PAM2308VIN2YMCA [PAM]

Dual High-Efficiency PWM Step-Down DC-DC Coverter; 双路高效率PWM降压型DC- DC Coverter
PAM2308VIN2YMCA
型号: PAM2308VIN2YMCA
厂家: POWER ANALOG MICOELECTRONICS    POWER ANALOG MICOELECTRONICS
描述:

Dual High-Efficiency PWM Step-Down DC-DC Coverter
双路高效率PWM降压型DC- DC Coverter

文件: 总15页 (文件大小:404K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PAM2308  
Dual High-Efficiency PWM Step-Down DC-DC Coverter  
Features  
General Description  
The PAM2308 is a dual step-down current-mode,  
DC-DC converter. At heavy load, the constant-  
frequency PWM control performs excellent  
stability and transient response. To ensure the  
longest battery life in portable applications, the  
n
Efficiency up to 96%  
Only 40μA(Typ. per Channel) Quiescent  
Current  
n
n Output Current: Up to 1A per Channel  
n Internal Synchronous Rectifier  
n 1.5MHz Switching Frequency  
n Soft Start  
PAM2308 provides  
a power-saving Pulse-  
Skipping Modulation (PSM) mode to reduce  
quiescent current under light load operation.  
n Under-Voltage Lockout  
n Short Circuit Protection  
n Thermal Shutdown  
The PAM2308 supports a range of input voltages  
from 2.5V to 5.5V, allowing the use of a single  
Li+/Li-polymer cell, multiple Alkaline/NiMH cell,  
USB, and other standard power sources. The dual  
output voltages are available for 3.3V, 2.8V, 2.5V,  
1.8V, 1.5V, 1.2V or adjustable. All versions  
employ internal power switch and synchronous  
rectifier for to minimize external part count and  
realize high efficiency. During shutdown, the input  
is disconnected from the output and the shutdown  
current is less than 0.1ꢀA. Other key features  
include under-voltage lockout to prevent deep  
battery discharge.  
n Small 10L WDFN 3x3  
Packages  
n Pb-Free Package and RoHS Compliant  
Applications  
n
n
n
Cellular Phone  
Portable Electronics  
Personal Information Appliances  
n Wireless and DSL Modems  
n MP3 Players  
Typical Application  
L1  
V
OUT1  
C
OUT1  
CFw1  
100nF  
10ꢀF  
R11  
PAM2308  
1
2
4
10  
8
C
IN1  
EN1  
FB1  
LX1  
VIN1  
GND  
ꢀF  
.
4 7  
R12  
R22  
V
IN1  
9
GND  
C
IN2  
4.7ꢀF  
3
5
7
6
FB2  
EN2  
VIN2  
LX2  
V
IN2  
CFW2  
R21  
100pF  
L2  
V
OUT2  
C
OUT2  
10ꢀF  
Rx1  
Rx2  
V
OUTx  
= V  
REF  
1+  
)
(
Figure 1. Adjustable Voltage Regulator  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
07/2008 Rev 1.0  
1
PAM2308  
Dual High-Efficiency PWM Step-Down DC-DC Coverter  
Typical Application  
L1  
VOUT1  
COUT1  
10μF  
PAM2308  
1
2
4
3
5
10  
8
CIN1  
4 7μF  
LX1  
VIN1  
GND  
EN1  
FB1  
.
VIN1  
CIN2  
4.7μF  
9
7
6
GND  
VIN2  
LX2  
VIN2  
FB2  
EN2  
VOUT2  
L2  
COUT2  
10μF  
VOUTx = 1.2V,1.5V,1.8V,2.5V, 2.8V or 3.3V  
Figure 2. Fixed Voltage Regulator  
Block Diagram  
VINx  
+
IAMP  
SLOPE  
COMP  
1.5M  
OSC  
-
PWM  
COMP  
OSC  
FBx  
MAIN  
SWITCH(PCH)  
S Q  
FREQ  
SHIFT  
-
R1  
R2  
SWITCHING  
LOGIC  
AND  
BLANKING  
CIRCUIT  
EA  
+
R Q  
LXx  
ANTI-  
SHOOT-  
THRU  
RS LATCH  
COMP  
SYNCHRONOUS  
RECTIFIER(NCH)  
VIN  
ENx  
0.6VREF  
+
IRCMP  
GND  
SHUTDOWN  
-
Power Analog Microelectronics,Inc  
www.poweranalog.com  
07/2008 Rev 1.0  
2
PAM2308  
Dual High-Efficiency PWM Step-Down DC-DC Coverter  
Pin Configuration and Marking Information  
TOP VIEW  
WDFN-10L 3x3  
EN1  
FB1  
1
2
3
4
5
10 LX1  
v1: Output Voltage 1  
v2: Output Voltage 2  
(refer to “Ordering  
Information”)  
X: Internal Code  
Y: Year  
W: Week  
9
8
7
6
GND  
VIN1  
FB2  
2308v1v2  
XXXYW  
VIN2  
GND  
LX2  
EN2  
GND  
(Exposed Pad)  
Pin No.  
Pin Name  
Pin Function  
1
EN1  
Chip Enable of Channel 1 (Active High).V  
Feedback of Channel 1.  
V  
EN1  
IN1.  
2
3
FB1  
VIN2  
Power Input of Channel 2.  
Ground.The exposed pad must be soldered to a large PCB and connected to  
GND for maximum power dissipation.  
4 9  
,
GND  
5
LX2  
EN2  
Pin for Switching of Channel 2.  
6
7
Chip Enable of Channel 2 (Active High). V V  
EN2  
IN2.  
FB2  
Feedback of Channel 2.  
Power Input of Channel 1.  
8
VIN1  
10  
LX1  
Pin for Switching of Channel 1.  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
07/2008 Rev 1.0  
3
PAM2308  
Dual High-Efficiency PWM Step-Down DC-DC Coverter  
Absolute Maximum Ratings  
These are stress ratings only and functional operation is not implied. Exposure to absolute  
maximum ratings for prolonged time periods may affect device reliability. All voltages are with  
respect to ground.  
Input Voltage.................................-0.3V to 6.5V  
EN1,FB1,LX1,EN2,FB2 and LX2 Pin Voltage........  
Junction Temperature................................150°C  
Storage Temperature Range.......-65°C to 150°C  
-0.3V to (VIN +0.3V) Soldering Temperature.....................260°C,10sec  
Recommended Operating Conditions  
Supply Voltage...............................2.5V to 5.5V  
Ambient Temperature Range.........-40°C to 85°C  
Junction Temperature Range.........-40°C to 125°C  
Thermal Information  
Parameter  
Symbol  
Package  
WDFN 3x3-10  
WDFN 3x3-10  
WDFN 3x3-10  
Maximum  
Unit  
°C/W  
°C/W  
W
Thermal Resistance (Junction to ambient)  
Thermal Resistance (Junction to case)  
Power Dissipation  
θJA  
θJC  
PD  
60  
8.5  
1.66  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
07/2008 Rev 1.0  
4
PAM2308  
Dual High-Efficiency PWM Step-Down DC-DC Coverter  
Electrical Characteristic  
TA=25OC, VIN=3.6V, VO=1.8V, CIN=10μF, CO=10μF, L=2.2μH, unless otherwise noted.  
PARAMETER  
Input Voltage Range  
SYMBOL  
VIN  
Test Conditions  
MIN  
2.5  
TYP  
MAX UNITS  
5.5  
V
V
Regulated Feedback Voltage  
VFB  
0.588  
0.6  
0.3  
0.612  
Reference Voltage Line Regulation  
Regulated Output Voltage Accuary  
ΔVFB  
VO  
%/V  
%
IO = 100mA  
-3  
+3  
VIN=3V,VFB = 0.5V or  
VO=90%  
Peak Inductor Current  
IPK  
1.5  
A
Output Voltage Line Regulation  
Output Voltage Load Regulation  
Quiescent Current (per channel)  
Shutdown Current (per channel)  
LNR  
LDR  
IQ  
VIN = 2.5V to 5V, IO=10mA  
IO=1mA to 1A  
No load  
0.2  
0.5  
40  
0.5  
1.5  
70  
1
%/V  
%
μA  
μA  
MHz  
kHz  
Ω
ISD  
VEN = 0V  
0.1  
1.5  
500  
0.3  
0.35  
0.01  
96  
VO = 100%  
1.2  
1.8  
Oscillator Frequency  
fOSC  
VFB = 0V or VO = 0V  
P MOSFET  
IDS=100mA  
N MOSFET  
0.45  
0.5  
1
Drain-Source On-State Resistance  
RDS(ON)  
Ω
SW Leakage Current (per channel)  
High Efficiency  
ILSW  
η
μA  
%
EN Threshold High  
VEH  
VEL  
IEN  
1.5  
V
EN Threshold Low  
0.3  
V
EN Leakage Current  
Over Temperature Protection  
OTP Hysteresis  
0.01  
150  
30  
μA  
°C  
°C  
OTP  
OTH  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
07/2008 Rev 1.0  
5
PAM2308  
Dual High-Efficiency PWM Step-Down DC-DC Coverter  
Typical Performance Characteristics  
TA=25°C, CIN=10μF, CO=10μF, L=4.7μH, unless otherwise noted.  
Efficiency vs Output Current (Vo=1.2V)  
Efficiency vs Output Current (Vo=1.5V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5V  
3.6V  
4.2V  
Vin=3.6V  
Vin=4.2V  
Vin=5V  
1
10  
100  
1000  
1
1
1
10  
100  
1000  
Output Current(mA)  
Output Current(mA)  
Efficiency vs Output Current (Vo=1.8V)  
Efficiency vs Output Current (Vo=2.5V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
3V  
2.5V  
3.6V  
4.2V  
3.6V  
4.2V  
1
10  
100  
1000  
10  
100  
1000  
Output Current(mA)  
Output Current(mA)  
Eifficiency VS Output Current (Vo=3.3V)  
Efficiency vs Output Current (Vo=2.8V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
Vin=3.6V  
Vin=4.2V  
Vin=5V  
3V  
3.6V  
4.2V  
10  
100  
1000  
1
10  
100  
1000  
Output Current(mA)  
Output Current(mA)  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
07/2008 Rev 1.0  
6
PAM2308  
Dual High-Efficiency PWM Step-Down DC-DC Coverter  
Typical Performance Characteristics  
TA=25°C, CIN=10μF, CO=10μF, L=4.7μH, unless otherwise noted.  
Efficiency VS Input Voltage (Vo=1.2V)  
Efficiency vs Input Voltage (Vo=1.5V)  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
10mA  
Io=10mA  
Io=100mA  
Io=800mA  
100mA  
800mA  
2.5  
3
3.5  
4
4.5  
5
5.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage(V)  
Input Voltage(V)  
Efficiency vs Input Voltage (Vo=1.8V)  
Efficiency vs Input Voltage (Vo=2.5V)  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
10mA  
10mA  
100mA  
800mA  
100mA  
800mA  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage(V)  
Input Voltage(V)  
Eifficiency VS Input Voltage (Vo=3.3V)  
Efficiency vs Input Voltage (Vo=2.8V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
10mA  
Io=10mA  
Io=100mA  
Io=800mA  
100mA  
800mA  
3.5 3.75  
4
4.25 4.5 4.75  
Input Voltage(V)  
5
5.25 5.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage(V)  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
07/2008 Rev 1.0  
7
PAM2308  
Dual High-Efficiency PWM Step-Down DC-DC Coverter  
Typical Performance Characteristics  
TA=25°C, CIN=10μF, CO=10μF,L=4.7μH, unless otherwise noted.  
Output Voltage VS Input Voltage  
Reference Voltage VS Input Voltage  
0.602  
0.600  
0.598  
0.596  
0.594  
0.592  
0.590  
0.588  
0.586  
0.584  
1.218  
1.213  
1.208  
1.203  
1.198  
1.193  
1.188  
Vin=3.6V  
Io=1mA  
Io=500mA  
Io=1A  
I=100mA  
I=600mA  
I=800mA  
2
3
4
5
6
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage(V)  
Input Voltage(V)  
Output Voltage VS Temperature  
Reference Voltage VS Temperature  
0.620  
0.615  
0.610  
0.605  
0.600  
0.595  
0.590  
1.194  
1.193  
1.192  
1.191  
1.19  
Vo=1.2V  
Vin=3.6V  
1.189  
1.188  
Io=100mA  
20  
40  
60  
80  
100  
120  
140  
0
50  
100  
150  
Temperature(°C)  
Temperature(°C)  
Output Voltage VS Load Current  
Vo=1.2V  
Reference Voltage VS Load Current  
1.218  
1.213  
1.208  
1.203  
1.198  
1.193  
1.188  
0.603  
0.600  
0.598  
0.595  
0.593  
0.590  
0.588  
0.585  
0.583  
0.580  
Vin=2.7V  
Vin=3.6V  
Vin=4.2V  
Vin=5V  
Vin=2.7V  
Vin=3.6V  
Vin=4.2V  
0
100 200 300 400 500 600 700 800 900 1000  
Load Current(mA)  
0
200  
400  
600  
800  
1000  
Load Current(mA)  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
07/2008 Rev 1.0  
8
PAM2308  
Dual High-Efficiency PWM Step-Down DC-DC Coverter  
Typical Performance Characteristics  
TA=25OC, CIN=10μF, CO=10μF,L=4.7μH, unless otherwise noted.  
Dynamic Supply Current VS Input Voltage  
Dynamic Supply Current VS Temperature  
60  
50  
40  
30  
20  
10  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Vo=1.2V  
ILoad=0A  
Vo=1.2V  
Vin=3.6V  
ILoad=0A  
0
40  
60  
80  
100  
120  
140  
2.5  
3
3.5  
4
4.5  
5
5.5  
Temperature(°C)  
Input Voltage(V)  
Rdson VS Temperature  
Vin=3.6V  
Rdson VS Input Voltage  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.35  
0.3  
Vin=3.6V  
0.25  
0.2  
Vin=4.2V  
Vin=3.6V  
Vin=2.7V  
0.15  
0.1  
2
3
4
5
6
20  
70  
Temperature(°C)  
120  
Input Voltage(V)  
Oscillator Frequency VS Temperature  
Vin=3.6V  
Oscillator Frequency VS Supply Voltage  
Vin=3.6V  
1.58  
1.56  
1.54  
1.52  
1.50  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
20  
40  
60  
80  
100  
120  
140  
2
3
4
5
Temperature(°C)  
Supply Voltage(V)  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
07/2008 Rev 1.0  
9
PAM2308  
Dual High-Efficiency PWM Step-Down DC-DC Coverter  
Typical Performance Characteristics  
TA=25°C,CIN=10μF, CO=10μF,L=4.7μH, unless otherwise noted.  
Load Transient  
Io=0-500mA Vo=3.3V Vin=5V  
Load Transient  
Io=0-1A Vo=1.2V Vin=3.6V  
Output  
Current  
Output  
Current  
Voltage  
Output  
Voltage  
Output  
Start-up from Shutdown  
Vo=1.8V,Vin=3.6V  
Voltage  
Output  
Enable  
Inductor  
Current  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
07/2008 Rev 1.0  
10  
PAM2308  
Dual High-Efficiency PWM Step-Down DC-DC Coverter  
Application Information  
The basic PAM2308 application circuit is shown  
in Page 1. External component selection is  
determined by the load requirement, selecting L  
first and then Cin and Cout.  
The selection of Cout is driven by the required  
effective series resistance (ESR).  
Typically, once the ESR requirement for Cout  
has been met, the RMS current rating generally  
far exceeds the IRIPPLE(P-P) requirement. The  
output ripple Vout is determined by:  
Inductor Selection  
For most applications, the value of the inductor  
will fall in the range of 1μH to 4.7μH. Its value is  
chosen based on the desired ripple current.  
Large value inductors lower ripple current and  
small value inductors result in higher ripple  
currents. Higher VIN or Vout also increases the  
ripple current as shown in equation 1. A  
reasonable starting point for setting ripple  
current is IL = 400mA (40% of 1A).  
1
æ
ö
VVOUT @VI  
L
ESR+  
ç
è
÷
ø
8fCOUT  
Where f = operating frequency, COUT=output  
capacitance and ΔIL = ripple current in the  
inductor. For a fixed output voltage, the output  
ripple is highest at maximum input voltage since  
ΔIL increases with input voltage.  
1
V
OUT  
æ
ö
(1)  
DIL =  
V
OUT 1-  
ç
Using Ceramic Input and Output Capacitors  
÷
ø
f
L
V
IN  
( )( )  
è
Higher values, lower cost ceramic capacitors are  
now becoming available in smaller case sizes.  
Their high ripple current, high voltage rating and  
low ESR make them ideal for switching regulator  
applications. Using ceramic capacitors can  
achieve very low output ripple and small circuit  
size.  
The DC current rating of the inductor should be  
at least equal to the maximum load current plus  
half the ripple current to prevent core saturation.  
Thus, a 1.4A rated inductor should be enough for  
most applications (1A + 400mA). For better  
efficiency, choose a low DC-resistance inductor.  
When choosing the input and output ceramic  
capacitors, choose the X5R or X7R dielectric  
formulations. These dielectrics have the best  
temperature and voltage characteristics of all  
the ceramics for a given value and size.  
Vo  
L
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
2.2μH  
2.2μH  
2.2μH  
4.7μH  
4.7μH  
CIN and COUT Selection  
Thermal consideration  
In continuous mode, the source current of the top  
MOSFET is a square wave of duty cycle  
Vout/Vin. To prevent large voltage transients, a  
low ESR input capacitor sized for the maximum  
RMS current must be used. The maximum RMS  
capacitor current is given by:  
Thermal protection limits power dissipation in  
the PAM2308. When the junction temperature  
exceeds 150°C, the OTP (Over Temperature  
Protection) starts the thermal shutdown and  
turns the pass transistor off. The pass transistor  
r e s u m e s o p e r a t i o n a f t e r t h e j u n c t i o n  
temperature drops below 120°C.  
éVOUT  
V
(
IN - VOUT ù1  
2
)
û
ë
CIN required IRMS @ IOMAX  
V
IN  
For continuous operation, the junction  
temperature should be maintained below 125°C.  
The power dissipation is defined as:  
This formula has a maximum at VIN =2Vout,  
where IR M S =IO U T /2. This simple worst-case  
condition is commonly used for design because  
even significant deviations do not offer much  
relief. Note that the capacitor manufacturer's  
ripple current ratings are often based on 2000  
hours of life. This makes it advisable to further  
derate the capacitor, or choose a capacitor rated  
at a higher temperature than required. Consult  
the manufacturer if there is any question.  
VORDSONH + V -V  
(
R
)
DSONL  
IN  
O
2
P =IO  
+ tSWF I +IQ V  
S O IN  
(
)
D
V
IN  
IQ is the step-down converter quiescent current.  
The term tsw is used to estimate the full load  
step-down converter switching losses.  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
07/2008 Rev 1.0  
11  
PAM2308  
Dual High-Efficiency PWM Step-Down DC-DC Coverter  
For the condition where the step-down converter  
is in dropout at 100% duty cycle, the total device  
dissipation reduces to:  
100% Duty Cycle Operation  
As the input voltage approaches the output  
voltage, the converter turns the P-channel  
transistor continuously on. In this mode the  
output voltage is equal to the input voltage minus  
the voltage drop across the P - channel  
transistor:  
2
P =IO RDSONH +IQV  
D
IN  
Since RDS(ON), quiescent current, and switching  
losses all vary with input voltage, the total losses  
should be investigated over the complete input  
voltage range. The maximum power dissipation  
depends on the thermal resistance of IC  
package, PCB layout, the rate of surrounding  
airflow and temperature difference between  
junction and ambient. The maximum power  
dissipation can be calculated by the following  
formula:  
VOUT = VIN – ILOAD (Rdson + RL)  
where Rdson = P-channel switch ON resistance,  
= Output current, RL = Inductor DC  
ILOAD  
resistance  
UVLO and Soft-Start  
TJ(MAX) -TA  
The reference and the circuit remain reset until  
the VIN crosses its UVLO threshold.  
P =  
D
θJA  
Where TJ(max) is the maximum allowable  
junction temperature 125°C.TA is the ambient  
temperature and θJA is the thermal resistance  
from the junction to the ambient. Based on the  
standard JEDEC for a two layers thermal test  
board, the thermal resistance θJA of WDFN3X3 is  
60°C/W. The maximum power dissipation at TA =  
25°C can be calculated by following formula:  
The PAM2308 has an internal soft-start circuit  
that limits the in-rush current during start-up.  
This prevents possible voltage drops of the input  
voltage and eliminates the output voltage  
overshoot. The soft-start acts as a digital circuit  
to increase the switch current in several steps to  
the P-channel current limit (1500mA).  
Short Circuit Protection  
PD=(125°C-25°C)/60°C/W=1.66W  
The switch peak current is limited cycle-by-cycle  
to a typical value of 1500mA. In the event of an  
output voltage short circuit, the device operates  
with a frequency of 400kHz and minimum duty  
cycle, therefore the average input current is  
typically 200mA.  
Setting the Output Voltage  
The internal reference is 0.6V (Typical). The  
output voltage is calculated as below:  
R1  
R2  
æ
ö
V
O
=0.6×1+  
è
Thermal Shutdown  
ç
÷
ø
When the die temperature exceeds 150°C, a  
reset occurs and the reset remains until the  
temperature decrease to 120°C, at which time  
the circuit can be restarted.  
The output voltage is given by Table 1.  
Table 1: Resistor selection for output voltage  
setting  
Vo  
R1  
R2  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
100k  
150k  
200k  
380k  
540k  
100k  
100k  
100k  
120k  
120k  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
07/2008 Rev 1.0  
12  
PAM2308  
Dual High-Efficiency PWM Step-Down DC-DC Coverter  
PCB Layout Check List  
When laying out the printed circuit board, the following checklist should be used to ensure proper  
operation of the PAM2308. These items are also illustrated graphically in Figure 1. Check the following in  
your layout:  
1. The power traces, consisting of the GND trace, the SW trace and the VIN trace should be kept short,  
direct and wide.  
2. Does the FB pin connect directly to the feedback resistors? The resistive divider R1/R2 must be con-  
nected between the (+) plate of COUT and ground.  
3. Does the (+) plate of CIN connect to VIN as closely as possible? This capacitor provides the AC  
current to the internal power MOSFETs.  
4. Keep the switching node, SW, away from the sensitive FB node.  
5. Keep the (–) plates of CIN and COUT as close as possible.  
Top  
Bottom  
Figure 1 :PAM2308 Suggested Layout  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
07/2008 Rev 1.0  
13  
PAM2308  
Dual High-Efficiency PWM Step-Down DC-DC Coverter  
Ordering Information  
PAM 2308 X X X v1 v2  
Output Voltage 2  
Output Voltage 1  
Number of Pins  
Package Type  
Pin Configuration  
Output Voltage  
Pin Configuration  
Package Type  
Y: WDFN 3x 3  
Number of Pins  
v1  
v2  
B Type  
M: 10  
K: 3.3V  
H: 2.8V  
G: 2.5V  
E: 1.8V  
C: 1.5V  
B: 1.2V  
A: Adj  
K: 3.3V  
H: 2.8V  
G: 2.5V  
E: 1.8V  
C: 1.5V  
B: 1.2V  
A: Adj  
1. EN1  
2. FB1  
3. VIN2  
4. GND  
5. LX2  
6 :EN2  
7. FB2  
8. VIN1  
9. GND  
10. LX1  
Part Number  
Marking  
Package Type  
Standard Package  
2308v1v2  
XXXYW  
PAM2308BYMv1v2  
WDFN3x3-10  
3,000 Units/Tape&Reel  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
07/2008 Rev 1.0  
14  
PAM2308  
Dual High-Efficiency PWM Step-Down DC-DC Coverter  
Outline Dimensions  
3x3 mm WDFN 10  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
07/2008 Rev 1.0  
15  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY