LPC11C14FBD48,151 [NXP]

LPC11C14FBD48;
LPC11C14FBD48,151
型号: LPC11C14FBD48,151
厂家: NXP    NXP
描述:

LPC11C14FBD48

PC
文件: 总62页 (文件大小:359K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC11Cx2/Cx4  
32-bit ARM Cortex-M0 microcontroller; 16/32 kB flash, 8 kB  
SRAM; C_CAN  
Rev. 3.1 — 15 May 2013  
Product data sheet  
1. General description  
The LPC11Cx2/Cx4 are an ARM Cortex-M0 based, low-cost 32-bit MCU family, designed  
for 8/16-bit microcontroller applications, offering performance, low power, simple  
instruction set and memory addressing together with reduced code size compared to  
existing 8/16-bit architectures.  
The LPC11Cx2/Cx4 operate at CPU frequencies of up to 50 MHz.  
The peripheral complement of the LPC11Cx2/Cx4 includes 16/32 kB of flash memory,  
8 kB of data memory, one C_CAN controller, one Fast-mode Plus I2C-bus interface, one  
RS-485/EIA-485 UART, two SPI interfaces with SSP features, four general purpose  
counter/timers, a 10-bit ADC, and up to 40 general purpose I/O pins.  
On-chip C_CAN drivers and flash In-System Programming tools via C_CAN are included.  
In addition, the LPC11C22 and LPC11C24 parts include an on-chip, high-speed CAN  
transceiver.  
2. Features and benefits  
System:  
ARM Cortex-M0 processor, running at frequencies of up to 50 MHz.  
ARM Cortex-M0 built-in Nested Vectored Interrupt Controller (NVIC).  
Serial Wire Debug.  
System tick timer.  
Memory:  
32 kB (LPC11Cx4) or 16 kB (LPC11Cx2) on-chip flash program memory.  
8 kB SRAM data memory.  
In-System Programming (ISP) and In-Application Programming (IAP) via on-chip  
bootloader software.  
Flash ISP commands can be issued via UART or C_CAN.  
Digital peripherals:  
General Purpose I/O (GPIO) pins with configurable pull-up/pull-down resistors.  
40 GPIO pins on the LPC11C12/C14 parts; 36 GPIO pins on the LPC11C22/C24  
parts.  
GPIO pins can be used as edge and level sensitive interrupt sources.  
High-current output driver (20 mA) on one pin.  
High-current sink drivers (20 mA) on two I2C-bus pins in Fast-mode Plus.  
Four general purpose counter/timers with a total of four capture inputs and 13  
(LPC11C12/C14) or 12 (LPC11C22/C24) match outputs.  
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Programmable WatchDog Timer (WDT).  
Analog peripherals:  
10-bit ADC with input multiplexing among 8 pins.  
Serial interfaces:  
UART with fractional baud rate generation, internal FIFO, and RS-485 support.  
Two SPI controllers with SSP features and with FIFO and multi-protocol  
capabilities.  
I2C-bus interface supporting full I2C-bus specification and Fast-mode Plus with a  
data rate of 1 Mbit/s with multiple address recognition and monitor mode.  
C_CAN controller. On-chip C_CAN and CANopen drivers included.  
On-chip, high-speed CAN transceiver (parts LPC11C22/C24 only).  
Clock generation:  
12 MHz internal RC oscillator trimmed to 1 % accuracy that can optionally be used  
as a system clock.  
Crystal oscillator with an operating range of 1 MHz to 25 MHz.  
Programmable watchdog oscillator with a frequency range of 7.8 kHz to 1.8 MHz.  
PLL allows CPU operation up to the maximum CPU rate without the need for a  
high-frequency crystal. May be run from the system oscillator or the internal RC  
oscillator.  
Clock output function with divider that can reflect the system oscillator, IRC, CPU  
clock, or the Watchdog clock.  
Power control:  
Integrated PMU (Power Management Unit) to minimize power consumption during  
Sleep, Deep-sleep, and Deep power-down modes.  
Three reduced power modes: Sleep, Deep-sleep, and Deep power-down.  
Processor wake-up from Deep-sleep mode via a dedicated start logic using 13 of  
the GPIO pins.  
Power-On Reset (POR).  
Brownout detect with four separate thresholds for interrupt and forced reset.  
Unique device serial number for identification.  
Single 3.3 V power supply (1.8 V to 3.6 V).  
Available as 48-pin LQFP package.  
3. Applications  
eMetering  
Elevator systems  
Industrial and sensor based networks  
White goods  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
2 of 62  
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC11C12FBD48/301  
LPC11C14FBD48/301  
LPC11C22FBD48/301  
LPC11C24FBD48/301  
LQFP48  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 7 SOT313-2  
1.4 mm  
LQFP48  
LQFP48  
LQFP48  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 7 SOT313-2  
1.4 mm  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 7 SOT313-2  
1.4 mm  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 7 SOT313-2  
1.4 mm  
4.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Flash Total UART  
SRAM RS-485 Fast+  
I2C/  
SPI C_CAN C_CAN with GPIO ADC  
Package  
on-chip  
CAN  
pins  
channels  
transceiver  
LPC11C12FBD48/301  
LPC11C14FBD48/301  
LPC11C22FBD48/301  
LPC11C24FBD48/301  
16 kB 8 kB  
32 kB 8 kB  
16 kB 8 kB  
32 kB 8 kB  
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
no  
40  
40  
36  
36  
8
8
8
8
LQFP48  
LQFP48  
LQFP48  
LQFP48  
no  
yes  
yes  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
3 of 62  
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
5. Block diagram  
XTALIN  
XTALOUT  
SWD  
RESET  
LPC11Cx2/Cx4  
IRC  
CLOCK  
GENERATION,  
POWER CONTROL,  
SYSTEM  
CLKOUT  
TEST/DEBUG  
INTERFACE  
POR  
FUNCTIONS  
ARM  
CORTEX-M0  
clocks and  
controls  
FLASH  
16/32 kB  
SRAM  
8 kB  
ROM  
system bus  
slave  
slave  
slave  
slave  
HIGH-SPEED  
GPIO  
GPIO ports  
PIO0/1/2/3  
AHB-LITE BUS  
slave  
AHB TO APB  
BRIDGE  
RXD  
TXD  
DTR, DSR, CTS,  
DCD, RI, RTS  
UART  
AD[7:0]  
10-bit ADC  
SCK0, SSEL0  
MISO0, MOSI0  
SPI0  
SPI1  
CT32B0_MAT[3:0]  
CT32B0_CAP0  
32-bit COUNTER/TIMER 0  
32-bit COUNTER/TIMER 1  
16-bit COUNTER/TIMER 0  
16-bit COUNTER/TIMER 1  
SCK1, SSEL1  
MISO1, MOSI1  
CT32B1_MAT[3:0]  
CT32B1_CAP0  
SCL  
SDA  
2
I C-BUS  
CT16B0_MAT[2:0]  
CT16B0_CAP0  
(1)  
CT16B1_MAT[1:0]  
WDT  
CT16B1_CAP0  
IOCONFIG  
CAN_TXD  
CAN_RXD  
C_CAN (LPC11C12/C14)  
SYSTEM CONTROL  
PMU  
CANL, CANH  
STB  
C_CAN/  
ON-CHIP TRANSCEIVER  
(LPC11C22/C24)  
V
, VDD_CAN  
CC  
002aaf265  
(1) CT16B1_MAT0 not available on parts LPC11C22/C24.  
Fig 1. LPC11Cx2/Cx4 block diagram  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
4 of 62  
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
6. Pinning information  
6.1 Pinning  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PIO2_6  
PIO2_0/DTR/SSEL1  
PIO3_0/DTR  
R/PIO1_2/AD3/CT32B1_MAT1  
R/PIO1_1/AD2/CT32B1_MAT0  
R/PIO1_0/AD1/CT32B1_CAP0  
R/PIO0_11/AD0/CT32B0_MAT3  
PIO2_11/SCK0  
3
RESET/PIO0_0  
4
PIO0_1/CLKOUT/CT32B0_MAT2  
5
V
SS  
6
XTALIN  
LPC11C12FBD48/301  
LPC11C14FBD48/301  
7
XTALOUT  
PIO1_10/AD6/CT16B1_MAT1  
SWCLK/PIO0_10/SCK0/CT16B0_MAT2  
PIO0_9/MOSI0/CT16B0_MAT1  
PIO0_8/MISO0/CT16B0_MAT0  
PIO2_2/DCD/MISO1  
8
V
DD  
9
PIO1_8/CT16B1_CAP0  
PIO0_2/SSEL0/CT16B0_CAP0  
PIO2_7  
10  
11  
12  
PIO2_8  
PIO2_10  
002aaf266  
Fig 2. Pin configuration (LPC11C12/C14)  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
5 of 62  
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PIO2_6  
PIO3_0/DTR  
PIO2_0/DTR/SSEL1  
RESET/PIO0_0  
R/PIO1_2/AD3/CT32B1_MAT1  
R/PIO1_1/AD2/CT32B1_MAT0  
R/PIO1_0/AD1/CT32B1_CAP0  
R/PIO0_11/AD0/CT32B0_MAT3  
PIO2_11/SCK0  
3
4
PIO0_1/CLKOUT/CT32B0_MAT2  
5
V
SS  
6
XTALIN  
LPC11C22FBD48/301  
LPC11C24FBD48/301  
7
XTALOUT  
PIO1_10/AD6/CT16B1_MAT1  
SWCLK/PIO0_10/SCK0/CT16B0_MAT2  
PIO0_9/MOSI0/CT16B0_MAT1  
PIO0_8/MISO0/CT16B0_MAT0  
PIO2_2/DCD/MISO1  
8
V
DD  
9
PIO1_8/CT16B1_CAP0  
PIO0_2/SSEL0/CT16B0_CAP0  
PIO2_7  
10  
11  
12  
PIO2_8  
PIO2_10  
002aaf909  
Fig 3. Pin configuration (LPC11C22/C24)  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
6 of 62  
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
6.2 Pin description  
Table 3.  
Symbol  
LPC11C12/C14 pin description table  
Pin  
3[2]  
4[3]  
Start Type Reset Description  
logic  
inputs  
state  
[1]  
PIO0_0 to PIO0_11  
RESET/PIO0_0  
Port 0 — Port 0 is a 12-bit I/O port with individual direction and  
function controls for each bit. The operation of port 0 pins depends  
on the function selected through the IOCONFIG register block.  
yes  
yes  
I
I; PU RESET — External reset input with 20 ns glitch filter. A LOW-going  
pulse as short as 50 ns on this pin resets the device, causing I/O  
ports and peripherals to take on their default states, and processor  
execution to begin at address 0.  
I/O  
I/O  
-
PIO0_0 — General purpose digital input/output pin with 10 ns glitch  
filter.  
PIO0_1/CLKOUT/  
CT32B0_MAT2  
I; PU PIO0_1 — General purpose digital input/output pin. A LOW level on  
this pin during reset starts the flash ISP command handler via UART  
(if PIO0_3 is HIGH) or via C_CAN (if PIO0_3 is LOW).  
O
-
-
CLKOUT — Clockout pin.  
O
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.  
PIO0_2/SSEL0/  
CT16B0_CAP0  
10[3]  
yes  
yes  
I/O  
I/O  
I
I; PU PIO0_2 — General purpose digital input/output pin.  
-
-
SSEL0 — Slave Select for SPI0.  
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.  
PIO0_3  
14[3]  
I/O  
I; PU PIO0_3 — General purpose digital input/output pin. This pin is  
monitored during reset: Together with a LOW level on pin PIO0_1, a  
LOW level starts the flash ISP command handler via C_CAN and a  
HIGH level starts the flash ISP command handler via UART.  
PIO0_4/SCL  
PIO0_5/SDA  
15[4]  
16[4]  
yes  
yes  
I/O  
I/O  
I; IA  
-
PIO0_4 — General purpose digital input/output pin (open-drain).  
SCL — I2C-bus, open-drain clock input/output. High-current sink only  
if I2C Fast-mode Plus is selected in the I/O configuration register.  
I/O  
I/O  
I; IA  
-
PIO0_5 — General purpose digital input/output pin (open-drain).  
SDA — I2C-bus, open-drain data input/output. High-current sink only  
if I2C Fast-mode Plus is selected in the I/O configuration register.  
PIO0_6/SCK0  
PIO0_7/CTS  
22[3]  
23[3]  
yes  
yes  
I/O  
I/O  
I/O  
I; PU PIO0_6 — General purpose digital input/output pin.  
SCK0 — Serial clock for SPI0.  
-
I; PU PIO0_7 — General purpose digital input/output pin (high-current  
output driver).  
I
-
CTS — Clear To Send input for UART.  
PIO0_8/MISO0/  
CT16B0_MAT0  
27[3]  
28[3]  
29[3]  
yes  
yes  
yes  
I/O  
I/O  
O
I; PU PIO0_8 — General purpose digital input/output pin.  
-
-
MISO0 — Master In Slave Out for SPI0.  
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.  
PIO0_9/MOSI0/  
CT16B0_MAT1  
I/O  
I/O  
O
I; PU PIO0_9 — General purpose digital input/output pin.  
-
-
MOSI0 — Master Out Slave In for SPI0.  
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.  
SWCLK/PIO0_10/  
SCK0/  
CT16B0_MAT2  
I
I; PU SWCLK — Serial wire clock.  
I/O  
I/O  
O
-
-
-
PIO0_10 — General purpose digital input/output pin.  
SCK0 — Serial clock for SPI0.  
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
7 of 62  
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC11C12/C14 pin description table  
Pin  
Start Type Reset Description  
logic  
inputs  
state  
[1]  
R/PIO0_11/  
AD0/  
32[5]  
yes  
-
I; PU R — Reserved. Configure for an alternate function in the IOCONFIG  
block.  
CT32B0_MAT3  
I/O  
I
-
-
-
PIO0_11 — General purpose digital input/output pin.  
AD0 — A/D converter, input 0.  
O
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.  
PIO1_0 to PIO1_11  
Port 1 — Port 1 is a 12-bit I/O port with individual direction and  
function controls for each bit. The operation of port 1 pins depends  
on the function selected through the IOCONFIG register block.  
R/PIO1_0/AD1/  
CT32B1_CAP0  
33[5]  
34[5]  
35[5]  
yes  
no  
-
I; PU R — Reserved. Configure for an alternate function in the IOCONFIG  
block.  
I/O  
-
-
-
PIO1_0 — General purpose digital input/output pin.  
AD1 — A/D converter, input 1.  
I
I
-
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.  
R/PIO1_1/AD2/  
CT32B1_MAT0  
I; PU R — Reserved. Configure for an alternate function in the IOCONFIG  
block.  
I/O  
I
-
-
-
PIO1_1 — General purpose digital input/output pin.  
AD2 — A/D converter, input 2.  
O
-
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.  
R/PIO1_2/AD3/  
CT32B1_MAT1  
no  
I; PU R — Reserved. Configure for an alternate function in the IOCONFIG  
block.  
I/O  
I
-
-
-
PIO1_2 — General purpose digital input/output pin.  
AD3 — A/D converter, input 3.  
O
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.  
SWDIO/PIO1_3/  
AD4/  
CT32B1_MAT2  
39[5]  
no  
no  
I/O  
I/O  
I
I; PU SWDIO — Serial wire debug input/output.  
-
-
-
PIO1_3 — General purpose digital input/output pin.  
AD4 — A/D converter, input 4.  
O
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.  
PIO1_4/AD5/  
CT32B1_MAT3/  
WAKEUP  
40[5]  
I/O  
I; PU PIO1_4 — General purpose digital input/output pin with 10 ns glitch  
filter.  
I
-
-
-
AD5 — A/D converter, input 5.  
O
I
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.  
WAKEUP — Deep power-down mode wake-up pin with 20 ns glitch  
filter. This pin must be pulled HIGH externally to enter Deep  
power-down mode and pulled LOW to exit Deep power-down mode.  
A LOW-going pulse as short as 50 ns wakes up the part.  
PIO1_5/RTS/  
CT32B0_CAP0  
45[3]  
46[3]  
no  
no  
I/O  
O
I
I; PU PIO1_5 — General purpose digital input/output pin.  
-
-
RTS — Request To Send output for UART.  
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.  
PIO1_6/RXD/  
CT32B0_MAT0  
I/O  
I
I; PU PIO1_6 — General purpose digital input/output pin.  
-
-
RXD — Receiver input for UART.  
O
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
8 of 62  
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC11C12/C14 pin description table  
Pin  
Start Type Reset Description  
logic  
inputs  
state  
[1]  
PIO1_7/TXD/  
CT32B0_MAT1  
47[3]  
no  
I/O  
O
I; PU PIO1_7 — General purpose digital input/output pin.  
-
-
TXD — Transmitter output for UART.  
O
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.  
PIO1_8/  
CT16B1_CAP0  
9[3]  
no  
no  
no  
I/O  
I
I; PU PIO1_8 — General purpose digital input/output pin.  
CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.  
I; PU PIO1_9 — General purpose digital input/output pin.  
CT16B1_MAT0 — Match output 0 for 16-bit timer 1.  
I; PU PIO1_10 — General purpose digital input/output pin.  
-
PIO1_9/  
CT16B1_MAT0  
17[3]  
30[5]  
I/O  
O
-
PIO1_10/AD6/  
CT16B1_MAT1  
I/O  
I
-
-
AD6 — A/D converter, input 6.  
O
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.  
PIO1_11/AD7  
42[5]  
no  
I/O  
I
I; PU PIO1_11 — General purpose digital input/output pin.  
-
AD7 — A/D converter, input 7.  
PIO2_0 to PIO2_11  
Port 2 — Port 2 is a 12-bit I/O port with individual direction and  
function controls for each bit. The operation of port 2 pins depends  
on the function selected through the IOCONFIG register block.  
PIO2_0/DTR/  
SSEL1  
2[3]  
no  
no  
no  
no  
I/O  
I/O  
I/O  
I/O  
I
I; PU PIO2_0 — General purpose digital input/output pin.  
-
-
DTR — Data Terminal Ready output for UART.  
SSEL1 — Slave Select for SPI1.  
PIO2_1/DSR/SCK1 13[3]  
I; PU PIO2_1 — General purpose digital input/output pin.  
-
-
DSR — Data Set Ready input for UART.  
SCK1 — Serial clock for SPI1.  
I/O  
I/O  
I
PIO2_2/DCD/  
MISO1  
26[3]  
38[3]  
I; PU PIO2_2 — General purpose digital input/output pin.  
-
-
DCD — Data Carrier Detect input for UART.  
MISO1 — Master In Slave Out for SPI1.  
I/O  
I/O  
I
PIO2_3/RI/MOSI1  
I; PU PIO2_3 — General purpose digital input/output pin.  
-
-
RI — Ring Indicator input for UART.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
MOSI1 — Master Out Slave In for SPI1.  
PIO2_4  
18[3]  
21[3]  
1[3]  
11[3]  
12[3]  
24[3]  
25[3]  
31[3]  
no  
no  
no  
no  
no  
no  
no  
no  
I; PU PIO2_4 — General purpose digital input/output pin.  
I; PU PIO2_5 — General purpose digital input/output pin.  
I; PU PIO2_6 — General purpose digital input/output pin.  
I; PU PIO2_7 — General purpose digital input/output pin.  
I; PU PIO2_8 — General purpose digital input/output pin.  
I; PU PIO2_9 — General purpose digital input/output pin.  
I; PU PIO2_10 — General purpose digital input/output pin.  
I; PU PIO2_11 — General purpose digital input/output pin.  
PIO2_5  
PIO2_6  
PIO2_7  
PIO2_8  
PIO2_9  
PIO2_10  
PIO2_11/SCK0  
-
SCK0 — Serial clock for SPI0.  
PIO3_0 to PIO3_3  
Port 3 — Port 3 is a 12-bit I/O port with individual direction and  
function controls for each bit. The operation of port 3 pins depends  
on the function selected through the IOCONFIG register block. Pins  
PIO3_4 to PIO3_11 are not available.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
9 of 62  
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC11C12/C14 pin description table  
Pin  
Start Type Reset Description  
logic  
inputs  
state  
[1]  
PIO3_0/DTR  
PIO3_1/DSR  
PIO3_2/DCD  
PIO3_3/RI  
36[3]  
37[3]  
43[3]  
48[3]  
no  
no  
no  
no  
I/O  
O
I/O  
I
I; PU PIO3_0 — General purpose digital input/output pin.  
DTR — Data Terminal Ready output for UART.  
I; PU PIO3_1 — General purpose digital input/output pin.  
DSR — Data Set Ready input for UART.  
-
-
I/O  
I
I; PU PIO3_2 — General purpose digital input/output pin.  
DCD — Data Carrier Detect input for UART.  
I/O  
I
I; PU PIO3_3 — General purpose digital input/output pin.  
-
RI — Ring Indicator input for UART.  
CAN_RXD  
CAN_TXD  
VDD  
19[6]  
20[6]  
8; 44  
no  
no  
-
I
I; IA  
I; IA  
-
CAN_RXD — C_CAN receive data input.  
CAN_TXD — C_CAN transmit data output.  
O
I
Supply voltage to the internal regulator, the external rail, and the  
ADC. Also used as the ADC reference voltage.  
XTALIN  
6[7]  
-
I
-
Input to the oscillator circuit and internal clock generator circuits.  
Input voltage must not exceed 1.8 V.  
XTALOUT  
VSS  
7[7]  
-
-
O
I
-
-
Output from the oscillator amplifier.  
Ground.  
5; 41  
[1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled (pins pulled up to full VDD level); IA = inactive,  
no pull-up/down enabled.  
[2] 5 V tolerant pad. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up  
from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down mode. See Figure 26 for the  
reset pad configuration.  
[3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 25).  
[4] I2C-bus pads compliant with the I2C-bus specification for I2C standard mode and I2C Fast-mode Plus.  
[5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input.  
When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 25).  
[6] 5 V tolerant digital I/O pad without pull-up/pull-down resistors.  
[7] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded  
(grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.  
Table 4.  
Symbol  
LPC11C22/C24 pin description table  
Pin  
Start Type Reset Description  
logic  
inputs  
state  
[1]  
PIO0_0 to PIO0_11  
RESET/PIO0_0  
Port 0 — Port 0 is a 12-bit I/O port with individual direction and  
function controls for each bit. The operation of port 0 pins depends  
on the function selected through the IOCONFIG register block.  
3[2]  
yes  
I
I; PU RESET — External reset input with 20 ns glitch filter. A LOW-going  
pulse as short as 50 ns on this pin resets the device, causing I/O  
ports and peripherals to take on their default states, and processor  
execution to begin at address 0.  
I/O  
-
PIO0_0 — General purpose digital input/output pin with 10 ns glitch  
filter.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
10 of 62  
 
 
 
 
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 4.  
Symbol  
LPC11C22/C24 pin description table  
Pin  
Start Type Reset Description  
logic  
inputs  
state  
[1]  
PIO0_1/CLKOUT/  
CT32B0_MAT2  
4[3]  
yes  
I/O  
I; PU PIO0_1 — General purpose digital input/output pin. A LOW level on  
this pin during reset starts the flash ISP command handler via UART  
(if PIO0_3 is HIGH) or via C_CAN (if PIO0_3 is LOW).  
O
-
-
CLKOUT — Clockout pin.  
O
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.  
PIO0_2/SSEL0/  
CT16B0_CAP0  
10[3]  
yes  
yes  
I/O  
I/O  
I
I; PU PIO0_2 — General purpose digital input/output pin.  
-
-
SSEL0 — Slave Select for SPI0.  
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.  
PIO0_3  
14[3]  
I/O  
I; PU PIO0_3 — General purpose digital input/output pin. This pin is  
monitored during reset: Together with a LOW level on pin PIO0_1, a  
LOW level starts the flash ISP command handler via C_CAN and a  
HIGH level starts the flash ISP command handler via UART.  
PIO0_4/SCL  
PIO0_5/SDA  
15[4]  
16[4]  
yes  
yes  
I/O  
I/O  
I; IA  
-
PIO0_4 — General purpose digital input/output pin (open-drain).  
SCL — I2C-bus, open-drain clock input/output. High-current sink only  
if I2C Fast-mode Plus is selected in the I/O configuration register.  
I/O  
I/O  
I; IA  
-
PIO0_5 — General purpose digital input/output pin (open-drain).  
SDA — I2C-bus, open-drain data input/output. High-current sink only  
if I2C Fast-mode Plus is selected in the I/O configuration register.  
PIO0_6/SCK0  
PIO0_7/CTS  
23[3]  
24[3]  
yes  
yes  
I/O  
I/O  
I/O  
I; PU PIO0_6 — General purpose digital input/output pin.  
SCK0 — Serial clock for SPI0.  
-
I; PU PIO0_7 — General purpose digital input/output pin (high-current  
output driver).  
I
-
CTS — Clear To Send input for UART.  
PIO0_8/MISO0/  
CT16B0_MAT0  
27[3]  
28[3]  
29[3]  
yes  
yes  
yes  
I/O  
I/O  
O
I; PU PIO0_8 — General purpose digital input/output pin.  
-
-
MISO0 — Master In Slave Out for SPI0.  
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.  
PIO0_9/MOSI0/  
CT16B0_MAT1  
I/O  
I/O  
O
I; PU PIO0_9 — General purpose digital input/output pin.  
-
-
MOSI0 — Master Out Slave In for SPI0.  
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.  
SWCLK/PIO0_10/  
SCK0/  
CT16B0_MAT2  
I
I; PU SWCLK — Serial wire clock.  
I/O  
I/O  
O
-
-
-
PIO0_10 — General purpose digital input/output pin.  
SCK0 — Serial clock for SPI0.  
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.  
R/PIO0_11/  
AD0/  
32[5]  
yes  
-
I; PU R — Reserved. Configure for an alternate function in the IOCONFIG  
block.  
CT32B0_MAT3  
I/O  
I
-
-
-
PIO0_11 — General purpose digital input/output pin.  
AD0 — A/D converter, input 0.  
O
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.  
PIO1_0 to PIO1_11  
Port 1 — Port 1 is a 12-bit I/O port with individual direction and  
function controls for each bit. The operation of port 1 pins depends  
on the function selected through the IOCONFIG register block.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
11 of 62  
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 4.  
Symbol  
LPC11C22/C24 pin description table  
Pin  
Start Type Reset Description  
logic  
inputs  
state  
[1]  
R/PIO1_0/AD1/  
CT32B1_CAP0  
33[5]  
yes  
-
I; PU R — Reserved. Configure for an alternate function in the IOCONFIG  
block.  
I/O  
-
-
-
PIO1_0 — General purpose digital input/output pin.  
AD1 — A/D converter, input 1.  
I
I
-
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.  
R/PIO1_1/AD2/  
CT32B1_MAT0  
34[5]  
no  
I; PU R — Reserved. Configure for an alternate function in the IOCONFIG  
block.  
I/O  
I
-
-
-
PIO1_1 — General purpose digital input/output pin.  
AD2 — A/D converter, input 2.  
O
-
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.  
R/PIO1_2/AD3/  
CT32B1_MAT1  
35[5]  
no  
I; PU R — Reserved. Configure for an alternate function in the IOCONFIG  
block.  
I/O  
I
-
-
-
PIO1_2 — General purpose digital input/output pin.  
AD3 — A/D converter, input 3.  
O
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.  
SWDIO/PIO1_3/  
AD4/  
CT32B1_MAT2  
39[5]  
no  
no  
I/O  
I/O  
I
I; PU SWDIO — Serial wire debug input/output.  
-
-
-
PIO1_3 — General purpose digital input/output pin.  
AD4 — A/D converter, input 4.  
O
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.  
PIO1_4/AD5/  
CT32B1_MAT3/  
WAKEUP  
40[5]  
I/O  
I; PU PIO1_4 — General purpose digital input/output pin with 10 ns glitch  
filter.  
I
-
-
-
AD5 — A/D converter, input 5.  
O
I
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.  
WAKEUP — Deep power-down mode wake-up pin with 20 ns glitch  
filter. This pin must be pulled HIGH externally to enter Deep  
power-down mode and pulled LOW to exit Deep power-down mode.  
A LOW-going pulse as short as 50 ns wakes up the part.  
PIO1_5/RTS/  
CT32B0_CAP0  
45[3]  
46[3]  
47[3]  
no  
no  
no  
I/O  
O
I
I; PU PIO1_5 — General purpose digital input/output pin.  
-
-
RTS — Request To Send output for UART.  
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.  
PIO1_6/RXD/  
CT32B0_MAT0  
I/O  
I
I; PU PIO1_6 — General purpose digital input/output pin.  
-
-
RXD — Receiver input for UART.  
O
I/O  
O
O
I/O  
I
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.  
PIO1_7/TXD/  
CT32B0_MAT1  
I; PU PIO1_7 — General purpose digital input/output pin.  
-
-
TXD — Transmitter output for UART.  
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.  
PIO1_8/  
CT16B1_CAP0  
9[3]  
no  
no  
I; PU PIO1_8 — General purpose digital input/output pin.  
CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.  
I; PU PIO1_10 — General purpose digital input/output pin.  
-
PIO1_10/AD6/  
CT16B1_MAT1  
30[5]  
I/O  
I
-
-
AD6 — A/D converter, input 6.  
O
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
12 of 62  
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 4.  
Symbol  
LPC11C22/C24 pin description table  
Pin  
Start Type Reset Description  
logic  
inputs  
state  
[1]  
PIO1_11/AD7  
42[5]  
no  
I/O  
I
I; PU PIO1_11 — General purpose digital input/output pin.  
-
AD7 — A/D converter, input 7.  
PIO2_0 to PIO2_11  
Port 2 — Port 2 is a 12-bit I/O port with individual direction and  
function controls for each bit. The operation of port 2 pins depends  
on the function selected through the IOCONFIG register block.  
PIO2_0/DTR/  
SSEL1  
2[3]  
no  
no  
no  
no  
I/O  
I/O  
I/O  
I/O  
I
I; PU PIO2_0 — General purpose digital input/output pin.  
-
-
DTR — Data Terminal Ready output for UART.  
SSEL1 — Slave Select for SPI1.  
PIO2_1/DSR/SCK1 13[3]  
I; PU PIO2_1 — General purpose digital input/output pin.  
-
-
DSR — Data Set Ready input for UART.  
SCK1 — Serial clock for SPI1.  
I/O  
I/O  
I
PIO2_2/DCD/  
MISO1  
26[3]  
38[3]  
I; PU PIO2_2 — General purpose digital input/output pin.  
-
-
DCD — Data Carrier Detect input for UART.  
MISO1 — Master In Slave Out for SPI1.  
I/O  
I/O  
I
PIO2_3/RI/MOSI1  
I; PU PIO2_3 — General purpose digital input/output pin.  
-
-
RI — Ring Indicator input for UART.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
MOSI1 — Master Out Slave In for SPI1.  
PIO2_6  
1[3]  
no  
no  
no  
no  
no  
I; PU PIO2_6 — General purpose digital input/output pin.  
I; PU PIO2_7 — General purpose digital input/output pin.  
I; PU PIO2_8 — General purpose digital input/output pin.  
I; PU PIO2_10 — General purpose digital input/output pin.  
I; PU PIO2_11 — General purpose digital input/output pin.  
PIO2_7  
11[3]  
12[3]  
25[3]  
31[3]  
PIO2_8  
PIO2_10  
PIO2_11/SCK0  
-
SCK0 — Serial clock for SPI0.  
PIO3_0 to PIO3_3  
Port 3 — Port 3 is a 12-bit I/O port with individual direction and  
function controls for each bit. The operation of port 3 pins depends  
on the function selected through the IOCONFIG register block. Pins  
PIO3_4 to PIO3_11 are not available.  
PIO3_0/DTR  
PIO3_1/DSR  
PIO3_2/DCD  
PIO3_3/RI  
36[3]  
37[3]  
43[3]  
48[3]  
no  
no  
no  
no  
I/O  
O
I; PU PIO3_0 — General purpose digital input/output pin.  
DTR — Data Terminal Ready output for UART.  
I; PU PIO3_1 — General purpose digital input/output pin.  
DSR — Data Set Ready input for UART.  
-
I/O  
I
-
I/O  
I
I; PU PIO3_2 — General purpose digital input/output pin.  
DCD — Data Carrier Detect input for UART.  
I/O  
I
I; PU PIO3_3 — General purpose digital input/output pin.  
-
-
-
-
RI — Ring Indicator input for UART.  
LOW-level CAN bus line.  
CANL  
CANH  
STB  
18  
19  
22  
no  
no  
no  
I/O  
I/O  
I
HIGH-level CAN bus line.  
Silent mode control input for CAN transceiver (LOW = Normal mode,  
HIGH = silent mode).  
VDD_CAN  
VCC  
17  
20  
-
-
-
-
-
-
Supply voltage for I/O level of CAN transceiver.  
Supply voltage for CAN transceiver.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
13 of 62  
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 4.  
Symbol  
LPC11C22/C24 pin description table  
Pin  
Start Type Reset Description  
logic  
inputs  
state  
[1]  
GND  
VDD  
21  
-
-
-
I
-
-
Ground for CAN transceiver.  
8; 44  
Supply voltage to the internal regulator, the external rail, and the  
ADC. Also used as the ADC reference voltage.  
XTALIN  
6[7]  
-
I
-
Input to the oscillator circuit and internal clock generator circuits.  
Input voltage must not exceed 1.8 V.  
XTALOUT  
VSS  
7[7]  
-
-
O
I
-
-
Output from the oscillator amplifier.  
Ground.  
5; 41  
[1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled (pins pulled up to full VDD level); IA = inactive,  
no pull-up/down enabled.  
[2] 5 V tolerant pad. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up  
from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down mode. See Figure 26 for the  
reset pad configuration.  
[3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 25).  
[4] I2C-bus pads compliant with the I2C-bus specification for I2C standard mode and I2C Fast-mode Plus.  
[5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input.  
When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 25).  
[6] 5 V tolerant digital I/O pad without pull-up/pull-down resistors.  
[7] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded  
(grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
14 of 62  
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7. Functional description  
7.1 ARM Cortex-M0 processor  
The ARM Cortex-M0 is a general purpose, 32-bit microprocessor, which offers high  
performance and very low power consumption.  
7.2 On-chip flash program memory  
The LPC11Cx2/Cx4 contain 32 kB (LPC11C14/C24) or 16 kB (LPC11C12/C22) of on-chip  
flash program memory.  
7.3 On-chip SRAM  
The LPC11Cx2/Cx4 contain a total of 8 kB on-chip static RAM data memory.  
7.4 Memory map  
The LPC11Cx2/Cx4 incorporates several distinct memory regions, shown in the following  
figures. Figure 4 shows the overall map of the entire address space from the user  
program viewpoint following reset. The interrupt vector area supports address remapping.  
The AHB peripheral area is 2 megabyte in size, and is divided to allow for up to 128  
peripherals. The APB peripheral area is 512 kB in size and is divided to allow for up to 32  
peripherals. Each peripheral of either type is allocated 16 kilobytes of space. This allows  
simplifying the address decoding for each peripheral.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
15 of 62  
 
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
AHB peripherals  
0x5020 0000  
LPC11Cx2/Cx4  
4 GB  
0xFFFF FFFF  
reserved  
0xE010 0000  
0xE000 0000  
16 - 127 reserved  
0x5004 0000  
private peripheral bus  
reserved  
GPIO PIO3  
12-15  
8-11  
4-7  
0x5003 0000  
0x5002 0000  
0x5020 0000  
0x5000 0000  
GPIO PIO2  
AHB peripherals  
GPIO PIO1  
0x5001 0000  
0x5000 0000  
GPIO PIO0  
0-3  
APB peripherals  
reserved  
0x4008 0000  
23 - 31 reserved  
0x4005 C000  
0x4005 8000  
SPI1  
22  
21  
0x4008 0000  
0x4000 0000  
APB peripherals  
reserved  
1 GB  
0x4005 4000  
0x4005 0000  
20  
19  
C_CAN  
reserved  
0x4004 C000  
0x4004 8000  
0x4004 4000  
0x4004 0000  
reserved  
system control  
IOCONFIG  
18  
17  
SPI0  
16  
15  
0x2000 0000  
flash controller  
0.5 GB  
0x4003 C000  
0x4003 8000  
14  
PMU  
reserved  
10 - 13 reserved  
0x1FFF 4000  
0x1FFF 0000  
0x4002 8000  
0x4002 4000  
0x4002 0000  
16 kB boot ROM  
reserved  
reserved  
9
8
7
6
5
4
3
2
ADC  
0x4001 C000  
0x4001 8000  
reserved  
32-bit counter/timer 1  
32-bit counter/timer 0  
16-bit counter/timer 1  
16-bit counter/timer 0  
UART  
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
0x1000 2000  
0x1000 0000  
8 kB SRAM  
reserved  
WDT  
1
0
0x4000 4000  
0x4000 0000  
2
I C-bus  
0x0000 8000  
0x0000 4000  
0x0000 00C0  
32 kB on-chip flash (LPC11Cx4)  
16 kB on-chip flash (LPC11Cx2)  
active interrupt vectors  
0x0000 0000  
0x0000 0000  
0 GB  
002aaf268  
Fig 4. LPC11Cx2/Cx4 memory map  
7.5 Nested Vectored Interrupt Controller (NVIC)  
The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M0. The  
tight coupling to the CPU allows for low interrupt latency and efficient processing of late  
arriving interrupts.  
7.5.1 Features  
Controls system exceptions and peripheral interrupts.  
In the LPC11Cx2/Cx4, the NVIC supports 32 vectored interrupts including 13 inputs to  
the start logic from individual GPIO pins.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
16 of 62  
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Four programmable interrupt priority levels, with hardware priority level masking.  
Software interrupt generation.  
7.5.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but may have several  
interrupt flags. Individual interrupt flags may also represent more than one interrupt  
source.  
Any GPIO pin (total of 40 pins (LPC11C12/C14) or 36 pins (LPC11C22/C24)) regardless  
of the selected function, can be programmed to generate an interrupt on a level, or rising  
edge or falling edge, or both.  
7.6 IOCONFIG block  
The IOCONFIG block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on-chip peripherals.  
Peripherals should be connected to the appropriate pins prior to being activated and prior  
to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is  
not mapped to a related pin should be considered undefined.  
7.7 Fast general purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs  
can be set or cleared in one write operation.  
LPC11Cx2/Cx4 use accelerated GPIO functions:  
GPIO registers are a dedicated AHB peripheral so that the fastest possible I/O timing  
can be achieved.  
Entire port value can be written in one instruction.  
Additionally, any GPIO pin (total of 40 pins (LPC11C12/C14) or 36 pins (LPC11C22/C24))  
providing a digital function can be programmed to generate an interrupt on a level, a rising  
or falling edge, or both.  
7.7.1 Features  
Bit level port registers allow a single instruction to set or clear any number of bits in  
one write operation.  
Direction control of individual bits.  
All GPIO pins default to inputs with pull-ups enabled after reset except for the I2C-bus  
true open-drain pins PIO0_4 and PIO0_5.  
Pull-up/pull-down resistor configuration can be programmed through the IOCONFIG  
block for each GPIO pin (except PIO0_4 and PIO0_5).  
All GPIO pins (except PIO0_4 and PIO0_5) are pulled up to 3.3 V (VDD = 3.3 V) if their  
pull-up resistor is enabled in the IOCONFIG block.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
17 of 62  
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
7.8 UART  
32-bit ARM Cortex-M0 microcontroller  
The LPC11Cx2/Cx4 contain one UART.  
Support for RS-485/9-bit mode allows both software address detection and automatic  
address detection using 9-bit mode.  
The UART includes a fractional baud rate generator. Standard baud rates such as  
115200 Bd can be achieved with any crystal frequency above 2 MHz.  
7.8.1 Features  
Maximum UART data bit rate of 3.125 Mbit/s.  
16 Byte Receive and Transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
FIFO control mechanism that enables software flow control implementation.  
Support for RS-485/9-bit mode.  
Support for modem control.  
7.9 SPI serial I/O controller  
The LPC11Cx2/Cx4 contain two SPI controllers. Both SPI controllers support SSP  
features.  
The SPI controller is capable of operation on a SSP, 4-wire SSI, or Microwire bus. It can  
interact with multiple masters and slaves on the bus. Only a single master and a single  
slave can communicate on the bus during a given data transfer. The SPI supports full  
duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the  
slave and from the slave to the master. In practice, often only one of these data flows  
carries meaningful data.  
7.9.1 Features  
Maximum SPI speed of 25 Mbit/s (master) or 4.17 Mbit/s (slave) (in SSP mode)  
Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National  
Semiconductor Microwire buses  
Synchronous serial communication  
Master or slave operation  
8-frame FIFOs for both transmit and receive  
4-bit to 16-bit frame  
7.10 I2C-bus serial I/O controller  
The LPC11Cx2/Cx4 contain one I2C-bus controller.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
18 of 62  
 
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial CLock line  
(SCL) and a Serial DAta line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be  
controlled by more than one bus master connected to it.  
7.10.1 Features  
The I2C-interface is a standard I2C-bus compliant interface with open-drain pins. The  
I2C-bus interface also supports Fast-mode Plus with bit rates up to 1 Mbit/s.  
Easy to configure as master, slave, or master/slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus can be used for test and diagnostic purposes.  
The I2C-bus controller supports multiple address recognition and a bus monitor mode.  
7.11 C_CAN controller  
Controller Area Network (CAN) is the definition of a high performance communication  
protocol for serial data communication. The C_CAN controller is designed to provide a full  
implementation of the CAN protocol according to the CAN Specification Version 2.0B. The  
C_CAN controller allows to build powerful local networks with low-cost multiplex wiring by  
supporting distributed real-time control with a very high level of security.  
On-chip C_CAN drivers provide an API for initialization and communication using CAN  
and CANopen standards.  
7.11.1 Features  
Conforms to protocol version 2.0 parts A and B.  
Supports bit rate of up to 1 Mbit/s.  
Supports 32 Message Objects.  
Each Message Object has its own identifier mask.  
Provides programmable FIFO mode (concatenation of Message Objects).  
Provides maskable interrupts.  
Supports Disabled Automatic Retransmission (DAR) mode for time-triggered CAN  
applications.  
Provides programmable loop-back mode for self-test operation.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
19 of 62  
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
The C_CAN API includes the following functions:  
C_CAN set-up and initialization  
C_CAN send and receive messages  
C_CAN status  
CANopen object dictionary  
CANopen SDO expedited communication  
CANopen SDO segmented communication primitives  
CANopen SDO fall-back handler  
Flash ISP programming via C_CAN supported.  
7.11.2 On-chip, high-speed CAN transceiver  
Remark: The on-chip CAN transceiver is available on parts LPC11C22/C24 only.  
Compared to the LPC11C12/C14, the LPC11C22/C24 supports fewer GPIO functions,  
and in addition, one counter/timer match function is removed to allow interfacing the CAN  
high-speed transceiver to the CAN bus. See Table 4 and Figure 1.  
7.11.2.1 Features  
Data rates of up to 1 Mbit/s  
Fully ISO 11898-2 compliant  
Undervoltage detection and thermal protection  
Low ElectroMagnetic Emission (EME) and high ElectroMagnetic Immunity (EMI)  
7.11.2.2 Normal mode  
A LOW level on pin STB selects Normal mode. In this mode, the transceiver is able to  
transmit and receive data via the bus lines CANH and CANL (see Figure 28). The  
differential receiver converts the analog data on the bus lines into digital data which are  
received by the CAN_RXD input of the C_CAN controller.  
7.11.2.3 Silent mode  
A HIGH level on pin STB selects Silent mode. In Silent mode the transmitter is disabled,  
releasing the bus pins to recessive state. All other functions, including the receiver,  
continue to operate as in Normal mode. Silent mode can be used to prevent a faulty  
C_CAN controller from disrupting all network communications.  
7.11.2.4 Undervoltage protection  
Should VCC or VDD_CAN drop below their respective undervoltage detection levels  
(Vuvd(VCC) and Vuvd (VDD_CAN); see Table 8), the transceiver will switch off and disengage  
from the bus (zero load) until VCC and VDD_CAN have recovered.  
7.11.2.5 Thermal protection  
The output drivers are protected against overtemperature conditions. If the virtual junction  
temperature exceeds the shutdown junction temperature, Tj(sd) (see Table 8), the output  
drivers will be disabled until the virtual junction temperature falls below Tj(sd)  
.
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
20 of 62  
 
 
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.11.2.6 Time-out function  
A ‘TXD dominant time-out’ timer is started when the CAN_TXD signal of the C_CAN  
controller is set LOW. If the LOW state on the CAN_TXD signal persists for longer than  
tto(dom)TXD, the transmitter is disabled, releasing the bus lines to recessive state. This  
function prevents a hardware and/or software application failure from driving the bus lines  
to a permanent dominant state (blocking all network communications). The TXD dominant  
time-out timer is reset when the CAN_TXD signal is set HIGH. The TXD dominant  
time-out time also defines the minimum possible bit rate of 40 kbit/s.  
7.12 10-bit ADC  
The LPC11Cx2/Cx4 contains one ADC. The ADC is a single 10-bit successive  
approximation ADC with eight channels.  
7.12.1 Features  
10-bit successive approximation ADC.  
Input multiplexing among 8 pins.  
Power-down mode.  
Measurement range 0 V to VDD  
.
10-bit conversion time 2.44 s (up to 400 kSamples/s).  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition of input pin or timer match signal.  
Individual result registers for each ADC channel to reduce interrupt overhead.  
7.13 General purpose external event counter/timers  
The LPC11Cx2/Cx4 includes two 32-bit counter/timers and two 16-bit counter/timers. The  
counter/timer is designed to count cycles of the system derived clock. It can optionally  
generate interrupts or perform other actions at specified timer values, based on four  
match registers. Each counter/timer also includes one capture input to trap the timer value  
when an input signal transitions, optionally generating an interrupt.  
7.13.1 Features  
A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler.  
Counter or timer operation.  
One capture channel per timer, that can take a snapshot of the timer value when an  
input signal transitions. A capture event may also generate an interrupt.  
Four match registers per timer that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Up to four external outputs corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
21 of 62  
 
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Toggle on match.  
Do nothing on match.  
7.14 System tick timer  
The ARM Cortex-M0 includes a system tick timer (SYSTICK) that is intended to generate  
a dedicated SYSTICK exception at a fixed time interval (typically 10 ms).  
7.15 Watchdog timer  
The purpose of the watchdog is to reset the microcontroller within a selectable time  
period.  
7.15.1 Features  
Internally resets chip if not periodically reloaded.  
Debug mode.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in  
multiples of Tcy(WDCLK) 4.  
The Watchdog Clock (WDCLK) source can be selected from the Internal RC oscillator  
(IRC), the Watchdog oscillator, or the main clock. This gives a wide range of potential  
timing choices of Watchdog operation under different power reduction conditions. It  
also provides the ability to run the WDT from an entirely internal source that is not  
dependent on an external crystal and its associated components and wiring for  
increased reliability.  
7.16 Clocking and power control  
7.16.1 Crystal oscillators  
The LPC11Cx2/Cx4 include three independent oscillators. These are the system  
oscillator, the Internal RC oscillator (IRC), and the Watchdog oscillator. Each oscillator can  
be used for more than one purpose as required in a particular application.  
Following reset, the LPC11Cx2/Cx4 will operate from the Internal RC oscillator until  
switched by software. This allows systems to operate without any external crystal and the  
bootloader code to operate at a known frequency.  
See Figure 5 for an overview of the LPC11Cx2/Cx4 clock generation.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
22 of 62  
 
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
AHB clock 0  
(system)  
system clock  
SYSTEM CLOCK  
DIVIDER  
18  
AHB clocks 1 to 18  
(memories  
and peripherals)  
SYSAHBCLKCTRL[1:18]  
(AHB clock enable)  
SPI0 PERIPHERAL  
CLOCK DIVIDER  
SPI0  
UART  
SPI1  
IRC oscillator  
main clock  
UART PERIPHERAL  
CLOCK DIVIDER  
watchdog oscillator  
SPI1 PERIPHERAL  
CLOCK DIVIDER  
MAINCLKSEL  
(main clock select)  
IRC oscillator  
SYSTEM PLL  
system oscillator  
IRC oscillator  
WDT CLOCK  
DIVIDER  
WDT  
SYSPLLCLKSEL  
(system PLL clock select)  
watchdog oscillator  
WDTUEN  
(WDT clock update enable)  
IRC oscillator  
CLKOUT PIN CLOCK  
DIVIDER  
system oscillator  
watchdog oscillator  
CLKOUT pin  
CLKOUTUEN  
(CLKOUT update enable)  
002aae514  
Fig 5. LPC11Cx2/Cx4 clock generation block diagram  
7.16.1.1 Internal RC oscillator  
The IRC may be used as the clock source for the WDT, and/or as the clock that drives the  
PLL and subsequently the CPU. The nominal IRC frequency is 12 MHz. The IRC is  
trimmed to 1 % accuracy over the entire voltage and temperature range.  
Upon power-up or any chip reset, the LPC11Cx2/Cx4 use the IRC as the clock source.  
Software may later switch to one of the other available clock sources.  
7.16.1.2 System oscillator  
The system oscillator can be used as the clock source for the CPU, with or without using  
the PLL.  
The system oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be  
boosted to a higher frequency, up to the maximum CPU operating frequency, by the  
system PLL.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
23 of 62  
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.16.1.3 Watchdog oscillator  
The watchdog oscillator can be used as a clock source that directly drives the CPU, the  
watchdog timer, or the CLKOUT pin. The watchdog oscillator nominal frequency is  
programmable between 7.8 kHz and 1.7 MHz. The frequency spread over processing and  
temperature is 40 % (see Table 15).  
7.16.2 System PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO).  
The multiplier can be an integer value from 1 to 32. The CCO operates in the range of  
156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within  
its frequency range while the PLL is providing the desired output frequency. The output  
divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. The PLL output  
frequency must be lower than 100 MHz. Since the minimum output divider value is 2, it is  
insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed  
following a chip reset and may be enabled by software. The program must configure and  
activate the PLL, wait for the PLL to lock, and then connect to the PLL as a clock source.  
The PLL settling time is 100 s.  
7.16.3 Clock output  
The LPC11Cx2/Cx4 features a clock output function that routes the IRC oscillator, the  
system oscillator, the watchdog oscillator, or the main clock to an output pin.  
7.16.4 Wake-up process  
The LPC11Cx2/Cx4 begin operation at power-up and when awakened from Deep  
power-down mode by using the 12 MHz IRC oscillator as the clock source. This allows  
chip operation to resume quickly. If the system oscillator or the PLL is needed by the  
application, software will need to enable these features and wait for them to stabilize  
before they are used as a clock source.  
7.16.5 Power control  
The LPC11Cx2/Cx4 support a variety of power control features. There are three special  
modes of processor power reduction: Sleep mode, Deep-sleep mode, and Deep  
power-down mode. The CPU clock rate may also be controlled as needed by changing  
clock sources, reconfiguring PLL values, and/or altering the CPU clock divider value. This  
allows a trade-off of power versus processing speed based on application requirements.  
In addition, a register is provided for shutting down the clocks to individual on-chip  
peripherals, allowing fine tuning of power consumption by eliminating all dynamic power  
use in any peripherals that are not required for the application. Selected peripherals have  
their own clock divider which provides even better power control.  
7.16.5.1 Sleep mode  
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep  
mode does not need any special sequence but re-enabling the clock to the ARM core.  
In Sleep mode, execution of instructions is suspended until either a reset or interrupt  
occurs. Peripheral functions continue operation during Sleep mode and may generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, memory systems and related controllers, and internal  
buses.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
24 of 62  
 
 
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.16.5.2 Deep-sleep mode  
In Deep-sleep mode, the chip is in Sleep mode, and in addition all analog blocks are shut  
down. As an exception, the user has the option to keep the watchdog oscillator and the  
BOD circuit running for self-timed wake-up and BOD protection. Deep-sleep mode allows  
for additional power savings.  
Up to 13 pins total, see Table 3, serve as external wake-up pins to a dedicated start logic  
to wake up the chip from Deep-sleep mode.  
Unless the watchdog oscillator is selected to run in Deep-sleep mode, the clock source  
should be switched to IRC before entering Deep-sleep mode, because the IRC can be  
switched on and off glitch-free.  
7.16.5.3 Deep power-down mode  
In Deep power-down mode, power is shut off to the entire chip with the exception of the  
WAKEUP pin. The LPC11Cx2/Cx4 can wake up from Deep power-down mode via the  
WAKEUP pin.  
When entering Deep power-down mode, an external pull-up resistor is required on the  
WAKEUP pin to hold it HIGH. The RESET pin must also be held HIGH to prevent it from  
floating while in Deep power-down mode.  
7.17 System control  
7.17.1 Start logic  
The start logic connects external pins to corresponding interrupts in the NVIC. Each pin  
shown in Table 3 as input to the start logic has an individual interrupt in the NVIC interrupt  
vector table. The start logic pins can serve as external interrupt pins when the chip is  
running. In addition, an input signal on the start logic pins can wake up the chip from  
Deep-sleep mode when all clocks are shut down.  
The start logic must be configured in the system configuration block and in the NVIC  
before being used.  
7.17.2 Reset  
Reset has four sources on the LPC11Cx2/Cx4: the RESET pin, the Watchdog reset,  
power-on reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a  
Schmitt trigger input pin. Assertion of chip reset by any source, once the operating voltage  
attains a usable level, starts the IRC and initializes the flash controller.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the boot block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values.  
An external pull-up resistor is required on the RESET pin if Deep power-down mode is  
used.  
7.17.3 Brownout detection  
The LPC11Cx2/Cx4 includes four levels for monitoring the voltage on the VDD pin. If this  
voltage falls below one of the four selected levels, the BOD asserts an interrupt signal to  
the NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
25 of 62  
 
 
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
NVIC in order to cause a CPU interrupt; if not, software can monitor the signal by reading  
a dedicated status register. Four additional threshold levels can be selected to cause a  
forced reset of the chip.  
7.17.4 Code security (Code Read Protection - CRP)  
This feature of the LPC11Cx2/Cx4 allows user to enable different levels of security in the  
system so that access to the on-chip flash and use of the Serial Wire Debugger (SWD)  
and In-System Programming (ISP) can be restricted. When needed, CRP is invoked by  
programming a specific pattern into a dedicated flash location. IAP commands are not  
affected by the CRP.  
In addition, ISP entry via the PIO0_1 pin can be disabled without enabling CRP. For  
details see the LPC11Cx user manual.  
There are three levels of Code Read Protection:  
1. CRP1 disables access to the chip via the SWD and allows partial flash update  
(excluding flash sector 0) using a limited set of the ISP commands. This mode is  
useful when CRP is required and flash field updates are needed but all sectors can  
not be erased.  
2. CRP2 disables access to the chip via the SWD and only allows full flash erase and  
update using a reduced set of the ISP commands.  
3. Running an application with level CRP3 selected fully disables any access to the chip  
via the SWD pins and the ISP. This mode effectively disables ISP override using  
PIO0_1 pin, too. It is up to the user’s application to provide (if needed) flash update  
mechanism using IAP calls or call reinvoke ISP command to enable flash update via  
the UART.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
In addition to the three CRP levels, sampling of pin PIO0_1 for valid user code can be  
disabled. For details see the LPC11Cx user manual.  
7.17.5 Bootloader  
The bootloader controls initial operation after reset and also provides the means to  
program the flash memory. This could be initial programming of a blank device, erasure  
and re-programming of a previously programmed device, or programming of the flash  
memory by the application program in a running system.  
The bootloader code is executed every time the part is reset or powered up. The loader  
can either execute the user application code or the ISP command handler via UART or  
C_CAN. A LOW level during reset applied to the PIO0_1 pin is considered as an external  
hardware request to start the ISP command handler. The state of PIO0_3 at reset  
determines whether the UART (PIO0_3 HIGH) or the C_CAN (PIO0_3 LOW) interface will  
be used.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
26 of 62  
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
The C_CAN ISP command handler uses the CANopen protocol and data organization  
method. C_CAN ISP commands have the same functionality as UART ISP commands.  
7.17.6 APB interface  
The APB peripherals are located on one APB bus.  
7.17.7 AHBLite  
The AHBLite connects the CPU bus of the ARM Cortex-M0 to the flash memory, the main  
static RAM, and the Boot ROM.  
7.17.8 External interrupt inputs  
All GPIO pins can be level or edge sensitive interrupt inputs. In addition, start logic inputs  
serve as external interrupts (see Section 7.17.1).  
7.18 Emulation and debugging  
Debug functions are integrated into the ARM Cortex-M0. Serial wire debug with four  
breakpoints and two watchpoints is supported.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
27 of 62  
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
8. Limiting values  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
[2]  
[3]  
VDD  
supply voltage (core  
and external rail)  
on pins VDD  
0.5  
4.6  
V
VI  
input voltage  
5 V tolerant I/O pins; only valid when the VDD supply  
voltage is present  
0.5  
+5.5  
V
Vx  
voltage on pin x  
no time limit; DC value  
on pins CANH and CANL  
on pins STB, VCC, VDD_CAN  
per supply pin  
58  
+58  
+7  
V
0.3  
V
[4]  
[4]  
IDD  
supply current  
-
-
-
100  
100  
100  
mA  
mA  
mA  
ISS  
ground current  
I/O latch-up current  
per ground pin  
Ilatch  
(0.5VDD) < VI < (1.5VDD);  
Tj < 125 C  
[5]  
[6]  
Tstg  
storage temperature  
non-operating  
65  
+150  
150  
C  
C  
Tj(max)  
maximum junction  
temperature  
-
Ptot(pack)  
VESD  
total power dissipation based on package heat transfer, not device power  
(per package) consumption  
-
1.5  
W
V
electrostaticdischarge human body model;  
voltage  
6500  
+6500  
all pins except CAN on-chip transceiver pins CANL,  
CANH, STB, VDD_CAN, VCC, GND on  
LPC11C22/C24  
[6]  
[6]  
pins CANH and CANL on LPC11C22/C24  
8000  
4000  
+8000  
+4000  
V
V
pins STB, VDD_CAN, VCC, GND on  
LPC11C22/C24  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Maximum/minimum voltage above the maximum operating voltage (see Table 6) and below ground that can be applied for a short time  
(<10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.  
[3] Including voltage on outputs in 3-state mode.  
[4] The peak current is limited to 25 times the corresponding maximum current.  
[5] The maximum non-operating storage temperature is different than the temperature for required shelf life which should be determined  
based on required shelf lifetime. Please refer to the JEDEC spec (J-STD-033B.1) for further details.  
[6] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
28 of 62  
 
 
 
 
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9. Static characteristics  
Table 6.  
Static characteristics  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
VDD  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
supply voltage (core  
and external rail)  
on pins VDD  
1.8  
3.3  
3.6  
V
IDD  
supply current  
Active mode; code  
while(1){}  
executed from flash  
system clock = 12 MHz  
[2][3][4]  
[5][6][7]  
-
-
-
3
9
2
-
-
-
mA  
mA  
mA  
V
DD = 3.3 V  
system clock = 50 MHz  
DD = 3.3 V  
[2][3][6]  
[5][7][8]  
V
[2][3][4]  
[5][6][7]  
Sleep mode;  
system clock = 12 MHz  
VDD = 3.3 V  
[2][3][5]  
[9]  
Deep-sleep mode;  
VDD = 3.3 V  
-
-
6
-
-
A  
[2][10]  
Deep power-down mode;  
220  
nA  
VDD = 3.3 V  
Standard port pins, RESET  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up  
resistor disabled  
-
-
0.5  
0.5  
10  
10  
nA  
nA  
IIH  
HIGH-level input  
current  
VI = VDD; on-chip  
pull-down resistor  
disabled  
IOZ  
OFF-state output  
current  
VO = 0 V; VO = VDD  
on-chip pull-up/down  
resistors disabled  
;
-
0.5  
-
10  
nA  
V
[11][12]  
[13]  
VI  
input voltage  
pin configured to provide  
a digital function  
0
5.0  
VO  
output voltage  
output active  
0
-
-
VDD  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
0.3VDD  
V
V
V
Vhys  
VOH  
-
0.4  
-
-
-
HIGH-level output  
voltage  
2.0 V VDD 3.6 V;  
IOH = 4 mA  
VDD 0.4  
1.8 V VDD < 2.0 V;  
VDD 0.4  
-
-
-
-
V
V
V
I
OH = 3 mA  
VOL  
LOW-level output  
voltage  
2.0 V VDD 3.6 V;  
IOL = 4 mA  
-
-
0.4  
0.4  
1.8 V VDD < 2.0 V;  
IOL = 3 mA  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
29 of 62  
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 6.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
IOH  
HIGH-level output  
current  
VOH = VDD 0.4 V;  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
VOL = 0.4 V  
4  
-
-
mA  
3  
-
-
-
-
mA  
mA  
IOL  
LOW-level output  
current  
4
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
3
-
-
-
-
mA  
mA  
[14]  
[14]  
IOHS  
IOLS  
HIGH-level short-circuit VOH = 0 V  
output current  
45  
LOW-level short-circuit VOL = VDD  
output current  
-
-
50  
mA  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
VI = 0 V;  
10  
50  
150  
A  
A  
15  
50  
85  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
10  
50  
85  
A  
A  
VDD < VI < 5 V  
0
0
0
High-drive output pin (PIO0_7)  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up  
resistor disabled  
-
-
0.5  
0.5  
10  
10  
nA  
nA  
IIH  
HIGH-level input  
current  
VI = VDD; on-chip  
pull-down resistor  
disabled  
IOZ  
OFF-state output  
current  
VO = 0 V; VO = VDD  
on-chip pull-up/down  
resistors disabled  
;
-
0.5  
-
10  
nA  
V
[11][12]  
[13]  
VI  
input voltage  
pin configured to provide  
a digital function  
0
5.0  
VO  
output voltage  
output active  
0
-
-
VDD  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
-
0.3VDD  
V
V
V
Vhys  
VOH  
0.4  
-
-
HIGH-level output  
voltage  
2.5 V VDD 3.6 V;  
VDD 0.4  
I
OH = 20 mA  
1.8 V VDD < 2.5 V;  
IOH = 12 mA  
VDD 0.4  
-
-
-
-
-
-
V
VOL  
LOW-level output  
voltage  
2.0 V VDD 3.6 V;  
IOL = 4 mA  
-
0.4  
0.4  
-
V
1.8 V VDD < 2.0 V;  
IOL = 3 mA  
-
V
IOH  
HIGH-level output  
current  
VOH = VDD 0.4 V;  
2.5 V VDD 3.6 V  
20  
12  
mA  
mA  
1.8 V VDD < 2.5 V  
-
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
30 of 62  
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 6.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
IOL  
LOW-level output  
current  
VOL = 0.4 V  
4
-
-
mA  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
3
-
-
-
-
mA  
mA  
[14]  
IOLS  
LOW-level short-circuit VOL = VDD  
output current  
50  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
VI = 0 V  
10  
50  
150  
A  
A  
15  
50  
85  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
10  
50  
85  
A  
A  
VDD < VI < 5 V  
0
0
0
I2C-bus pins (PIO0_4 and PIO0_5)  
VIH  
HIGH-level input  
voltage  
0.7VDD  
-
-
V
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
0.3VDD  
V
Vhys  
IOL  
-
0.05VDD  
-
-
-
V
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as standard  
mode pins  
3.5  
mA  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
3
-
-
-
-
IOL  
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as Fast-mode  
Plus pins  
20  
mA  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
VI = VDD  
16  
-
-
-
[15]  
ILI  
input leakage current  
2
4
A  
A  
VI = 5 V  
-
10  
22  
Oscillator pins  
Vi(xtal)  
crystal input voltage  
crystal output voltage  
0.5  
0.5  
1.8  
1.8  
1.95  
1.95  
V
V
Vo(xtal)  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.  
[2] amb = 25 C.  
T
[3] IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled.  
[4] IRC enabled; system oscillator disabled; system PLL disabled.  
[5] Pin CAN_RXD pulled LOW externally.  
[6] BOD disabled.  
[7] All peripherals disabled in the SYSAHBCLKCTRL register. Peripheral clocks to UART and SPI0/1 disabled in system configuration  
block.  
[8] IRC disabled; system oscillator enabled; system PLL enabled.  
[9] All oscillators and analog blocks turned off in the PDSLEEPCFG register; PDSLEEPCFG = 0x0000 18FF.  
[10] WAKEUP pin pulled HIGH externally.  
[11] Including voltage on outputs in 3-state mode.  
[12] VDD supply voltage must be present.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
31 of 62  
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
[13] 3-state outputs go into 3-state mode in Deep power-down mode.  
[14] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[15] To VSS  
.
9.1 ADC characteristics  
Table 7.  
ADC static characteristics  
Tamb = 40 C to +85 C unless otherwise specified; ADC frequency 4.5 MHz, VDD = 2.5 V to 3.6 V.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
VDD  
1
Unit  
V
VIA  
Cia  
analog input voltage  
analog input capacitance  
differential linearity error  
integral non-linearity  
offset error  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
pF  
[1][2]  
[3]  
ED  
1  
LSB  
LSB  
LSB  
%
EL(adj)  
EO  
1.5  
3.5  
0.6  
[4]  
[5]  
EG  
gain error  
[6]  
ET  
absolute error  
4  
LSB  
k  
Rvsi  
voltage source interface  
resistance  
40  
[7][8]  
Ri  
input resistance  
-
-
2.5  
M  
[1] The ADC is monotonic, there are no missing codes.  
[2] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 6.  
[3] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 6.  
[4] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 6.  
[5] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 6.  
[6] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated  
ADC and the ideal transfer curve. See Figure 6.  
[7] Tamb = 25 C; maximum sampling frequency fs = 400 kSamples/s and analog input capacitance Cia = 1 pF.  
[8] Input resistance Ri depends on the sampling frequency fs: Ri = 1 / (fs Cia).  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
32 of 62  
 
 
 
 
 
 
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
offset  
error  
gain  
error  
E
E
O
G
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
(LSB  
)
ideal  
IA  
offset error  
E
O
V
V  
SS  
DD  
1 LSB =  
1024  
002aaf426  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 6. ADC characteristics  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
33 of 62  
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9.2 C_CAN on-chip, high-speed transceiver characteristics  
Table 8.  
Static characteristics  
Tamb = 40 C to +85 C; VCC = 4.5 V to 5.5 V; RL = 60 ; unless otherwise specified; all voltages are defined with respect to  
ground; positive currents flow into the IC. Also see Figure 28.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supply; pin VCC  
VCC  
ICC  
supply voltage  
4.5  
0.1  
-
5.5  
2.5  
V
supply current  
Silent mode  
1
mA  
Normal mode  
recessive  
2.5  
20  
5
10  
70  
4.5  
mA  
mA  
V
dominant; CAN_TXD = LOW  
50  
-
Vuvd(VCC)  
undervoltage detection  
voltage on pin VCC  
3.5  
I/O level adapter supply; pin VDD_CAN  
[1]  
VDD  
IDD  
supply voltage  
supply current  
on pin VDD_CAN  
2.8  
-
5.5  
V
on pin VDD_CAN; Normal and Silent  
modes  
recessive; CAN_TXD = HIGH  
dominant; CAN_TXD = LOW  
10  
50  
1.3  
80  
350  
-
250  
500  
2.7  
A  
A  
V
Vuvd(VDD_CAN) undervoltage detection  
voltage on pin VDD_CAN  
Mode control input; pin STB  
VIH  
VIL  
IIH  
HIGH-level input voltage  
LOW-level input voltage  
HIGH-level input current  
LOW-level input current  
0.7VCC  
0.3  
1
-
VCC + 0.3 V  
-
0.3VCC  
10  
V
4
0
A  
A  
IIL  
Voltage on pin STB = 0 V  
1  
+1  
Bus lines; pins CANH and CANL  
VO(dom)  
dominant output voltage  
CAN_TXD = LOW; t < tto(dom)TXD  
pin CANH  
2.75  
0.5  
3.5  
1.5  
0
4.5  
V
pin CANL  
2.25  
+400  
V
Vdom(TX)sym  
VO(dif)bus  
transmitter dominant voltage Vdom(TX)sym = VCC VCANH VCANL  
400  
mV  
symmetry  
bus differential output  
voltage  
CAN_TXD = LOW; t < tto(dom)TXD  
1.5  
-
-
3
V
CAN_TXD = HIGH; recessive;  
no load  
50  
+50  
mV  
VO(rec)  
recessive output voltage  
Normal and Silent modes;  
CAN_TXD = HIGH; no load  
2
0.5VCC  
0.7  
3
V
Vth(RX)dif  
Vhys(RX)dif  
IO(dom)  
differential receiver  
threshold voltage  
Normal and Silent modes  
Vcm(CAN)[2] = 12 V to +12 V  
0.5  
50  
0.9  
400  
V
differential receiver  
hysteresis voltage  
Normal and Silent modes  
Vcm(CAN) = 12 V to +12 V  
120  
mV  
dominant output current  
CAN_TXD = LOW; t < tto(dom)TXD  
;
VCC = 5 V  
pin CANH; VCANH = 0 V  
120  
70  
40  
mA  
mA  
pin CANL; VCANL = 5 V/40 V  
40  
70  
120  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
34 of 62  
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 8.  
Static characteristics …continued  
Tamb = 40 C to +85 C; VCC = 4.5 V to 5.5 V; RL = 60 ; unless otherwise specified; all voltages are defined with respect to  
ground; positive currents flow into the IC. Also see Figure 28.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IO(rec)  
recessive output current  
Normal and Silent modes;  
CAN_TXD = HIGH;  
5  
-
+5  
mA  
VCANH = VCANL = 27 V to +32 V  
IL  
leakage current  
VCC = 0 V; VCANH = VCANL = 5 V  
between VCANH and VCANL  
5  
9
0
+5  
28  
+3  
52  
20  
A  
k  
%
Ri  
input resistance  
15  
0
Ri  
Ri(dif)  
Ci(cm)  
input resistance deviation  
differential input resistance  
3  
19  
-
30  
-
k  
pF  
common-mode input  
capacitance  
Ci(dif)  
differential input capacitance  
-
-
-
10  
-
pF  
Temperature protection  
Tj(sd) shutdown junction  
temperature  
190  
C  
[1] VDD_CAN must be equal to the VDD of the microcontroller  
[2] cm(CAN) is the common mode voltage of CANH and CANL.  
V
Table 9.  
Dynamic characteristics  
Tamb = 40 C to +85 C; VCC = 4.5 V to 5.5 V; RL = 60 unless specified otherwise. All voltages are defined with respect to  
ground. Positive currents flow into the IC.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tto(dom)TXD  
TXD dominant time-out time  
CAN_TXD = LOW; Normal  
mode  
0.3  
1
12  
ms  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
35 of 62  
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9.3 BOD static characteristics  
Table 10. BOD static characteristics[1]  
Tamb = 25 C.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vth  
threshold voltage interrupt level 1  
assertion  
-
-
2.22  
2.35  
-
-
V
V
de-assertion  
interrupt level 2  
assertion  
-
-
2.52  
2.66  
-
-
V
V
de-assertion  
interrupt level 3  
assertion  
-
-
2.80  
2.90  
-
-
V
V
de-assertion  
reset level 0  
assertion  
-
-
1.46  
1.63  
-
-
V
V
de-assertion  
reset level 1  
assertion  
-
-
2.06  
2.15  
-
-
V
V
de-assertion  
reset level 2  
assertion  
-
-
2.35  
2.43  
-
-
V
V
de-assertion  
reset level 3  
assertion  
-
-
2.63  
2.71  
-
-
V
V
de-assertion  
[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see LPC11Cx  
user manual.  
9.4 Power consumption  
Power measurements in Active, Sleep, and Deep-sleep modes were performed under the  
following conditions (see LPC11Cx user manual):  
Configure all pins as GPIO with pull-up resistor disabled in the IOCONFIG block.  
Configure GPIO pins as outputs using the GPIOnDIR registers.  
Write 0 to all GPIOnDATA registers to drive the outputs LOW.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
36 of 62  
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aaf390  
12  
I
DD  
(mA)  
(2)  
48 MHz  
8
4
0
(2)  
36 MHz  
(2)  
24 MHz  
(1)  
12 MHz  
1.8  
2.4  
3.0  
3.6  
V
(V)  
DD  
Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral  
clocks disabled; internal pull-up resistors disabled; BOD disabled; pin CAN_RXD pulled LOW  
externally.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
Fig 7. Active mode: Typical supply current IDD versus supply voltage VDD for different  
system clock frequencies  
002aaf391  
12  
I
DD  
(mA)  
(2)  
(2)  
(2)  
48 MHz  
36 MHz  
24 MHz  
8
4
0
(1)  
12 MHz  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD = 3.3 V; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral  
clocks disabled; internal pull-up resistors disabled; BOD disabled; pin CAN_RXD pulled LOW  
externally.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
Fig 8. Active mode: Typical supply current IDD versus temperature for different system  
clock frequencies  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
37 of 62  
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aaf392  
8
6
4
2
0
I
DD  
(mA)  
(2)  
48 MHz  
(2)  
36 MHz  
(2)  
24 MHz  
(1)  
12 MHz  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD = 3.3 V; sleep mode entered from flash; all peripherals disabled in the  
SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral clocks disabled; internal  
pull-up resistors disabled; BOD disabled; pin CAN_RXD pulled LOW externally.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
Fig 9. Sleep mode: Typical supply current IDD versus temperature for different system  
clock frequencies  
002aaf394  
40  
I
DD  
(μA)  
30  
3.6 V  
3.3 V  
2.0 V  
1.8 V  
20  
10  
0
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: BOD disabled; all oscillators and analog blocks disabled in the PDSLEEPCFG register  
(PDSLEEPCFG = 0x0000 18FF); pin CAN_RXD pulled LOW externally.  
Fig 10. Deep-sleep mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
38 of 62  
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aaf457  
0.8  
I
DD  
(μA)  
0.6  
VDD = 3.6 V  
3.3 V  
2.0 V  
1.8 V  
0.4  
0.2  
0
40  
15  
10  
35  
60  
85  
temperature (°C)  
Fig 11. Deep power-down mode: Typical supply current IDD versus temperature for  
different supply voltages VDD  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
39 of 62  
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9.5 Peripheral power consumption  
The supply current per peripheral is measured as the difference in supply current between  
the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG  
and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both  
registers and no code is executed. Measured on a typical sample at Tamb = 25 C. Unless  
noted otherwise, the system oscillator and PLL are running in both measurements.  
The supply currents are shown for system clock frequencies of 12 MHz and 48 MHz.  
Table 11. Power consumption for individual analog and digital blocks  
Peripheral  
Typical supply current in  
mA  
Notes  
n/a  
12 MHz 48 MHz  
IRC  
0.27  
-
-
-
-
-
-
System oscillator running; PLL off;  
independent of main clock frequency.  
System oscillator 0.22  
at 12 MHz  
IRC running; PLL off; independent of main  
clock frequency.  
Watchdog  
oscillator at  
500 kHz/2  
0.004  
System oscillator running; PLL off;  
independent of main clock frequency.  
BOD  
0.051  
-
-
Independent of main clock frequency.  
Main PLL  
ADC  
-
-
-
0.21  
0.08  
0.12  
-
0.29  
0.47  
CLKOUT  
Main clock divided by 4 in the CLKOUTDIV  
register.  
CT16B0  
CT16B1  
CT32B0  
CT32B1  
GPIO  
-
-
-
-
-
0.02  
0.02  
0.02  
0.02  
0.23  
0.06  
0.06  
0.07  
0.06  
0.88  
GPIO pins configured as outputs and set to  
LOW. Direction and pin state are maintained if  
the GPIO is disabled in the SYSAHBCLKCFG  
register.  
IOCONFIG  
I2C  
-
-
-
-
-
-
-
-
0.03  
0.04  
0.04  
0.12  
0.12  
0.22  
0.03  
0.02  
0.10  
0.13  
0.15  
0.45  
0.45  
0.82  
0.1  
ROM  
SPI0  
SPI1  
UART  
C_CAN  
WDT  
0.06  
Main clock selected as clock source for the  
WDT.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
40 of 62  
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9.6 Electrical pin characteristics  
002aae990  
3.6  
V
(V)  
OH  
T = 85 °C  
25 °C  
40 °C  
3.2  
2.8  
2.4  
2
0
10  
20  
30  
40  
50  
60  
I
(mA)  
OH  
Conditions: VDD = 3.3 V; on pin PIO0_7.  
Fig 12. High-drive output: Typical HIGH-level output voltage VOH versus HIGH-level  
output current IOH  
.
002aaf019  
60  
I
T = 85 °C  
25 °C  
40 °C  
OL  
(mA)  
40  
20  
0
0
0.2  
0.4  
0.6  
V
(V)  
OL  
Conditions: VDD = 3.3 V; on pins PIO0_4 and PIO0_5.  
Fig 13. I2C-bus pins (high current sink): Typical LOW-level output current IOL versus  
LOW-level output voltage VOL  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
41 of 62  
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aae991  
15  
I
OL  
T = 85 °C  
25 °C  
40 °C  
(mA)  
10  
5
0
0
0.2  
0.4  
0.6  
V
(V)  
OL  
Conditions: VDD = 3.3 V; standard port pins and PIO0_7.  
Fig 14. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
002aae992  
3.6  
V
OH  
(V)  
T = 85 °C  
25 °C  
40 °C  
3.2  
2.8  
2.4  
2
0
8
16  
24  
I
(mA)  
OH  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 15. Typical HIGH-level output voltage VOH versus HIGH-level output source current  
IOH  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
42 of 62  
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aae988  
10  
I
pu  
(μA)  
10  
30  
50  
70  
T = 85 °C  
25 °C  
40 °C  
0
1
2
3
4
5
V (V)  
I
Conditions: VDD = 3.3 V; standard port pins.  
Fig 16. Typical pull-up current Ipu versus input voltage VI  
002aae989  
80  
T = 85 °C  
I
pd  
25 °C  
(μA)  
40 °C  
60  
40  
20  
0
0
1
2
3
4
5
V (V)  
I
Conditions: VDD = 3.3 V; standard port pins.  
Fig 17. Typical pull-down current Ipd versus input voltage VI  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
43 of 62  
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10. Dynamic characteristics  
10.1 Flash memory  
Table 12. Flash characteristics  
amb = 40 C to +85 C, unless otherwise specified.  
T
Symbol  
Nendu  
tret  
Parameter  
endurance  
Conditions  
Min  
10000  
10  
Typ  
Max  
Unit  
[1]  
100000  
-
cycles  
years  
years  
ms  
retention time  
powered  
-
-
unpowered  
20  
-
-
ter  
erase time  
sector or multiple  
consecutive  
sectors  
95  
100  
105  
[2]  
tprog  
programming  
time  
0.95  
1
1.05  
ms  
[1] Number of program/erase cycles.  
[2] Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash  
in blocks of 256 bytes.  
10.2 External clock  
Table 13. Dynamic characteristic: external clock  
Tamb = 40 C to +85 C; VDD over specified ranges.[1]  
Symbol  
fosc  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
MHz  
ns  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
40  
1000  
Tcy(clk) 0.4  
-
ns  
Tcy(clk) 0.4  
-
ns  
-
-
5
5
ns  
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 18. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
44 of 62  
 
 
 
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.3 Internal oscillators  
Table 14. Dynamic characteristic: internal oscillators  
Tamb = 40 C to +85 C; 2.7 V VDD 3.6 V.[1]  
Symbol Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
fosc(RC) internal RC oscillator frequency -  
11.88  
12  
12.12  
MHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
002aaf403  
12.15  
f
(MHz)  
VDD = 3.6 V  
3.3 V  
3.0 V  
2.7 V  
12.05  
2.4 V  
2.0 V  
11.95  
11.85  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: Frequency values are typical values. 12 MHz 1 % accuracy is guaranteed for  
2.7 V VDD 3.6 V and Tamb = 40 C to +85 C. Variations between parts may cause the IRC to  
fall outside the 12 MHz 1 % accuracy specification for voltages below 2.7 V.  
Fig 19. Internal RC oscillator frequency versus temperature  
Table 15. Dynamic characteristics: Watchdog oscillator  
Symbol Parameter  
Conditions  
Min Typ[1]  
Max Unit  
[2][3]  
[2][3]  
fosc(int) internal oscillator DIVSEL = 0x1F, FREQSEL = 0x1  
-
7.8  
-
kHz  
frequency  
in the WDTOSCCTRL register;  
DIVSEL = 0x00, FREQSEL = 0xF  
in the WDTOSCCTRL register  
-
1700  
-
kHz  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
[2] The typical frequency spread over processing and temperature (Tamb = 40 C to +85 C) is 40 %.  
[3] See the LPC11Cx user manual.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
45 of 62  
 
 
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.4 I/O pins  
Table 16. Dynamic characteristic: I/O pins[1]  
Tamb = 40 C to +85 C; 3.0 V VDD 3.6 V.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tr  
rise time  
pin  
3.0  
-
5.0  
ns  
configured as  
output  
tf  
fall time  
pin  
2.5  
-
5.0  
ns  
configured as  
output  
[1] Applies to standard port pins and RESET pin.  
10.5 I2C-bus  
Table 17. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +85 C.[2]  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
kHz  
kHz  
MHz  
ns  
fSCL  
SCL clock  
frequency  
Standard-mode  
Fast-mode  
0
0
0
-
100  
400  
1
Fast-mode Plus  
[4][5][6][7]  
tf  
fall time  
of both SDA and  
SCL signals  
300  
Standard-mode  
Fast-mode  
20 + 0.1 Cb 300  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
Fast-mode Plus  
Standard-mode  
Fast-mode  
-
120  
tLOW  
LOW period of  
the SCL clock  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
0
-
-
-
-
-
-
-
-
-
-
-
-
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHIGH  
HIGH period of  
the SCL clock  
Fast-mode Plus  
Standard-mode  
Fast-mode  
[3][4][8]  
[9][10]  
tHD;DAT  
data hold time  
0
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
tSU;DAT  
data set-up  
time  
250  
100  
50  
Fast-mode Plus  
[1] See the I2C-bus specification UM10204 for details.  
[2] Parameters are valid over operating temperature range unless otherwise specified.  
[3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission  
and the acknowledge.  
[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the  
VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
[5] Cb = total capacitance of one bus line in pF.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
46 of 62  
 
 
 
 
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
[6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA  
output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the  
SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.  
[7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors  
are used, designers should allow for this when considering bus timing.  
[8] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than  
the maximum of tVD;DAT or tVD;ACK by a transition time (see UM10204). This maximum must only be met if  
the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the  
data must be valid by the set-up time before it releases the clock.  
[9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in  
transmission and the acknowledge.  
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT  
=
250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period  
of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next  
data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus  
specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.  
t
t
SU;DAT  
f
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
002aaf425  
Fig 20. I2C-bus pins clock timing  
10.6 SPI interfaces  
Table 18. Dynamic characteristics of SPI pins in SPI mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SPI master (in SPI mode)  
[1]  
[1]  
[2]  
Tcy(clk)  
clock cycle time  
data set-up time  
full-duplex mode  
when only transmitting  
in SPI mode  
50  
40  
15  
-
-
-
-
ns  
ns  
ns  
tDS  
2.4 V VDD 3.6 V  
2.0 V VDD < 2.4 V  
1.8 V VDD < 2.0 V  
in SPI mode  
[2]  
[2]  
[2]  
[2]  
[2]  
20  
24  
0
ns  
ns  
ns  
ns  
ns  
-
-
-
-
-
tDH  
data hold time  
-
tv(Q)  
th(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
-
10  
-
0
SPI slave (in SPI mode)  
Tcy(PCLK) PCLK cycle time  
20  
-
-
ns  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
47 of 62  
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 18. Dynamic characteristics of SPI pins in SPI mode  
Symbol  
tDS  
Parameter  
Conditions  
in SPI mode  
in SPI mode  
Min  
Typ  
Max  
Unit  
ns  
[3][4]  
[3][4]  
[3][4]  
[3][4]  
data set-up time  
data hold time  
0
-
-
-
-
-
tDH  
3 Tcy(PCLK) + 4  
-
ns  
tv(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
-
-
3 Tcy(PCLK) + 11  
2 Tcy(PCLK) + 5  
ns  
th(Q)  
ns  
[1] Tcy(clk) = (SSPCLKDIV (1 + SCR) CPSDVSR) / fmain. The clock cycle time derived from the SPI bit rate Tcy(clk) is a function of the  
main clock frequency fmain, the SPI peripheral clock divider (SSPCLKDIV), the SPI SCR parameter (specified in the SSP0CR0 register),  
and the SPI CPSDVSR parameter (specified in the SPI clock prescale register).  
[2] Tamb = 40 C to 85 C.  
[3] Tcy(clk) = 12 Tcy(PCLK)  
.
[4] amb = 25 C; for normal voltage supply range: VDD = 3.3 V.  
T
T
t
t
clk(L)  
cy(clk)  
clk(H)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
CPHA = 1  
t
t
DH  
DS  
DATA VALID  
DATA VALID  
MISO  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
t
MOSI  
MISO  
t
CPHA = 0  
DS  
DH  
DATA VALID  
DATA VALID  
002aae829  
Pin names SCK, MISO, and MOSI refer to pins for both SPI peripherals, SPI0 and SPI1.  
Fig 21. SPI master timing in SPI mode  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
48 of 62  
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
T
t
t
clk(L)  
cy(clk)  
clk(H)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
t
t
h(Q)  
v(Q)  
CPHA = 1  
DATA VALID  
DATA VALID  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
DATA VALID  
t
t
h(Q)  
CPHA = 0  
v(Q)  
DATA VALID  
002aae830  
Pin names SCK, MISO, and MOSI refer to pins for both SPI peripherals, SPI0 and SPI1.  
Fig 22. SPI slave timing in SPI mode  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
49 of 62  
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11. Application information  
11.1 ADC usage notes  
The following guidelines show how to increase the performance of the ADC in a noisy  
environment beyond the ADC specifications listed in Table 7:  
The ADC input trace must be short and as close as possible to the LPC11Cx2/Cx4  
chip.  
The ADC input traces must be shielded from fast switching digital signals and noisy  
power supply lines.  
Because the ADC and the digital core share the same power supply, the power supply  
line must be adequately filtered.  
To improve the ADC performance in a very noisy environment, put the device in Sleep  
mode during the ADC conversion.  
11.2 XTAL input  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended that the input be coupled through a capacitor with  
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional  
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave  
mode, a minimum of 200 mv (RMS) is needed.  
LPC1xxx  
XTALIN  
C
i
C
g
100 pF  
002aae788  
Fig 23. Slave mode operation of the on-chip oscillator  
In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF  
(Figure 23), with an amplitude between 200 mv (RMS) and 1000 mv (RMS). This  
corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V.  
The XTALOUT pin in this configuration can be left unconnected.  
External components and models used in oscillation mode are shown in Figure 24 and in  
Table 19 and Table 20. Since the feedback resistance is integrated on chip, only a crystal  
and the capacitances CX1 and CX2 need to be connected externally in case of  
fundamental mode oscillation (the fundamental frequency is represented by L, CL and  
RS). Capacitance CP in Figure 24 represents the parallel package capacitance and should  
not be larger than 7 pF. Parameters FOSC, CL, RS and CP are supplied by the crystal  
manufacturer (see Table 19).  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
50 of 62  
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
LPC1xxx  
L
XTALIN  
XTALOUT  
C
L
C
P
=
XTAL  
R
S
C
X2  
C
X1  
002aaf424  
Fig 24. Oscillator modes and models: oscillation mode of operation and external crystal  
model used for CX1/CX2 evaluation  
Table 19. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) low frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
1 MHz - 5 MHz  
10 pF  
< 300   
< 300   
< 300   
< 300   
< 200   
< 100   
< 160   
< 60   
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
20 pF  
30 pF  
5 MHz - 10 MHz  
10 pF  
20 pF  
30 pF  
10 MHz - 15 MHz  
15 MHz - 20 MHz  
10 pF  
20 pF  
10 pF  
< 80   
Table 20. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) high frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
15 MHz - 20 MHz  
10 pF  
< 180   
< 100   
< 160   
< 80   
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
39 pF, 39 pF  
20 pF  
20 MHz - 25 MHz  
10 pF  
20 pF  
11.3 XTAL Printed Circuit Board (PCB) layout guidelines  
The crystal should be connected on the PCB as close as possible to the oscillator input  
and output pins of the chip. Take care that the load capacitors Cx1, Cx2, and Cx3 in case of  
third overtone crystal usage have a common ground plane. The external components  
must also be connected to the ground plain. Loops must be made as small as possible in  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
51 of 62  
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
order to keep the noise coupled in via the PCB as small as possible. Also parasitics  
should stay as small as possible. Values of Cx1 and Cx2 should be chosen smaller  
accordingly to the increase in parasitics of the PCB layout.  
11.4 Standard I/O pad configuration  
Figure 25 shows the possible pin modes for standard I/O pins with analog input function:  
Digital output driver  
Digital input: Pull-up enabled/disabled  
Digital input: Pull-down enabled/disabled  
Digital input: Repeater mode enabled/disabled  
Analog input  
V
DD  
ESD  
output enable  
pin configured  
as digital output  
driver  
output  
PIN  
ESD  
V
V
DD  
SS  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
repeater mode  
enable  
pin configured  
as digital input  
pull-down enable  
data input  
select analog input  
pin configured  
as analog input  
analog input  
002aaf304  
Fig 25. Standard I/O pad configuration  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
52 of 62  
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11.5 Reset pad configuration  
V
DD  
V
DD  
V
DD  
R
pu  
ESD  
20 ns RC  
GLITCH FILTER  
reset  
PIN  
ESD  
V
SS  
002aaf274  
Fig 26. Reset pad configuration  
11.6 C_CAN with external transceiver (LPC11C12/C14 only)  
BAT  
3 V  
5 V  
V
CC  
V
IO  
CANH  
CANL  
LPC11C12/C14  
PIOx_y  
CANH  
CANL  
S
TXD  
RXD  
TJF1051  
CAN_TXD  
CAN_RXD  
GND  
002aaf911  
Fig 27. Connecting the C_CAN to an external transceiver (LPC11C12/C14)  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
53 of 62  
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11.7 C_CAN with on-chip, high-speed transceiver (LPC11C22/C24 only)  
V
DD  
3 V  
5 V  
V
CC  
VDD_CAN  
LPC11C22/C24  
V
DD  
CAN_TXD  
CANH  
CANH  
CANL  
CAN  
HIGH-SPEED  
TRANSCEIVER  
C_CAN  
CAN_RXD  
CANL  
STD  
GND  
002aaf910  
Fig 28. Connecting the CAN high-speed transceiver to the CAN bus (LPC11C22/C24)  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
54 of 62  
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
12. Package outline  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
E
37  
24  
Z
E
e
H
E
A
2
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT313-2  
136E05  
MS-026  
Fig 29. Package outline SOT313-2 (LQFP48)  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
55 of 62  
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
13. Soldering  
Footprint information for reflow soldering of LQFP48 package  
SOT313-2  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8×)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 10.350 10.350 7.350 7.350 1.500 0.280 0.500 7.500 7.500 10.650 10.650  
sot313-2_fr  
Fig 30. Reflow soldering of the LQFP48 package  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
56 of 62  
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
14. Abbreviations  
Table 21. Abbreviations  
Acronym  
ADC  
AHB  
APB  
API  
Description  
Analog-to-Digital Converter  
Advanced High-performance Bus  
Advanced Peripheral Bus  
Application Programming Interface  
BrownOut Detection  
BOD  
CAN  
GPIO  
PLL  
Controller Area Network  
General Purpose Input/Output  
Phase-Locked Loop  
RC  
Resistor-Capacitor  
SDO  
SPI  
Service Data Object  
Serial Peripheral Interface  
Serial Synchronous Interface  
Synchronous Serial Port  
SSI  
SSP  
UART  
Universal Asynchronous Receiver/Transmitter  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
57 of 62  
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
15. Revision history  
Table 22. Revision history  
Document ID  
Release date  
Data sheet status  
Change notice Supersedes  
LPC11CX2_CX4 v.3.1  
Modifications:  
20130515  
Product data sheet  
-
LPC11CX2_CX4 v.3  
Table 3 and Table 4: Added “5 V tolerant pad” to RESET/PIO0_0 table note.  
Table 5:  
Added Table note 2.  
Corrected VDD min and max.  
Table 8: Added Table note 1.  
Table 10: Removed BOD interrupt level 0.  
LPC11CX2_CX4 v.3  
Modifications:  
20110627  
Product data sheet  
-
LPC11C12_C14 v.2  
I2C-bus pins configured as standard mode pins, parameter IOL changed to 3.5 mA  
(minimum) for 2.0 V VDD 3.6 V.  
Parameter Vx added to Table 5 “Limiting values”.  
C_CAN power consumption data added to Table 11.  
ADC sampling frequency corrected in Table 7 (Table note 7).  
Reflow soldering footprint drawing added (Section 13).  
Pull-up level specified in Table 3 and Table 4.  
Parameter Tcy(clk) corrected on Table 18.  
Condition for parameter Tstg in Table 5 updated.  
Table note 5 of Table 5 updated.  
Table 18 T~cy(clk) condition changed from “when only receiving” to “full-duplex mode”  
LPC11CX2_CX4 v.2  
Modifications:  
20101203  
Product data sheet  
-
LPC11C12_C14 v.1  
Parts LPC11C22 and LPC11C24 added.  
Pin description for parts LPC11C22 and LPC11C24 added (Table 4).  
Static characteristics for CAN transceiver added (Table 8).  
Description of high-speed, on-chip CAN transceiver added (LPC11C22/C24). See  
Section 7.11.2.  
Application diagram for connecting the C_CAN to an external transceiver added  
(Section 11.6).  
Application diagram for high-speed, on-chip CAN transceiver added (Section 11.7).  
Typical value for parameter Nendu added in Table 12 “Flash characteristics”.  
Description of RESET and WAKEKUP pins updated in Table 3.  
PLL output frequency limited to < 100 MHz in Section 7.16.2 “System PLL”.  
Parameter Vhys for I2C bus pins: typical value corrected Vhys = 0.05VDD in Table 6.  
LPC11C12_C14 v.1  
20100921  
Product data sheet  
-
-
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
58 of 62  
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
16. Legal information  
16.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
16.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
16.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
59 of 62  
 
 
 
 
 
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
16.4 Trademarks  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
17. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
60 of 62  
 
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
18. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
7.16.1.3 Watchdog oscillator . . . . . . . . . . . . . . . . . . . . 24  
7.16.2  
7.16.3  
7.16.4  
7.16.5  
System PLL . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Clock output. . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 24  
Power control. . . . . . . . . . . . . . . . . . . . . . . . . 24  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
4
4.1  
5
7.16.5.1 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.16.5.2 Deep-sleep mode. . . . . . . . . . . . . . . . . . . . . . 25  
7.16.5.3 Deep power-down mode . . . . . . . . . . . . . . . . 25  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 7  
7.17  
System control . . . . . . . . . . . . . . . . . . . . . . . . 25  
Start logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Brownout detection . . . . . . . . . . . . . . . . . . . . 25  
Code security (Code Read Protection - CRP) 26  
Bootloader . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
APB interface. . . . . . . . . . . . . . . . . . . . . . . . . 27  
AHBLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
External interrupt inputs. . . . . . . . . . . . . . . . . 27  
Emulation and debugging . . . . . . . . . . . . . . . 27  
7.17.1  
7.17.2  
7.17.3  
7.17.4  
7.17.5  
7.17.6  
7.17.7  
7.17.8  
7.18  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.5.1  
7.5.2  
7.6  
7.7  
7.7.1  
7.8  
7.8.1  
7.9  
7.9.1  
7.10  
7.10.1  
7.11  
7.11.1  
7.11.2  
Functional description . . . . . . . . . . . . . . . . . . 15  
ARM Cortex-M0 processor . . . . . . . . . . . . . . . 15  
On-chip flash program memory . . . . . . . . . . . 15  
On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . 15  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Nested Vectored Interrupt Controller (NVIC) . 16  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 17  
IOCONFIG block . . . . . . . . . . . . . . . . . . . . . . 17  
Fast general purpose parallel I/O . . . . . . . . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SPI serial I/O controller. . . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
I2C-bus serial I/O controller . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
C_CAN controller . . . . . . . . . . . . . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
On-chip, high-speed CAN transceiver . . . . . . 20  
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 28  
9
9.1  
9.2  
Static characteristics . . . . . . . . . . . . . . . . . . . 29  
ADC characteristics . . . . . . . . . . . . . . . . . . . . 32  
C_CAN on-chip, high-speed transceiver  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . 34  
BOD static characteristics . . . . . . . . . . . . . . . 36  
Power consumption . . . . . . . . . . . . . . . . . . . 36  
Peripheral power consumption . . . . . . . . . . . 40  
Electrical pin characteristics. . . . . . . . . . . . . . 41  
9.3  
9.4  
9.5  
9.6  
10  
Dynamic characteristics. . . . . . . . . . . . . . . . . 44  
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . 44  
External clock. . . . . . . . . . . . . . . . . . . . . . . . . 44  
Internal oscillators . . . . . . . . . . . . . . . . . . . . . 45  
I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
I2C-bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
SPI interfaces. . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
7.11.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.11.2.2 Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.11.2.3 Silent mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.11.2.4 Undervoltage protection . . . . . . . . . . . . . . . . . 20  
7.11.2.5 Thermal protection . . . . . . . . . . . . . . . . . . . . . 20  
7.11.2.6 Time-out function . . . . . . . . . . . . . . . . . . . . . . 21  
7.12  
7.12.1  
7.13  
11  
Application information . . . . . . . . . . . . . . . . . 50  
ADC usage notes. . . . . . . . . . . . . . . . . . . . . . 50  
XTAL input . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
XTAL Printed Circuit Board (PCB) layout  
guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Standard I/O pad configuration . . . . . . . . . . . 52  
Reset pad configuration. . . . . . . . . . . . . . . . . 53  
C_CAN with external transceiver  
11.1  
11.2  
11.3  
10-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
General purpose external event  
counter/timers. . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
System tick timer . . . . . . . . . . . . . . . . . . . . . . 22  
Watchdog timer. . . . . . . . . . . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Clocking and power control . . . . . . . . . . . . . . 22  
Crystal oscillators . . . . . . . . . . . . . . . . . . . . . . 22  
11.4  
11.5  
11.6  
7.13.1  
7.14  
7.15  
7.15.1  
7.16  
7.16.1  
(LPC11C12/C14 only) . . . . . . . . . . . . . . . . . . 53  
C_CAN with on-chip, high-speed transceiver  
(LPC11C22/C24 only) . . . . . . . . . . . . . . . . . . 54  
11.7  
12  
13  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 55  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
7.16.1.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . 23  
7.16.1.2 System oscillator . . . . . . . . . . . . . . . . . . . . . . 23  
continued >>  
LPC11CX2_CX4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 3.1 — 15 May 2013  
61 of 62  
 
LPC11Cx2/Cx4  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
14  
15  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 58  
16  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 59  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 59  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
16.1  
16.2  
16.3  
16.4  
17  
18  
Contact information. . . . . . . . . . . . . . . . . . . . . 60  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2013.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 15 May 2013  
Document identifier: LPC11CX2_CX4  

相关型号:

LPC11C14FBD48-301

NXP 50-MHz, 32-bit Cortex-M0? MCUs
NXP

LPC11C14FBD48/301

32-bit ARM Cortex-M0 microcontroller; 16/32 kB flash, 8 kB SRAM; C_CAN
NXP

LPC11C22

NXP Microcontrollers Selection Guide
NXP

LPC11C22FB301

32-bit ARM Cortex-M0 microcontroller; 16/32 kB flash, 8 kB SRAM C_CAN
NXP

LPC11C22FBD48

32-bit ARM Cortex-M0 microcontroller; 16/32 kB flash, 8 kB SRAM C_CAN
NXP

LPC11C22FBD48-301

32-bit ARM Cortex-M0 microcontroller; 16/32 kB flash, 8 kB SRAM; C_CAN
NXP

LPC11C22FBD48/301

IC 32-BIT, FLASH, 50 MHz, RISC MICROCONTROLLER, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT313-2, LQFP-48, Microcontroller
NXP

LPC11C24

NXP Microcontrollers Selection Guide
NXP

LPC11C24FB301

32-bit ARM Cortex-M0 microcontroller; 16/32 kB flash, 8 kB SRAM C_CAN
NXP

LPC11C24FBD48

32-bit ARM Cortex-M0 microcontroller; 16/32 kB flash, 8 kB SRAM C_CAN
NXP

LPC11C24FBD48-301

NXP 50-MHz, 32-bit Cortex-M0? MCUs
NXP

LPC11C24FBD48/301

32-BIT, FLASH, 50MHz, RISC MICROCONTROLLER, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT313-2, LQFP-48
NXP