IOH) and sink current (IOL)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 23 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
IoL vs. VDD  
40  
35  
30  
25  
20  
15  
10  
5
PA5  
PB3/PB5/PB7  
Others  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
4.13. Typical IO input high/low threshold voltage (VIH/VIL)  
Vih, Vil vs. VDD  
4.0  
3.5  
Vih Others  
Vih PA5  
Vil PA5  
Vil Others  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 24 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
4.14. Typical resistance of IO pull high device  
4.15. Typical power down current (IPD) and power save current (IPS)  
stopsys power down current vs. VDD  
0.7  
0.6  
0.5  
0.4  
0.3  
stopsys  
0.2  
0.1  
0
2.0 2.5  
3.0 3.5 4.0 4.5  
VDD (V)  
5.0 5.5  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 25 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
stopexe power down current vs. VDD  
3.5  
3
2.5  
2
1.5  
1
stopexe  
0.5  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 26 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
5. Functional Description  
5.1. Program Memory - OTP  
The OTP (One Time Programmable) program memory is used to store the program instructions to be executed.  
The OTP program memory may contains the data, tables and interrupt entry. After reset, the initial address  
0x000 is reserved for system using, so the program will start from 0x001 which is GOTO FPPA0 instruction  
usually. The interrupt entry is 0x10 if used, the last 16 addresses are reserved for system using, like checksum,  
serial number, etc. The OTP program memory for PMS152 is 1.25KW that is partitioned as Table 1. The OTP  
memory from address ‘0x4E6 to 0x4FF is for system using, address space from0x002 to 0x00F and from  
0x011 to 0x4E5 are user program spaces.  
Address  
0x000  
0x001  
0x002  
Function  
System Using  
GOTO FPPA0 instruction  
User program  
0x00F  
0x010  
0x011  
User program  
Interrupt entry address  
User program  
0x4E5  
0x4E6  
User program  
System Using  
0x4FF  
System Using  
Table 1: Program Memory Organization  
5.2. Boot Procedure  
POR (Power-On-Reset) is used to reset PMS152 when power up. The boot up time can be optional fast or  
normal. Time for fast boot-up is about 47 ILRC clock cycles whereas 2945 ILRC clock cycles for normal  
boot-up. Customer must ensure the stability of supply voltage after power up no matter which option is chosen,  
the power up sequence is shown in the Fig. 1 and tSBP is the boot up time.  
Please noted, during Power-On-Reset, the VDD must go higher than VPOR to boot-up the MCU.  
Fig.1: Power-Up Sequence  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 27 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
5.2.1. Timing charts for reset conditions  
LVR level  
SBP  
VDD  
LVR  
t
Program  
Execution  
Boot up from LVR detection  
VDD  
t
SBP  
WD  
Time Out  
Program  
Execution  
Boot up from Watch Dog Time Out  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 28 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
5.3. Data Memory - SRAM  
The access of data memory can be byte or bit operation. Besides data storage, the SRAM data memory is also  
served as data pointer of indirect access method and the stack memory.  
The stack memory is defined in the data memory. The stack pointer is defined in the stack pointer register; the  
depth of stack memory of each processing unit is defined by the user. The arrangement of stack memory fully  
flexible and can be dynamically adjusted by the user.  
For indirect memory access mechanism, the data memory is used as the data pointer to address the data byte.  
All the data memory could be the data pointer; it’s quite flexible and useful to do the indirect memory access.  
Since the data width is 8-bit, all the 80 bytes data memory of PMS152 can be accessed by indirect access  
mechanism.  
5.4. Oscillator and Clock  
There are three oscillator circuits provided by PMS152: external crystal oscillator (EOSC), internal high RC  
oscillator (IHRC) and internal low RC oscillator (ILRC), and these three oscillators are enabled or disabled by  
registers eoscr.7, clkmd.4 and clkmd.2 independently. User can choose one of these three oscillators as  
system clock source and use clkmd register to target the desired frequency as system clock to meet different  
applications.  
Oscillator Module  
EOSC  
Enable/Disable  
eoscr.7  
IHRC  
clkmd.4  
ILRC  
clkmd.2  
Table 2: Three oscillation circuits  
5.4.1. Internal High RC oscillator and Internal Low RC oscillator  
After boot-up, the IHRC and ILRC oscillators are enabled. The frequency of IHRC can be calibrated to  
eliminate process variation by ihrcr register; normally it is calibrated to 16MHz. Please refer to the  
measurement chart for IHRC frequency verse VDD and IHRC frequency verse temperature.  
The frequency will vary by process, supply voltage and temperature, please refer to DC specification and do  
not use for accurate timing application.  
5.4.2. Chip calibration  
The IHRC frequency and band-gap reference voltage may be different chip by chip due to manufacturing  
variation, PMS152 provide the IHRC frequency calibration to eliminate this variation, and this function can be  
selected when compiling user’s program and the command will be inserted into user’s program automatically.  
The calibration command is shown as below:  
.ADJUST_IC SYSCLK=IHRC/(p1), IHRC=(p2)MHz, VDD=(p3)V;  
Where, p1=2, 4, 8, 16, 32; In order to provide different system clock.  
p2=14 ~ 18; In order to calibrate the chip to different frequency, 16MHz is the usually one.  
p3=1.8 ~ 5.5; In order to calibrate the chip under different supply voltage.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 29 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
5.4.3. IHRC Frequency Calibration and System Clock  
During compiling the user program, the options for IHRC calibration and system clock are shown as Table 3:  
SYSCLK  
○ Set IHRC / 2  
Set IHRC / 4  
Set IHRC / 8  
Set IHRC / 16  
Set IHRC / 32  
○ Set ILRC  
CLKMD  
IHRCR  
Calibrated  
Calibrated  
Calibrated  
Description  
= 34h (IHRC / 2)  
= 14h (IHRC / 4)  
= 3Ch (IHRC / 8)  
IHRC calibrated to 16MHz, CLK=8MHz (IHRC/2)  
IHRC calibrated to 16MHz, CLK=4MHz (IHRC/4)  
IHRC calibrated to 16MHz, CLK=2MHz (IHRC/8)  
IHRC calibrated to 16MHz, CLK=1MHz (IHRC/16)  
IHRC calibrated to 16MHz, CLK=0.5MHz (IHRC/32)  
IHRC calibrated to 16MHz, CLK=ILRC  
= 1Ch (IHRC / 16) Calibrated  
= 7Ch (IHRC / 32) Calibrated  
= E4h (ILRC / 1)  
No change  
Calibrated  
○ Disable  
No Change IHRC not calibrated, CLK not changed  
Table 3: Options for IHRC Frequency Calibration  
Usually, .ADJUST_IC will be the first command after boot up, in order to set the target operating frequency  
whenever starting the system. The program code for IHRC frequency calibration is executed only one time that  
occurs in writing the codes into OTP memory; after then, it will not be executed again. If the different option for  
IHRC calibration is chosen, the system status is also different after boot. The following shows the status of  
PMS152 for different option:  
(1) .ADJUST_IC  
SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V  
After boot up, CLKMD = 0x34  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is enabled  
System CLK = IHRC/2 = 8MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(2) .ADJUST_IC  
SYSCLK=IHRC/4, IHRC=16MHz, VDD=3.3V  
After boot up, CLKMD = 0x14:  
IHRC frequency is calibrated to 16MHz@VDD=3.3V and IHRC module is enabled  
System CLK = IHRC/4 = 4MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(3) .ADJUST_IC  
SYSCLK=IHRC/8, IHRC=16MHz, VDD=2.5V  
After boot up, CLKMD = 0x3C:  
IHRC frequency is calibrated to 16MHz@VDD=2.5V and IHRC module is enabled  
System CLK = IHRC/8 = 2MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
SYSCLK=IHRC/16, IHRC=16MHz, VDD=2.5V  
(4) .ADJUST_IC  
After boot up, CLKMD = 0x1C:  
IHRC frequency is calibrated to 16MHz@VDD=2.5V and IHRC module is enabled  
System CLK = IHRC/16 = 1MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(5) .ADJUST_IC  
SYSCLK=IHRC/32, IHRC=16MHz, VDD=5V  
After boot up, CLKMD = 0x7C:  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is enabled  
System CLK = IHRC/32 = 500KHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 30 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
(6) .ADJUST_IC  
SYSCLK=ILRC, IHRC=16MHz, VDD=5V  
After boot up, CLKMD = 0XE4:  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is disabled  
System CLK = ILRC  
Watchdog timer is disabled, ILRC is enabled, PA5 is input mode  
(7) .ADJUST_IC  
DISABLE  
After boot up, CLKMD is not changed (Do nothing):  
IHRC is not calibrated  
System CLK = ILRC or IHRC/64 (by Boot-up_Time)  
Watchdog timer is enabled, ILRC is enabled, PA5 is in input mode,  
5.4.4. External Crystal Oscillator  
If crystal oscillator is used, a crystal or resonator is required between X1 and X2. Fig.2 shows the hardware  
connection under this application; the range of operating frequency of crystal oscillator can be from 32 KHz to  
4MHz, depending on the crystal placed on; higher frequency oscillator than 4MHz is NOT supported.  
(Select driving current for oscillator)  
eoscr[6:5]  
(Enable crystal oscillator)  
eoscr.7  
C1  
PA7/X1  
System clock = EOSC  
PA6/X2  
C2  
The values of C1 and C2 should depend on  
the specification of crystal.  
Fig.2: Connection of crystal oscillator  
Besides crystal, external capacitor and options of PMS152 should be fine tuned in eoscr (0x0a) register to  
have good sinusoidal waveform. The eoscr.7 is used to enable crystal oscillator module, eoscr.6 and eoscr.5  
are used to set the different driving current to meet the requirement of different frequency of crystal oscillator:  
eoscr.[6:5]=01 : Low driving capability, for lower frequency, ex: 32KHz crystal oscillator  
eoscr.[6:5]=10 : Middle driving capability, for middle frequency, ex: 1MHz crystal oscillator  
eoscr.[6:5]=11 : High driving capability, for higher frequency, ex: 4MHz crystal oscillator  
Table 4 shows the recommended values of C1 and C2 for different crystal oscillator; the measured start-up  
time under its corresponding conditions is also shown. Since the crystal or resonator had its own characteristic,  
the capacitors and start-up time may be slightly different for different type of crystal or resonator, please refer to  
its specification for proper values of C1 and C2.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 31 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
Measured  
Frequency  
C1  
C2  
Conditions  
(eoscr[6:5]=11)  
Start-up time  
6ms  
4MHz  
1MHz  
32KHz  
4.7pF  
10pF  
22pF  
4.7pF  
10pF  
22pF  
11ms  
(eoscr[6:5]=10)  
(eoscr[6:5]=01)  
450ms  
Table 4: Recommend values of C1 and C2 for crystal and resonator oscillators  
When using the crystal oscillator, user must pay attention to the stable time of oscillator after enabling it, the  
stable time of oscillator will depend on frequency “crystal type” external capacitor and supply voltage. Before  
switching the system to the crystal oscillator, user must make sure the oscillator is stable; the reference  
program is shown as below:  
void  
{
FPPA0 (void)  
. ADJUST_IC SYSCLK=IHRC/16, IHRC=16MHz, VDD=5V  
$ EOSCR  
Enable, 4MHz;  
// EOSCR = 0b110_00000;  
$ T16M  
EOSC, /1, BIT13;  
// while T16.Bit13 0 => 1, Intrq.T16 => 1  
// suppose crystal EOSC Is stable  
WORD  
count =  
=
0;  
stt16 count;  
Intrq.T16  
0;  
while(!Intrq.T16) { nop; };  
// count from 0x0000 to 0x2000, then trigger INTRQ.T16  
// switch system clock to EOSC;  
// disable IHRC  
clkmd  
=
0xB4;  
Clkmd.4 = 0;  
...  
}
Please notice that the crystal oscillator should be fully turned off before entering the power-down mode, in  
order to avoid unexpected wake-up event.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 32 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
5.4.5. System Clock and LVR level  
The clock source of system clock comes from EOSC, IHRC and ILRC, the hardware diagram of system clock  
in the PMS152 is shown as Fig.3.  
clkmd  
÷2, ÷4, ÷8,  
IHRC  
clock  
÷16, ÷32, ÷64  
System  
clock  
CLK  
M
U
X
EOSC  
clock  
÷1, ÷2, ÷4, ÷8  
ILRC  
÷1, ÷4, ÷16  
clock  
Fig.3: Options of System Clock  
User can choose different operating system clock depends on its requirement; the selected operating system  
clock should be combined with supply voltage and LVR level to make system stable. The LVR level will be  
selected during compilation. Please refer to Section 4.1.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 33 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
5.4.6. System Clock Switching  
After IHRC calibration, user may want to switch system clock to a new frequency or may switch system clock at  
any time to optimize the system performance and power consumption. Basically, the system clock of PMS152  
can be switched among IHRC, ILRC and EOSC by setting the clkmd register at any time; system clock will be  
the new one after writing to clkmd register immediately. Please notice that the original clock module can NOT  
be turned off at the same time as writing command to clkmd register. The examples are shown as below and  
more information about clock switching, please refer to the “Help” -> “Application Note” -> “IC Introduction” ->  
“Register Introduction” -> CLKMD”.  
Case 1: Switching system clock from ILRC to IHRC/2  
//  
//  
//  
//  
system clock is ILRC  
CLKMD.4  
CLKMD  
// CLKMD.2  
=
=
=
1;  
turn on IHRC first to improve anti-interference ability  
switch to IHRC/2, ILRC CAN NOT be disabled here  
if need, ILRC CAN be disabled at this time  
0x34  
0;  
Case 2: Switching system clock from ILRC to EOSC  
//  
//  
//  
system clock is ILRC  
CLKMD  
CLKMD.2  
=
=
0xA6;  
0;  
switch to IHRC, ILRC CAN NOT be disabled here  
ILRC CAN be disabled at this time  
Case 3: Switching system clock from IHRC/2 to ILRC  
//  
//  
//  
system clock is IHRC/2  
CLKMD  
CLKMD.4  
=
=
0xF4;  
0;  
switch to ILRC, IHRC CAN NOT be disabled here  
IHRC CAN be disabled at this time  
Case 4: Switching system clock from IHRC/2 to EOSC  
//  
//  
//  
system clock is IHRC/2  
CLKMD  
CLKMD.4  
=
=
0XB0;  
0;  
switch to EOSC, IHRC CAN NOT be disabled here  
IHRC CAN be disabled at this time  
Case 5: Switching system clock from IHRC/2 to IHRC/4  
//  
//  
system clock is IHRC/2, ILRC is enabled here  
switch to IHRC/4  
CLKMD  
=
0X14;  
Case 6: System may hang if it is to switch clock and turn off original oscillator at the same time  
//  
system clock is ILRC  
CLKMD  
=
0x30;  
//  
CAN NOT switch clock from ILRC to IHRC/2 and  
turn off ILRC oscillator at the same time  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 34 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
5.5. Comparator  
One hardware comparator is built inside the PMS152; Fig.4 shows its hardware diagram. It can compare  
signals between two pins or with either internal reference voltage Vinternal R or internal band-gap reference  
voltage. The two signals to be compared, one is the plus input and the other one is the minus input. For the  
minus input of comparator can be PA3, PA4, Internal band-gap 1.20 volt, PB6, PB7 or Vinternal R selected by bit  
[3:1] of gpcc register, and the plus input of comparator can be PA4 or Vinternal R selected by bit 0 of gpcc register.  
The output result can be enabled to output to PA0 directly, or sampled by Time2 clock (TM2_CLK) which  
comes from Timer2 module. The output can be also inversed the polarity by bit 4 of gpcc register, the  
comparator output can be used to request interrupt service.  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.5=1  
gpcs.4=0  
gpcs.4=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
Vinternal R  
gpcc[3:1]  
PA3/CIN0-  
PA4/CIN1-  
Band-gap  
000  
001 M  
gpcc.4  
To request interrupt  
gpcc.6  
010 U  
011 X  
100  
X
O
R
-
PB6/CIN4-  
PB7/CIN5-  
M
U
X
101  
+
D
F
F
To  
PA0  
0
Timer 2  
clock  
MUX  
1
PA4/CIN+  
gpcc.0  
TM2_CLK  
gpcc.5  
gpcs.7  
Fig.4: Hardware diagram of comparator  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 35 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
5.5.1 Internal reference voltage (Vinternal R  
)
The internal reference voltage Vinternal R is built by series resistance to provide different level of reference  
voltage, bit 4 and bit 5 of gpcs register are used to select the maximum and minimum values of Vinternal R  
and bit [3:0] of gpcs register are used to select one of the voltage level which is deivided-by-16 from the  
defined maximum level to minimum level. Fig.5 to Fig.8 shows four conditions to have different reference  
voltage Vinternal R. By setting the gpcs register, the internal reference voltage Vinternal R can be ranged from  
(1/32)*VDD to (3/4)*VDD.  
Case 1 : gpcs.5=0 & gpcs.4=0  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.4=0  
gpcs.4=1  
gpcs.5=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (3/4) VDD ~ (1/4) VDD + (1/32) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
1
4
(n+1)  
32  
V internal R  
=
*
VDD +  
*
VDD, n = gpcs[3:0] in decimal  
Fig.5: Vinternal R hardware connection if gpcs.5=0 and gpcs.4=0  
Case 2 : gpcs.5=0 & gpcs.4= 1  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.4=0  
gpcs.4=1  
gpcs.5=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (2/3) VDD ~ (1/24) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
(n+1)  
V internal R  
=
*
VDD, n = gpcs[3:0] in decimal  
24  
Fig.6: Vinternal R hardware connection if gpcs.5=0 and gpcs.4=1  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 36 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
Case 3 : gpcs.5=1 & gpcs.4= 0  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.4=0  
gpcs.4=1  
gpcs.5=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (3/5) VDD ~ (1/5) VDD + (1/40) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
1
5
(n+1)  
40  
V internal R  
=
*
VDD +  
*
VDD, n = gpcs[3:0] in decimal  
Fig.7: Vinternal R hardware connection if gpcs.5=1 and gpcs.4=0  
Case 4 : gpcs.5=1 & gpcs.4=1  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.4=0  
gpcs.4=1  
gpcs.5=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (1/2) VDD ~ (1/32) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
(n+1)  
V internal R  
=
*
VDD, n = gpcs[3:0] in decimal  
32  
Fig.8: Vinternal R hardware connection if gpcs.5=1 and gpcs.4=1  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 37 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
5.5.2  
Using the comparator  
Case I:  
Choosing PA3 as minus input and Vinternal R with (18/32)*VDD voltage level as plus input. Vinternal R is  
configured as the above Figure “gpcs[5:4] = 2b’00” and gpcs [3:0] = 4b’1001 (n=9) to have Vinternal R  
(1/4)*VDD + [(9+1)/32]*VDD = [(9+9)/32]*VDD = (18/32)*VDD.  
=
gpcs = 0b1_0_00_1001;  
gpcc = 0b1_0_0_0_000_0;  
padier = 0bxxxx_0_xxx;  
// Vinternal R = VDD*(18/32)  
// enable comp, - input: PA3, + input: Vinternal R  
// disable PA3 digital input to prevent leakage current  
or  
$ GPCS  
$ GPCC  
V
DD*18/32;  
Enable, N_PA3, P_R;  
// - input: N_xx+ input: P_R(Vinternal R  
)
PADIER = 0bxxxx_0_xxx;  
Case 2:  
Choosing Vinternal R as minus input with (22/40)*VDD voltage level and PA4 as plus input, the comparator  
result will be inversed and then output to PA0. Vinternal R is configured as the above Figure “gpcs[5:4] =  
2b’10” and gpcs [3:0] = 4b’1101 (n=13) to have Vinternal R = (1/5)*VDD + [(13+1)/40]*VDD = [(13+9)/40]*VDD  
(22/40)*VDD.  
=
gpcs = 0b1_0_10_1101;  
gpcc = 0b1_0_0_1_011_1;  
padier = 0bxxx_0_xxxx;  
// output to PA0, Vinternal R = VDD*(22/40)  
// Inverse output, - input: Vinternal R, + input: PA4  
// disable PA4 digital input to prevent leakage current  
or  
$ GPCS  
$ GPCC  
Output, VDD*22/40;  
Enable, Inverse, N_R, P_PA4; // - input: N_R(Vinternal R)+ input: P_xx  
PADIER = 0bxxx_0_xxxx;  
Note: When selecting output to PA0 output, GPCS will affect the PA3 output function in ICE. Though the IC  
is fine, be careful to avoid this error during emulation.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 38 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
5.5.3 Using the comparator and band-gap 1.20V  
The internal band-gap module can provide 1.20 volt, it can measure the external supply voltage level. The  
band-gap 1.20 volt is selected as minus input of comparator and Vinternal R is selected as plus input, the  
supply voltage of Vinternal R is VDD, the VDD voltage level can be detected by adjusting the voltage level of  
Vinternal R to compare with band-gap. If N (gpcs[3:0] in decimal) is the number to let Vinternal R closest to  
band-gap 1.20 volt, the supply voltage VDD can be calculated by using the following equations:  
For using Case 1: VDD = [ 32 / (N+9) ] * 1.20 volt ;  
For using Case 2: VDD = [ 24 / (N+1) ] * 1.20 volt ;  
For using Case 3: VDD = [ 40 / (N+9) ] * 1.20 volt ;  
For using Case 4: VDD= [ 32 / (N+1) ] * 1.20 volt ;  
Case 1:  
$ GPCS VDD*12/40;  
// 4.0V * 12/40 = 1.2V  
$ GPCC Enable, BANDGAP, P_R; // - input: BANDGAP, + input: P_R(Vinternal R  
)
….  
if (GPC_Out)  
// or GPCC.6  
{
//  
//  
when VDD4V  
}
else  
{
}
when VDD4V  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 39 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
5.6 16-bit Timer (Timer16)  
A 16-bit hardware timer (Timer16) is implemented in the PMS152, the clock sources of Timer16 may come  
from system clock (CLK), clock of external crystal oscillator (EOSC), internal high RC oscillator (IHRC),  
internal low RC oscillator (ILRC), PA4 and PA0, a multiplex is used to select clock output for the clock source.  
Before sending clock to the counter16, a pre-scaling logic with divided-by-1, 4, 16, and 64 is used for wide  
range counting. The 16-bit counter performs up-counting operation only, the counter initial values can be  
stored from memory by stt16 instruction and the counting values can be loaded to memory by ldt16 instruction.  
A selector is used to select the interrupt condition of Timer16, whenever overflow occurs, the Timer16 interrupt  
can be triggered. The hardware diagram of Timer16 is shown as Fig.9. The interrupt source of Timer16 comes  
from one of bit 8 to 15 of 16-bit counter, and the interrupt type can be rising edge trigger or falling edge trigger  
which is specified in the bit 5 of integs register (address 0x0C).  
PA4  
Fig.9: Hardware diagram of Timer16  
When using the Timer16, the syntax for Timer16 has been defined in the .INC file. There are three parameters  
to define the Timer16; 1st parameter is used to define the clock source of Timer16, 2nd parameter is used to  
define the pre-scalar and the last one is to define the interrupt source. The detail description is shown as  
below:  
T16M  
IO_RW  
0x06  
$ 7~5:STOP, SYSCLK, X, PA4_F, IHRC, EOSC, ILRC, PA0_F  
$ 4~3:/1, /4, /16, /64  
// 1st par.  
// 2nd par.  
// 3rd par.  
$ 2~0:BIT8, BIT9, BIT10, BIT11, BIT12, BIT13, BIT14, BIT15  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 40 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
User can define the parameters of T16M based on system requirement, some examples are shown below and  
more examples please refer to “Help Application Note IC Introduction Register Introduction T16M” in  
IDE utility.  
$ T16M SYSCLK, /64, BIT15;  
// choose (SYSCLK/64) as clock source, every 2^16 clock to set INTRQ.2=1  
// if using System Clock = IHRC / 2 = 8 MHz  
// SYSCLK/64 = 8 MHz/64 = 125KHz, about every 512 mS to generate INTRQ.2=1  
$ T16M EOSC, /1, BIT13;  
// choose (EOSC/1) as clock source, every 2^14 clocks to generate INTRQ.2=1  
// if EOSC=32768 Hz, 32768 Hz/(2^14) = 2Hz, every 0.5S to generate INTRQ.2=1  
$ T16M PA0_F, /1, BIT8;  
// choose PA0 as clock source, every 2^9 to generate INTRQ.2=1  
// receiving every 512 times PA0 to generate INTRQ.2=1  
$ T16M STOP;  
// stop Timer16 counting  
If Timer16 is operated at free running, the frequency of interrupt can be described as below:  
FINTRQ_T16M = Fclock source ÷ P ÷ 2n+1  
Where, F is the frequency of selected clock source to Timer16;  
P is the selection of t16m [4:3]; (1, 4, 16, 64)  
N is the nth bit selected to request interrupt service, for example: n=10 if bit 10 is selected.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 41 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
5.7 8-bit Timer (Timer2) with PWM generation  
An 8-bit hardware timer (Timer2) with PWM generation is implemented in the PMS152. Please refer to Fig.10  
shown the hardware diagram of Timer2, the clock sources of Timer2 may come from system clock, internal high  
RC oscillator (IHRC), internal low RC oscillator (ILRC), external crystal oscillator (EOSC), PA0, PB0, PA4 and  
comparator. Bit [7:4] of register tm2c are used to select the clock of Timer2. If IHRC is selected for Timer2 clock  
source, the clock sent to Timer2 will keep running when using ICE in halt state. The output of Timer2 can be  
sent to pin PB2, PA3 or PB4, depending on bit [3:2] of tm2c register. A clock pre-scaling module is provided with  
divided-by- 1, 4, 16, and 64 options, controlled by bit [6:5] of tm2s register; one scaling module with  
divided-by-1~31 is also provided and controlled by bit [4:0] of tm2s register. In conjunction of pre-scaling  
function and scaling function, the frequency of Timer2 clock (TM2_CLK) can be wide range and flexible.  
The Timer2 counter performs 8-bit up-counting operation only; the counter values can be set or read back by  
tm2ct register. The 8-bit counter will be clear to zero automatically when its values reach for upper bound  
register in period mode. The upper bound register is used to define the period of timer or duty of PWM. There  
are two operating modes for Timer2: period mode and PWM mode; period mode is used to generate periodical  
output waveform or interrupt event; PWM mode is used to generate PWM output waveform with optional 6-bit,  
7-bit or 8-bit PWM resolution, Fig.11 shows the timing diagram of Timer2 for both period mode and PWM mode.  
Fig.10: Timer2 hardware diagram  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 42 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
Time out and  
Time out and  
Time out and  
Interrupt request  
Interrupt request  
Interrupt request  
Counter  
0xFF  
bound  
Counter  
0xFF  
Counter  
0x3F  
bound  
bound  
Time  
Time  
Time  
Time  
Time  
Event Trigger  
Event Trigger  
Event Trigger  
Output-pin  
Output-pin  
Output-pin  
Time  
Mode 0 – Period Mode  
Mode 1 – 8-bit PWM Mode  
Mode 1 – 6-bit PWM Mode  
Fig.11: Timing diagram of Timer2 in period mode and PWM mode (tm2c.1=1)  
A Code Option GPC_PWM is for the applications which need the generated PWM waveform to be controlled by  
the comparator result. If the Code Option GPC_PWM is selected, the PWM output stops while the comparator  
output is 1 and then the PWM output turns on while the comparator output goes back to 0, as shown in Fig. 12.  
PWM Output  
Comparator  
Output  
Fig.12Comparator controls the output of PWM waveform  
5.7.1 Using the Timer2 to generate periodical waveform  
If periodical mode is selected, the duty cycle of output is always 50%; its frequency can be summarized as  
below:  
Frequency of Output = Y ÷ [2 × (K+1) × S1 × (S2+1) ]  
Where,  
Y = tm2c[7:4] : frequency of selected clock source  
K = tm2b[7:0] : bound register in decimal  
S1 = tm2s[6:5] : pre-scalar (S1=1, 4, 16, 64)  
S2 = tm2s[4:0] : scalar register in decimal (S2=0 ~ 31)  
Example 1:  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0000_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ [ 2 × (1271) × 1 × (01) ] = 31.25KHz  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 43 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
Example 2:  
Example 3:  
Example 4:  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s[7:0] = 0b0111_11111, S1=64 , S2 = 31  
frequency of output = 8MHz ÷ ( 2 × (1271) × 64 × (311) ) =15.25Hz  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0000_1111, K=15  
tm2s = 0b0000_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 2 × (151) × 1 × (01) ) = 250KHz  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0000_0001, K=1  
tm2s = 0b0000_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 2 × (11) × 1 × (01) ) =2MHz  
The sample program for using the Timer2 to generate periodical waveform from PA3 is shown as below:  
Void FPPA0 (void)  
{
. ADJUST_IC SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V  
tm2ct = 0x0;  
tm2b = 0x7f;  
tm2s = 0b0_00_00001;  
//  
//  
8-bit PWM, pre-scalar = 1, scalar = 2  
system clock, output=PA3, period mode  
tm2c = 0b0001_10_0_0;  
while(1)  
{
nop;  
}
}
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 44 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
5.7.2 Using the Timer2 to generate 8-bit PWM waveform  
If 8-bit PWM mode is selected, it should set tm2c[1]=1 and tm2s[7]=0, the frequency and duty cycle of  
output waveform can be summarized as below:  
Frequency of Output = Y ÷ [256 × S1 × (S2+1) ]  
Duty of Output = [( K1 ) ÷ 256]×100%  
Where, Y = tm2c[7:4] : frequency of selected clock source  
K = tm2b[7:0] : bound register in decimal  
S1= tm2s[6:5] : pre-scalar (S1=1, 4, 16, 64)  
S2 = tm2s[4:0] : scalar register in decimal (S2=0 ~ 31)  
Example 1:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0000_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 256 × 1 × (0+1) ) = 31.25KHz  
duty of output = [(127+1) ÷ 256] × 100% = 50%  
Example 2:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0111_11111, S1=64, S2=31  
frequency of output = 8MHz ÷ ( 256 × 64 × (31+1) ) = 15.25Hz  
duty of output = [(127+1) ÷ 256] × 100% = 50%  
Example 3:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b1111_1111, K=255  
tm2s = 0b0000_00000, S1=1, S2=0  
PWM output keep high  
duty of output = [(255+1) ÷ 256] × 100% = 100%  
Example 4:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0000_1001, K = 9  
tm2s = 0b0000_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 256 × 1 × (0+1) ) = 31.25KHz  
duty of output = [(9+1) ÷ 256] × 100% = 3.9%  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 45 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
The sample program for using the Timer2 to generate PWM waveform from PA3 is shown as below:  
void  
{
FPPA0 (void)  
.ADJUST_IC  
SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V  
wdreset;  
tm2ct = 0x0;  
tm2b = 0x7f;  
tm2s = 0b0_00_00001;  
//  
//  
8-bit PWM, pre-scalar = 1, scalar = 2  
system clock, output=PA3, PWM mode  
tm2c = 0b0001_10_1_0;  
while(1)  
{
nop;  
}
}
5.7.3 Using the Timer2 to generate 6-bit PWM waveform  
If 6-bit PWM mode is selected, it should set tm2c[1]=1 and tm2s[7]=1, the frequency and duty cycle of  
output waveform can be summarized as below:  
Frequency of Output = Y ÷ [64 × S1 × (S2+1) ]  
Duty of Output = [( K1 ) ÷ 64] × 100%  
Where, tm2c[7:4] = Y : frequency of selected clock source  
tm2b[7:0] = K : bound register in decimal  
tm2s[6:5] = S1 : pre-scalar (S1=1, 4, 16, 64)  
tm2s[4:0] = S2 : scalar register in decimal (S2=0 ~ 31)  
Users can set Timer2 to be 7-bit PWM mode instead of 6-bit mode by using TM2_Bit code option. At that  
time, the calculation factors of the above equations become 128 instead of 64.  
Example 1:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0001_1111, K=31  
tm2s = 0b1000_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 64 × 1 × (0+1) ) = 125KHz  
duty = [(31+1) ÷ 64] × 100% = 50%  
Example 2:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0001_1111, K=31  
tm2s = 0b1111_11111, S1=64, S2=31  
frequency of output = 8MHz ÷ ( 64 × 64 × (31+1) ) = 61.03 Hz  
duty of output = [(31+1) ÷ 64] × 100% = 50%  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 46 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
Example 3:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0011_1111, K=63  
tm2s = 0b1000_00000, S1=1, S2=0  
PWM output keep high  
duty of output = [(63+1) ÷ 64] × 100% = 100%  
Example 4:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0000_0000, K=0  
tm2s = 0b1000_00000, S1=1, S2=0  
frequency = 8MHz ÷ ( 64 × 1 × (0+1) ) = 125KHz  
duty = [(0+1) ÷ 64] × 100% =1.5%  
5.8 11-bit PWM Generators  
One set of triple 11-bit SuLED (Super LED) hardware PWM generator is implemented in the PMS152. It consists  
of three PWM generators (PWMG0, PWMG1 & PWMG2). Their individual outputs are listed as below:  
PWMG0 – PA0, PB4, PB5  
PWMG1 – PA4, PB6, PB7  
PWMG2 – PA3, PB2, PB3, PA5 (open drain output only)  
Note: PDK5S-I-S01/2(B) doesn’t support the function of the set of 11-bit SuLED hardware PWM generators.  
5.8.1 PWM Waveform  
A PWM output waveform (Fig.13) has a time-base (TPeriod = Time of Period) and a time with output high  
level (Duty Cycle). The frequency of the PWM output is the inverse of the period (fPWM = 1/TPeriod).  
Fig.13: PWM Output Waveform  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 47 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
5.8.2 Hardware Diagram  
Fig.14 shows the hardware diagram of the whole set of SuLED 11-bit hardware PWM generators. Those  
three PWM generators use a common Up-Counter and clock source selector to create the time base, and  
so the start points (the rising edge) of the PWM cycle are synchronized. The clock source can be IHRC or  
system clock. The PWM signal output pins that can be selected via pwmgxc register selection. The period  
of PWM waveform is defined by the common PWM upper bound high and low registers, and the duty cycle  
of individual PWM waveform is defined by the individual set in the PWM duty high and low registers.  
The additional OR and XOR logic of PWMG0 channel is used to create the complementary switching  
waveforms with dead zone control. Selecting code option GPC_PWM can also control the generated  
PWM waveform by the comparator result.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 48 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
Fig.14: Hardware diagram of whole set of triple SuLED 11-bit PWM generators  
0x7FF  
Counter_Bound[10:1]  
Duty[10:0]  
Time  
Time  
Output  
Timing Diagram for 11- bit PWM generation  
Output  
Fig.15: Output Timing Diagram of 11-bit PWM Generator  
5.8.3 Equations for 11-bit PWM Generator  
PWM Frequency FPWM = F clock source ÷ [ P × (CB10_1 + 1) ]  
PWM Duty(in time) = (1 / FPWM) × ( DB10_1 + DB0 × 0.5 + 0.5) ÷ (CB10_1 + 1)  
PWM Duty(in percentage) = ( DB10_1 + DB0 × 0.5 + 0.5) ÷ (CB10_1 + 1) × 100%  
Where,  
P = PWMGCLK [6:4]; pre-scalar P=1, 2, 4, 8, 16, 32, 64, 128  
DB10_1 = Duty_Bound[10:1] = {PWMGxDTH[7:0], PWMGxDTL[7:6]}, duty bound  
DB0 = Duty_Bound[0] = PWMGxDTL[5]  
CB10_1 = Counter_Bound[10:1] = {PWMGCUBH[7:0], PWMGCUBL[7:6]}, counter bound  
5.8.4 PWM Waveforms with Complementary Dead Zones  
Based on the specific 11 bit PWM architecture of PMS152, here we employ PWM2 output and PWM0 inverse  
output after PWM0 xor PWM1 to generate two PWM waveforms with complementary dead zones.  
Example program is as follows:  
#define dead_zone  
#define PWM_Pulse  
10  
50  
//  
//  
dead time = 10% * (1/PWM_Frequency) us  
set 50% as PWM duty cycle  
#define PWM_Pulse_1  
#define PWM_Pulse_2  
35  
60  
//  
//  
set 35% as PWM duty cycle  
set 60% as PWM duty cycle  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 49 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
#define switch_time  
400*2  
//  
adjusting switch time  
//Note: To avoid noise, switch_time must be a multiple of PWM period. In this example PWM period = 400us,  
// so switch_time = 400*2 us.  
void FPPA0 (void)  
{
.ADJUST_IC  
SYSCLK=IHRC/16, IHRC=16MHz, VDD=5V;  
//******* Generating fixed duty cycle waveform ************************  
//------ Set the counter upper bound and duty cycle -----------------  
PWMG0DTL  
PWMG0DTH  
=
=
0x00;  
PWM_Pulse + dead_zone;  
PWMG1DTL  
PWMG1DTH  
=
=
0x00;  
dead_zone;  
// After PWMG0 xor PWMG, PWM duty cycle=PWM_Pulse%  
PWMG2DTL  
PWMG2DTH  
=
0x00;  
=
PWM_Pulse + dead_zone*2;  
PWMGCUBL  
PWMGCUBH  
=
=
0x00;  
100;  
//---- Configure clock and pre-scalar ------------------  
$ PWMGCLK Enable, /1, sysclk;  
//------- Output control -----------------------------  
$ PWMG0CEnable,Inverse,PWM_Gen,PA0,gen_xor;  
//  
//  
//  
//  
After PWMG0 xor PWMG,  
output the inversed waveform through PA0  
disable PWMG1 output  
$ PWMG1C Enable, PWMG1,disable;  
$ PWMG2C  
Enable, PA3;  
output PWMG2 waveform through PA3  
while(1)  
{
//******** Switching duty cycle ********************************  
// To avoid the possible instant disappearance of dead zone, user should comply with the following  
// instruction sequence.  
// When increase the duty cycle: 50%/60%  
35%  
PWMG0DTL =  
PWMG0DTH =  
PWMG2DTL =  
PWMG2DTH =  
0x00;  
PWM_Pulse_1 + dead_zone;  
0x00;  
PWM_Pulse_1 + dead_zone*2;  
.delay switch_time  
// When decrease the duty cycle: 35% 60%  
PWMG2DTL =  
PWMG2DTH =  
PWMG0DTL =  
PWMG0DTH =  
0x00;  
PWM_Pulse_2 + dead_zone*2;  
0x00;  
PWM_Pulse_2 + dead_zone;  
.delay  
switch_time  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 50 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
}
}
The following figures show the waveforms at different condition.  
1. The PWM waveform in a fixed-duty cycle:  
PWM2  
Dead Zone  
PWM0  
Fig.16: Complementary PWM waveform with dead zones  
2. PWM waveform when switching two duty cycles:  
PWM2  
Dead Zone  
35%  
60%  
35%  
PWM0  
Fig.17: Complementary PWM waveform with dead zones  
User can find that above example only provides dead zone where PWM are both in high. If need dead zone  
where PWM are both in low, you can realize it by resetting each control register’s Inverse like:  
$ PWMG0C Enable,PWM_Gen,PA0,gen_xor;  
$ PWMG2C Enable, Inverse, PA3;.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 51 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
5.9 WatchDog Timer  
The watchdog timer (WDT) is a counter with clock coming from ILRC. WDT can be cleared by power-on-reset  
or by command wdreset at any time. There are four different timeout periods of watchdog timer to be chosen  
by setting the misc register, it is:  
8k ILRC clocks period if register misc[1:0]=00 (default)  
16k ILRC clocks period if register misc[1:0]=01  
64k ILRC clocks period if register misc[1:0]=10  
256k ILRC clocks period if register misc[1:0]=11  
The frequency of ILRC may drift a lot due to the variation of manufacture, supply voltage and temperature; user  
should reserve guard band for save operation. Besides, the watchdog period will also be shorter than expected  
after Reset or Wakeup events. It is suggested to clear WDT by wdreset command after these events to ensure  
enough clock periods before WDT timeout.  
When WDT is timeout, PMS152 will be reset to restart the program execution. The relative timing diagram of  
watchdog timer is shown as Fig.18.  
VDD  
t
SBP  
WD  
Time Out  
Program  
Execution  
Watch Dog Time Out Sequence  
Fig.18: Sequence of Watch Dog Time Out  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 52 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
5.10. Interrupt  
There are eight interrupt lines for PMS152:  
External interrupt PA0/PB5  
External interrupt PB0/PA4  
Timer16 interrupt  
GPC interrupt  
PWMG interrupt  
Timer2 interrupt  
Every interrupt request line has its own corresponding interrupt control bit to enable or disable it; the hardware  
diagram of interrupt function is shown as Fig.19. All the interrupt request flags are set by hardware and cleared  
by writing intrq register. When the request flags are set, it can be rising edge, falling edge or both, depending  
on the setting of register integs. All the interrupt request lines are also controlled by engint instruction (enable  
global interrupt) to enable interrupt operation and disgint instruction (disable global interrupt) to disable it.  
The stack memory for interrupt is shared with data memory and its address is specified by stack register sp.  
Since the program counter is 16 bits width, the bit 0 of stack register sp should be kept 0. Moreover, user can  
use pushaf / popaf instructions to store or restore the values of ACC and flag register to / from stack memory.  
Since the stack memory is shared with data memory, the stack position and level are arranged by the compiler  
in Mini-C project. When defining the stack level in ASM project, users should arrange their locations carefully to  
prevent address conflicts.  
Fig.19: Hardware diagram of interrupt controller  
Once the interrupt occurs, its operation will be:  
The program counter will be stored automatically to the stack memory specified by register sp.  
New sp will be updated to sp+2.  
Global interrupt will be disabled automatically.  
The next instruction will be fetched from address 0x010.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 53 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
During the interrupt service routine, the interrupt source can be determined by reading the intrq register.  
Note: Even if INTEN=0, INTRQ will be still triggered by the interrupt source.  
After finishing the interrupt service routine and issuing the reti instruction to return back, its operation will be:  
The program counter will be restored automatically from the stack memory specified by register sp.  
New sp will be updated to sp-2.  
Global interrupt will be enabled automatically.  
The next instruction will be the original one before interrupt.  
User must reserve enough stack memory for interrupt, two bytes stack memory for one level interrupt and four  
bytes for two levels interrupt. And so on, two bytes stack memory is for pushaf. For interrupt operation, the  
following sample program shows how to handle the interrupt, noticing that it needs four bytes stack memory to  
handle one level interrupt and pushaf.  
void  
{
FPPA0 (void)  
...  
$
INTEN PA0;  
// INTEN =1; interrupt request when PA0 level changed  
// clear INTRQ  
INTRQ  
ENGINT  
...  
=
0;  
// global interrupt enable  
DISGINT  
...  
// global interrupt disable  
}
void  
{
Interrupt (void)  
// interrupt service routine  
PUSHAF  
// store ALU and FLAG register  
// If INTEN.PA0 will be opened and closed dynamically,  
// user can judge whether INTEN.PA0 =1 or not.  
// Example: If (INTEN.PA0 && INTRQ.PA0) {…}  
// If INTEN.PA0 is always enable,  
// user can omit the INTEN.PA0 judgement to speed up interrupt service routine.  
If (INTRQ.PA0)  
{
// Here for PA0 interrupt service routine  
INTRQ.PA0 = 0;  
// Delete corresponding bit (take PA0 for example)  
...  
}
...  
// X : INTRQ = 0;  
// It is not recommended to use INTRQ = 0 to clear all at the end of the  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 54 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
// interrupt service routine.  
// It may accidentally clear out the interrupts that have just occurred  
// and are not yet processed.  
POPAF  
}
// restore ALU and FLAG register  
5.11. Power-Save and Power-Down  
There are three operational modes defined by hardware: ON mode, Power-Save mode and Power-Down  
modes. ON mode is the state of normal operation with all functions ON, Power-Save mode (“stopexe”) is the  
state to reduce operating current and CPU keeps ready to continue, Power-Down mode (“stopsys”) is used to  
save power deeply. Therefore, Power-Save mode is used in the system which needs low operating power with  
wake-up occasionally and Power-Down mode is used in the system which needs power down deeply with  
seldom wake-up. Table 5 shows the differences in oscillator modules between Power-Save mode (“stopexe”)  
and Power-Down mode (“stopsys”).  
Differences in oscillator modules between STOPSYS and STOPEXE  
IHRC  
Stop  
ILRC  
Stop  
EOSC  
Stop  
STOPSYS  
STOPEXE  
No Change  
No Change  
No Change  
Table 5: Differences in oscillator modules between STOPSYS and STOPEXE  
5.11.1 Power-Save mode (“stopexe”)  
Using “stopexe” instruction to enter the Power-Save mode, only system clock is disabled, remaining all  
the oscillator modules active. For CPU, it stops executing; however, for Timer16, counter keep counting  
if its clock source is not the system clock. Wake-up from input pins can be considered as a continuation  
of normal execution, the detail information for Power-Save mode shows below:  
IHRC and EOSC oscillator modules: No change, keep active if it was enabled.  
ILRC oscillator modules: must remain enabled, need to start with ILRC when be wakening up.  
System clock: Disable, therefore, CPU stops execution.  
OTP memory is turned off.  
Timer counter: Stop counting if its clock source is system clock or the corresponding oscillator module is  
disabled; otherwise, it keeps counting. (The Timer contains TM16, TM2, PWMG0, PWMG1, PWMG2.)  
Wake-up sources:  
a. IO toggle wake-up: IO toggling in digital input mode (PxC bit is 1 and PxDIER bit is 1)  
b. Timer wake-up: If the clock source of Timer is not the SYSCLK, the system will be awakened when  
the Timer counter reaches the set value.  
c. Comparator wake-up: It need setting GPCC.7=1 and GPCS.6=1 to enable the comparator wake-up  
function at the same time.  
An example shows how to use Timer16 to wake-up from “stopexe”:  
$ T16M  
ILRC, /1, BIT8  
// Timer16 setting  
WORD  
STT16  
count =  
count;  
0;  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 55 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
stopexe;  
The initial counting value of Timer16 is zero and the system will be woken up after the Timer16 counts 256  
ILRC clocks.  
5.11.2 Power-Down mode (“stopsys”)  
Power-Down mode is the state of deeply power-saving with turning off all the oscillator modules. By using  
the “stopsys” instruction, this chip will be put on Power-Down mode directly. It is recommend to set  
GPCC.7=0 to disable the comparator before the command “stopsys”. The following shows the internal  
status of PMS152 detail when “stopsys” command is issued:  
All the oscillator modules are turned off.  
OTP memory is turned off.  
The contents of SRAM and registers remain unchanged.  
Wake-up sources: IO toggle in digital mode (PxDIER bit is 1)  
Wake-up from input pins can be considered as a continuation of normal execution. To minimize power  
consumption, all the I/O pins should be carefully manipulated before entering power-down mode. The  
reference sample program for power down is shown as below:  
CLKMD  
CLKMD.4  
=
=
0xF4;  
0;  
//  
//  
Change clock from IHRC to ILRC  
disable IHRC  
while (1)  
{
STOPSYS;  
//  
//  
//  
enter power-down  
if (…) break;  
if wakeup happen and check OK, then return to high speed,  
else stay in power-down mode again  
}
CLKMD  
=
0x34;  
//  
Change clock from ILRC to IHRC/2  
5.11.3 Wake-up  
After entering the Power-Down or Power-Save modes, the PMS152 can be resumed to normal operation  
by toggling IO pins. Wake-up from timer are available for Power-Save mode ONLY. Table 6 shows the  
differences in wake-up sources between STOPSYS and STOPEXE.  
Differences in wake-up sources between STOPSYS and STOPEXE  
IO Toggle  
Yes  
Timer wake-up  
STOPSYS  
STOPEXE  
No  
Yes  
Yes  
Table 6: Differences in wake-up sources between Power-Save mode and Power-Down mode  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 56 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
When using the IO pins to wake-up the PMS152, registers pxdier should be properly set to enable the  
wake-up function for every corresponding pin. The time for normal wake-up is about 3000 ILRC clocks  
counting from wake-up event; fast wake-up can be selected to reduce the wake-up time by misc register,  
and the time for fast wake-up is about 45 ILRC clocks from IO toggling.  
Suspend mode  
STOPEXE suspend  
or  
Wake-up mode  
Wake-up time (tWUP) from IO toggle  
45 * TILRC,  
Where TILRC is the time period of ILRC  
Fast wake-up  
STOPSYS suspend  
STOPEXE suspend  
or  
3000 * TILRC  
,
Normal wake-up  
Where TILRC is the clock period of ILRC  
STOPSYS suspend  
Table 7: Differences in wake-up time between Fast/Normal wake-up  
Please notice that when Code Option is set to Fast boot-up, no matter which wake-up mode is selected in  
misc.5, the wake-up mode will be forced to be FAST. If Normal boot-up is selected, the wake-up mode is  
determined by misc.5.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 57 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
5.12 IO Pins  
All the pins can be independently set into two states output or input by configuring the data registers (pa, pb),  
control registers (pac, pbc) and pull-high resistor (paph, pbph). All these pins have Schmitt-trigger input  
buffer and output driver with CMOS level. When it is set to output low, the pull-high resistor is turned off  
automatically. If user wants to read the pin state, please notice that it should be set to input mode before  
reading the data port; if user reads the data port when it is set to output mode, the reading data comes from  
data register, NOT from IO pad. As an example, Table 8 shows the configuration table of bit 0 of port A. The  
hardware diagram of IO buffer is also shown as Fig.20.  
pa.0 pac.0 paph.0  
Description  
X
X
0
1
1
0
0
1
1
1
0
1
X
0
1
Input without pull-high resistor  
Input with pull-high resistor  
Output low without pull-high resistor  
Output high without pull-high resistor  
Output high with pull-high resistor  
Table 8: PA0 Configuration Table  
RD pull-high latch  
WR pull-high latch  
D
D
D
Q
(weak P -MOS)  
pull-high  
latch  
Q
Q1  
Data  
latch  
PAD  
WR data latch  
RD control latch  
Q
WR control latch  
Control  
latch  
M
U
X
RD Port  
Data Bus  
padier.x or pbdier.x  
Wakeup module  
Interrupt module  
Analog Module  
(PA0,PB5,PB0,PA4)  
Fig.20: Hardware diagram of IO buffer  
Other than PA5, all the IO pins have the same structure; PA5 can be open-drain ONLY when setting to output  
mode (without Q1). The corresponding bits in registers padier / pbdier should be set to low to prevent leakage  
current for those pins are selected to be analog function. When PMS152 is put in power-down or power-save  
mode, every pin can be used to wake-up system by toggling its state. Therefore, those pins needed to  
wake-up system must be set to input mode and set the corresponding bits of registers padier and pbdier to  
high. The same reason, padier.0 should be set high when PA0 is used as external interrupt pin, pbdier.0 for  
PB0, padier.4 for PA4 and pbdier.5 for PB5.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 58 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
5.13 Reset and LVR  
5.13.1 Reset  
There are many causes to reset the PMS152, once reset is asserted, most of all the registers in PMS152  
will be set to default values, system should be restarted once abnormal cases happen, or by jumping  
program counter to address 0x0. The data memory is in uncertain state when reset comes from power-up  
and LVR; however, the content will be kept when reset comes from PRSTB pin or WDT timeout.  
5.13.2 LVR reset  
By code option, there are 8 different levels of LVR for reset ~ 4.5V, 3.5V, 3.0V, 2.7V, 2.5V, 2.2V, 2.0V and  
1.8V; usually, user selects LVR reset level to be in conjunction with operating frequency and supply voltage.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 59 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
6. IO Registers  
6.1. ACC Status Flag Register (flag), IO address = 0x00  
Bit Reset  
R/W  
-
Description  
7 - 4  
3
-
Reserved. Please do not use.  
0
R/W  
OV (Overflow Flag). This bit is set to be 1 whenever the sign operation is overflow.  
AC (Auxiliary Carry Flag). There are two conditions to set this bit, the first one is carry out  
of low nibble in addition operation and the other one is borrow from the high nibble into low  
nibble in subtraction operation.  
2
0
R/W  
C (Carry Flag). There are two conditions to set this bit, the first one is carry out in addition  
operation, and the other one is borrow in subtraction operation. Carry is also affected by  
shift with carry instruction.  
1
0
0
0
R/W  
R/W  
Z (Zero Flag). This bit will be set when the result of arithmetic or logic operation is zero;  
Otherwise, it is cleared.  
6.2. Stack Pointer Register (sp), IO address = 0x02  
Bit  
Reset  
R/W  
Description  
Stack Pointer Register. Read out the current stack pointer, or write to change the stack  
pointer.  
7 - 0  
-
R/W  
6.3. Clock Mode Register (clkmd), IO address = 0x03  
Bit Reset  
R/W  
Description  
System clock (CLK) selection:  
Type 0, clkmd[3]=0  
Type 1, clkmd[3]=1  
000: IHRC÷4  
001: IHRC÷2  
010: reserved  
011: EOSC÷4  
100: EOSC÷2  
101: EOSC  
000: IHRC÷16  
001: IHRC÷8  
010: ILRC÷16 (ICE does NOT Support.)  
011: IHRC÷32  
7 - 5  
111  
R/W  
100: IHRC÷64  
101: EOSC÷8  
110: ILRC÷4  
11x: reserved  
111: ILRC (default)  
4
3
1
0
R/W Internal High RC Enable. 0 / 1: disable / enable  
Clock Type Select. This bit is used to select the clock type in bit [7:5].  
0 / 1: Type 0 / Type 1  
R/W  
R/W  
Internal Low RC Enable. 0 / 1: disable / enable  
If ILRC is disabled, watchdog timer is also disabled.  
2
1
1
0
1
0
R/W Watch Dog Enable. 0 / 1: disable / enable  
R/W Pin PA5/PRSTB function. 0 / 1: PA5 / PRSTB  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 60 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
6.4. Interrupt Enable Register (inten), IO address = 0x04  
Bit  
Reset  
R/W  
Description  
7
0
R/W  
Reserved  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
R/W Enable interrupt from Timer2. 0 / 1: disable / enable  
R/W Enable interrupt from PWMG. 0 / 1: disable / enable  
R/W  
Enable interrupt from comparator. 0 / 1: disable / enable  
R/W Reserved  
R/W Enable interrupt from Timer16 overflow. 0 / 1: disable / enable  
R/W Enable interrupt from PB0/PA4. 0 / 1: disable / enable  
R/W Enable interrupt from PA0/PB5. 0 / 1: disable / enable  
6.5. Interrupt Request Register (intrq), IO address = 0x05  
Bit  
Reset  
R/W  
Description  
7
-
R/W Reserved  
Interrupt Request from Timer2, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
6
5
-
-
R/W  
R/W  
R/W  
Interrupt Request from PWMG, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
Interrupt Request from comparator, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
4
3
2
-
-
-
R/W Reserved  
Interrupt Request from Timer16, this bit is set by hardware and cleared by software.  
R/W  
R/W  
R/W  
0 / 1: No request / Request  
Interrupt Request from pin PB0/PA4, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
1
0
-
-
Interrupt Request from pin PA0/PB5, this bit is set by hardware and cleared by software.  
0 / 1: No Request / request  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 61 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
6.6. Timer16 mode Register (t16m), IO address = 0x06  
Bit  
Reset R/W  
Description  
Timer16 Clock source selection.  
000: disable  
001: CLK (system clock)  
010: reserved  
7 - 5  
000  
R/W 011: PA4 falling edge (from external pin)  
100: IHRC  
101: EOSC  
110: ILRC  
111: PA0 falling edge (from external pin)  
Timer16 clock pre-divider.  
00: ÷1  
4 - 3  
00  
R/W 01: ÷4  
10: ÷16  
11: ÷64  
Interrupt source selection. Interrupt event happens when the selected bit status is  
changed.  
0 : bit 8 of Timer16  
1 : bit 9 of Timer16  
2 : bit 10 of Timer16  
R/W  
2 - 0  
000  
3 : bit 11 of Timer16  
4 : bit 12 of Timer16  
5: bit 13 of Timer16  
6: bit 14 of Timer16  
7: bit 15 of Timer16  
6.7. MISC Register (misc), IO address = 0x08  
Bit  
Reset R/W  
Description  
Reserved. (keep 0 for future compatibility)  
7 - 6  
-
-
Enable fast Wake up. Fast wake-up is NOT supported when EOSC is enabled.  
0: Normal wake up.  
5
0
WO  
The wake-up time is 3000 ILRC clocks (Not for fast boot-up)  
1: Fast wake up.  
The wake-up time is 45 ILRC clocks.  
Reserved.  
4
3
-
-
-
-
Reserved.  
Disable LVR function.  
2
0
WO  
0 / 1 : Enable / Disable  
Watch dog time out period  
00: 8k ILRC clock period  
1 - 0  
00  
WO 01: 16k ILRC clock period  
10: 64k ILRC clock period  
11: 256k ILRC clock period  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 62 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
6.8. External Oscillator setting Register (eoscr), IO address = 0x0a  
Bit  
Reset R/W  
Description  
7
0
WO Enable external crystal oscillator. 0 / 1 : Disable / Enable  
External crystal oscillator selection.  
00 : reserved  
6 - 5  
00  
WO 01 : Low driving capability, for lower frequency, ex: 32KHz crystal oscillator  
10 : Middle driving capability, for middle frequency, ex: 1MHz crystal oscillator  
11 : High driving capability, for higher frequency, ex: 4MHz crystal oscillator  
4 - 1  
0
-
0
-
Reserved. Please keep 0 for future compatibility.  
WO Power-down the Band-gap and LVR hardware modules. 0 / 1: normal / power-down.  
6.9. Interrupt Edge Select Register (integs), IO address = 0x0c  
Bit  
Reset  
R/W  
Description  
7 - 5  
-
-
Reserved.  
Timer16 edge selection.  
4
0
WO 0 : rising edge of the selected bit to trigger interrupt  
1 : falling edge of the selected bit to trigger interrupt  
PB0/PA4 edge selection.  
00: both rising edge and falling edge of the selected bit to trigger interrupt  
WO 01: rising edge of the selected bit to trigger interrupt  
10: falling edge of the selected bit to trigger interrupt  
11: reserved.  
3 - 2  
00  
PA0/PB5 edge selection.  
00: both rising edge and falling edge of the selected bit to trigger interrupt  
WO 01: rising edge of the selected bit to trigger interrupt  
10: falling edge of the selected bit to trigger interrupt  
11: reserved.  
1 - 0  
00  
6.10. Port A Digital Input Enable Register (padier), IO address = 0x0d  
Bit  
Reset  
R/W  
Description  
Enable PA7 digital input and wake-up event. 1 / 0: enable / disable.  
7
1
WO This bit should be set to low to prevent leakage current when external crystal oscillator is  
used. If this bit is set to low, PA7 can NOT be used to wake-up the system.  
Enable PA6 digital input and wake-up event. 1 / 0: enable / disable.  
6
5
1
1
WO This bit should be set to low to prevent leakage current when external crystal oscillator is  
used. If this bit is set to low, PA6 can NOT be used to wake-up the system.  
Enable PA5 digital input and wake-up event. 1 / 0: enable / disable.  
WO  
This bit can be set to low to disable wake-up from PA5 toggling.  
Enable PA4 digital input, wake-up event and interrupt request. 1 / 0: enable / disable.  
This bit should be set to low when PA4 is assigned as comparator input to prevent leakage  
current. If this bit is set to low, PA4 can NOT be used to wake-up the system and interrupt  
4
1
WO  
from this pin is also disabled.  
Enable PA3 digital input and wake-up event. 1 / 0: enable / disable.  
WO This bit should be set to low when PA3 is assigned as comparator input to prevent leakage  
current. If this bit is set to low, PA3 can NOT be used to wake-up the system.  
WO Reserved  
Enable PA0 digital input and wake-up event and interrupt request. 1 / 0: enable / disable.  
WO This bit can be set to low to disable wake-up from PA0 toggling and interrupt request from  
this pin.  
3
2 - 1  
0
1
11  
1
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 63 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
6.11. Port B Digital Input Enable Register (pbdier), IO address = 0x0e  
Bit  
Reset R/W  
Description  
Enable PB7~PB6 digital input and wake-up event. 1 / 0: enable / disable.  
7 - 6  
11  
1
WO The bit should be set to low when the pad is assigned as comparator input to prevent  
leakage current. If the bit is set to low, the pad can NOT be used to wake-up the system.  
Enable PB5 digital input and wake-up event and interrupt request. 1 / 0: enable / disable.  
This bit can be set to low to disable wake-up from PB5 toggling and interrupt request from  
this pin.  
5
4 - 1  
0
WO  
Enable PB4~PB1 digital input and wake-up event. 1 / 0: enable / disable.  
1111  
1
WO The bit should be set to low when the pad is assigned as comparator input to prevent  
leakage current. If the bit is set to low, the pad can NOT be used to wake-up the system.  
Enable PB0 digital input and wake-up event and interrupt request. 1 / 0: enable / disable.  
This bit can be set to low to disable wake-up from PB0 toggling and interrupt request from  
this pin.  
WO  
6.12. Port A Data Register (pa), IO address = 0x10  
Bit  
Reset R/W  
0x00 R/W Data register for Port A.  
Description  
7 - 0  
6.13. Port A Control Register (pac), IO address = 0x11  
Bit  
Reset R/W  
Description  
Port A control registers. This register is used to define input mode or output mode for each  
7 - 0  
0x00 R/W corresponding pin of port A. 0 / 1: input / output  
Please note : PA5 is an open drain output.  
6.14. Port A Pull-High Register (paph), IO address = 0x12  
Bit  
Reset R/W  
Description  
Port A pull-high register. This register is used to enable the internal pull-high device on each  
R/W corresponding pin of port A and this pull high function is active only for input mode.  
0 / 1 : disable / enable  
7 - 0 0x00  
6.15. Port B Data Register (pb), IO address = 0x14  
Bit  
Reset R/W  
0x00 R/W Data register for Port B.  
Description  
7 - 0  
6.16. Port B Control Register (pbc), IO address = 0x15  
Bit  
Reset R/W  
Description  
Port B control register. This register is used to define input mode or output mode for each  
corresponding pin of port B. 0 / 1: input / output  
7 - 0  
0x00 R/W  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 64 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
 
 
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
6.17. Port B Pull-High Register (pbph), IO address = 0x16  
Bit  
Reset R/W  
Description  
Port B pull-high register. This register is used to enable the internal pull-high device on each  
corresponding pin of port B and this pull high function is active only for input mode.  
0 / 1 : disable / enable  
7 - 0  
0x00 R/W  
6.18. Comparator Control Register (gpcc), IO address = 0x18  
Bit  
Reset  
R/W  
Description  
Enable comparator. 0 / 1 : disable / enable  
7
0
R/W When this bit is set to enable, please also set the corresponding analog input pins to be  
digital disable to prevent IO leakage.  
Comparator result of comparator.  
6
5
4
-
RO  
0: plus input < minus input  
1: plus input > minus input  
Select whether the comparator result output will be sampled by TM2_CLK?  
0
0
R/W 0: result output NOT sampled by TM2_CLK  
1: result output sampled by TM2_CLK  
Inverse the polarity of result output of comparator.  
R/W 0: polarity is NOT inversed.  
1: polarity is inversed.  
Selection the minus input (-) of comparator.  
000 : PA3  
001 : PA4  
010 : Internal 1.20 volt band-gap reference voltage  
3 - 1  
000  
R/W  
011 : Vinternal R  
100 : PB6 (ICE does NOT Support.)  
101 : PB7 (ICE does NOT Support.)  
11X: reserved  
Selection the plus input (+) of comparator.  
R/W 0 : Vinternal R  
0
0
1 : PA4  
6.19. Comparator Selection Register (gpcs), IO address = 0x19  
Bit  
Reset  
R/W  
Description  
Comparator output enable (to PA0). 0 / 1 : disable / enable  
7
0
WO (Please avoid this situation: GPCS will affect the PA3 output function when selecting output  
to PA0 output in ICE.)  
6
5
4
0
0
0
-
Reserved  
WO Selection of high range of comparator.  
WO Selection of low range of comparator.  
Selection the voltage level of comparator.  
3 - 0  
0000  
WO  
0000 (lowest) ~ 1111 (highest)  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 65 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
6.20. Timer2 Control Register (tm2c), IO address = 0x1c  
Bit  
Reset  
R/W  
Description  
Timer2 clock selection.  
0000 : disable  
0001 : CLK (system clock)  
0010 : IHRC or IHRC *2 (by code option TM2_source) (ICE doesn’t support IHRC *2.)  
0011 : EOSC  
0100 : ILRC  
0101 : comparator output  
011x : reserved  
7 - 4  
0000  
R/W 1000 : PA0 (rising edge)  
1001 : ~PA0 (falling edge)  
1010 : PB0 (rising edge)  
1011 : ~PB0 (falling edge)  
1100 : PA4 (rising edge)  
1101 : ~PA4 (falling edge)  
Notice: In ICE mode and IHRC is selected for Timer2 clock, the clock sent to Timer2 does  
NOT be stopped, Timer2 will keep counting when ICE is in halt state.  
Timer2 output selection.  
00 : disable  
3 - 2  
00  
R/W 01 : PB2  
10 : PA3  
11 : PB4  
TM2 Mode  
1
0
0
0
R/W 0: Period Mode  
1: PWM Mode  
Inverse the polarity of result output of TM2.  
R/W  
0: polarity is NOT inversed.  
1: polarity is inversed.  
6.21. Timer2 Scalar Register (tm2s), IO address = 0x17  
Bit  
Reset  
R/W  
Description  
PWM resolution selection.  
WO 0 : 8-bit  
7
0
1 : 6-bit or 7-bit (by code option TM2_bit) (ICE doesn’t support 7-bit.)  
Timer2 clock pre-scalar.  
00 : ÷ 1  
6 - 5  
4 - 0  
00  
WO 01 : ÷ 4  
10 : ÷ 16  
11 : ÷ 64  
00000  
WO Timer2 clock scalar.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 66 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
6.22. Timer2 Counter Register (tm2ct), IO address = 0x1d  
Bit Reset  
7 - 0 0x00  
R/W  
Description  
R/W Bit [7:0] of Timer2 counter register.  
6.23. Timer2 Bound Register (tm2b), IO address = 0x09  
Bit  
Reset  
R/W  
Description  
7 - 0  
0x00  
WO Timer2 bound register.  
6.24. PWMG0 control Register (pwmg0c), IO address = 0x20  
Bit  
Reset  
R/W  
Description  
7
-
-
Reserved.  
6
5
-
RO  
Output status of PWMG0 generator.  
0
WO Enable to inverse the polarity of PWMG0 generator output. 0 / 1: disable / enable.  
PWMG0 output selection.  
4
3 - 1  
0
0
000  
0
WO 0: PWMG0 Output  
1: PWMG0 XOR PWMG1 or PWMG0 OR PWMG1 (by pwmg0c.0)  
PWMG0 Output Port Selection  
000: PWMG0 Output Disable  
001: PWMG0 Output to PB5  
R/W 010: Reserved  
011: PWMG0 Output to PA0  
100: PWMG0 Output to PB4  
1xx: Reserved  
PWMG0 output pre- selection.  
R/W 0: PWMG0 XOR PWMG1  
1: PWMG0 OR PWMG1  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 67 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
6.25. PWMG Clock Register (pwmgclk), IO address = 0x21  
Bit  
Reset  
R/W  
Description  
PWMG Disable/ Enable  
7
0
WO 0: PWMG Disable  
1: PWMG Enable  
PWMG clock pre-scalar.  
000: ÷1  
001: ÷2  
010: ÷4  
011: ÷8  
6 - 4  
000  
WO  
100: ÷16  
101: ÷32  
110: ÷64  
111: ÷128  
3 - 1  
0
-
-
Reserved  
PWMG clock source selection  
0
WO 0: System Clock  
1: IHRC or IHRC*2 (by code option PWM_Source)  
6.26. PWMG0 Duty Value High Register (pwmg0dth), IO address = 0x22  
Bit  
Reset  
R/W  
Description  
7 - 0  
-
WO Bit[10:3] of PWMG0 Duty.  
6.27. PWMG0 Duty Value Low Register (pwmg0dtl), IO address = 0x23  
Bit  
Reset  
R/W  
Description  
7 - 5  
-
WO Bit[2:0] of PWMG0 Duty.  
4 - 0  
-
-
Reserved  
Note: It’s necessary to write PWMG0 Duty_Value Low Register before writing PWMG0 Duty_Value High Register.  
6.28. PWMG Counter Upper Bound High Register (pwmgcubh ), IO address = 0x24  
Bit  
Reset  
R/W  
Description  
7 - 0  
-
WO Bit[10:3] of PWMG Counter Bound.  
6.29. PWMG Counter Upper Bound Low Register (pwmgcubl ), IO address = 0x25  
Bit  
Reset  
R/W  
Description  
7 - 6  
-
WO Bit[2:1] of PWMG Counter Bound.  
5 - 0  
-
-
Reserved  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 68 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
 
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
6.30. PWMG1 control Register (pwmg1c), IO address = 0x26  
Bit  
Reset  
R/W  
Description  
7
-
-
Reserved  
6
5
-
RO  
Output status of PWMG1 generator  
0
R/W Enable to inverse the polarity of PWMG1 generator output. 0 / 1: disable / enable.  
PWMG1 output selection:  
0: PWMG1  
1: PWMG2  
4
0
R/W  
PWMG1 Output Port Selection:  
000: PWMG1 Output Disable  
001: PWMG1 Output to PB6  
3 - 1  
000  
R/W 010: Reserved  
011: PWMG0 Output to PA4  
100: PWMG0 Output to PB7  
1xx: Reserved  
0
-
R/W Reserved  
6.31. PWMG1 Duty Value High Register (pwmg1dth), IO address = 0x28  
Bit  
Reset  
R/W  
Description  
7 - 0  
-
WO Bit[10:3] of PWMG1 Duty  
6.32. PWMG1 Duty Value Low Register (pwmg1dtl), IO address = 0x29  
Bit  
Reset  
R/W  
Description  
7 - 5  
-
WO Bit[2:0] of PWMG1 Duty.  
4 - 0  
-
-
Reserved  
Note: It’s necessary to write PWMG1 Duty_Value Low Register before writing PWMG1 Duty_Value High Register.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 69 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
6.33. PWMG2 control Register (pwmg2c), IO address = 0x2C  
Bit  
Reset  
R/W  
Description  
7
-
-
Reserved.  
6
5
-
RO  
Output status of PWMG2 generator.  
0
R/W Enable to inverse the polarity of PWMG2 generator output. 0 / 1: disable / enable.  
PWMG2 output selection:  
0: PWMG2  
4
0
R/W  
1: PWMG2 ÷2  
PWMG2 Output Port Selection:  
000: PWMG2 Output Disable  
001: PWMG2 Output to PB3  
010: Reserved  
3 - 1  
000  
R/W  
011: PWMG2 Output to PA3  
100: PWMG2 Output to PB2  
101: PWMG2 Output to PA5  
1xx: Reserved  
0
-
R/W Reserved  
6.34. PWMG2 Duty Value High Register (pwmg2dth), IO address = 0x2E  
Bit  
Reset  
R/W  
Description  
7 - 0  
-
WO Bit[10:3] of PWMG2 Duty  
6.35. PWMG2 Duty Value Low Register (pwmg2dtl), IO address = 0x2F  
Bit  
Reset  
R/W  
Description  
7 - 5  
-
WO Bit[2:0] of PWMG2 Duty  
4 - 0  
-
-
Reserved  
Note: It’s necessary to write PWMG2 Duty_Value Low Register before writing PWMG2 Duty_Value High Register.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 70 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
7. Instructions  
Symbol  
Description  
ACC  
a
Accumulator (Abbreviation of accumulator)  
Accumulator (symbol of accumulator in program)  
sp  
flag  
I
Stack pointer  
ACC status flag register  
Immediate data  
&
Logical AND  
|
Logical OR  
^
Movement  
Exclusive logic OR  
+
Add  
OV  
Z
Subtraction  
NOT (logical complement, 1’s complement)  
NEG (2’s complement)  
Overflow (The operational result is out of range in signed 2’s complement number system)  
Zero (If the result of ALU operation is zero, this bit is set to 1)  
Carry (The operational result is to have carry out for addition or to borrow carry for subtraction in  
unsigned number system)  
C
Auxiliary Carry  
AC  
(If there is a carry out from low nibble after the result of ALU operation, this bit is set to 1)  
Only addressed in 0~0x3F (0~63) is allowed  
M.n  
IO.n  
Only addressed in 0~0x3F (0~63) is allowed  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 71 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
7.1. Data Transfer Instructions  
mov  
mov  
mov  
mov  
mov  
a, I  
Move immediate data into ACC.  
Example: mov a, 0x0f;  
Result: a ← 0fh;  
Affected flags: NZ NC NAC NOV  
M, a  
a, M  
Move data from ACC into memory  
Example: mov  
MEM, a;  
Result: MEM ← a  
Affected flags: NZ NC NAC NOV  
Move data from memory into ACC  
Example: mov  
a, MEM ;  
Result: a ← MEM; Flag Z is set when MEM is zero.  
Affected flags: YZ NC NAC NOV  
a, IO  
Move data from IO into ACC  
Example: mov  
a, pa ;  
Result: a ← pa; Flag Z is set when pa is zero.  
Affected flags: YZ NC NAC NOV  
IO, a  
Move data from ACC into IO  
Example: mov  
Result: pb ← a  
pb, a;  
Affected flags: NZ NC NAC NOV  
Move 16-bit counting values in Timer16 to memory in word.  
Example: ldt16 word;  
ldt16 word  
Result:  
word ← 16-bit timer  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
T16val ;  
// declare a RAM word  
clear  
clear  
stt16  
lb@ T16val ;  
hb@ T16val ;  
T16val ;  
// clear T16val (LSB)  
// clear T16val (MSB)  
// initial T16 with 0  
set1  
t16m.5 ;  
// enable Timer16  
set0  
ldt16  
….  
t16m.5 ;  
T16val ;  
// disable Timer 16  
// save the T16 counting value to T16val  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 72 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
stt16 word  
Store 16-bit data from memory in word to Timer16.  
Example: stt16 word;  
Result:  
16-bit timer ←word  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
T16val ;  
// declare a RAM word  
mov  
mov  
mov  
mov  
stt16  
a, 0x34 ;  
lb@ T16val , a ; // move 0x34 to T16val (LSB)  
a, 0x12 ;  
hb@ T16val , a ; // move 0x12 to T16val (MSB)  
T16val ;  
// initial T16 with 0x1234  
----------------------------------------------------------------------------------------------------------------------  
idxm a, index Move data from specified memory to ACC by indirect method. It needs 2T to execute this  
instruction.  
Example: idxm a, index;  
Result:  
a ← [index], where index is declared by word.  
Affected flags: NZ NC NAC NOV  
Application Example:  
-----------------------------------------------------------------------------------------------------------------------  
word  
RAMIndex ;  
// declare a RAM pointer  
mov  
mov  
mov  
mov  
a, 0x5B ;  
// assign pointer to an address (LSB)  
// save pointer to RAM (LSB)  
lb@RAMIndex, a ;  
a, 0x00 ;  
// assign 0x00 to an address (MSB), should be 0  
hb@RAMIndex, a ; // save pointer to RAM (MSB)  
idxm  
a, RAMIndex ; // mov memory data in address 0x5B to ACC  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 73 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
Idxm index, a Move data from ACC to specified memory by indirect method. It needs 2T to execute this  
instruction.  
Example: idxm index, a;  
Result:  
[index] ← a; where index is declared by word.  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
RAMIndex ;  
// declare a RAM pointer  
mov  
mov  
mov  
mov  
a, 0x5B ;  
// assign pointer to an address (LSB)  
// save pointer to RAM (LSB)  
lb@RAMIndex, a ;  
a, 0x00 ;  
// assign 0x00 to an address (MSB), should be 0  
hb@RAMIndex, a ; // save pointer to RAM (MSB)  
mov  
idxm  
a, 0xA5 ;  
RAMIndex, a ;  
// mov 0xA5 to memory in address 0x5B  
------------------------------------------------------------------------------------------------------------------------  
Exchange data between ACC and memory  
xch  
M
Example: xch MEM ;  
Result:  
MEM ← a , a ← MEM  
Affected flags: NZ NC NAC NOV  
Move the ACC and flag register to memory that address specified in the stack pointer.  
Example: pushaf;  
pushaf  
Result:  
[sp] ← {flag, ACC};  
sp ← sp + 2 ;  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
.romadr 0x10 ;  
// ISR entry address  
pushaf ;  
// put ACC and flag into stack memory  
// ISR program  
// ISR program  
popaf ;  
reti ;  
// restore ACC and flag from stack memory  
------------------------------------------------------------------------------------------------------------------------  
Restore ACC and flag from the memory which address is specified in the stack pointer.  
Example: popaf;  
popaf  
Result:  
sp ← sp - 2  
{Flag, ACC} ← [sp] ;  
Affected flags: YZ YC YAC YOV  
;
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 74 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
7.2. Arithmetic Operation Instructions  
add  
add  
add  
a, I  
Add immediate data with ACC, then put result into ACC  
Example: add a, 0x0f ;  
Result: a ← a + 0fh  
Affected flags: YZ YC YAC YOV  
a, M  
M, a  
Add data in memory with ACC, then put result into ACC  
Example: add  
a, MEM ;  
Result: a ← a + MEM  
Affected flags: YZ YC YAC YOV  
Add data in memory with ACC, then put result into memory  
Example: add  
MEM, a;  
Result: MEM ← a + MEM  
Affected flags: YZ YC YAC YOV  
addc a, M  
addc M, a  
Add data in memory with ACC and carry bit, then put result into ACC  
Example: addc  
a, MEM ;  
Result: a ← a + MEM + C  
Affected flags: YZ YC YAC YOV  
Add data in memory with ACC and carry bit, then put result into memory  
Example: addc  
MEM, a ;  
Result: MEM ← a + MEM + C  
Affected flags: YZ YC YAC YOV  
addc  
addc  
a
Add carry with ACC, then put result into ACC  
Example: addc  
a ;  
Result: a ← a + C  
Affected flags: YZ YC YAC YOV  
M
Add carry with memory, then put result into memory  
Example: addc  
MEM ;  
Result: MEM ← MEM + C  
Affected flags: YZ YC YAC YOV  
nadd a, M  
Add negative logic (2’s complement) of ACC with memory  
Example: nadd  
a, MEM ;  
Result: a a + MEM  
Affected flags: YZ YC YAC YOV  
nadd M, a  
Add negative logic (2’s complement) of memory with ACC  
Example: nadd  
MEM, a ;  
Result: MEM MEM + a  
Affected flags: YZ YC YAC YOV  
sub  
sub  
a, I  
Subtraction immediate data from ACC, then put result into ACC.  
Example: sub  
a, 0x0f;  
Result: a ← a - 0fh ( a + [2’s complement of 0fh] )  
Affected flags: YZ YC YAC YOV  
a, M  
Subtraction data in memory from ACC, then put result into ACC  
Example: sub  
Result: a ← a - MEM ( a + [2’s complement of M] )  
Affected flags: YZ YC YAC YOV  
a, MEM ;  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 75 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
sub  
M, a  
Subtraction data in ACC from memory, then put result into memory  
Example: sub MEM, a;  
Result: MEM ← MEM - a ( MEM + [2’s complement of a] )  
Affected flags: YZ YC YAC YOV  
subc a, M  
subc M, a  
Subtraction data in memory and carry from ACC, then put result into ACC  
Example: subc  
a, MEM;  
Result: a ← a – MEM - C  
Affected flags: YZ YC YAC YOV  
Subtraction ACC and carry bit from memory, then put result into memory  
Example: subc  
MEM, a ;  
Result: MEM ← MEM – a - C  
Affected flags: YZ YC YAC YOV  
subc  
subc  
inc  
a
Subtraction carry from ACC, then put result into ACC  
Example: subc  
a;  
Result: a ← a - C  
Affected flags: YZ YC YAC YOV  
M
Subtraction carry from the content of memory, then put result into memory  
Example: subc  
MEM;  
Result: MEM ← MEM - C  
Affected flags: YZ YC YAC YOV  
M
Increment the content of memory  
Example: inc  
MEM ;  
Result: MEM ← MEM + 1  
Affected flags: YZ YC YAC YOV  
dec  
M
Decrement the content of memory  
Example: dec  
MEM;  
Result: MEM ← MEM - 1  
Affected flags: YZ YC YAC YOV  
clear  
M
Clear the content of memory  
Example: clear  
Result: MEM ← 0  
Affected flags: NZ NC NAC NOV  
MEM ;  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 76 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
7.3. Shift Operation Instructions  
sr  
a
Shift right of ACC, shift 0 to bit 7  
Example: sr a ;  
Result: a (0,b7,b6,b5,b4,b3,b2,b1) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b0)  
Affected flags: NZ YC NAC NOV  
Shift right of ACC with carry bit 7 to flag  
src  
sr  
a
Example: src a ;  
Result: a (c,b7,b6,b5,b4,b3,b2,b1) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b0)  
Affected flags: NZ YC NAC NOV  
Shift right the content of memory, shift 0 to bit 7  
Example: sr MEM ;  
M
Result: MEM(0,b7,b6,b5,b4,b3,b2,b1) ← MEM(b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b0)  
Affected flags: NZ YC NAC NOV  
Shift right of memory with carry bit 7 to flag  
src  
sl  
M
Example: src MEM ;  
Result: MEM(c,b7,b6,b5,b4,b3,b2,b1) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b0)  
Affected flags: NZ YC NAC NOV  
Shift left of ACC shift 0 to bit 0  
a
Example: sl a ;  
Result: a (b6,b5,b4,b3,b2,b1,b0,0) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a (b7)  
Affected flags: NZ YC NAC NOV  
Shift left of ACC with carry bit 0 to flag  
slc  
sl  
a
Example: slc a ;  
Result: a (b6,b5,b4,b3,b2,b1,b0,c) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b7)  
Affected flags: NZ YC NAC NOV  
Shift left of memory, shift 0 to bit 0  
M
Example: sl MEM ;  
Result: MEM (b6,b5,b4,b3,b2,b1,b0,0) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b7)  
Affected flags: NZ YC NAC NOV  
Shift left of memory with carry bit 0 to flag  
slc  
M
Example: slc MEM ;  
Result: MEM (b6,b5,b4,b3,b2,b1,b0,C) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM (b7)  
Affected flags: NZ YC NAC NOV  
Swap the high nibble and low nibble of ACC  
swap  
a
Example: swap  
Result: a (b3,b2,b1,b0,b7,b6,b5,b4) ← a (b7,b6,b5,b4,b3,b2,b1,b0)  
Affected flags: NZ NC NAC NOV  
a ;  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 77 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
7.4. Logic Operation Instructions  
and  
and  
and  
or  
a, I  
a, M  
M, a  
a, I  
Perform logic AND on ACC and immediate data, then put result into ACC  
Example: and a, 0x0f ;  
Result: a ← a & 0fh  
Affected flags: YZ NC NAC NOV  
Perform logic AND on ACC and memory, then put result into ACC  
Example: and  
a, RAM10 ;  
Result: a ← a & RAM10  
Affected flags: YZ NC NAC NOV  
Perform logic AND on ACC and memory, then put result into memory  
Example: and  
MEM, a ;  
Result: MEM ← a & MEM  
Affected flags: YZ NC NAC NOV  
Perform logic OR on ACC and immediate data, then put result into ACC  
Example: or  
a, 0x0f ;  
Result: a ← a | 0fh  
Affected flags: YZ NC NAC NOV  
or  
a, M  
Perform logic OR on ACC and memory, then put result into ACC  
Example: or  
a, MEM ;  
Result: a ← a | MEM  
Affected flags: YZ NC NAC NOV  
or  
M, a  
a, I  
Perform logic OR on ACC and memory, then put result into memory  
Example: or  
MEM, a ;  
Result: MEM ← a | MEM  
Affected flags: YZ NC NAC NOV  
xor  
xor  
Perform logic XOR on ACC and immediate data, then put result into ACC  
Example: xor  
a, 0x0f ;  
Result: a ← a ^ 0fh  
Affected flags: YZ NC NAC NOV  
IO, a  
Perform logic XOR on ACC and IO register, then put result into IO register  
Example: xor  
pa, a ;  
Result: pa ← a ^ pa ; // pa is the data register of port A  
Affected flags: NZ NC NAC NOV  
xor  
xor  
a, M  
M, a  
Perform logic XOR on ACC and memory, then put result into ACC  
Example: xor  
a, MEM ;  
Result: a ← a ^ RAM10  
Affected flags: YZ NC NAC NOV  
Perform logic XOR on ACC and memory, then put result into memory  
Example:  
xor  
MEM, a ;  
Result:  
MEM ← a ^ MEM  
Affected flags: YZ NC NAC NOV  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 78 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
not  
a
Perform 1’s complement (logical complement) of ACC  
Example: not a ;  
Result: a a  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
not  
a, 0x38 ;  
a ;  
// ACC=0X38  
// ACC=0XC7  
------------------------------------------------------------------------------------------------------------------------  
Perform 1’s complement (logical complement) of memory  
not  
M
Example: not  
MEM ;  
Result: MEM MEM  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
not  
a, 0x38 ;  
mem, a ;  
mem ;  
// mem = 0x38  
// mem = 0xC7  
------------------------------------------------------------------------------------------------------------------------  
Perform 2’s complement of ACC  
neg  
a
Example: neg  
a;  
Result: a a  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
neg  
a, 0x38 ;  
a ;  
// ACC=0X38  
// ACC=0XC8  
------------------------------------------------------------------------------------------------------------------------  
Perform 2’s complement of memory  
neg  
M
Example: neg  
MEM;  
Result: MEM MEM  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
not  
a, 0x38 ;  
mem, a ;  
mem ;  
// mem = 0x38  
// mem = 0xC8  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 79 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
comp  
a, M  
Compare ACC with the content of memory  
Example: comp a, MEM;  
Result: Flag will be changed by regarding as ( a - MEM )  
Affected flags: YZ YC YAC YOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
comp  
mov  
mov  
mov  
comp  
a, 0x38 ;  
mem, a ;  
a, mem ;  
a, 0x42 ;  
mem, a ;  
a, 0x38 ;  
a, mem ;  
// Z flag is set as 1  
// C flag is set as 1  
------------------------------------------------------------------------------------------------------------------------  
Compare ACC with the content of memory  
comp  
M, a  
Example: comp  
MEM, a;  
Result: Flag will be changed by regarding as ( MEM - a )  
Affected flags: YZ YC YAC YOV  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 80 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
7.5. Bit Operation Instructions  
set0 IO.n  
set1 IO.n  
swapc IO.n  
Set bit n of IO port to low  
Example: set0 pa.5 ;  
Result: set bit 5 of port A to low  
Affected flags: NZ NC NAC NOV  
Set bit n of IO port to high  
Example: set1 pb.5 ;  
Result: set bit 5 of port B to high  
Affected flags: NZ NC NAC NOV  
Swap the nth bit of IO port with carry bit  
Example: swapc  
IO.0;  
Result: C ← IO.0 , IO.0 ← C  
When IO.0 is a port to output pin, carry C will be sent to IO.0;  
When IO.0 is a port from input pin, IO.0 will be sent to carry C;  
Affected flags: NZ YC NAC NOV  
Application Example1 (serial output) :  
------------------------------------------------------------------------------------------------------------------------  
...  
set1  
...  
pac.0 ;  
// set PA.0 as output  
set0  
swapc  
set1  
swapc  
...  
flag.1 ;  
pa.0 ;  
// C=0  
// move C to PA.0 (bit operation), PA.0=0  
// C=1  
flag.1 ;  
pa.0 ;  
// move C to PA.0 (bit operation), PA.0=1  
------------------------------------------------------------------------------------------------------------------------  
Application Example2 (serial input) :  
------------------------------------------------------------------------------------------------------------------------  
...  
set0  
...  
pac.0 ;  
// set PA.0 as input  
swapc  
src  
pa.0 ;  
a ;  
// read PA.0 to C (bit operation)  
// shift C to bit 7 of ACC  
swapc  
src  
pa.0 ;  
a ;  
// read PA.0 to C (bit operation)  
// shift new C to bit 7, old C  
...  
------------------------------------------------------------------------------------------------------------------------  
Set bit n of memory to low  
set0 M.n  
Example: set0 MEM.5 ;  
Result: set bit 5 of MEM to low  
Affected flags: NZ NC NAC NOV  
Set bit n of memory to high  
set1 M.n  
Example: set1 MEM.5 ;  
Result: set bit 5 of MEM to high  
Affected flags: NZ NC NAC NOV  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 81 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
7.6. Conditional Operation Instructions  
ceqsn a, I  
Compare ACC with immediate data and skip next instruction if both are equal.  
Flag will be changed like as (a ← a – I)  
Example: ceqsn  
a, 0x55 ;  
MEM ;  
error ;  
inc  
goto  
Result: If a=0x55, then “goto error”; otherwise, “inc MEM”.  
Affected flags: YZ YC YAC YOV  
Compare ACC with memory and skip next instruction if both are equal.  
Flag will be changed like as (a ← a - M)  
ceqsn a, M  
Example: ceqsn  
a, MEM;  
Result: If a=MEM, skip next instruction  
Affected flags: YZ YC YAC YOV  
cneqsn a, M  
Compare ACC with memory and skip next instruction if both are not equal.  
Flag will be changed like as (a ← a - M)  
Example: cneqsn  
a, MEM;  
Result: If a≠MEM, skip next instruction  
Affected flags: YZ YC YAC YOV  
cneqsn a, I  
Compare ACC with immediate data and skip next instruction if both are no equal.  
Flag will be changed like as (a ← a - I)  
Example: cneqsn  
a,0x55 ;  
MEM ;  
error ;  
inc  
goto  
Result: If a≠0x55, then “goto error”; Otherwise, “inc MEM”.  
Affected flags: YZ YC YAC YOV  
Check IO bit and skip next instruction if it’s low  
t0sn IO.n  
t1sn IO.n  
t0sn M.n  
t1sn M.n  
Example: t0sn  
pa.5;  
Result: If bit 5 of port A is low, skip next instruction  
Affected flags: NZ NC NAC NOV  
Check IO bit and skip next instruction if it’s high  
Example: t1sn  
pa.5 ;  
Result: If bit 5 of port A is high, skip next instruction  
Affected flags: NZ NC NAC NOV  
Check memory bit and skip next instruction if it’s low  
Example: t0sn MEM.5 ;  
Result: If bit 5 of MEM is low, then skip next instruction  
Affected flags: NZ NC NAC NOV  
Check memory bit and skip next instruction if it’s high  
EX: t1sn MEM.5 ;  
Result: If bit 5 of MEM is high, then skip next instruction  
Affected flags: NZ NC NAC NOV  
Increment ACC and skip next instruction if ACC is zero  
izsn  
a
Example: izsn  
Result:  
a;  
a
a + 1,skip next instruction if a = 0  
Affected flags: YZ YC YAC YOV  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 82 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
dzsn  
izsn  
a
Decrement ACC and skip next instruction if ACC is zero  
Example: dzsn  
Result:  
a;  
A
A - 1,skip next instruction if a = 0  
Affected flags: YZ YC YAC YOV  
M
Increment memory and skip next instruction if memory is zero  
Example: izsn  
Result: MEM  
MEM;  
MEM + 1, skip next instruction if MEM= 0  
Affected flags: YZ YC YAC YOV  
dzsn  
M
Decrement memory and skip next instruction if memory is zero  
Example: dzsn  
Result: MEM  
Affected flags: YZ YC YAC YOV  
MEM;  
MEM - 1, skip next instruction if MEM = 0  
7.7. System control Instructions  
call  
label  
Function call, address can be full range address space  
Example: call  
function1;  
pc + 1  
Result: [sp]  
pc  
sp  
function1  
sp + 2  
Affected flags: NZ NC NAC NOV  
goto label  
Go to specific address which can be full range address space  
Example: goto  
error;  
Result: Go to error and execute program.  
Affected flags: NZ NC NAC NOV  
Place immediate data to ACC, then return  
Example: ret 0x55;  
ret  
ret  
I
Result:  
A ← 55h  
ret ;  
Affected flags: NZ NC NAC NOV  
Return to program which had function call  
Example: ret;  
Result:  
sp ← sp - 2  
pc ← [sp]  
Affected flags: NZ NC NAC NOV  
Return to program that is interrupt service routine. After this command is executed, global  
interrupt is enabled automatically.  
reti  
Example: reti;  
Affected flags: NZ NC NAC NOV  
No operation  
nop  
Example: nop;  
Result: nothing changed  
Affected flags: NZ NC NAC NOV  
Reset Watchdog timer.  
wdreset  
Example: wdreset ;  
Result: Reset Watchdog timer.  
Affected flags: NZ NC NAC NOV  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 83 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
pcadd  
a
Next program counter is current program counter plus ACC.  
Example: pcadd a;  
Result: pc ← pc + a  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
pcadd  
goto  
goto  
goto  
goto  
a, 0x02 ;  
a ;  
// PC <- PC+2  
// jump here  
err1 ;  
correct ;  
err2 ;  
err3 ;  
correct:  
// jump here  
------------------------------------------------------------------------------------------------------------------------  
Enable global interrupt enable  
engint  
Example: engint;  
Result: Interrupt request can be sent to FPP0  
Affected flags: NZ NC NAC NOV  
Disable global interrupt enable  
disgint  
stopsys  
stopexe  
Example: disgint ;  
Result: Interrupt request is blocked from CPU  
Affected flags: NZ NC NAC NOV  
System halt.  
Example: stopsys;  
Result: Stop the system clocks and halt the system  
Affected flags: NZ NC NAC NOV  
CPU halt. The oscillator module is still active to output clock, however, system clock is disabled  
to save power.  
Example: stopexe;  
Result: Stop the system clocks and keep oscillator modules active.  
Affected flags: NZ NC NAC NOV  
Reset the whole chip, its operation will be same as hardware reset.  
Example: reset;  
reset  
Result: Reset the whole chip.  
Affected flags: NZ NC NAC NOV  
7.8. Summary of Instructions Execution Cycle  
goto, call, idxm, pcadd, ret, reti  
2T  
2T  
1T  
1T  
Condition is fulfilled  
ceqsn, cneqsn,t0sn, t1sn, dzsn, izsn  
Condition is not fulfilled  
Others  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 84 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
7.9. Summary of affected flags by Instructions  
Instruction  
mov a, I  
Z
-
C
-
AC OV Instruction  
Z
-
C
-
AC OV Instruction  
Z
Y
-
C
-
AC OV  
-
-
-
-
mov M, a  
mov IO, a  
idxm a, index  
pushaf  
-
-
-
-
mov a, M  
ldt16 word  
idxm index, a  
popaf  
-
-
-
-
mov a, IO  
stt16 word  
Y
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
xch  
M
-
-
-
-
-
-
-
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
add a, I  
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
add a, M  
addc M, a  
sub a, I  
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
-
add M, a  
addc a, M  
addc  
a
addc  
M
sub a, M  
sub M, a  
subc a, M  
subc M, a  
subc  
dec  
src  
a
subc  
clear  
M
M
inc  
sr a  
src  
sl  
M
M
M
a
sr  
M
-
Y
Y
-
-
-
-
-
-
sl  
a
-
-
-
slc  
a
-
-
-
M
-
-
-
slc  
and  
M
-
-
-
swap  
and  
a
-
-
-
and  
a, I  
Y
Y
Y
Y
Y
-
-
-
a, M  
Y
Y
-
-
-
M, a  
Y
Y
Y
Y
-
-
-
-
or a, I  
-
-
-
or a, M  
-
-
-
or M, a  
-
-
-
xor  
xor  
neg  
a, I  
-
-
-
xor  
not  
neg  
IO, a  
-
-
-
xor  
not  
a, M  
-
-
-
M, a  
a
-
-
-
a
Y
Y
-
-
-
-
M
-
-
-
-
-
-
M
-
-
-
set0 IO.n  
set1 M.n  
t0sn IO.n  
t1sn M.n  
-
-
-
set1 IO.n  
ceqsn a, I  
t1sn IO.n  
-
-
-
set0 M.n  
ceqsn a, M  
t0sn M.n  
-
-
-
-
-
-
-
Y
-
Y
-
Y
-
Y
-
Y
-
Y
-
Y
-
Y
-
-
-
-
-
-
-
-
-
izsn  
dzsn  
ret  
a
Y
Y
-
Y
Y
-
Y
Y
-
Y
Y
-
dzsn  
call  
a
Y
-
Y
-
Y
-
Y
-
izsn  
M
Y
-
Y
-
Y
-
Y
-
M
label  
goto label  
reti  
I
ret  
-
-
-
-
-
-
-
-
nop  
-
-
-
-
pcadd  
a
-
-
-
-
engint  
-
-
-
-
disgint  
reset  
-
-
-
-
stopsys  
wdreset  
-
-
-
-
-
-
-
-
stopexe  
-
-
-
-
-
-
-
-
nadd M, a  
cneqsn a, I  
nadd a, M  
Y
Y
Y
Y
Y
Y
Y
Y
cneqsn a, M  
comp a, M  
swapc IO.n  
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
-
Y
-
Y
Y
Y
Y
comp  
M, a  
7.10.BIT definition  
Bit access of RAM is only available for address from 0x00 to 0x3F.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 85 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
8. Code Options  
Option  
Selection  
Enable  
Disable  
4.0V  
Description  
OTP content is protected and program cannot be read back  
OTP content is not protected so program can be read back  
Select LVR = 4.0V  
Security  
3.5V  
Select LVR = 3.5V  
3.0V  
Select LVR = 3.0V  
2.7V  
Select LVR = 2.7V  
LVR  
2.5V  
Select LVR = 2.5V  
2.2V  
Select LVR = 2.2V  
2.0V  
Select LVR = 2.0V  
1.8V  
Select LVR = 1.8V  
Slow  
Please refer to tWUP and tSBP in Section 4.1  
Please refer to tWUP and tSBP in Section 4.1  
INTEN/INTRQ.Bit0 is from PA.0  
INTEN/INTRQ.Bit0 is from PB.5  
INTEN/INTRQ.Bit1 is from PB.0  
INTEN/INTRQ.Bit1 is from PA.4  
Comparator does not control all PWM outputs  
Comparator controls all PWM outputs  
(ICE does NOT Support.)  
Boot-up_Time  
Interrupt Src0  
Interrupt Src1  
Fast  
PA.0  
PB.5  
PB.0  
PA.4  
Disable  
GPC_PWM  
Enable  
16MHZ  
32MHZ  
When Pwmgclk.0= 1, PWMG clock source = IHRC = 16MHZ  
PWM_Source  
When Pwmgclk.0= 1, PWMG clock source = IHRC*2 = 32MHZ  
(ICE does NOT Support.)  
16MHZ  
When tm2c[7:4]= 0010, TM2 clock source = IHRC = 16MHZ  
TM2_Source  
TM2_Bit  
When tm2c[7:4]= 0010, TM2 clock source = IHRC*2 = 32MHZ  
(ICE does NOT Support.)  
32MHZ  
6 Bit  
When tm2s.7=1, TM2 PWM resolution is 6 Bit  
When tm2s.7=1, TM2 PWM resolution is 7 Bit  
(ICE does NOT Support.)  
7 Bit  
All_Edge  
The comparator will trigger an interrupt on the rising edge or falling edge  
Comparator_Edge Rising_Edge The comparator will trigger an interrupt on the rising edge  
Falling_Edge The comparator will trigger an interrupt on the falling edge  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 86 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
PMS152  
8bit OTP Type SuLED IO Controller  
9. Special Notes  
This chapter is to remind user who use PMS152 series IC in order to avoid frequent errors upon operation.  
9.1. Warning  
User must read all application notes of the IC by detail before using it. Please download the related application  
notes from the following link:  
http://www.padauk.com.tw/tw/technical/index.aspx  
9.2. Using IC  
9.2.1. IO pin usage and setting  
(1) IO pin is set to be digital input  
When IO is set as digital input, the level of Vih and Vil would changes with the voltage and temperature.  
Please follow the minimum value of Vih and the maximum value of Vil.  
The value of internal pull high resistor would also changes with the voltage, temperature and pin voltage.  
It is not the fixed value.  
(2) IO pin as digital input and enable wakeup function  
Configure IO pin as input  
Set corresponding bit to “1” in PXDIER  
For those IO pins of PA that are not used, PADIER[1:2] should be set low in order to prevent them from  
leakage.  
(3) PA5 is set to be output pin  
PA5 can be set to be Open-Drain output pin only, output high requires adding pull-high resistor.  
(4) PA5 is set to be PRSTB input pin  
Configure PA5 as input  
Set CLKMD.0=1 to enable PA5 as PRSTB input pin  
(5) PA5 is set to be input pin and to connect with a push button or a switch by a long wire  
Needs to put a >33Ω resistor in between PA5 and the long wire  
Avoid using PA5 as input in such application.  
(6) PA7 and PA6 as external crystal oscillator  
Configure PA7 and PA6 as input  
Disable PA7 and PA6 internal pull-high resistor  
Configure PADIER register to set PA6 and PA7 as analog input  
EOSCR register bit [6:5] selects corresponding crystal oscillator frequency :  
01 : for lower frequency, ex : 32KHz  
10 : for middle frequency, ex : 455KHz, 1MHz  
11 : for higher frequency, ex : 4MHz  
Program EOSCR.7 =1 to enable crystal oscillator  
Ensure EOSC working well before switching from IHRC or ILRC to EOSC.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 87 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
Note: Please read the PMC-APN013 carefully. According to PMC-APN013, the crystal oscillator should be  
used reasonably. If the following situations happen to cause IC start-up slowly or non-startup, PADAUK  
Technology is not responsible for this: the quality of the user's crystal oscillator is not good, the usage  
conditions are unreasonable, the PCB cleaner leakage current, or the PCB layouts are unreasonable.  
9.2.2. Interrupt  
(1) When using the interrupt function, the procedure should be:  
Step1: Set INTEN register, enable the interrupt control bit  
Step2: Clear INTRQ register  
Step3: In the main program, using ENGINT to enable CPU interrupt function  
Step4: Wait for interrupt. When interrupt occurs, enter to Interrupt Service Routine  
Step5: After the Interrupt Service Routine being executed, return to the main program  
*Use DISGINT in the main program to disable all interrupts  
*When interrupt service routine starts, use PUSHAF instruction to save ALU and FLAG register.  
POPAF instruction is to restore ALU and FLAG register before RETI as below:  
void Interrupt (void)  
// Once the interrupt occurs, jump to interrupt service routine  
// enter DISGINT status automatically, no more interrupt is  
{
accepted  
PUSHAF;  
POPAF;  
}
// RETI will be added automatically. After RETI being executed, ENGINT status  
will be restored  
(2) INTEN and INTRQ have no initial values. Please set required value before enabling interrupt function.  
9.2.3. System clock switching  
System clock can be switched by CLKMD register. Please notice that, NEVER switch the system clock and  
turn off the original clock source at the same time. For example: When switching from clock A to clock B,  
please switch to clock B first; and after that turn off the clock A oscillator through CLKMD.  
Example : Switch system clock from ILRC to IHRC/2  
CLKMD  
=
0x36;  
0;  
// switch to IHRC, ILRC can not be disabled here  
CLKMD.2 =  
// ILRC can be disabled at this time  
ERROR: Switch ILRC to IHRC and turn off ILRC simultaneously  
CLKMD 0x50; // MCU will hang  
=
9.2.4. Watchdog  
Watchdog will be inactive once ILRC is disabled.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 88 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
9.2.5. TIMER time out  
When select $ INTEGS BIT_R (default value) and T16M counter BIT8 to generate interrupt, if T16M counts  
from 0, the first interrupt will occur when the counter reaches to 0x100 (BIT8 from 0 to 1) and the second  
interrupt will occur when the counter reaches 0x300 (BIT8 from 0 to 1). Therefore, selecting BIT8 as 1 to  
generate interrupt means that the interrupt occurs every 512 counts. Please notice that if T16M counter is  
restarted, the next interrupt will occur once Bit8 turns from 0 to 1.  
If select $ INTEGS BIT_F(BIT triggers from 1 to 0) and T16M counter BIT8 to generate interrupt, the T16M  
counter changes to an interrupt every 0x200/0x400/0x600/. Please pay attention to two differences with  
setting INTEGS methods.  
9.2.6. IHRC  
(1)  
The IHRC frequency calibration is performed when IC is programmed by the writer.  
Because the characteristic of the Epoxy Molding Compound (EMC) would some degrees affects the  
IHRC frequency (either for package or COB), if the calibration is done before molding process, the  
actual IHRC frequency after molding may be deviated or becomes out of spec. Normally , the  
frequency is getting slower a bit.  
(2)  
(3)  
(4)  
It usually happens in COB package or Quick Turnover Programming (QTP). And PADAUK would not  
take any responsibility for this situation.  
Users can make some compensatory adjustments according to their own experiences. For example,  
users can set IHRC frequency to be 0.5% ~ 1% higher and aim to get better re-targeting after molding.  
9.2.7. LVR  
User can set MISC.2 as “1” to disable LVR. However, VDD must be kept as exceeding the lowest working  
voltage of chip; Otherwise IC may work abnormally.  
9.2.8. Programming Writing  
There are 6 pins for using the writer to program: PA3, PA4, PA5, PA6, VDD and GND.  
If use PDK3S-P-002 to program PMS152 real chip, just use the CN39 jumper (at the back for the writer) with  
putting the 16pin package IC on the top of the Textool. For the 14pin package, it need downward one space  
on the Textool, for the 10pin package, it need downward three spaces on the Textool, and for the 8pin  
package, it need downward four spaces on the Textool.  
Other packages could be programmed by connecting the signals correspondingly. All the signals of the left  
side of the jumpers are the same and as the descriptions at the left bottom corner. They are VDD, PA0(not  
used), PA3, PA4, PA5, PA6, PA7(not used), and GND).  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 89 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 
 
 
 
PMS152  
8bit OTP Type SuLED IO Controller  
If user use PDK5S-P-003 or above to program, please follow the instructions for connecting jumpers.  
Special notes about voltage and current while Multi-Chip-Package(MCP) or On-Board Programming  
(1) PA5 (VPP) may be higher than 11V.  
(2)  
VDD may be higher than 6.5V, and its maximum current may reach about 20mA.  
(3) All other signal pins level (except GND) are the same as VDD.  
User should confirm when using this product in MCP or On-Board Programming, the peripheral components  
or circuit will not be damaged by the above voltages, and will not clam the above voltages.  
Important Cautions:  
You MUST follow the instructions on APN004 and APN011 for programming IC on the handler.  
Connecting a 0.01uF capacitor between VDD and GND at the handler port to the IC is always  
good for suppressing disturbance. But please DO NOT connect with 0.01uF capacitor,  
otherwise, programming may be fail.  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 90 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
PMS152  
8bit OTP Type SuLED IO Controller  
9.3. Using ICE  
PDK5S-I-S01/2 (B) supports PMS152 1-FPPA MCU emulation work, the following items should be noted when  
using PDK5S-I-S01/2(B) to emulate PMS152:  
PDK5S-I-S01/2(B) doesn’t support the function of the set of 11-bit SuLED hardware PWM generators.  
PDK5S-I-S01/2(B) doesn’t support the instruction NADD/COMP of PMS152.  
PDK5S-I-S01/2 (B) doesn’t support SYSCLK=ILRC/16 of PMS152.  
PDK5S-I-S01/2 (B) doesn’t support the function Tm2.gpcrs of PMS152.  
The PA3 output function will be affected when GPCS selects output to PA0 output.  
When simulating PWM waveform, please check the waveform during program running. When the ICE is  
suspended or single-step running, its waveform may be inconsistent with the reality.  
The ILRC frequency of the PDK5S-I-S01/2(B) simulator is different from the actual IC and is  
uncalibrated, with a frequency range of about 34K~38KHz.  
Fast Wakeup time is different from PDK5S-I-S01/2(B): 128 SysClk, PMS152: 45 ILRC.  
Watch dog time out period is different from PDK5S-I-S01/2:  
WDT period  
misc[1:0]=00  
misc[1:0]=01  
misc[1:0]=10  
misc[1:0]=11  
PDK5S-I-S01/2(B)  
2048 * TILRC  
PMS152  
8192 * TILRC  
16384 * TILRC  
65536 * TILRC  
262144 * TILRC  
4096 * TILRC  
16384 * TILRC  
256 * TILRC  
©Copyright 2020, PADAUK Technology Co. Ltd  
Page 91 of 91  
PDK-DS-PMS152-EN_V105 –Jun. 9, 2020  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY