MFRC63002HN [NXP]

Contactless reader IC; 非接触式读卡器IC
MFRC63002HN
型号: MFRC63002HN
厂家: NXP    NXP
描述:

Contactless reader IC
非接触式读卡器IC

文件: 总118页 (文件大小:1965K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MFRC630  
Contactless reader IC  
Rev. 3.1 — 6 September 2012  
227531  
Product data sheet  
COMPANY PUBLIC  
1. Introduction  
This document describes the functionality and electrical specifications of the contactless  
reader/writer IC MFRC630.  
2. General description  
The MFRC630 is a highly integrated transceiver IC for contactless communication at  
13.56 MHz.  
The MFRC630 transceiver IC supports the following operating modes  
Read/write mode supporting ISO/IEC 14443A/MIFARE  
The MFRC630’s internal transmitter is able to drive a reader/writer antenna designed to  
communicate with ISO/IEC 14443A/MIFARE cards and transponders without additional  
active circuitry. The digital module manages the complete ISO/IEC 14443A framing and  
error detection functionality (parity and CRC).  
The MFRC630 supports MIFARE Classic 1K, MIFARE Classic 4K, MIFARE Ultralight,  
MIFARE Ultralight C, MIFARE PLUS and MIFARE DESFire products. The MFRC630  
supports MIFARE higher transfer speeds of up to 848 kbit/s in both directions.  
The following host interfaces are supported:  
Serial Peripheral Interface (SPI)  
Serial UART (similar to RS232 with voltage levels dependent on pin voltage supply)  
I2C-bus interface (two versions are implemented: I2C and I2CL)  
The MFRC630 supports the connection of a secure access module (SAM). A dedicated  
separate I2C interface is implemented for a connection of the SAM. The SAM can be used  
for high secure key storage and acts as a very performant crypto coprocessor. A  
dedicated SAM is available for connection to the MFRC630.  
3. Features and benefits  
High RF output power frontend IC for transfer speed up to 848 kbit/s  
Supports ISO/IEC 14443 A/MIFARE  
Supports MIFARE Classic encryption in read/write mode  
Low-Power Card Detection  
Antenna connection with minimum number of external components  
Supported host interfaces:  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
SPI up to 10 Mbit/s  
I2C-bus interfaces up to 400 kBd in Fast mode, up to 1000 kBd in Fast mode plus  
RS232 Serial UART up to 1228.8 kBd, with voltage levels dependent on pin  
voltage supply  
Separate I2C-bus interface for connection of a secure access module (SAM)  
FIFO buffer with size of 512 byte for highest transaction performance  
Flexible and efficient power saving modes including hard power down, standby and  
low-power card detection  
Cost saving by integrated PLL to derive system CPU clock from 27.12 MHz RF quartz  
crystal  
3.3 V to 5 V power supply  
Up to 8 free programmable input/output pins  
Typical operating distance in read/write mode for communication to a  
ISO/IEC 14443A/MIFARE Card up to 12 cm, depending on the antenna size and  
tuning  
4. Quick reference data  
Table 1.  
Symbol  
VDD  
Quick reference data  
Parameter  
Conditions  
Min  
Typ  
5
Max  
5.5  
5.5  
5.5  
40  
Unit  
V
supply voltage  
3
[1]  
[2]  
VDD(TVDD)  
VDD(PVDD)  
Ipd  
TVDD supply voltage  
PVDD supply voltage  
power-down current  
supply current  
3
5
V
3
5
V
PDOWN pin pulled HIGH  
no supply voltage applied  
-
8
nA  
mA  
mA  
C  
IDD  
-
17  
100  
+25  
+25  
20  
[3][4]  
IDD(TVDD)  
Tamb  
TVDD supply current  
ambient temperature  
storage temperature  
-
200  
+85  
25  
40  
Tstg  
+100 C  
[1] VDD(PVDD) must always be the same or lower voltage than VDD.  
[2] Ipd is the sum of all supply currents  
[3]  
IDD(TVDD) depends on VDD(TVDD) and the external circuitry connected to TX1 and TX2.  
[4] Typical value: Assumes the usage of a complementary driver configuration and an antenna matched to 40 between pins TX1, TX2 at  
13.56 MHz.  
5. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
MFRC63002HN/TRAYB[1]  
MFRC63002HN/TRAYBM[2]  
MFRC63002HN/T/R[3]  
HVQFN32 plastic thermal enhanced very thin quad flat package; no leads;  
SOT617-1  
MSL1, 32 terminals + 1 central ground; body 5 5 0.85 mm  
[1] Delivered in one tray  
[2] Delivered in five trays  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
2 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
[3] Delivered on reel with 6000 pieces  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
3 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
6. Block diagram  
The analog interface handles the modulation and demodulation of the antenna signals for  
the contactless interface.  
The contactless UART manages the protocol dependency of the contactless interface  
settings managed by the host.  
The FIFO buffer ensures fast and convenient data transfer between host and the  
contactless UART.  
The register bank contains the settings for the analog and digital functionality.  
REGISTER BANK  
ANALOG  
INTERFACE  
CONTACTLESS  
UART  
ANTENNA  
FIFO  
BUFFER  
SERIAL UART  
SPI  
I C-BUS  
HOST  
2
001aaj627  
Fig 1. Simplified block diagram of the MFRC630  
7. Pinning information  
terminal 1  
index area  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
TDO  
TDI  
SDA  
(1)  
SCL  
TMS  
CLKOUT  
PDOWN  
XTAL2  
XTAL1  
TVDD  
TX1  
TCK  
CLRC663  
SIGIN  
SIGOUT  
DVDD  
VDD  
001aam004  
Transparent top view  
(1) Pin 33 VSS - heatsink connection  
Fig 2. Pinning configuration HVQFN32 (SOT617-1)  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
4 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
7.1 Pin description  
Table 3.  
Pin description  
Pin  
1
Symbol Type  
Description  
TDO  
O
test data output for boundary scan interface  
test data input boundary scan interface  
test mode select boundary scan interface  
test clock boundary scan interface  
2
TDI  
I
3
TMS  
I
4
TCK  
I
5
SIGIN  
SIGOUT  
DVDD  
VDD  
I
Contactless communication interface output.  
Contactless communication interface input.  
digital power supply buffer [1]  
6
O
7
PWR  
8
PWR  
power supply  
9
AVDD  
AUX1  
AUX2  
RXP  
PWR  
analog power supply buffer [1]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
O
auxiliary outputs: Pin is used for analog test signal  
auxiliary outputs: Pin is used for analog test signal  
receiver input pin for the received RF signal.  
receiver input pin for the received RF signal.  
internal receiver reference voltage [1]  
transmitter 2: delivers the modulated 13.56 MHz carrier  
transmitter ground, supplies the output stage of TX1, TX2  
transmitter 1: delivers the modulated 13.56 MHz carrier  
transmitter voltage supply  
O
I
RXN  
I
VMID  
TX2  
PWR  
O
TVSS  
TX1  
PWR  
O
TVDD  
XTAL1  
PWR  
I
crystal oscillator input: Input to the inverting amplifier of the oscillator. This is pin is also the  
input for an externally generated clock (fosc = 27,12 MHz)  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
XTAL2  
PDOWN  
CLKOUT  
SCL  
O
crystal oscillator output: output of the inverting amplifier of the oscillator  
I
Power Down  
O
clock output  
O
Serial Clock line  
SDA  
I/O  
PWR  
I
Serial Data Line  
PVDD  
IFSEL0  
IFSEL1  
IF0  
pad power supply  
host interface selection 0  
I
host interface selection 1  
I/O  
I/O  
I/O  
I/O  
O
interface pin, multifunction pin: Can be assigned to host interface RS232, SPI, I2C, I2C-L  
interface pin, multifunction pin: Can be assigned to host interface SPI, I2C, I2C-L  
interface pin, multifunction pin: Can be assigned to host interface RS232, SPI, I2C, I2C-L  
interface pin, multifunction pin: Can be assigned to host interface RS232, SPI, I2C, I2C-L  
interrupt request: output to signal an interrupt event  
ground and heatsink connection  
IF1  
IF2  
IF3  
IRQ  
VSS  
PWR  
[1] This pin is used for connection of a buffer capacitor. Connection of a supply voltage might damage the device.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
5 of 118  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
8. Functional description  
SAM interface  
2
SDA  
SCL  
I C,  
FIFO  
512 Bytes  
EEPROM  
8 kByte  
LOGICAL  
SPI  
host interfaces  
RESET  
LOGIC  
IFSEL1  
IFSEL0  
PDOWN  
2
I C  
IF0  
IF1  
IF2  
IF3  
REGISTERS  
RS232  
SPI  
STATEMACHINES  
ANALOGUE FRONT-END  
VDD  
VSS  
VOLTAGE  
REGULATOR  
3/5 V =>  
1.8 V  
VOLTAGE  
REGULATOR  
3/5 V =>  
1.8 V  
PVDD  
TVDD  
TVSS  
AVDD  
DVDD  
TCK  
TDI  
TMS  
TDO  
BOUNDARY  
SCAN  
DVDD  
AVDD  
POR  
ADC  
RNG  
PLL  
TIMER4  
TX  
RX  
TIMER0..3  
(WAKE-UP  
TIMER)  
CODEC  
DECOD  
LPO  
TX  
CLKOUT  
CL-  
COPRO  
AUX1  
AUX2  
SIGIN/  
SIGOUT  
CONTROL  
INTERRUPT  
CONTROLLER  
CRC  
SIGPRO  
RX  
OSC  
RXP  
VMID RXN  
TX2  
TX1  
XTAL2  
XTAL1  
IRQ  
SIGIN SIGOUT  
001aam005  
Fig 3. Detailed block diagram of the MFRC630  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.1 Interrupt controller  
The interrupt controller handles the enabling/disabling of interrupt requests. All of the  
interrupts can be configured by firmware. Additionally, the firmware has possibilities to  
trigger interrupts or clear pending interrupt requests. Two 8-bit interrupt registers IRQ0  
and IRQ1 are implemented, accompanied by two 8-bit interrupt enable registers IRQ0En  
and IRQ1En. A dedicated functionality of bit 7 to set and clear bits 0 to 6 in this interrupt  
controller registers is implemented.  
The MFRC630 indicates certain events by setting bit IRQ in the register Status1Reg and  
additionally, if activated, by pin IRQ. The signal on pin IRQ may be used to interrupt the  
host using its interrupt handling capabilities. This allows the implementation of efficient  
host software.  
The following table shows the available interrupt bits, the corresponding source and the  
condition for its activation. The interrupt bit TimernIrq in register IRQ1 indicates an  
interrupt set by the timer unit. The setting is done if the timer underflows.  
The TxIrq bit in register IRq0 indicates that the transmission is finished. If the state  
changes from sending data to transmitting the end of the frame pattern, the transmitter  
unit sets the interrupt bit automatically.  
The bit RxIrq in register IRQ0 indicates an interrupt when the end of the received data is  
detected.  
The bit IdleIrq in register IRQ0 is set if a command finishes and the content of the  
command register changes to idle.  
The waterlevel defines both - minimum and maximum warning levels - counting from top  
and from bottom of the FIFO by a single value.  
The bit HiAlertIrq in register IRQ0 is set to logic 1 if the HiAlert bit is set to logic 1, that  
means the FIFO data number has reached the top level as configured by the bit  
WaterLevel.  
The bit LoAlertIrq in register IRQ0 is set to logic 1 if the LoAlert bit is set to logic 1, that  
means the FIFO data number has reached the bottom level as configured by the bit  
WaterLevel.  
The bit ErrIrq in register IRQ0 indicates an error detected by the contactless UART during  
receive. This is indicated by any bit set to logic 1 in register Error.  
The bit LPCDIrq in register IRQ0 indicates a card detected.  
The bit RxSOFIrq in register IRQ0 indicates a detection of a SOF or a subcarrier by the  
contactless UART during receiving.  
The bit GlobalIRq in register IRQ1 indicates an interrupt occurring at any other interrupt  
source when enabled.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
7 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 4.  
Interrupt sources  
Interrupt bit  
Timer0Irq  
Timer1Irq  
Timer2Irq  
Timer3Irq  
TxIrq  
Interrupt source  
Timer Unit  
Is set automatically, when  
the timer register T0 CounterVal underflows  
the timer register T1 CounterVal underflows  
the timer register T2 CounterVal underflows  
the timer register T3 CounterVal underflows  
a transmitted data stream ends  
Timer Unit  
Timer Unit  
Timer Unit  
Transmitter  
RxIrq  
Receiver  
a received data stream ends  
IdleIrq  
Command Register  
FIFO-buffer pointer  
a command execution finishes  
HiAlertIrq  
the FIFO data number has reached the top level as  
configured by the bit WaterLevel  
LoAlertIrq  
FIFO-buffer pointer  
the FIFO data number has reached the bottom level as  
configured by the bit WaterLevel  
ErrIrq  
contactless UART  
LPCD  
a communication error had been detected  
LPCDIrq  
a card was detected when in low-power card detection  
mode  
RxSOFIrq  
GlobalIrq  
Receiver  
detection of a SOF or a subcarrier  
all interrupt sources  
will be set if another interrupt request source is set  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
8 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.2 Timer module  
Timer module overview  
The MFRC630 implements five timers. Four timers -Timer0 to Timer3 - have an input  
clock that can be configured by register T(x)Control to be 13.56 MHz, 212 kHz, (derived  
from the 27.12 MHz quartz) or to be the underflow event of the fifth Timer (Timer4). Each  
timer implements a counter register which is 16 bit wide. A reload value for the counter is  
defined in a range of 0000h to FFFFh in the registers TxReloadHi and TxReloadLo. The  
fifth timer Timer4 is intended to be used as a wakeup timer and is connected to the  
internal LPO (Low-Power Oscillator) as input clock source.  
The TControl register allows the global start and stop of each of the four timers Timer0 to  
Timer3. Additionally, this register indicates if one of the timers is running or stopped. Each  
of the five timers implements an individual configuration register set defining timer reload  
value (e.g. T0ReloadHi,T0ReloadLo), the timer value (e.g. T0CounterValHi,  
T0CounterValLo) and the conditions which define start, stop and clockfrequency (e.g.  
T0Control).  
The external host may use these timers to manage timing relevant tasks. The timer unit  
may be used in one of the following configurations:  
Time-out counter  
Watch-dog counter  
Stop watch  
Programmable one-shot timer  
Periodical trigger  
The timer unit can be used to measure the time interval between two events or to indicate  
that a specific event has occurred after an elapsed time. The timer register content is  
modified by the timer unit, which can be used to generate an interrupt to allow an host to  
react on this event.  
The counter value of the timer is available in the registers T(x)CounterValHi,  
T(x)CounterValLo. The content of these registers is decremented at each timer clock.  
If the counter value has reached a value of 0000h and the interrupts are enabled for this  
specific timer, an interrupt will be generated as soon as the next clock is received.  
If enabled, the timer event can be indicated on the pin IRQ (interrupt request). The bit  
Timer(x)Irq can be set and reset by the host controller. Depending on the configuration,  
the timer will stop counting at 0000h or restart with the value loaded from registers  
T(x)ReloadHi, T(x)ReloadLo.  
The counting of the timer is indicated by bit TControl.T(x)Running.  
The timer can be started by setting bits TControl.T(x)Running and  
TControl.T(x)StartStopNow or stopped by setting the bits TControl.T(x)StartStopNow and  
clearing TControl.T(x)Running.  
Another possibility to start the timer is to set the bit T(x)Mode.T(x)Start, this can be useful  
if dedicated protocol requirements need to be fulfilled.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
9 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.2.1 Timer modes  
8.2.1.1 Time-Out- and Watch-Dog-Counter  
Having configured the timer by setting register T(x)ReloadValue and starting the counting  
of Timer(x) by setting bit TControl.T(x)StartStop and TControl.T(x)Running, the timer unit  
decrements the T(x)CounterValue Register beginning with the configured start event. If  
the configured stop event occurs before the Timer(x) underflows (e.g. a bit is received  
from the card), the timer unit stops (no interrupt is generated).  
If no stop event occurs, the timer unit continues to decrement the counter registers until  
the content is zero and generates a timer interrupt request at the next clock cycle. This  
allows to indicate to a host that the event did not occur during the configured time interval.  
8.2.1.2 Wake-up timer  
The wake-up Timer4 allows to wakeup the system from standby after a predefined time.  
The system can be configured in such a way that it is entering the standby mode again in  
case no card had been detected.  
This functionality can be used to implement a low-power card detection (LPCD). For the  
low-power card detection it is recommended to set T4Control.T4AutoWakeUp and  
T4Control.T4AutoRestart, to activate the Timer4 and automatically set the system in  
standby. The internal low-power clock oscillator (LPO) is then used as input clock for this  
Timer4. If a card is detected the host-communication can be started. If bit  
T4Control.T4AutoWakeUp is not set, the MFRC630 will not enter the standby mode again  
in case no card is detected but stays fully powered.  
8.2.1.3 Stop watch  
The elapsed time between a configured start- and stop event may be measured by the  
MFRC630 timer unit. By setting the registers T(x)ReloadValueHi, T(x)reloadValueLo the  
timer starts to decrement as soon as activated. If the configured stop event occurs, the  
timers stops decrementing. The elapsed time between start and stop event can then be  
calculated by the host dependent on the timer interval TTimer:  
T   
Treload  
Timer  
* T Timer  
value  
value  
(1)  
If an underflow occurred which can be identified by evaluating the corresponding IRQ bit,  
the performed time measurement according to the formula above is not correct.  
8.2.1.4 Programmable one-shot timer  
The host configures the interrupt and the timer, starts the timer and waits for the interrupt  
event on pin IRQ. After the configured time the interrupt request will be raised.  
8.2.1.5 Periodical trigger  
If the bit T(x)Control.T(x)AutoRestart is set and the interrupt is activated, an interrupt  
request will be indicated periodically after every elapsed timer period.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
10 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.3 Contactless interface unit  
The contactless interface unit of the MFRC630 supports the following read/write operating  
modes:  
ISO/IEC14443A/MIFARE  
BATTERY/POWER SUPPLY  
READER IC  
ISO/IEC 14443 A CARD  
MICROCONTROLLER  
reader/writer  
001aal996  
Fig 4. Read/write mode  
A typical system using the MFRC630 is using a microcontroller to implement the higher  
levels of the contactless communication protocol and a power supply (battery or external  
supply).  
8.3.1 ISO/IEC14443A/MIFARE functionality  
The physical level of the communication is shown in Figure 5.  
(1)  
ISO/IEC 14443 A  
ISO/IEC 14443 A CARD  
READER  
(2)  
001aam268  
(1) Reader to Card 100 % ASK, Miller Coded, Transfer speed 106 kbit/s to 848 kbit/s  
(2) Card to Reader, Subcarrier Load Modulation Manchester Coded or BPSK, transfer speed  
106 kbit/s to 848 kbit/s  
Fig 5. ISO/IEC 14443 A/MIFARE read/write mode communication diagram  
The physical parameters are described in Table 5.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
11 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 5.  
Communication overview for ISO/IEC 14443 A/MIFARE reader/writer  
Communication  
direction  
Signal type  
Transfer speed  
106 kbit/s  
212 kbit/s  
424 kbit/s  
848 kbit/s  
Reader to card (send  
data from the  
reader side  
modulation  
100 % ASK  
ASK  
ASK  
ASK  
MFRC630 to a card)  
fc = 13.56 MHz  
bit encoding  
modified Miller  
encoding  
modified Miller  
encoding  
modified Miller  
encoding  
modified Miller  
encoding  
bit rate [kbit/s]  
fc / 128  
fc / 64  
fc / 32  
fc / 16  
Card to reader  
(MFRC630 receives  
data from a card)  
card side  
modulation  
subcarrier load  
modulation  
subcarrier load  
modulation  
subcarrier load  
modulation  
subcarrier load  
modulation  
subcarrier  
frequency  
fc / 16  
fc / 16  
fc / 16  
fc / 16  
bit encoding  
Manchester  
encoding  
BPSK  
BPSK  
BPSK  
The MFRC630 connection to a host is required to manage the complete  
ISO/IEC 14443 A/MIFARE protocol. Figure 6 shows the data coding and framing  
according to ISO/IEC 14443A /MIFARE.  
ISO/IEC 14443 A framing at 106 kBd  
start  
8-bit data  
8-bit data  
8-bit data  
odd  
odd  
odd  
parity  
parity  
parity  
start bit is 1  
ISO/IEC 14443 A framing at 212 kBd, 424 kBd and 848 kBd  
start  
even  
parity  
8-bit data  
8-bit data  
8-bit data  
odd  
parity  
odd  
parity  
start bit is 0  
burst of 32  
subcarrier clocks  
even parity at the  
end of the frame  
001aak585  
Fig 6. Data coding and framing according to ISO/IEC 14443 A  
The internal CRC coprocessor calculates the CRC value based on ISO/IEC 14443 A  
part 3 and handles parity generation internally according to the transfer speed.  
8.4 Host interfaces  
8.4.1 Host interface configuration  
The MFRC630 supports direct interfacing of various hosts as the SPI, I2C, I2CL and serial  
UART interface type. The MFRC630 resets its interface and checks the current host  
interface type automatically having performed a power-up or resuming from power down.  
The MFRC630 identifies the host interface by the means of the logic levels on the control  
pins after the Cold Reset Phase. This is done by a combination of fixed pin  
connections.The following table shows the possible configurations defined by  
IFSEL1,IFSEL0:  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
12 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 6.  
Connection scheme for detecting the different interface types  
Pin  
28  
29  
30  
31  
26  
27  
Pin Symbol  
IF0  
UART  
SPI  
MOSI  
SCK  
MISO  
NSS  
0
I2C  
I2C-L  
ADR1  
SCL  
SDA  
ADR2  
1
RX  
-
ADR1  
SCL  
ADR2  
SDA  
1
IF1  
IF2  
TX  
1
IF3  
IFSEL0  
IFSEL1  
0
0
1
0
1
8.4.2 SPI interface  
8.4.2.1 General  
READER IC  
SCK  
IF1  
IF0  
IF2  
IF3  
MOSI  
MISO  
NSS  
001aal998  
Fig 7. Connection to host with SPI  
The MFRC630 acts as a slave during the SPI communication. The SPI clock SCK has to  
be generated by the master. Data communication from the master to the slave uses the  
Line MOSI. Line MISO is used to send data back from the MFRC630 to the master.  
A serial peripheral interface (SPI compatible) is supported to enable high speed  
communication to a host. The implemented SPI compatible interface is according to a  
standard SPI interface. The SPI compatible interface can handle data speed of up to 10  
Mbit/s. In the communication with a host MFRC630 acts as a slave receiving data from the  
external host for register settings and to send and receive data relevant for the  
communication on the RF interface.  
On both data lines (MOSI, MISO) each data byte is sent by MSB first. Data on MOSI line  
shall be stable on rising edge of the clock line (SCK) and is allowed to change on falling  
edge. The same is valid for the MISO line. Data is provided by the MFRC630 on the falling  
edge and is stable on the rising edge.The polarity of the clock is low at SPI idle.  
8.4.2.2 Read data  
To read out data from the MFRC630 by using the SPI compatible interface the following  
byte order has to be used.  
The first byte that is sent defines the mode (LSB bit) and the address.  
Table 7.  
Byte Order for MOSI and MISO  
byte 0  
MOSI address 0  
MISO  
byte 1  
byte 2  
byte 3 to n-1 byte n  
byte n+1  
00h  
address 1  
data 0  
address 2  
data 1  
……..  
……..  
address n  
data n 1  
X
data n  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
13 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Remark: The Most Significant Bit (MSB) has to be sent first.  
8.4.2.3 Write data  
To write data to the MFRC630 using the SPI interface the following byte order has to be  
used. It is possible to write more than one byte by sending a single address byte  
(see.8.5.2.4).  
The first send byte defines both, the mode itself and the address byte.  
Table 8.  
Byte Order for MOSI and MISO  
byte 0  
address 0  
X
byte 1  
data 0  
X
byte 2  
data 1  
X
3 to n-1  
……..  
byte n  
data n 1  
X
byte n + 1  
data n  
X
MOSI  
MISO  
……..  
Remark: The Most Significant Bit (MSB) has to be sent first.  
8.4.2.4 Address byte  
The address byte has to fulfil the following format:  
The LSB bit of the first byte defines the used mode. To read data from the MFRC630 the  
LSB bit is set to logic 1. To write data to the MFRC630 the LSB bit has to be cleared. The  
bits 6 to 0 define the address byte.  
NOTE: When writing the sequence [address byte][data1][data2][data3]..., [data1] is written  
to address [address byte], [data2] is written to address [address byte + 1] and [data3] is  
written to [address byte + 2].  
Exception: This auto increment of the address byte is not performed if data is written to  
the FIFO address  
Table 9.  
7
Address byte 0 register; address MOSI  
6
5
4
3
2
1
0
address 6 address 5 address 4 address 3 address 2 address 1 address 0 1 (read)  
0 (write)  
MSB  
LSB  
8.4.2.5 Timing Specification SPI  
The timing condition for SPI interface is as follows:  
Table 10. Timing conditions SPI  
Symbol  
tSCKL  
Parameter  
Min  
50  
50  
25  
25  
-
Typ  
Max  
Unit  
SCK LOW time  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCKH  
SCK HIGH time  
-
th(SCKH-D)  
tsu(D-SCKH)  
th(SCKL-Q)  
t(SCKL-NSSH)  
tNSSH  
SCK HIGH to data input hold time  
data input to SCK HIGH set-up time  
SCK LOW to data output hold time  
SCK LOW to NSS HIGH time  
NSS HIGH time  
-
-
25  
-
0
50  
-
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
14 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
t
t
t
t
SCKL  
NSSH  
SCKL  
SCKH  
SCK  
t
h(SCKL-Q)  
t
h(SCKH-D)  
t
t
h(SCKL-Q)  
su(D-SCKH)  
MOSI  
MISO  
MSB  
LSB  
MSB  
LSB  
t
(SCKL-NSSH)  
NSS  
001aaj641  
Fig 8. Connection to host with SPI  
Remark: To send more bytes in one data stream the NSS signal must be LOW during the  
send process. To send more than one data stream the NSS signal must be HIGH between  
each data stream.  
8.4.3 RS232 interface  
8.4.3.1 Selection of the transfer speeds  
The internal UART interface is compatible to a RS232 serial interface.  
Table 12 “Selectable transfer speeds” describes examples for different transfer speeds  
and relevant register settings. The resulting transfer speed error is less than 1.5 % for all  
described transfer speeds. The default transfer speed is 115.2 kbit/s.  
To change the transfer speed, the host controller has to write a value for the new transfer  
speed to the register SerialSpeedReg. The bits BR_T0 and BR_T1 define factors to set  
the transfer speed in the SerialSpeedReg.  
Table 11 “Settings of BR_T0 and BR_T1” describes the settings of BR_T0 and BR_T1.  
Table 11. Settings of BR_T0 and BR_T1  
BR_T0  
0
1
1
1
2
2
3
4
4
8
5
6
7
factor BR_T0  
16  
32  
64  
range BR_T1 1 to 32  
33 to 64 33 to 64 33 to 64 33 to 64 33 to 64 33 to 64 33 to 64  
Table 12. Selectable transfer speeds  
Transfer speed (kbit/s)  
Serial SpeedReg  
Transfer speed accuracy (%)  
(Hex.)  
FA  
7.2  
0.25  
0.32  
9.6  
EB  
14.4  
19.2  
DA  
0.25  
0.32  
CB  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
15 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 12. Selectable transfer speeds  
Transfer speed (kbit/s)  
Serial SpeedReg  
Transfer speed accuracy (%)  
(Hex.)  
AB  
9A  
38.4  
0.32  
57.6  
0.25  
0.25  
0.06  
0.25  
0.25  
1.45  
115.2  
128  
7A  
74  
230.4  
460.8  
921.6  
1228.8  
5A  
3A  
1C  
15  
0.32  
The selectable transfer speeds as shown are calculated according to the following  
formulas:  
if BR_T0 = 0: transfer speed = 27.12 MHz / (BR_T1 + 1)  
if BR_T0 > 0: transfer speed = 27.12 MHz / (BR_T1 + 33)/2(BR_T0 1)  
Remark: Transfer speeds above 1228.8 kBits/s are not supported.  
8.4.3.2 Framing  
Table 13. UART framing  
Bit  
Length  
1 bit  
Value  
0
Start bit (Sa)  
Data bits  
8 bit  
Data  
1
Stop bit (So)  
1 bit  
Remark: For data and address bytes the LSB bit has to be sent first. No parity bit is used  
during transmission.  
Read data: To read out data using the UART interface the flow described below has to be  
used. The first send byte defines both the mode itself and the address.The Trigger on pin  
IF3 has to be set, otherwise no read of data is possible.  
Table 14. Byte Order to Read Data  
Mode  
RX  
byte 0  
address  
-
byte 1  
-
TX  
data 0  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
16 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
ADDRESS  
RX  
Sa  
A0  
A1  
A2  
A3  
A4  
A5  
A6 RD/ So  
NWR  
DATA  
TX  
Sa  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
So  
001aam298  
Fig 9. Timing Diagram for UART Read Data  
Write data:  
To write data to the MFRC630 using the UART interface the following sequence has to be  
used.  
The first send byte defines both, the mode itself and the address.  
Table 15. Byte Order to Write Data  
Mode  
RX  
byte 0  
byte 1  
address 0  
data 0  
TX  
address 0  
ADDRESS  
DATA  
RX  
Sa  
A0  
A1  
A2  
A3  
A4  
A5  
A6 RD/ So  
NWR  
Sa  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
So  
ADDRESS  
TX  
Sa  
A0  
A1  
A2  
A3  
A4  
A5  
A6 RD/ So  
NWR  
001aam299  
Fig 10. Timing diagram for UART write data  
Remark: Data can be sent before address is received.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
17 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.4.4 I2C-bus interface  
8.4.4.1 General  
An Inter IC (I2C) bus interface is supported to enable a low cost, low pin count serial bus  
interface to the host. The implemented I2C interface is mainly implemented according the  
NXP Semiconductors I2C interface specification, rev. 3.0, June 2007. The MFRC630 can  
act as a slave receiver or slave transmitter in standard mode, fast mode and fast mode  
plus.  
The following features defined by the NXP Semiconductors I2C interface specification,  
rev. 3.0, June 2007 are not supported:  
The MFRC630 I2C interface does not stretch the clock  
The MFRC630 I2C interface does not support the general call. This means that the  
MFRC630 does not support a software reset  
The MFRC630 does not support the I2C device ID  
The implemented interface can only act in slave mode. Therefore no clock generation  
and access arbitration is implemented in the MFRC630.  
High speed mode is not supported by the MFRC630  
PULL-UP  
NETWORK  
PULL-UP  
NETWORK  
READER IC  
MICROCONTROLLER  
SDA  
SCL  
001aam000  
Fig 11. I2C-bus interface  
SDA is a bidirectional line, connected to a positive supply voltage via a pull-up resistor.  
Both lines SDA and SCL are set to HIGH level if no data is transmitted. Data on the  
I2C-bus can be transferred at data rates of up to 400 kbit/s in fast mode, up to 1 Mbit/s in  
the fast mode+.  
If the I2C interface is selected, a spike suppression according to the I2C interface  
specification on SCL and SDA is automatically activated.  
For timing requirements refer to Table 194 “I2C-bus timing in fast mode and fast mode  
plus”  
8.4.4.2 I2C Data validity  
Data on the SDA line shall be stable during the HIGH period of the clock. The HIGH state  
or LOW state of the data line shall only change when the clock signal on SCL is LOW.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
18 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
SDA  
SCL  
change  
of data  
allowed  
data line stable;  
data valid  
001aam300  
Fig 12. Bit transfer on the I2C-bus.  
8.4.4.3 I2C START and STOP conditions  
To handle the data transfer on the I2C-bus, unique START (S) and STOP (P) conditions  
are defined.  
A START condition is defined with a HIGH-to-LOW transition on the SDA line while SCL is  
HIGH.  
A STOP condition is defined with a LOW-to-HIGH transition on the SDA line while SCL is  
HIGH.  
The master always generates the START and STOP conditions. The bus is considered to  
be busy after the START condition. The bus is considered to be free again a certain time  
after the STOP condition.  
The bus stays busy if a repeated START (Sr) is generated instead of a STOP condition. In  
this respect, the START (S) and repeated START (Sr) conditions are functionally identical.  
Therefore, the S symbol will be used as a generic term to represent both the START and  
repeated START (Sr) conditions.  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
001aam301  
Fig 13. START and STOP conditions  
8.4.4.4 I2C byte format  
Each byte has to be followed by an acknowledge bit. Data is transferred with the MSB  
first, see Figure 13 “START and STOP conditions”. The number of transmitted bytes  
during one data transfer is unrestricted but shall fulfil the read/write cycle format.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
19 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.4.4.5 I2C Acknowledge  
An acknowledge at the end of one data byte is mandatory. The acknowledge-related clock  
pulse is generated by the master. The transmitter of data, either master or slave, releases  
the SDA line (HIGH) during the acknowledge clock pulse. The receiver shall pull down the  
SDA line during the acknowledge clock pulse so that it remains stable LOW during the  
HIGH period of this clock pulse.  
The master can then generate either a STOP (P) condition to stop the transfer, or a  
repeated START (Sr) condition to start a new transfer.  
A master-receiver shall indicate the end of data to the slave- transmitter by not generating  
an acknowledge on the last byte that was clocked out by the slave. The slave-transmitter  
shall release the data line to allow the master to generate a STOP (P) or repeated START  
(Sr) condition.  
DATA OUTPUT  
BY TRANSMITTER  
not acknowledge  
DATA OUTPUT  
BY RECEIVERER  
acknowledge  
SCL FROM  
MASTER  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
001aam302  
Fig 14. Acknowledge on the I2C- bus  
P
MSB  
acknowledgement  
signal from slave  
acknowledgement  
signal from receiver  
Sr  
byte complete,  
interrupt within slave  
clock line held low while  
interrupts are serviced  
S
or  
Sr  
Sr  
or  
P
1
2
7
8
9
1
2
3 - 8  
9
ACK  
ACK  
001aam303  
Fig 15. Data transfer on the I2C- bus  
8.4.4.6 I2C 7-bit addressing  
During the I2C-bus addressing procedure, the first byte after the START condition is used  
to determine which slave will be selected by the master.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
20 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Alternatively the I2C address can be configured in the EEPROM. Several address  
numbers are reserved for this purpose. During device configuration, the designer has to  
ensure, that no collision with these reserved addresses in the system is possible. Check  
the corresponding I2C specification for a complete list of reserved addresses.  
For all MFRC630 devices the upper 5 bits of the device bus address are reserved by NXP  
and set to 01010(bin). The remaining 2 bits (ADR_2, ADR_1) of the slave address can be  
freely configured by the customer in order to prevent collisions with other I2C devices by  
using the interface pins (refer to Table 6) or the value of the I2C address EEPROM register  
(refer to Table 26).  
MSB  
LSB  
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 R/W  
slave address  
001aam304  
Fig 16. First byte following the START procedure  
8.4.4.7 I2C-register write access  
To write data from the host controller via I2C to a specific register of the MFRC630 the  
following frame format shall be used.  
The first byte of a frame indicates the device address according to the I2C rules. The  
second byte indicates the register address followed by up to n-data bytes. In case the  
address indicates the FIFO, in one frame all n-data bytes are written to the FIFO register  
address. This enables for example a fast FIFO access. For any other address, the  
address pointer is incremented automatically and data is written to the locations [address],  
[address+1], [address+2]... [address+(n-1)]  
The read/write bit shall be set to logic 0.  
8.4.4.8 I2C-register read access  
To read out data from a specific register address of the MFRC630 the host controller shall  
use the procedure:  
First a write access to the specific register address has to be performed as indicated in the  
following frame:  
The first byte of a frame indicates the device address according to the I2C rules. The  
second byte indicates the register address. No data bytes are added.  
The read/write bit shall be logic 0.  
Having performed this write access, the read access starts. The host sends the device  
address of the MFRC630. As an answer to this device address the MFRC630 responds  
with the content of the addressed register. In one frame n-data bytes could be read using  
the same register address. The address pointing to the register is incremented  
automatically (exception: FIFO register address is not incremented automatically). This  
enables a fast transfer of register content. The address pointer is incremented  
automatically and data is read from the locations [address], [address+1], [address+2]...  
[address+(n-1)]  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
21 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
In order to support a fast FIFO data transfer, the address pointer is not incremented  
automatically in case the address is pointing to the FIFO.  
The read/write bit shall be set to logic 1.  
Write Cycle  
0
(W)  
I2C slave address  
A7-A0  
CLRC663 register  
address A6-A0  
DATA  
[7..0]  
SA  
Ack  
0
Ack  
[0..n]  
Ack  
SO  
Read Cycle  
Ack  
0
(W)  
I2C slave address  
A7-A0  
CLRC663 register  
address A6-A0  
SA  
0
Ack  
SO  
Optional, if the previous access was on the same register address  
0..n  
1
(R)  
I2C slave address  
A7-A0  
DATA  
[7..0]  
SA  
Ack  
[0..n]  
Ack  
sent by master  
sent by slave  
DATA  
[7..0]  
Nack  
SO  
001aam305  
Fig 17. Register read and write access  
8.4.4.9 I2CL-bus interface  
The MFRC630 provides an interface option according to of a logical handling of an I2C  
interface. This logical interface fulfills the I2C specification, but the rise/fall timings will not  
be according the I2C standard. Standard I/O pads are used for communication and the  
communication speed is limited to 5 MBaud. The protocol itself is equivalent to the fast  
mode protocol of I2C. The address is 01010xxb, where the last two bits of the address can  
be defined by the application. The definition of this bits can be done by two options. With a  
pin, where the higher bit is fixed to 0 or the configuration can be defined via EEPROM.  
Refer to the EEPROM configuration in Section 8.7.  
Table 16. Timing parameter I2CL  
Parameter  
fSCL  
Min  
0
Max  
Unit  
MHz  
ns  
5
-
tHD;STA  
tLOW  
80  
100  
100  
-
ns  
tHIGH  
-
ns  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
22 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 16. Timing parameter I2CL  
Parameter  
Min  
80  
0
Max  
Unit  
ns  
tSU;SDA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
-
50  
20  
-
ns  
0
ns  
80  
200  
ns  
-
ns  
The pull-up resistor is not required for the I2CL interface. Instead, a on chip buskeeper is  
implemented in the MFRC630 for SDA of the I2CL interface. This protocol is intended to  
be used for a point to point connection of devices over a short distance and does not  
support a bus capability.The driver of the pin must force the line to the desired logic  
voltage. To avoid that two drivers are pushing the line at the same time following  
regulations must be fulfilled:  
SCL: As there is no clock stretching, the SCL is always under control of the Master.  
SDA: The SDA line is shared between master and slave. Therefore the master and the  
slave must have the control over the own driver enable line of the SDA pin. The following  
rules must be followed:  
In the idle phase the SDA line is driven high by the master  
In the time between start and stop condition the SDA line is driven by master or slave  
when SCL is low. If SCL is high the SDA line is not driven by any device  
To keep the value on the SDA line a on chip buskeeper structure is implemented for  
the line  
8.4.5 SAM interface I2C  
8.4.5.1 SAM functionality  
The MFRC630 implements a dedicated I2C interface to integrate a MIFARE SAM (Secure  
Access Module) in a very convenient way into applications (e.g. a proximity reader).  
The SAM can be connected to the microcontroller to operate like a cryptographic  
co-processor. For any cryptographic task, the microcontroller requests a operation from  
the SAM, receives the answer and sends it over a host interface (e.g. I2C, SPI) interface  
to the connected reader IC.  
The MIFARE SAM supports a optimized method to integrate the SAM in a very efficient  
way to reduce the protocol overhead. In this system configuration, the SAM is integrated  
between the microprocessor and the reader IC, connected by one interface to the reader  
IC and by another interface to the microcontroller. In this application the microcontroller  
accesses the SAM using the T=1 protocol and the SAM accesses the reader IC using an  
I2C interface. As the SAM is directly communicating with reader IC, the communication  
overhead is reduced. In this configuration, a performance boost of up to 40% can be  
achieved for a transaction time.  
The MIFARE SAM supports applications using MIFARE cards. For multi application  
purposes an architecture connecting the microcontroller additionally directly to the reader  
IC is recommended. This is possible by connecting the MFRC630 on one interface (SAM  
Interface SDA, SCL) with the MIFARE SAM AV2.6 (P5DF081XX/T1AR1070) and by  
connecting the microcontroller to the S2C or SPI interface.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
23 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
T=1  
I2C  
SAM  
AV2.6  
READER  
IC  
μC  
I2C  
Reader  
aaa-002963  
Fig 18. I2C interface enables convenient MIFARE SAM integration  
8.4.5.2 SAM connection  
The MFRC630 provides an interface to connect a SAM dedicated to the MFRC630. Both  
interface options of the MFRC630, I2C or I2CL can be used for this purpose. The interface  
option of the SAM itself is configured by a host command sent from the host to the SAM.  
The I2CL interface is intended to be used as connection between two IC’s over a short  
distance. The protocol fulfills the I2C specification, but does support a single device  
connected to the bus only.  
8.4.6 Boundary scan interface  
The MFRC630 provides a boundary scan interface according to the IEEE 1149.1. This  
interface allows to test interconnections without using physical test probes. This is done  
by test cells, assigned to each pin, which override the functionality of this pin.  
To be able to program the test cells, the following commands are supported:  
Table 17. Boundary scan command  
Value  
Command  
Parameter in  
Parameter out  
(decimal)  
0
1
1
2
3
4
5
7
8
9
10  
bypass  
-
-
preload  
data (24)  
-
sample  
-
data (24)  
ID code (default)  
USER code  
Clamp  
-
data (32)  
-
data (32)  
-
-
HIGH Z  
-
-
extest  
data (24)  
data (24)  
interface on/off  
register access read  
register access write  
interface (1)  
address (7)  
address (7) - data (8)  
-
data (8)  
-
The Standard IEEE 1149.1 describes the four basic blocks necessary to use this interface:  
Test Access Port (TAP), TAP controller, TAP instruction register, TAP data register;  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
24 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.4.6.1 Interface signals  
The boundary scan interface implements a four line interface between the chip and the  
environment. There are three Inputs: Test Clock (TCK); Test Mode Select (TMS); Test  
Data Input (TDI) and one output Test Data Output (TDO). TCK and TMS are broadcast  
signals, TDI to TDO generate a serial line called Scan path.  
Advantage of this technique is that independent of the numbers of boundary scan devices  
the complete path can be handled with four signal lines.  
The signals TCK, TMS are directly connected with the boundary scan controller. Because  
these signals are responsible for the mode of the chip, all boundary scan devices in one  
scan path will be in the same boundary scan mode.  
8.4.6.2 Test Clock (TCK)  
The TCK pin is the input clock for the module. If this clock is provided, the test logic is able  
to operate independent of any other system clocks. In addition, it ensures that multiple  
boundary scan controllers that are daisy-chained together can synchronously  
communicate serial test data between components. During normal operation, TCK is  
driven by a free-running clock. When necessary, TCK can be stopped at 0 or 1 for  
extended periods of time. While TCK is stopped at 0 or 1, the state of the boundary scan  
controller does not change and data in the Instruction and Data Registers is not lost.  
The internal pull-up resistor on the TCK pin is enabled. This assures that no clocking  
occurs if the pin is not driven from an external source.  
8.4.6.3 Test Mode Select (TMS)  
The TMS pin selects the next state of the boundary scan controller. TMS is sampled on  
the rising edge of TCK. Depending on the current boundary scan state and the sampled  
value of TMS, the next state is entered. Because the TMS pin is sampled on the rising  
edge of TCK, the IEEE Standard 1149.1 expects the value on TMS to change on the  
falling edge of TCK.  
Holding TMS high for five consecutive TCK cycles drives the boundary scan controller  
state machine to the Test-Logic-Reset state. When the boundary scan controller enters  
the Test-Logic-Reset state, the Instruction Register (IR) resets to the default instruction,  
IDCODE. Therefore, this sequence can be used as a reset mechanism.  
The internal pull-up resistor on the TMS pin is enabled.  
8.4.6.4 Test Data Input (TDI)  
The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI  
is sampled on the rising edge of TCK and, depending on the current TAP state and the  
current instruction, presents this data to the proper shift register chain. Because the TDI  
pin is sampled on the rising edge of TCK, the IEEE Standard 1149.1 expects the value on  
TDI to change on the falling edge of TCK.  
The internal pull-up resistor on the TDI pin is enabled.  
8.4.6.5 Test Data Output (TDO)  
The TDO pin provides an output stream of serial information from the IR chain or the DR  
chains. The value of TDO depends on the current TAP state, the current instruction, and  
the data in the chain being accessed. In order to save power when the port is not being  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
25 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
used, the TDO pin is placed in an inactive drive state when not actively shifting out data.  
Because TDO can be connected to the TDI of another controller in a daisy-chain  
configuration, the IEEE Standard 1149.1 expects the value on TDO to change on the  
falling edge of TCK.  
8.4.6.6 Data register  
According to the IEEE1149.1 standard there are two types of data register defined:  
bypass and boundary scan  
The bypass register enable the possibility to bypass a device when part of the scan  
path.Serial data is allowed to be transferred through a device from the TDI pin to the TDO  
pin without affecting the operation of the device.  
The boundary scan register is the scan-chain of the boundary cells. The size of this  
register is dependent on the command.  
8.4.6.7 Boundary scan cell  
The boundary scan cell opens the possibility to control a hardware pin independent of its  
normal use case. Basically the cell can only do one of the following: control, output and  
input.  
IC1  
IC2  
Boundary scan cell  
TDI  
TDO  
TDI  
TDO  
TAP  
TAP  
TCK  
TMS  
TCK  
TMS  
001aam306  
Fig 19. Boundary scan cell path structure  
8.4.6.8 Boundary scan path  
This chapter shows the boundary scan path of the MFRC630.  
Table 18. Boundary scan path of the MFRC630  
Number (decimal)  
Cell  
Port  
Function  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
BC_1  
BC_8  
BC_1  
BC_8  
BC_1  
BC_8  
BC_1  
BC_8  
BC_1  
BC_8  
-
Control  
Bidir  
CLKOUT  
-
Control  
Bidir  
SCL2  
-
Control  
Bidir  
SDA2  
-
Control  
Bidir  
IFSEL0  
-
Control  
Bidir  
IFSEL1  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
26 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 18. Boundary scan path of the MFRC630  
Number (decimal)  
Cell  
Port  
Function  
Control  
Bidir  
13  
12  
11  
10  
9
BC_1  
BC_8  
BC_1  
BC_8  
BC_1  
BC_8  
BC_1  
BC_4  
BC_1  
BC_8  
BC_1  
BC_8  
BC_1  
BC_8  
-
IF0  
-
Control  
Bidir  
IF1  
-
Control  
Bidir  
8
IF2  
7
IF2  
Output2  
Bidir  
6
IF3  
5
-
Control  
Bidir  
4
IRQ  
3
-
Control  
Bidir  
2
SIGIN  
-
1
Control  
Bidir  
0
SIGOUT  
Refer to the MFRC630 BSDL file.  
8.4.6.9 Boundary Scan Description Language (BSDL)  
All of the boundary scan devices have a unique boundary structure which is necessary to  
know for operating the device. Important components of this language are:  
available test bus signal  
compliance pins  
command register  
data register  
boundary scan structure (number and types of the cells, their function and the  
connection to the pins.)  
The MFRC630 is using the cell BC_8 for the IO-Lines. The I2C Pin is using a BC_4 cell.  
For all pad enable lines the cell BC1 is used.  
The manufacturer's identification is 02Bh.  
attribute IDCODEISTER of MFRC630: entity is "0001" and -- version  
"0011110010000010b" and -- part number (3C82h)  
"00000010101b" and -- manufacturer (02Bh)  
"1b";  
-- mandatory  
The user code data is coded as followed:  
product ID (3 bytes)  
version  
These four bytes are stored as the first four bytes in the EEPROM.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
27 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.4.6.10 Non-IEEE1149.1 commands  
Interface on/off: With this command the host/SAM interface can be deactivated and the  
Read and Write command of the boundary scan interface is activated. (Data = 1). With  
Update-DR the value is taken over.  
Register Access Read: At Capture-DR the actual address is read and stored in the DR.  
Shifting the DR is shifting in a new address. With Update-DR this address is taken over  
into the actual address.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
28 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.5 Buffer  
8.5.1 Overview  
An 512 8-bit FIFO buffer is implemented in the MFRC630. It buffers the input and output  
data stream between the host and the internal state machine of the MFRC630. Thus, it is  
possible to handle data streams with lengths of up to 512 bytes without taking timing  
constraints into account. The FIFO can also be limited to a size of 255 byte. In this case all  
the parameters (FIFO length, Watermark...) require a single byte only for definition. In  
case of a 512 byte FIFO length the definition of this values requires 2 bytes.  
8.5.2 Accessing the FIFO buffer  
When the -Controller starts a command, the MFRC630 may, while the command is in  
progress, access the FIFO-buffer according to that command. Physically only one  
FIFO-buffer is implemented, which can be used in input and output direction. Therefore  
the -Controller has to take care, not to access the FIFO buffer in a way that corrupts the  
FIFO data.  
8.5.3 Controlling the FIFO buffer  
Besides writing to and reading from the FIFO buffer, the FIFO-buffer pointers might be  
reset by setting the bit FIFOFlush in FIFOControl to 1. Consequently, the FIFOLevel bits  
are set to logic 0, the actually stored bytes are not accessible any more and the FIFO  
buffer can be filled with another 512 bytes (or 255 bytes if the bit FIFOSize is set to 1)  
again.  
8.5.4 Status Information about the FIFO buffer  
The host may obtain the following data about the FIFO-buffers status:  
Number of bytes already stored in the FIFO-buffer. Writing increments, reading  
decrements the FIFO level: FIFOLength in register FIFOLength (and FIFOControl  
Register in 512 byte mode)  
Warning, that the FIFO-buffer is almost full: HiAlert in register FIFOControl according  
to the value of the water level in register WaterLevel (Register 02h bit [2], Register  
03h bit[7:0])  
Warning, that the FIFO-buffer is almost empty: LoAlert in register FIFOControl  
according to the value of the water level in register WaterLevel (Register 02h bit [2],  
Register 03h bit[7:0])  
FIFOOvl bit indicates, that bytes were written to the FIFO buffer although it was  
already full: ErrIrq in register Irq0.  
WaterLevel is one single value defining both HiAlert (counting from the FIFO top) and  
LoAlert (counting from the FIFO bottom). The MFRC630 can generate an interrupt signal  
if:  
LoAlertIRQEn in register IRQ0En is set to logic 1 it will activate pin IRQ when LoAlert  
in the register FIFOControl changes to 1.  
HiAlertIRQEN in register IRQ0En is set to logic 1 it will activate pin IRQ when HiAlert  
in the register FIFOControl changes to 1.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
29 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
The bit HiAlert is set to logic 1 if maximum water level bytes (as set in register WaterLevel)  
or less can be stored in the FIFO-buffer. It is generated according to the following  
equation:  
HiAlert = FiFoSize FiFoLength  WaterLevel  
(2)  
The bit LoAlert is set to logic 1 if water level bytes (as set in register WaterLevel) or less  
are actually stored in the FIFO-buffer. It is generated according to the following equation:  
LoAlert = FIFOLength WaterLevel  
(3)  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
30 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.6 Analog interface and contactless UART  
8.6.1 General  
The integrated contactless UART supports the external host online with framing and error  
checking of the protocol requirements up to 848 kbit/s. An external circuit can be  
connected to the communication interface pins SIGIN and SIGOUT to modulate and  
demodulate the data.  
The contactless UART handles the protocol requirements for the communication schemes  
in co-operation with the host. The protocol handling itself generates bit- and byte-oriented  
framing and handles error detection like Parity and CRC according to the different  
contactless communication schemes.  
The size, the tuning of the antenna, and the supply voltage of the output drivers have an  
impact on the achievable field strength. The operating distance between reader and card  
depends additionally on the type of card used.  
8.6.2 TX transmitter  
The signal delivered on pin TX1 and pin TX2 is the 13.56 MHz carrier modulated by an  
envelope signal for energy and data transmission. It can be used to drive an antenna  
directly, using a few passive components for matching and filtering, see Section 14  
“Application information”. The signal on TX1 and TX2 can be configured by the register  
DrvMode, see Section 9.8.1 “TxMode”.  
The modulation index can be set by the TxAmp.  
Following figure shows the general relations during modulation  
influenced by set_clk_mode  
envelope  
TX ASK100  
TX ASK10  
(1)  
(2)  
time  
1: Defined by set_cw_amplitude.  
2: Defined by set_residual_carrier.  
001aan355  
Fig 20. General dependences of modulation  
Note: When changing the continuous carrier ampliture, the residual carrier amplidude also  
changes, while the modulation index remains the same.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
31 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
The registers Section 9.8 and Section 9.10 control the data rate, the framing during  
transmission and the setting of the antenna driver to support the requirements at the  
different specified modes and transfer speeds.  
Table 19. Settings for TX1 and TX2  
TxClkMode  
(binary)  
Tx1 and TX2 output  
Remarks  
000  
001  
010  
110  
High impedance  
-
0
output pulled to 0 in any case  
output pulled to 1 in any case  
1
RF high side push  
open drain, only high side (push) MOS supplied  
with clock, clock parity defined by invtx; low side  
MOS is off  
101  
111  
RF low side pull  
open drain, only low side (pull) MOS supplied  
with clock, clock parity defined by invtx; high  
side MOS is off  
13.56 MHz clock derived  
from 27.12 MHz quartz  
divided by 2  
push/pull Operation, clock polarity defined by  
invtx; setting for 10% modulation  
Register TXamp and the bits for set_residual_carrier define the modulation index:  
Table 20. Setting residual carrier and modulation index by TXamp.set_residual_carrier  
set_residual_carrier (decimal) residual carrier [%]  
modulation index [%]  
0
99  
98  
96  
94  
91  
89  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
72  
70  
68  
0.5  
1
1.0  
2
2.0  
3
3.1  
4
4.7  
5
5.8  
6
7.0  
7
7.5  
8
8.1  
9
8.7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
9.3  
9.9  
10.5  
11.1  
11.7  
12.4  
13.0  
13.6  
14.3  
14.9  
16.3  
17.6  
19.0  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
32 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 20. Setting residual carrier …continuedand modulation index by  
set_residual_carrier (decimal) residual carrier [%]  
modulation index [%]  
23  
24  
25  
26  
27  
28  
29  
30  
31  
65  
60  
55  
50  
45  
40  
35  
30  
25  
21.2  
25.0  
29.0  
33.3  
37.9  
42.9  
48.1  
53.8  
60.0  
Note: At VDD(TVDD) <5 V and residual carrier settings <50%, the accuracy of the  
modulation index may be low in dependency of the antenna tuning impedance  
8.6.2.1 Overshoot protection  
The MFRC630 provides an overshoot protection for 100% ASK to avoid overshoots  
during a PCD communication. Therefore two timers overshoot_t1 and overshoot_t2 can  
be used.  
During the timer overshoot_t1 runs an amplitude defined by set_cw_amplitude bits is  
provided to the output driver. Followed by an amplitude denoted by set_residual_carrier  
bits with the duration of overshoot_t2.  
7.0  
(V)  
5.0  
3.0  
1.0  
-1.0  
2.50  
3.03  
3.56  
4.10  
time (ꢀs)  
001aan356  
Fig 21. Example 1: overshoot_t1 = 2d; overhoot_t2 = 5d.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
33 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
7.0  
5.0  
3.0  
1.0  
(V)  
-1.0  
0
1
2
3
4
t
Fig 22. Example 2: overshoot_t1 = 0d; overhoot_t2 = 5d  
8.6.2.2 Bit generator  
The default coding of a data stream is done by using the Bit-Generator. It is activated  
when the value of TxFrameCon.DCodeType is set to 0000 (bin). The Bit-Generator  
encodes the data stream byte-wise and can apply the following encoding steps to each  
data byte.  
1. Add a start-bit of specified type at beginning of every byte  
2. Add a stop-bit and EGT bits of a specified type. The maximum number of EGT bit is 6,  
only full bits are supported  
3. Add a parity-bit of a specified type  
4. TxFirstBits (skips a given number of bits at the beginning of the first byte in a frame)  
5. TxLastBits (skips a given number of bits at the end of the last byte in a frame)  
6. Encrypt data-bit (MIFARE encryption)  
TxFirstBits and TxLastBits can be used at the same time. If only a single data byte is sent,  
it must be ensured that the range of TxFirstBits and TxLastBits do not overlap. It is not  
possible to skip more than 8 bit of a single byte! ( (8 - TxFirstBits) + (8 - TxLastBits) ) < 8  
By default, data bytes are always treated LSB first. To make use of a MSB first coding, the  
TxMSBFirst in the register CLCON1 needs to be set.  
8.6.3 Receiver circuitry  
8.6.3.1 General  
The MFRC630 features a versatile quadrature receiver architecture with fully differential  
signal input at RXP and RXN. It can be configured to achieve optimum performance for  
reception of various 13.56 MHz based protocols.  
For all processing units various adjustments can be made to obtain optimum  
performance.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
34 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.6.3.2 Block diagram  
Figure 23 shows the block diagram of the receiver circuitry. The receiving process  
includes several steps. First the quadrature demodulation of the carrier signal of  
13.56 MHz is done. Several tuning steps in this circuit are possible.  
fully/quasi-differential  
rcv_hpcf<1:0>  
rcv_gain<1:0>  
rx_p  
rx_n  
mix_out_i_p  
out_i_p  
out_i_n  
mixer  
DATA  
mix_out_i_n  
2-stage BBA  
clk_27 MHz  
2-stage BBA  
I-clks  
rx_p  
rx_n  
13.56 MHz  
I/O CLOCK  
GENERATION  
TIMING  
GENERATION  
ADC  
clk_27 MHz  
Adc_data_ready  
DATA  
Q-clks  
rx_p  
rx_n  
mix_out_q_p  
mix_out_q_n  
out_q_p  
out_q_n  
mixer  
rcv_gain<1:0>  
rcv_hpcf<1:0>  
fully/quasi-differential  
001aan358  
Fig 23. Block diagram of receiver circuitry  
The receiver can also be operated in a single ended mode. In this case the  
Rcv_RX_single bit has to be set. In the single ended mode, the two receiver pins RXP and  
RXN need to be connected together and will provide a single ended signal to the receiver  
circuitry.  
When using the receiver in a single ended mode the receiver sensitivity is decreased and  
the achievable reading distance might be reduced, compared to the fully differential mode.  
Table 21. Configuration for single or differential receiver  
Mode  
rcv_rx_single  
pins RXP and RXN  
Fully differential  
0
provide differential signal from  
differential antenna by separate  
rx-coupling branches  
Quasi differential  
1
connect RXP and RXN together  
and provide single ended signal  
from antenna by a single  
rx-coupling branch  
The quadrature-demodulator uses two different clocks, Q-clock and I-clock, with a phase  
shift of 90between them. Both resulting baseband signals are amplified, filtered, digitized  
and forwarded to a correlation circuitry.  
The typical application is intended to implement the Fully differential mode and will deliver  
maximum reader/writer distance. The Quasi differential mode can be used together with  
dedicated antenna topologies that allow a reduction of matching components at the cost  
of overall reading performance.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
35 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
During low power card detection the DC levels at the I- and Q-channel mixer outputs are  
evaluated. This requires that mixers are directly connected to the ADC. This can be  
configured by setting the bit Rx_ADCmode in register Rcv (38h).  
8.6.4 Active antenna concept  
Two main blocks are implemented in the MFRC630. A digital circuitry, comprising state  
machines, coder and decoder logic and an analog circuitry with the modulator and  
antenna drivers, receiver and amplification circuitry. For example, the interface between  
these two blocks can be configured in the way, that the interfacing signals may be routed  
to the pins SIGIN and SIGOUT. The most important use of this topology is the active  
antenna concept where the digital and the analog blocks are separated. This opens the  
possibility to connect e.g. an additional digital block of another MFRC630 device with a  
single analog antenna front-end.  
SIGIN  
SIGOUT  
SIGIN  
READER IC  
(DIGITAL)  
READER IC  
(ANTENNA)  
SIGOUT  
001aam307  
Fig 24. Block diagram of the active Antenna concept  
The Table 22 and Table 23 describe the necessary register configuration for the use case  
active antenna concept.  
Table 22. Register configuration of MFRC630 active antenna concept (DIGITAL)  
Register  
Value (binary)  
Description  
SigOut.SigOutSel  
Rcv.SigInSel  
0100  
TxEnvelope  
10  
11  
Receive over SigIn (ISO/IEC14443A)  
Receive over SigIn (Generic Code)  
DrvCon.TxSel  
00  
Low (idle)  
Table 23. Register configuration of MFRC630 active antenna concept (Antenna)  
Register  
Value (binary)  
Description  
SigOut.SigOutSel  
0110  
0111  
Generic Code (Manchester)  
Manchester with Subcarrier (ISO/IEC14443A)  
Rcv.SigInSel  
01  
10  
1
Internal  
DrvCon.TxSel  
RxCtrl.RxMultiple  
External (SigIn)  
RxMultiple on  
The interface between these two blocks can be configured in the way, that the interfacing  
signals may be routed to the pins SIGIN and SIGOUT (see Figure 25 “Overview  
SIGIN/SIGOUT Signal Routing”).  
This topology supports, that some parts of the analog part of the MFRC630 may be  
connected to the digital part of another device.  
The switch SigOutSel in registerSigOut can be used to measure signals. This is especially  
important during the design In phase or for test purposes to check the transmitted and  
received data.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
36 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
However, the most important use of SIGIN/SIGOUT pins is the active antenna concept.  
An external active antenna circuit can be connected to the digital circuit of the MFRC630.  
SigOutSel has to be configured in that way that the signal of the internal Miller Coder is  
sent to SIGOUT pin (SigOutSel = 4). SigInSel has to be configured to receive Manchester  
signal with sub-carrier from SIGIN pin (SigInSel = 1).  
It is possible, to connect a passive antenna to pins TX1, TX2 and RX (via the appropriate  
filter and matching circuit) and at the same time an active antenna to the pins SIGOUT  
and SIGIN. In this configuration, two RF-parts may be driven (one after another) by a  
single host processor.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
37 of 118  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
SIGOUT  
tri-state 0, 1  
No_nodulation  
TX envelope  
SIGIN  
0
1
2
3
TX2  
TX1  
TX bit stream  
MODULATOR  
DRIVER  
CODER  
LOW  
HIGH  
TX envelope  
TX active  
S3C signal  
RX envelope  
RX active  
2
3
4
5
6
7
8
9
SIGOUTSel[4:0]  
TxCon.TxSel  
[1:0]  
RFU  
DIGITAL MODULE  
RX bit stream  
ANALOG MODULE  
RX bit signal  
SUBCARRIER  
DEMODULATOR  
0
1
2
3
tri-state  
internal analog block  
SIGIN over envelope  
SIGIN generic  
DECODER  
RXN  
RXP  
DEMODULATOR  
Sigpro_in_sel  
[1:0]  
SIGIN  
001aam001  
Fig 25. Overview SIGIN/SIGOUT Signal Routing  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.6.5 Symbol generator  
The symbol generator is used to create various protocol symbols. These can be e.g. SOF  
or EOF symbols as they are used by the ISO14443 protocols or proprietary protocol  
symbols.  
Symbols are defined by means of the symbol definition registers and the mode registers.  
Four different symbols can be used. Two of them, Symbol0 and Symbol1 have a  
maximum pattern length of 16 bit and feature a burst length of up to 256 bits of either logic  
“0” or logic “1”. The Symbol2 and Symbol3 are limited to 8 bit pattern length and do not  
support a burst.  
The definition of symbol patterns is done by writing the bit sequence of the pattern to the  
appropriate register. The last bit of the pattern to be sent is located at the LSB of the  
register. By setting the symbol length in the symbol-length register (TxSym10Len and  
TxSym32Len) the definition of the symbol pattern is completed. All other bits at  
bit-position higher than the symbol length in the definition register are ignored. (Example:  
length of Symbol2 = 5, bit7 and bit6 are ignored, bit5 to bit0 define the symbol pattern, bit5  
is sent first)  
Which symbol-pattern is sent can be configured in the TxFrameCon register. Symbol0,  
Symbol1 and Symbol2 can be sent before data packets, Symbol1, Symbol2 and Symbol3  
can be sent after data packets. Each symbol is defined by a set of registers. Symbols are  
configured by a pair of registers. Symbol0 and Symbol1 share the same configuration and  
Symbol2 and Symbol3 share the same configuration. The configuration includes setting of  
bit-clock- and subcarrier-frequency, as well as selection of the pulse type/length and the  
envelope type.  
8.7 Memory  
8.7.1 Memory overview  
The MFRC630 implements three different memories: EEPROM, FIFO and Registers.  
At startup, the initialization of the registers which define the behavior of the IC is  
performed by an automatic copy of an EEPROM area (read/write EEPROM section1 and  
section2, register reset) into the registers. The behavior of the MFRC630 can be changed  
by executing the command LoadProtocol, which copies a selected default protocol from  
the EEPROM (read only EEPROM section4, register Set Protocol area) into the registers.  
The read/write EEPROM section2 can be used to store any user data or predefined  
register settings. These predefined settings can be copied with the command  
"LoadRegister" into the internal registers.  
The FIFO is used as Input/Out buffer and is able to improve the performance of a system  
with limited interface speed.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
39 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.7.2 EEPROM memory organization  
The MFRC630 has implemented a EEPROM non-volatile memory with a size of 8 kB.The  
EEPROM is organized in pages of 64 bytes. One page of 64 bytes can be programmed at  
a time. Defined purposes had been assigned to specific memory areas of the EEPROM,  
which are called Sections. Five sections 0..4 with different purpose do exist.  
Table 24. EEPROM memory organization  
Section  
Page  
Byte  
addresses  
Access  
rights  
Memory content  
0
0
00 to 31  
r
product information and configuration  
32 to 63  
r/w  
r/w  
r/w  
w
product configuration  
register reset  
1
2
3
4
1 to 2  
64 to 191  
3 to 95  
192 to 6143  
6144 to 7167  
7168 to 8191  
free  
96 to 111  
112 to 128  
MIFARE key  
r
Register Set Protocol (RSP)  
The following figure show the structure of the EEPROM:  
Section 0:  
Section 1:  
Production and config  
Register reset  
Section 2:  
Free  
Section 3:  
MIFARE key area (MKA)  
RSP-Area for TX  
Section 4_TX:  
Section 4_RX:  
RSP-Area for RX  
001aan359  
Fig 26. Sector arrangement of the EEPROM  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
40 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.7.2.1 Product information and configuration - Page 0  
The first EEPROM page includes production data as well as configuration information.  
Table 25. Production area (Page 0)  
Address 0  
(Hex.)  
1
2
3
4
5
6
7
00  
08  
10  
18  
ProductID  
Version  
ManufacturerData  
ManufacturerData  
ManufacturerData  
ManufacturerData  
ProductID: Identifier for this MFRC630 product  
Version: Silicon Version identifier.  
ManufacturerData: This data is programmed during production. The content is not  
intended to be used by any application and might be not the same for different devices.  
Therefore this content needs to be considered to be undefined.  
Table 26. Configuration area (Page 0)  
Address  
(Hex.)  
0
1
2
3
4
5
6
7
20  
28  
30  
38  
I2C_Address  
Interface I2C SAM_Address DefaultProtRx DefaultProtTx  
-
-
TxCRCPreset  
RxCRCPreset  
-
-
-
-
-
-
-
I2C-Address: Two possibilities exist to define the address of the I2C interface. This can be  
done either by configuring the pins IF0, IF2 (address is then 10101xx, xx is defined by the  
interface pins IF0, IF2) or by writing value into the I2C address area. The selection, which  
of this 2-information pin configuration or EEPROM content - is used as I2C-address is  
done at EEPROM address 21h (Interface, bit4)  
Interface: This section describes the interface byte configuration.  
Table 27. Interface byte  
Bit  
7
6
5
4
3
2
1
0
I2C_HSP  
-
-
I2C_Address  
r/w  
Boundary Scan  
r/w  
Host  
access rights  
r/w  
RFU  
RFU  
r/w  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
41 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 28. Interface bits  
Bit  
Symbol  
Description  
7
I2C_HSP  
when cleared, the high speed mode is used  
when set, the high speed+ mode is used (default)  
6, 5  
4
RFU  
I2C_Address  
-
when cleared, the pins are used (default)  
when set, the EEPROM is used  
3
Boundary  
Scan  
when cleared, the boundary scan interface is ON (default)  
when set, the boundary scan is OFF  
2 to 0  
Host  
000b - RS232  
001b - I2C  
010b - SPI  
011b - I2CL  
1xxb - pin selection  
I2C_SAM_Address: The I2C SAM Address is always defined by the EEPROM content.  
: The Register Set Protocol (RSP) Area contains settings for the TX registers (16 bytes)  
and for the RX registers (8 bytes).  
Table 29. Tx and Rx arrangements in the register set protocol area  
Section  
Section 4 TX  
Section 4 TX  
Section 4 Rx  
Section 4 Rx  
Tx0  
Tx4  
RX0  
RX8  
Tx1  
TX2  
Tx3  
Tx5  
TX6  
TX7  
RX6  
RX14  
RX1  
RX9  
RX2  
RX10  
RX3  
RX4  
RX12  
RX5  
RX7  
RX11  
RX13  
RX15  
TxCrcPreset: The data bits are send by the analog module and are automatically  
extended by a CRC.  
8.7.3 EEPROM initialization content LoadProtocol  
The MFRC630 EEPROM is initialized at production with default values which are used to  
reset the registers of the MFRC630 to default settings by copying the EEprom content to  
the registers. Note that the addresses used for copying reset values from EEprom to  
registers are dependent on the configured protocol and can be changed by the user.  
Table 30. Register reset values (Hex.) (Page0)  
Address  
Function Product ID  
00 00  
0
1
2
3
4
5
6
7
Version  
XX  
Factory trim values  
01  
01  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
Function Factory trim values  
08 XX XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
Function TrimLPO  
Factory trim values  
XX XX  
10  
XX  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
42 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 30. Register reset values (Hex.) (Page0) …continued  
Address  
0
1
2
3
4
5
6
7
Function Factory trim values  
18....  
....38  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
XX  
Factory trim values  
XX XX  
XX  
XX  
XX  
XX  
XX  
XX  
The register reset values are configuration parameters used after startup of the IC. They  
can be changed to modify the default behavior of the device. In addition to this register  
reset values, is the possibility to load settings for various user implemented protocols.The  
load protocol command is used for this purpose.  
Table 31. Register reset values (Hex.)(Page1 and page 2)  
Address  
0
1
2
3
4
5
6
7
Command  
40  
HostCtrl  
00  
FiFoControl WaterLevel FiFoLength FiFoData  
IRQ0  
00  
IRQ1  
00  
40  
80  
05  
00  
00  
Error_Reg  
10  
Status_Reg RxBitCtrl  
RxColl  
TControl  
T0ReloadHi T0ReloadLo T0Counter  
ValHi  
48  
50  
58  
60  
68  
70  
78  
80  
00  
00  
00  
00  
00  
00  
00  
T0Counter  
ValLo  
T1Control  
T1ReloadHi T1ReloadLo T1Counter  
ValHi  
T1Counter  
ValLo  
T2Control  
T2ReloadHi  
00  
08  
00  
00  
00  
00  
08  
00  
T2ReloadLo T2Counter  
ValHi  
T2Counter  
ValLo  
T3Control  
T3ReloadHi T3ReloadLo T3Counter  
ValHi  
T3Counter  
ValLo  
00  
00  
00  
80  
00  
00  
00  
00  
T3ReloadHi T3ReloadLo T4Control  
T4ReloadHi T4ReloadLo T4Counter  
ValHi  
T4Counter  
ValLo  
80  
00  
00  
00  
00  
80  
00  
00  
DrvMode  
TxAmp  
DrvCon  
Txl  
TxCRC  
Preset  
RxCRC  
Preset  
TxDataNum TxModWith  
86  
15  
11  
06  
18  
18  
0F  
27  
TxSym10  
BurstLen  
TxWaitCtrl  
TxWaitLo  
FrameCon  
RxSofD  
RxCtrl  
RxWait  
RxThres  
hold  
00  
C0  
12  
CF  
00  
04  
90  
3F  
RcvReg  
RxAna  
RFU  
SerialSpeed LPO_trimm PLL_Ctrl  
PLL_Div  
LPCD_QMi  
n
12  
0A  
00  
7A  
80  
04  
20  
48  
LPCD_  
QMax  
LPCD_IMin LPCD  
_result_I  
LPCD  
_result_Q  
PadEn  
PadOut  
PadIn  
SigOut  
12  
88  
00  
00  
00  
00  
00  
00  
TxBitMod  
RFU  
TxDataCon TxDataMod TxSymFreq TxSym0H  
TySym0L  
TxSym1H  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
43 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.8 Clock generation  
8.8.1 Crystal oscillator  
The clock applied to the MFRC630 acts as time basis for generation of the carrier sent out  
at TX and for the quadrature mixer I and Q clock generation as well as for the coder and  
decoder of the synchronous system. Therefore stability of the clock frequency is an  
important factor for proper performance. To obtain highest performance, clock jitter has to  
be as small as possible. This is best achieved by using the internal oscillator buffer with  
the recommended circuitry.  
READER IC  
XTAL1 XTAL2  
27.12 MHz  
001aam308  
Fig 27. Quartz connection  
Table 32. Crystal requirements recommendations  
Symbol  
fxtal  
Parameter  
Conditions  
Min  
-
Typ  
27.12  
-
max  
-
Unit  
MHz  
ppm  
crystal frequency  
fxtal/fxtal  
relative crystal  
250  
+250  
frequency variation  
ESR  
equivalent series  
resistance  
-
50  
100  
CL  
load capacitance  
-
-
10  
50  
-
pF  
Pxtal  
crystal power  
dissipation  
100  
W  
8.8.2 IntegerN PLL clock line  
The MFRC630 is able to provide a clock with configurable frequency at CLKOUT from  
1 MHz to 24 MHz (PLL_Ctrl and PLL_DIV). There it can serve as a clock source to a  
microcontroller which avoids the need of a second crystal oscillator in the reader system.  
Clock source for the IntegerN-PLL is the 27.12 MHz crystal oscillator.  
Two dividers are determining the output frequency. First a feedback integer-N divider  
configures the VCO frequency to be N fin/2 (control signal pll_set_divfb). As supported  
Feedback Divider Ratios are 23, 27 and 28, VCO frequencies can be  
23 fin / 2 (312 MHz), 27 fin / 2 (366 MHz) and 28 fin / 2 (380 MHz).  
The VCO frequency is divided by a factor which is defined by the output divider  
(pll_set_divout). Table 33 “Divider values for selected frequencies using the integerN PLL”  
shows the accuracy achieved for various frequencies (integer multiples of 1 MHz and  
some typical RS232 frequencies) and the divider ratios to be used. The register bit  
ClkOutEn enables the clock at CLKOUT pin.  
The following formula can be used to calculate the output frequency:  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
44 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
fout = 13.56 MHz PLLDiv_FB /PLLDiv_Out  
Table 33. Divider values for selected frequencies using the integerN PLL  
Frequency [MHz]  
PLLDiv_FB  
4
6
8
10  
28  
38  
12  
23  
26  
20  
28  
19  
24  
23  
16  
1.8432 3.6864  
23  
78  
27  
61  
23  
39  
28  
28  
PLLDiv_Out  
206  
103  
0.01  
accuracy [%]  
0.04 0.03 0.04 0.08 0.04 0.08 0.04 0.01  
8.8.3 Low-Power Oscillator (LPO)  
The Low-Power Oscillator (LPO) is implemented to drive a wake-up counter (WUC). This  
wakes up the system in regular time intervals and eases the design of a reader that is  
regularly polling for card presence or implements a low-power card detection.  
The LPO is trimmed during production to run at 16 Khz. Unless a high accuracy of the  
LPO is required by the application and the device is operated in an environment with  
changing ambient temperatures, trimming of the LPO is not required. For a typical  
application making use of the LPO for wake up from power down, the trim value set during  
production can be used. Optional trimming to achieve a higher accuracy of the 16 Khz  
LPO clock is supported by a digital state machine which compares LPO-clock to a  
reference clock. As reference clockfrequency the 13.56 MHz crystal clock is available.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
45 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.9 Power management  
8.9.1 Supply concept  
The MFRC630 is supplied by VDD (Supply Voltage), PVDD (Pad Supply) and TVDD  
(Transmitter Power Supply). These three voltages are independent from each other.  
To connect the MFRC630 to a Microcontroller supplied by 3.3 V, PVDD and VDD shall be  
at a level of 3.3 V, TVDD can be in a range from 3.3 V to 5.0 V. A higher supply voltage at  
TVDD will result in a higher field strength.  
Independent of the voltage it is recommended to buffer these supplies with blocking  
capacitances close to the terminals of the package. VDD and PVDD are recommended to  
be blocked with a capacitor of 100 nF min, TVDD is recommended to be blocked with 2  
capacitors, 100 nF parallel to 1.0 F  
AVDD and DVDD are not supply input pins. They are output pins and shall be connected  
to blocking capacitors 470 nF each.  
8.9.2 Power reduction mode  
8.9.2.1 Power-down  
A hard power-down is enabled with HIGH level on pin PDOWN. This turns off the internal  
1.8 V voltage regulators for the analog and digital core supply as well as the oscillator. All  
digital input buffers are separated from the input pads and clamped internally (except pin  
PDOWN itself). The output pins are switched to high impedance.  
To leave the power-down mode the level at the pin PDOWN as to be set to LOW. This will  
start the internal start-up sequence.  
8.9.2.2 Standby mode  
The standby mode is entered immediately after setting the bit PowerDown in the register  
Command. All internal current sinks are switched off except the LFO. Voltage references  
and voltage regulators will be set into stand-by mode.  
In opposition to the power-down mode, the digital input buffers are not separated by the  
input pads and keep their functionality. The digital output pins do not change their state.  
During standby mode, all registers values, the FIFO’s content and the configuration itself  
will keep its current content.  
To leave the standby mode the bit PowerDown in the register Command is cleared. This  
will trigger the internal start-up sequence. The reader IC is in full operation mode again  
when the internal start-up sequence is finalized (the typical duration is 15 us).  
Alternatively, a value of 55h can be sent to the MFRC630 using the RS232 interface to  
leave the standby mode. Then read accesses shall be performed at address 00h until the  
device returns the content of this address. The return of the content of address 00h  
indicates that the device is ready to receive further commands and the internal start-up  
sequence is finalized.  
8.9.2.3 Modem off mode  
When the ModemOff bit in the register Control is set the antenna transmitter and the  
receiver are switched off.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
46 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
To leave the modem off mode clears the ModemOff bit in the register Control.  
8.9.3 Low-Power Card Detection (LPCD)  
The low-power card detection is an energy saving modus when the MFRC630 is not fully  
powered permanently.  
The LPCD works in two phases. First the standby phase is controlled by the wake-up  
counter (WUC), which defines the duration of the standby of the MFRC630. Second  
phase is the detection-phase. In this phase the values of the I and Q channel are detected  
and stored in the register map. (LPCD_I_Result, LPCD_Q_Result).This time period can  
be handled with Timer3. The value is compared with the min/max values in the registers  
(LPCD_IMin, LPCD_IMax; LPCD_QMin, LPCD_QMax). If it exceeds the limits, a LPCDIrq  
is raised.  
After the command LPCD the standby of the MFRC630 is activated, if selected. The  
wake-up Timer4 can activate the system after a given time. For the LPCD it is  
recommended to set T4AutoWakeUp and T4AutoRestart, to start the timer and then go to  
standby. If a card is detected the timer stops and the communication can be started. If  
T4AutoWakeUp is not set, the IC will not enter Standby mode in case no card is detected.  
8.9.4 Reset and start-up time  
A 10 s constant high level at the PDOWN pin starts the internal reset procedure.  
The following figure shows the internal voltage regulator:  
V
DD  
PVDD  
AVDD  
DVDD  
1.8 V  
GLITCH  
FILTER  
INTERNAL VOLTAGE  
REGULATOR  
PDown  
1.8 V  
V
SS  
V
SS  
001aan360  
Fig 28. Internal PDown to voltage regulator logic  
This internal procedure consists of two phases:  
Power on reset  
Startup time  
When the MFRC630 has finished this two phases the reader IC is in Full mode and is  
ready to be used. Refer to Section 13.1 “Timing characteristics”  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
47 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.10 Command set  
8.10.1 General  
The behavior is determined by a state machine capable to perform a certain set of  
commands. By writing the according command-code to register Command the command  
is executed.  
Arguments and/or data necessary to process a command, are exchanged via the FIFO  
buffer.  
A data transmission of the TxEncoder can be started by a command. When started,  
the communication is executed as defined in the TxFrameCon register. Therefore a  
communication frame can consist of a start-symbol, a data-stream, and followed by  
an end-symbol.  
Each command that needs a certain number of arguments will start processing only  
when it has received the correct number of arguments via the FIFO buffer.  
The FIFO buffer is not cleared automatically at command start. Therefore, it is  
recommended to write the command arguments and/or the data bytes into the FIFO  
buffer and start the command afterwards.  
Each command may be interrupted by the host by writing a new command code into  
register Command e.g.: the Idle-Command.  
8.10.2 Command set overview  
Table 34. Command set  
Command  
Idle  
No.  
00h  
01h  
02h  
Parameter (bytes)  
Short description  
-
-
no action, cancels current command execution  
low-power card detection  
LPCD  
LoadKey  
(keybyte1),(keybyte2), (keybyte3),  
(keybyte4), (keybyte5),(keybyte6);  
reads a MIFARE key (size of 6 bytes) from FIFO buffer  
ant puts it into Key buffer  
MFAuthent  
03h  
60h or 61h, (block address), (card  
serial number byte0),(card serial  
number byte1), (card serial number  
byte2),(card serial number byte3);  
performs the MIFARE standard authentication in  
MIFARE read/write mode only  
Receive  
05h  
06h  
07h  
-
-
-
activates the receive circuit  
Transmit  
Transceive  
transmits data from the FIFO buffer  
transmits data from the FIFO buffer and automatically  
activates the receiver after transmission finished  
WriteE2  
08h  
09h  
0Ah  
0Ch  
addressL, addressH, data;  
gets one byte from FIFO buffer and writes it to the  
internal EEPROM, valid address range are the  
addresses of the MIFARE Key area  
WriteE2Page  
ReadE2  
(page Address), data0, [data1  
..data63];  
gets up to 64 bytes (one EEPROM page) from the FIFO  
buffer and writes it to the EEPROM, valid page address  
range are the pages of the MIFARE Key Area  
addressL, address H, length;  
reads data from the EEPROM and copies it into the  
FIFO buffer, valid address range are the addresses of  
the MIFARE Key area  
LoadReg  
(EEPROM ddressL), (EEPROM  
addressH), RegAdr, (number of  
Register to be copied);  
reads data from the internal EEPROM and initializes the  
MFRC630 registers. EEPROM address needs to be  
within EEPROM sector 2  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
48 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 34. Command set …continued  
Command  
No.  
Parameter (bytes)  
Short description  
LoadProtocol  
0Dh  
(Protocol umber RX), (Protocol number reads data from the internal EEPROM and initializes the  
TX);  
MFRC630 registers needed for a Protocol change  
copies a key of the EEPROM into the key buffer  
stores a MIFARE key (size of 6 bytes) into the EEPROM  
LoadKeyE2  
StoreKeyE2  
0Eh  
0Fh  
KeyNr;  
KeyNr, byte1,byte2, byte3, byte4,  
byte5,byte6;  
ReadRNR  
Soft Reset  
1Ch  
1Fh  
-
Copies bytes from the Random Number generator into  
the FIFO until the FiFo is full  
-
resets the MFRC630  
8.10.3 Command functionality  
8.10.3.1 Idle command  
Command (00h);  
This command indicates that the MFRC630 is in idle mode. This command is also used to  
terminate the actual command.  
8.10.3.2 LPCD command  
Command (01h);  
This command performs a low-power card detection and or an automatic trimming of the  
LPO. The values of the sampled I and Q channel are stored in the register map. The value  
is compared with the min/max values in the register. If it exceeds the limits, an LPCD_Irq  
will be raised. After the command the standby is activated if selected.  
8.10.3.3 Load key command  
Command (02h), Parameter1 (key byte1),..., Parameter6 (key byte6);  
Loads a MIFARE Key (6 bytes) for Authentication from the FIFO into the crypto unit.  
Abort condition: Less than 6 bytes written to the FIFO.  
8.10.3.4 MFAuthent command  
Command (03h), Parameter1 (Authentication command code 60h or 61h), Parameter2  
(block address), Parameter3 (card serial number byte0), Parameter4 (card serial number  
byte1), Parameter5 (card serial number byte2), Parameter6 (card serial number byte3);  
This command handles the MIFARE authentication in Reader/Writer mode to enable a  
secure communication to any MIFARE classic card.  
When the MFAuthent command is active, any FIFO access is blocked. Anyhow if there is  
an access to the FIFO, the bit WrErr in the Error register is set.  
This command terminates automatically when the MIFARE card is authenticated and the  
bit MFCrypto1On is set to logic 1.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
49 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
This command does not terminate automatically, when the card does not answer,  
therefore the timer should be initialized to automatic mode. In this case, beside the bit  
IdleIRq the bit TimerIRq can be used as termination criteria. During authentication  
processing the bits RxIRq and TxIRq are blocked. The Crypto1On shows if the  
authentication was successful.  
The following data shall be written to the FIFO before the command can be activated:  
Authentication command code (60h, 61h)  
Block address  
Card serial number byte 0  
Card serial number byte 1  
Card serial number byte 2  
Card serial number byte 3  
In total, 6 bytes are written to the FIFO.  
Remark: When the MFAuthent command is active, any FIFO access is blocked. If there is  
an attempt to access to the FIFO during MFAuthent being active, the bit WrErr in the Error  
register is set.  
This MFAuthent command terminates automatically when the MIFARE card is  
authenticated and the bit MFCrypto1On in the Status register is set to logic 1.  
This MFAuthent command does not terminate automatically when the card does not  
answer, therefore the timer should be initialized to automatic mode. In this case, beside  
the bit IdleIrq, the bit TimerIrq can be used as termination criteria. During authentication  
processing the bit RxIrq and bit TxIrq are blocked. The Crypto1On bit is only valid after  
termination of the authentication command (either after processing the protocol or after  
writing IDLE to the command register).  
In case there is an error during authentication, the bit ProtocolErr in the Error register is  
set to logic 1 and the bit Crypto1On in register Status2Reg is set to logic 0.  
8.10.3.5 Receive command  
Command (05h);  
The MFRC630 activates the receiver path, waits for any data stream to be received,  
according to its register settings, which shall be set before starting this command  
according the used protocol and antenna configuration. The correct settings have to be  
chosen before starting this command.  
This command terminates automatically when the received data stream ends. This is  
indicated either by the end of frame pattern or by the length byte depending on the  
selected framing and speed.  
Remark: If the bit RxMultiple in the RxModeReg register is set to logic 1, the Receive  
command does not terminate automatically. It has to be terminated by activating any other  
command in the CommandReg register (see Section 0.2.6 “RxMod”).  
8.10.3.6 Transmit command  
Command (06h);  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
50 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
The content of the FIFO is transmitted immediately after starting the command. Before  
transmitting the FIFO content all relevant register have to be set to transmit data.  
This command terminates automatically when the FIFO gets empty. It can be terminated  
by any other command written to the command register.  
8.10.3.7 Transceive command  
Command (07h);  
This command transmits data from the FIFO and receives data from the RF field at once.  
The first action is transmitting and after a transmission the command is changed to  
receive a data stream.  
Each transmission process starts by writing the command into CommandReg.  
Remark: If the bit RxMultiple in register RxModeReg is set to logic 1, this command will  
never leave the receiving state, because the receiving will not be cancelled automatically.  
8.10.3.8 WriteE2 command  
Command (08h), Parameter1 (addressL), Parameter2 (addressH), Parameter3 (data);  
This command writes one byte into the EEPROM. If the FIFO contains no data, the  
command will wait until the data is available.  
Abort condition: insufficient parameter in FIFO; Address-parameter outside of range.  
8.10.3.9 WriteE2PAGE command  
Command (09h), Parameter1 (page address), Parameter2 (data0), Parameter3...65  
[data1 ..data63];  
This command writes up to 64 bytes into the EEPROM.  
Abort condition: Insufficient parameters in FIFO; Page address parameter outside of  
range.  
8.10.3.10 ReadE2 command  
Command (0Ah), Parameter1 (addressL), Parameter2 (addressH), Parameter3 (length);  
Reads up to 256 bytes from the EEPROM to the FIFO. If a read operation exceeds the  
address 1FFFh, the read operation continues from address 0000h.  
Abort condition: Insufficient parameter in FIFO; Address parameter outside of range.  
8.10.3.11 LoadReg command  
Command (0Ch), Parameter1 (EEPROM addressL),Parameter2 (EEPROM addressH),  
Parameter3 (RegAdr), Parameter4 (number);  
Read a defined number of bytes from the EEPROM and copies the value into the Register  
set, beginning at the given address RegAdr.  
Abort condition: Insufficient parameter in FIFO; Address parameter outside of range.  
8.10.3.12 LoadProtocol command  
Command (0Dh), Parameter1 (Protocol number RX), Parameter2 (Protocol number TX);  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
51 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Reads out the EEPROM and copies the values to the RX-Protected area and to the TX-  
protected area. These are all important registers to a Protocol selection.  
Abort condition: Insufficient parameter in FIFO  
Table 35. Predefined protocol overview RX[1]  
Protocol  
Number  
(decimal)  
Protocol  
Receiver speed  
[kbits/s]  
Receiver Coding  
00  
01  
02  
03  
ISO/IEC14443 A  
ISO/IEC14443 A  
ISO/IEC14443 A  
ISO/IEC14443 A  
106  
212  
424  
848  
Manchester SubC  
BPSK  
BPSK  
BPSK  
[1] For more protocol details please refer to Section 8 “Functional description”.  
Table 36. Predefined protocol overview TX[1]  
Protocol  
Number  
(decimal)  
Protocol  
Transmitter speed Transmitter Coding  
[kbits/s]  
00  
01  
02  
03  
ISO/IEC14443 A  
ISO/IEC14443 A  
ISO/IEC14443 A  
ISO/IEC14443 A  
106  
212  
424  
848  
Miller  
Miller  
Miller  
Miller  
[1] For more protocol details please refer to Section 8 “Functional description”.  
8.10.3.13 LoadKeyE2 command  
Command (0Eh), Parameter1 (key number);  
Loads a MIFARE key for authentication from the EEPROM into the crypto 1 unit.  
Abort condition: Insufficient parameter in FIFO; KeyNr is outside the MKA.  
8.10.3.14 StoreKeyE2 command  
Command (0Fh), Parameter1 (KeyNr), Parameter2(keybyte1), Parameter3(keybyte2),  
Parameter4(keybyte3), Parameter5(keybyte4), Parameter6(keybyte5), Parameter7  
(keybyte6);  
Stores MIFARE Keys into the EEPROM. The key number parameter indicates the first key  
(n) in the MKA that will be written. If more than one MIFARE Key is available in the FIFO  
then the next key (n+1) will be written until the FIFO is empty. If an incomplete key (less  
than 6 bytes) is written into the FIFO, this key will be ignored and will remain in the FIFO.  
Abort condition: Insufficient parameter in FIFO; KeyNr is outside the MKA;  
8.10.3.15 GetRNR command  
Command (1Ch);  
This command is reading Random Numbers from the random number generator of the  
MFRC630. The Random Numbers are copied to the FIFO until the FIFO is full.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
52 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.10.3.16 SoftReset command  
Command (1Fh);  
This command is performing a soft reset. Triggered by this command all the default values  
for the register setting will be read from the EEPROM and copied into the register set.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
53 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
9. MFRC630 registers  
9.1 Register bit behavior  
Depending on the functionality of a register, the access conditions to the register can vary.  
In principle, bits with same behavior are grouped in common registers. The access  
conditions are described in Table 37.  
Table 37. Behavior of register bits and their designation  
Abbreviation Behavior  
Description  
r/w  
dy  
r
read and write These bits can be written and read via the host interface. Since  
they are used only for control purposes, the content is not  
influenced by the state machines but can be read by internal state  
machines.  
dynamic  
These bits can be written and read via the host interface. They  
can also be written automatically by internal state machines, for  
example Command register changes its value automatically after  
the execution of the command.  
read only  
These register bits indicates hold values which are determined by  
internal states only.  
w
write only  
-
Reading these register bits always returns zero.  
RFU  
These bits are reserved for future use and must not be changed.  
In case of a required write access, it is recommended to write a  
logic 0.  
Table 38. MFRC630 registers overview  
Address  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
Register name  
Command  
HostCtrl  
Function  
Starts and stops command execution  
Host control register  
FIFOControl  
WaterLevel  
FIFOLength  
FIFOData  
IRQ0  
Control register of the FIFO  
Level of the FIFO underflow and overflow warning  
Length of the FIFO  
Data In/Out exchange register of FIFO buffer  
Interrupt register 0  
IRQ1  
Interrupt register 1  
IRQ0En  
Interrupt enable register 0  
IRQ1En  
Interrupt enable register 1  
Error  
Error bits showing the error status of the last command execution  
Contains status of the communication  
Control register for anticollision adjustments for bit oriented protocols  
Collision position register  
Status  
RxBitCtrl  
RxColl  
TControl  
Control of Timer 0..3  
T0Control  
T0ReloadHi  
T0ReloadLo  
T0CounterValHi  
T0CounterValLo  
Control of Timer0  
High register of the reload value of Timer0  
Low register of the reload value of Timer0  
Counter value high register of Timer0  
Counter value low register of Timer0  
12h  
13h  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
54 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 38. MFRC630 registers overview …continued  
Address  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
Register name  
T1Control  
Function  
Control of Timer1  
T1ReloadHi  
T1ReloadLo  
T1CounterValHi  
T1CounterValLo  
T2Control  
High register of the reload value of Timer1  
Low register of the reload value of Timer1  
Counter value high register of Timer1  
Counter value low register of Timer1  
Control of Timer2  
T2ReloadHi  
T2ReloadLo  
T2CounterValHi  
T2CounterValLo  
T3Control  
High byte of the reload value of Timer2  
Low byte of the reload value of Timer2  
Counter value high byte of Timer2  
Counter value low byte of Timer2  
Control of Timer3  
T3ReloadHi  
T3ReloadLo  
T3CounterValHi  
T3CounterValLo  
T4Control  
High byte of the reload value of Timer3  
Low byte of the reload value of Timer3  
Counter value high byte of Timer3  
Counter value low byte of Timer3  
Control of Timer4  
T4ReloadHi  
T4ReloadLo  
T4CounterValHi  
T4CounterValLo  
DrvMod  
High byte of the reload value of Timer4  
Low byte of the reload value of Timer4  
Counter value high byte of Timer4  
Counter value low byte of Timer4  
Driver mode register  
TxAmp  
Transmitter amplifier register  
DrvCon  
Driver configuration register  
Txl  
Transmitter register  
TxCrcPreset  
RxCrcPreset  
TxDataNum  
TxModWidth  
TxSym10BurstLen  
TXWaitCtrl  
TxWaitLo  
Transmitter CRC control register, preset value  
Receiver CRC control register, preset value  
Transmitter data number register  
Transmitter modulation width register  
Transmitter symbol 1 + symbol 0 burst length register  
Transmitter wait control  
Transmitter wait low  
FrameCon  
RxSofD  
Transmitter frame control  
Receiver start of frame detection  
Receiver control register  
Receiver wait register  
RxCtrl  
RxWait  
RxThreshold  
Rcv  
Receiver threshold register  
Receiver register  
RxAna  
Receiver analog register  
-
RFU  
SerialSpeed  
LPO_Trimm  
Serial speed register  
Low-power oscillator trimming register  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
55 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 38. MFRC630 registers overview …continued  
Address  
3Dh  
3Eh  
Register name  
PLL_Ctrl  
Function  
IntegerN PLL control register, for microcontroller clock output adjustment  
IntegerN PLL control register, for microcontroller clock output adjustment  
Low-power card detection Q channel minimum threshold  
Low-power card detection Q channel maximum threshold  
Low-power card detection I channel minimum threshold  
Low-power card detection I channel result register  
Low-power card detection Q channel result register  
PIN enable register  
PLL_DivOut  
LPCD_QMin  
LPCD_QMax  
LPCD_IMin  
LPCD_I_Result  
LPCD_Q_Result  
PadEn  
3Fh  
40h  
41h  
42h  
43h  
44h  
45h  
PadOut  
PIN out register  
46h  
PadIn  
PIN in register  
47h  
SigOut  
Enables and controls the SIGOUT Pin  
-
48h-5Fh  
7Fh  
RFU  
Version  
Version and subversion register  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
56 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
9.2 Command configuration  
9.2.1 Command  
Starts and stops command execution.  
Table 39. Command register (address 00h)  
Bit  
7
6
5
4
3
2
1
0
Symbol Standby  
Modem  
Off  
RFU  
Command  
Access  
rights  
dy  
r/w  
-
dy  
Table 40. Command bits  
Bit  
Symbol  
Standby  
ModemOff  
RFU  
Description  
7
Set to 1, the IC is entering power-down mode.  
6
Set to logic 1, the receiver and the transmitter circuit is powering down.  
5
-
4 to 0  
Command  
Defines the actual command for the MFRC630.  
9.3 SAM configuration register  
9.3.1 HostCtrl  
Via the HostCtrl Register the interface access right can be controlled  
Table 41. HostCtrl register (address 01h);  
Bit  
7
RegEn  
dy  
6
5
4
RFU  
-
3
SAMInterface  
r/w  
2
SAMInterface  
r/w  
1
RFU  
-
0
RFU  
-
Symbol  
BusHost  
r/w  
BusSAM  
r/w  
Access  
rights  
Table 42. HostCtrl bits  
Bit  
Symbol  
Description  
7
RegEn  
If this bit is set to logic 1, the register can be changed at the next  
register access. The next write access clears this bit automatically.  
6
5
BusHost  
BusSAM  
RFU  
Set to logic 1, the bus control enables the host interface. This bit  
cannot be set together with BusSAM. This bit can only be set if the bit  
RegEn was previously set.  
Set to logic 1, the bus control enables the SAM interface. This bit  
cannot be set together with BusHost. This bit can only be set if the bit  
RegEn is previously set.  
4
-
3 to 2  
SAMInterface 0h:Interface switched off  
1h:Interface SPI active  
2h:Interface I2CL active  
3h:Interface I2C  
1 to 0  
RFU  
-
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
57 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
9.4 FIFO configuration register  
9.4.1 FIFOControl  
FIFOControl defines the characteristics of the FIFO  
Table 43. FIFOControl register (address 02h);  
Bit  
7
6
HiAlert  
r
5
LoAlert  
r
4
FIFOFlush  
w
3
RFU  
-
2
WaterLevel  
r/w  
1
0
Symbol  
FIFOSize  
r/w  
FIFOLength  
Access  
rights  
r
Table 44. FIFOControl bits  
Bit  
Symbol  
Description  
7
FIFOSize  
Set to logic 1, FIFO size is 255 bytes;  
Set to logic 0, FIFO size is 512 bytes.  
It is recommended to change the FIFO size only, when the FIFO  
content had been cleared.  
6
5
4
HiAlert  
Set to logic 1, when the number of bytes stored in the FIFO buffer  
fulfils the following equation:  
HiAlert = (FIFOSize - FIFOLength) <= WaterLevel  
LoAlert  
Set to logic 1, when the number of bytes stored in the FIFO buffer  
fulfils the following conditions:  
LoAlert =1 if FIFOLength <= WaterLevel  
FIFOFlush  
Set to logic 1 empties the FIFO buffer. Reading this bit will always  
return 0  
3
2
RFU  
-
WaterLevel  
Defines the bit 8 (MSB) for the waterlevel (extension of WaterLevel).  
This bit is only evaluated in the 512-bit FIFO mode. Bits 7..0 are  
defined in WaterLevel.  
1 to 0  
FIFOLength  
Defines the bit9 (MSB) and bit8 for the FIFO length (extension of  
FIFOLength). These two bits are only evaluated in the 512-bit FIFO  
mode, The bits 7..0 are defined in FIFOLength.  
9.4.2 WaterLevel  
Defines the level for FIFO under- and overflow warning levels.This register is extended by  
1 bit in FIFOControl in case the 512-bit FIFO mode is activated by setting bit  
FIFOControl.FIFOSize.  
Table 45. WaterLevel register (address 03h);  
Bit  
7
6
5
4
3
2
1
0
Symbol  
WaterLevel  
r/w  
Access  
rights  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
58 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 46. WaterLevel bits  
Bit  
Symbol  
Description  
7 to 0  
WaterLevel  
Sets a level to indicate a FIFO-buffer state which can be read from bits  
HighAlert and LowAlert in the FifoControl. In 512-bit FIFO mode, the  
register is extended by bit WaterLevel in the FIFOControl. This  
functionality can be used to avoid a FIFO buffer overflow or underflow:  
The bit HiAlert bit in FIFO Control is read logic 1, if the number of bytes  
in the FIFO-buffer is equal or less than the number defined by  
WaterLevel.  
The bit LoAlert bit in FIFO control is read logic 1, if the number of bytes  
in the FIFO buffer is equal or less than the number defined by  
WaterLevel.  
Note: For the calculation of HiAlert and LoAlert see register description  
of these bits (Section 9.4.1 “FIFOControl”).  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
59 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
9.4.3 FIFOLength  
Number of bytes in the FIFO buffer. In 512-bit modem this register is extended by  
FIFOControl.FifoLength.  
Table 47. FIFOLength register (address 04h); reset value: 00h  
Bit  
7
6
5
4
3
2
1
0
Symbol  
FIFOLength  
dy  
Access  
rights  
Table 48. FIFOLength bits  
Bit  
Symbol  
Description  
7 to 0  
FIFOLength Indicates the number of bytes in the FIFO buffer. In 512-bit modem this  
register is extended by the bits FIFOLength in the FIFOControl  
register. Writing to the FIFOData register increments, reading  
decrements the number of bytes in the FIFO.  
9.4.4 FIFOData  
In- and output of FIFO buffer. Contrary to any read/write access to other addresses,  
reading or writing to the FIFO address does not increment the address pointer. Resulting  
in an efficient data transfer from and to the FIFO buffer. Writing to the FIFOData register  
increments, reading decrements the number of bytes present in the FIFO.  
Table 49. FIFOData register (address 05h);  
Bit  
7
6
5
4
3
2
1
0
Symbol  
FIFOData  
dy  
Access  
rights  
Table 50. FIFOData bits  
Bit  
Symbol  
Description  
7 to 0  
FIFOData  
Data input and output port for the internal FIFO buffer. Refer to Section  
8.5 “Buffer”.  
9.5 Interrupt configuration registers  
The Registers IRQ0 register and IRQ1 register implement a special functionality to avoid  
the not intended modification of bits.  
The mechanism of changing register contents requires the following consideration:  
IRQ(x). Set indicates, if a set bit on position 0 to 6 shall be cleared or set. Depending on  
the content of IRQ(x).Set, a write of a logical 1 to positions 0 to 6 either clears or sets the  
corresponding bit. With this register the application can modify the interrupt status which  
is maintained by the MFRC630.  
Bit 7 indicates, if the intended modification is a setting or clearance of a bit. Any 1 written  
to a bit position 6...0 will trigger the setting or clearance of this bit as defined by bit 7.  
Example: writing FFh sets all bits 6..0, writing 7Fh clears all bits 6..0 of the interrupt  
request register  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
60 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
9.5.1 IRQ0 register  
Interrupt request register 0.  
Table 51. IRQ0 register (address 06h); reset value: 00h  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Set  
Hi AlertIrq Lo AlertIrq  
IdleIrq  
TxIrq  
RxIrq  
ErrIrq  
RxSOF  
Irq  
Access  
rights  
w
dy dy  
dy  
dy  
dy  
dy  
dy  
Table 52. IRQ0 bits  
Bit  
Symbol  
Description  
7
Set  
1: writing a 1 to a bit position 6..0 sets the interrupt request  
0: Writing a 1 to a bit position 6..0 clears the interrupt request  
6
5
4
HiAlerIrq  
Set, when bit HiAlert in register Status1Reg is set. In opposition to HiAlert,  
HiAlertIrq stores this event and can only be reset if Set is cleared.  
LoAlertIrq Set, when bit LoAlert in register Status1 is set. In opposition to LoAlert,  
LoAlertIrq stores this event and can only be reset if Set is cleared  
IdleIrq  
Set, when a command terminates by itself e.g. when the Command changes  
its value from any command to the Idle command. If an unknown command  
is started, the Command changes its content to the idle state and the bit  
IdleIRq is set. Starting the Idle command by the Controller does not set bit  
IdleIRq.  
3
2
TxIrq  
RxIrq  
Set, when data transmission is completed, which is immediately after the last  
bit is sent.  
Set, when the receiver detects the end of a data stream.  
Note: This flag is no indication that the received data stream is correct. The  
error flags have to be evaluated to get the status of the reception.  
1
0
ErrIrq  
Set, when the one of the following errors is set:  
FifoWrErr, FiFoOvl, ProtErr, NoDataErr, IntegErr  
RxSOFlrq Set, when a SOF or a subcarrier is detected  
9.5.2 IRQ1 register  
Interrupt request register 1.  
Table 53. IRQ1 register (address 07h)  
Bit  
7
Set  
w
6
GlobalIrq  
dy  
5
4
3
Timer3Irq  
dy  
2
Timer2Irq  
dy  
1
Timer1Irq  
dy  
0
Timer0Irq  
dy  
Symbol  
LPCD_Irq Timer4Irq  
dy dy  
Access  
rights  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
61 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 54. IRQ1 bits  
Bit  
Symbol  
Description  
7
Set  
1: writing a 1 to a bit position 5..0 sets the interrupt request  
0: Writing a 1 to a bit position 5..0 clears the interrupt request  
Set, if an enabled Irq occurs.  
6
5
4
3
2
1
0
GlobalIrq  
LPCD_Irq Set if a card is detected in Low-power card detection sequence.  
Timer4Irq Set to logic 1 when Timer4 has an underflow.  
Timer3Irq Set to logic 1 when Timer3 has an underflow.  
Timer2Irq Set to logic 1 when Timer2 has an underflow.  
Timer1Irq Set to logic 1 when Timer1 has an underflow.  
Timer0Irq Set to logic 1 when Timer0 has an underflow.  
9.5.3 IRQ0En register  
Interrupt request enable register for IRQ0. This register allows to define if an interrupt  
request is processed by the MFRC630.  
Table 55. IRQ0En register (address 08h)  
Bit  
7
6
Hi AlertIrqEn  
r/w  
5
LoAlertIrqEn  
r/w  
4
3
2
1
0
Symbol  
Irq_Inv  
r/w  
IdleIrqEn  
r/w  
TxIrqEn  
r/w  
RxIrqEn  
r/w  
ErrIrqEn RxSOFIrqEn  
r/w r/w  
Access  
rights  
Table 56. IRQ0En bits  
Bit  
7
Symbol  
Description  
Set to one the signal of the IRQ pin is inverted  
Irq_Inv  
6
Hi AlerIrqEn  
Set to logic 1, it allows the High Alert interrupt Request (indicated by the  
bit HiAlertIrq) to be propagated to the GlobalIrq  
5
4
3
2
1
0
Lo AlertIrqEn Set to logic 1, it allows the Low Altert Interrupt Request (indicated by the  
bit LoAlertIrq) to be propagated to the GlobalIrq  
IdleIrqEn  
TxIRqEn  
RxIRqEn  
ErrIRqEn  
Set to logic 1, it allows the Idle interrupt request (indicated by the bit  
IdleIrq) to be propagated to the GlobalIrq  
Set to logic 1, it allows the transmitter interrupt request (indicated by the  
bit TxtIrq) to be propagated to the GlobalIrq  
Set to logic 1, it allows the receiver interrupt request (indicated by the bit  
RxIrq) to be propagated to the GlobalIrq  
Set to logic 1, it allows the Error interrupt request (indicated by the bit  
ErrorIrq) to be propagated to the GlobalIrq  
RxSOFIrqEn Set to logic 1, it allows the RxSOF interrupt request (indicated by the bit  
RxSOFIrq) to be propagated to the GlobalIrq  
9.5.4 IRQ1En  
Interrupt request enable register for IRQ1.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
62 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 57. IRQ1EN register (address 09h);  
Bit  
7
6
5
4
3
2
1
0
Symbol IrqPushPull IrqPinEn LPCD_IrqEn Timer4IrqEn Timer3IrqEn Timer2IrqE Timer1IrqEn Timer0IrqEn  
n
Access  
rights  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 58. IRQ1EN bits  
Bit  
Symbol  
Description  
7
IrqPushPull  
Set to 1 the IRQ-pin acts as PushPull pin, otherwise it acts as  
OpenDrain pin  
6
5
4
3
2
1
0
IrqPinEN  
Set to logic 1, it allows the global interrupt request (indicated by the bit  
GlobalIrq) to be propagated to the interrupt pin  
LPCD_IrqEN  
Timer4IRqEn  
Timer3IrqEn  
Timer2IrqEn  
Timer1IrqEn  
Timer0IrqEn  
Set to logic 1, it allows the LPCDinterrupt request (indicated by the bit  
LPCDIrq) to be propagated to the GlobalIrq  
Set to logic 1, it allows the Timer4 interrupt request (indicated by the bit  
Timer4Irq) to be propagated to the GlobalIrq  
Set to logic 1, it allows the Timer3 interrupt request (indicated by the bit  
Timer3tIrq) to be propagated to the GlobalIrq  
Set to logic 1, it allows the Timer2 interrupt request (indicated by the bit  
Timer2Irq) to be propagated to the GlobalIrq  
Set to logic 1, it allows the Timer1 interrupt request (indicated by the bit  
Timer1Irq) to be propagated to the GlobalIrq  
Set to logic 1, it allows the Timer0 interrupt request (indicated by the bit  
Timer0Irq) to be propagated to the GlobalIrq  
9.6 Contactless interface configuration registers  
9.6.1 Error  
Error register.  
Table 59. Error register (address 0Ah)  
Bit  
7
EE_Err  
dy  
6
FiFoWrErr  
dy  
5
FIFOOvl  
dy  
4
MinFrameErr  
dy  
3
NoDataErr  
dy  
2
CollDet  
dy  
1
ProtErr  
dy  
0
IntegErr  
dy  
Symbol  
Access  
rights  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
63 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 60. Error bits  
Bit  
Symbol  
Description  
7
EE_Err  
An error appeared during the last EEPROM command. For  
details see the descriptions of the EEPROM commands  
6
FIFOWrErr Data was written into the FIFO, during a transmission of a possible CRC,  
during "RxWait", "Wait for data" or "Receiving" state, or during an  
authentication command. The Flag is cleared when a new CL command is  
started. If RxMultiple is active, the flag is cleared after the error flags have  
been written to the FIFO.  
5
4
FIFOOvl  
Data is written into the FIFO when it is already full. The data that is already in  
the FIFO will remain untouched. All data that is written to the FIFO after this  
Flag is set to 1 will be ignored.  
Min  
A valid SOF was received, but afterwards less then 4 bits of data were  
FrameErr received.  
Note: Frames with less than 4 bits of data are automatically discarded and the  
RxDecoder stays enabled. Furthermore no RxIrq is set. The same is valid for  
less than 3 Bytes if the EMD suppression is activated  
Note: MinFrameErr is automatically cleared at the start of a receive or  
transceive command. In case of a transceive command, it is cleared at the  
start of the receiving phase ("Wait for data" state)  
3
2
NoDataErr Data should be sent, but no data is in FIFO  
CollDet  
A collision has occurred. The position of the first collision is shown in the  
register RxColl.  
Note: CollDet is automatically cleared at the start of a receive or transceive  
command. In case of a transceive command, it is cleared at the start of the  
receiving phase (“Wait for data” state).  
Note: If a collision is part of the defined EOF symbol, CollDet is not set to 1.  
1
ProtErr  
A protocol error has occurred. A protocol error can be a wrong stop bit or SOF  
or a wrong number of received data bytes. When a protocol error is detected,  
data reception is stopped.  
Note: ProtErr is automatically cleared at start of a receive or transceive  
command. In case of a transceive command, it is cleared at the start of the  
receiving phase (“Wait for data” state).  
Note: When a protocol error occurs the last received data byte is not written  
into the FIFO.  
0
IntegErr  
A data integrity error has been detected. Possible cause can be a wrong  
parity or a wrong CRC. In case of a data integrity error the reception is  
continued.  
Note: IntegErr is automatically cleared at start of a Receive or Transceive  
command. In case of a Transceive command, it is cleared at the start of the  
receiving phase (“Wait for data” state).  
Note: If the NoColl bit is set, also a collision is setting the IntegErr.  
9.6.2 Status  
Status register.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
64 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 61. Status register (address 0Bh)  
Bit  
7
-
6
-
5
Crypto1On  
dy  
4
-
3
-
2
1
0
Symbol  
ComState  
r
Access  
rights  
RFU  
RFU  
RFU  
RFU  
Table 62. Status bits  
Bit  
7 to 6  
5
Symbol  
Description  
-
RFU  
Crypto1On Indicates if the MIFARE Crypto is on. Clearing this bit is switching the  
MIFARE Crypto off. The bit can only be set by the MFAuthent command.  
4 to 3  
-
RFU  
2 to 0 ComState ComState shows the status of the transmitter and receiver state machine:  
000b ... Idle  
001b ... TxWait  
011b ... Transmitting  
101b ... RxWait  
110b ... Wait for data  
111b ... Receiving  
100b ... not used  
9.6.3 RxBitCtrl  
Receiver control register.  
Table 63. RxBitCtrl register (address 0Ch);  
Bit  
7
ValuesAfterColl  
r/w  
6
5
4
3
2
1
RxLastBits  
w
0
Symbol  
RxAlign  
r/w  
NoColl  
r/w  
Access  
rights  
Table 64. RxBitCtrl bits  
Bit  
Symbol  
Description  
7
ValuesAfter If cleared, every received bit after a collision is replaced by a zero. This  
Coll  
function is needed for ISO/IEC14443 anticollision  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
65 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 64. RxBitCtrl bits  
Bit  
Symbol  
Description  
6 to 4  
RxAlign  
Used for reception of bit oriented frames: RxAlign defines the bit position  
length for the first bit received to be stored. Further received bits are  
stored at the following bit positions.  
Example:  
RxAlign = 0h - the LSB of the received bit is stored at bit 0, the second  
received bit is stored at bit position 1.  
RxAlign = 1h - the LSB of the received bit is stored at bit 1, the second  
received bit is stored at bit position 2.  
RxAlign = 7h - the LSB of the received bit is stored at bit 7, the second  
received bit is stored in the following byte at position 0.  
Note: If RxAlign = 0, data is received byte-oriented, otherwise  
bit-oriented.  
3
NoColl  
If this bit is set, a collision will result in an IntegErr  
2 to 0  
RxLastBits  
Defines the number of valid bits of the last data byte received in  
bit-oriented communications. If zero the whole byte is valid.  
Note: These bits are set by the RxDecoder in a bit-oriented  
communication at the end of the communication. They are reset at start  
of reception.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
66 of 118  
MFRC630  
NXP Semiconductors  
9.6.4 RxColl  
Contactless reader IC  
Receiver collision register.  
Table 65. RxColl register (address 0Dh);  
Bit  
7
6
5
4
3
2
1
0
Symbol  
CollPosValid  
r
CollPos  
r
Access  
rights  
Table 66. RxColl bits  
Bit  
Symbol  
Description  
7
CollPos  
Valid  
If set to 1, the value of CollPos is valid. Otherwise no collision is detected or  
the position of the collision is out of the range of bits CollPos.  
6 to 0 CollPos  
These bits show the bit position of the first detected collision in a received  
frame (only data bits are interpreted). CollPos can only be displayed for the  
first 8 bytes of a data stream.  
Example:  
00h indicates a bit collision in the 1st bit  
01h indicates a bit collision in the 2nd bit  
08h indicates a bit collision in the 9th bit (1st bit of 2nd byte)  
3Fh indicates a bit collision in the 64th bit (8th bit of the 8th byte)  
These bits shall only be interpreted in Passive communication mode at 106  
kbit/s or ISO/IEC 14443A/MIFARE reader /writer mode if bit CollPosValid is  
set.  
Note: If RxBitCtrl.RxAlign is set to a value different to 0, this value is included  
in the CollPos.  
Example: RxAlign = 4h, a collision occurs in the 4th received bit (which is the  
last bit of that UID byte). The CollPos = 7h in this case.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
67 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
9.7 Timer configuration registers  
9.7.1 TControl  
Control register of the timer section.  
The TControl implements a special functionality to avoid the not intended modification of  
bits.  
Bit 3..0 indicates, which bits in the positions 7..4 are intended to be modified.  
Example: writing FFh sets all bits 7..4, writing F0h does not change any of the bits 7..4  
Table 67. TControl register (address 0Eh)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T3Running T2Running T1Running T0Running  
T3Start  
T2Start  
T1Start  
T0Start  
StopNow  
StopNow  
StopNow  
StopNow  
Access  
rights  
dy  
dy  
dy  
dy  
w
w
w
w
Table 68. TControl bits  
Bit  
Symbol  
Description  
7
T3Running  
Indicates Timer3 is running.If the bit T3startStopNow is set/reset, this  
bit and the timer can be started/stopped  
6
5
4
3
2
1
0
T2Running  
T1Running  
T0Running  
Indicates Timer2 is running. If the bit T2startStopNow is set/reset, this  
bit and the timer can be started/stopped  
Indicates tTmer1 is running. If the bit T1startStopNow is set/reset, this  
bit and the timer can be started/stopped  
Indicates Timer0 is running. If the bit T0startStopNow is set/reset, this  
bit and the timer can be started/stopped  
T3StartStop  
Now  
The bit 7 of TControl T3Running can be modified if set  
The bit 6of TControl T2Running can be modified if set  
The bit 5of TControl T1Running can be modified if set  
The bit 4 of TControl T0Running can be modified if set  
T2StartStop  
Now  
T1StartStop  
Now  
T0StartStop  
Now  
9.7.2 T0Control  
Control register of the Timer0.  
Table 69. T0Control register (address 0Fh);  
Bit  
7
6
-
5
4
3
T0AutoRestarted  
r/w  
2
-
1
0
Symbol  
T0StopRx  
r/w  
T0Start  
r/w  
T0Clk  
r/w  
Access  
rights  
RFU  
RFU  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
68 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 70. T0Control bits  
Bit  
Symbol  
Description  
7
T0StopRx  
If set, the timer stops immediately after receiving the first 4 bits. If  
cleared the timer does not stop automatically.  
Note: If LFO Trimming is selected by T0Start, this bit has no effect.  
RFU  
6
-
5 to 4  
T0Start  
00b: The timer is not started automatically  
01b: The timer starts automatically at the end of the transmission  
10b: Timer is used for LFO trimming without underflow (Start/Stop on  
PosEdge)  
11b: Timer is used for LFO trimming with underflow (Start/Stop on  
PosEdge)  
3
T0AutoRestart 1: the timer automatically restarts its count-down from T0ReloadValue,  
after the counter value has reached the value zero.  
0: the timer decrements to zero and stops.  
The bit Timer1Irq is set to logic 1 when the timer underflows.  
2
-
RFU  
1 to 0  
T0Clk  
00b: The timer input clock is 13.56 MHz.  
01b: The timer input clock is 211,875 kHz.  
10b: The timer input clock is an underflow of Timer2.  
11b: The timer input clock is an underflow of Timer1.  
9.7.2.1 T0ReloadHi  
High byte reload value of the Timer0.  
Table 71. T0ReloadHi register (address 10h);  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T0Reload Hi  
r/w  
Access  
rights  
Table 72. T0ReloadHi bits  
Bit  
Symbol  
Description  
7 to 0  
T0ReloadHi  
Defines the high byte of the reload value of the timer. With the start  
event the timer loads the value of the registers T0ReloadValHi,  
T0ReloadValLo. Changing this register affects the timer only at the  
next start event.  
9.7.2.2 T0ReloadLo  
Low byte reload value of the Timer0.  
Table 73. T0ReloadLo register (address 11h);  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T0ReloadLo  
r/w  
Access  
rights  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
69 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 74. T0ReloadLo bits  
Bit  
Symbol  
Description  
7 to0  
T0ReloadLo  
Defines the low byte of the reload value of the timer. With the start  
event the timer loads the value of the T0ReloadValHi, T0ReloadValLo.  
Changing this register affects the timer only at the next start event.  
9.7.2.3 T0CounterValHi  
High byte of the counter value of Timer0.  
Table 75. T0CounterValHi register (address 12h)  
Bit  
7
6
5
4
3
2
1
0
0
0
Symbol  
T0CounterHi  
dy  
Access  
rights  
Table 76. T0CounterValHi bits  
Bit  
Symbol  
Description  
High byte value of the Timer0.  
This value shall not be read out during reception.  
7to0  
T0Counter  
ValHi  
9.7.2.4 T0CounterValLo  
Low byte of the counter value of Timer0.  
Table 77. T0CounterValLo register (address 13h)  
Bit  
7
6
5
4
3
2
1
Symbol  
T0CounterValLo  
dy  
Access  
rights  
Table 78. T0CounterValLo bits  
Bit  
Symbol  
Description  
7 to 0  
T0CounterValLo  
Low byte value of the Timer0.  
This value shall not be read out during reception.  
9.7.2.5 T1Control  
Control register of the Timer1.  
Table 79. T1Control register (address 14h);  
Bit  
7
6
-
5
4
3
T1AutoRestart  
r/w  
2
-
1
Symbol  
T1StopRx  
r/w  
T1Start  
r/w  
T1Clk  
r/w  
Access  
rights  
RFU  
RFU  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
70 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 80. T1Control bits  
Bit  
Symbol  
Description  
7
T1StopRx  
If set, the timer stops after receiving the first 4 bits. If cleared, the timer  
is not stopped automatically.  
Note: If LFO trimming is selected by T1start, this bit has no effect.  
RFU  
6
-
5 to 4  
T1Start  
00b: The timer is not started automatically  
01b: The timer starts automatically at the end of the transmission  
10b: Timer is used for LFO trimming without underflow (Start/Stop on  
PosEdge)  
11b: Timer is used for LFO trimming with underflow (Start/Stop on  
PosEdge)  
3
T1AutoRestart Set to logic 1, the timer automatically restarts its countdown from  
T1ReloadValue, after the counter value has reached the value zero.  
Set to logic 0 the timer decrements to zero and stops.  
The bit Timer1IRq is set to logic 1 when the timer underflows.  
2
-
RFU  
1 to 0  
T1Clk  
00b: The timer input clock is 13.56 MHz  
01b: The timer input clock is 211,875 kHz.  
10b: The timer input clock is an underflow of Timer0  
11b: The timer input clock is an underflow of Timer2  
9.7.2.6 T1ReloadHi  
High byte (MSB) reload value of the Timer1.  
Table 81. T0ReloadHi register (address 15h)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T1ReloadHi  
r/w  
Access  
rights  
Table 82. T1ReloadHi bits  
Bit  
Symbol  
Description  
7 to 0  
T1ReloadHi  
Defines the high byte reload value of the Timer 1. With the start event  
the timer loads the value of the T1ReloadValHi and T1ReloadValLo.  
Changing this register affects the Timer only at the next start event.  
9.7.2.7 T1ReloadLo  
Low byte (LSB) reload value of the Timer1.  
Table 83. T1ReloadLo register (address 16h)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T1ReloadLo  
r/w  
Access  
rights  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
71 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 84. T1ReloadValLo bits  
Bit  
Symbol  
Description  
7 to 0  
T1ReloadLo  
Defines the low byte of the reload value of the Timer1. Changing this  
register affects the timer only at the next start event.  
9.7.2.8 T1CounterValHi  
High byte (MSB) of the counter value of byte Timer1.  
Table 85. T1CounterValHi register (address 17h)  
Bit  
7
6
5
4
3
2
1
0
0
0
Symbol  
T1CounterValHi  
dy  
Access  
rights  
Table 86. T1CounterValHi bits  
Bit  
Symbol  
Description  
7 to 0  
T1Counter  
ValHi  
High byte of the current value of the Timer1.  
This value shall not be read out during reception.  
9.7.2.9 T1CounterValLo  
Low byte (LSB) of the counter value of byte Timer1.  
Table 87. T1CounterValLo register (address 18h)  
Bit  
7
6
5
4
3
2
1
Symbol  
T1CounterValLo  
dy  
Access  
rights  
Table 88. T1CounterValLo bits  
Bit  
Symbol  
Description  
7 to 0  
T1Counter  
ValLo  
Low byte of the current value of the counter 1.  
This value shall not be read out during reception.  
9.7.2.10 T2Control  
Control register of the Timer2.  
Table 89. T2Control register (address 19h)  
Bit  
7
6
-
5
4
3
T2AutoRestart  
r/w  
2
-
1
Symbol  
T2StopRx  
r/w  
T2Start  
r/w  
T2Clk  
r/w  
Access  
rights  
RFU  
RFU  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
72 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 90. T2Control bits  
Bit  
Symbol  
Description  
7
T2StopRx  
If set the timer stops immediately after receiving the first 4 bits. If  
cleared indicates, that the timer is not stopped automatically.  
Note: If LFO Trimming is selected by T2Start, this bit has no effect.  
6
-
RFU  
5 to 4  
T2Start  
00b: The timer is not started automatically.  
01b: The timer starts automatically at the end of the transmission.  
10b: Timer is used for LFO trimming without underflow (Start/Stop on  
PosEdge).  
11b: Timer is used for LFO trimming with underflow (Start/Stop on  
PosEdge).  
3
T2AutoRestart Set to logic 1, the timer automatically restarts its countdown from  
T2ReloadValue, after the counter value has reached the value zero.  
Set to logic 0 the timer decrements to zero and stops. The bit  
Timer2IRq is set to logic 1 when the timer underflows  
2
-
RFU  
1 to 0  
T2Clk  
00b: The timer input clock is 13.56 MHz.  
01b: The timer input clock is 212 kHz.  
10b: The timer input clock is an underflow of Timer0  
11b: The timer input clock is an underflow of Timer1  
9.7.2.11 T2ReloadHi  
High byte of the reload value of Timer2.  
Table 91. T2ReloadHi register (address 1Ah)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T2ReloadHi  
r/w  
Access  
rights  
Table 92. T2Reload bits  
Bit  
Symbol  
Description  
7 to 0  
T2ReloadHi  
Defines the high byte of the reload value of the Timer2. With the start  
event the timer load the value of the T2ReloadValHi and  
T2ReloadValLo. Changing this register affects the timer only at the  
next start event.  
9.7.2.12 T2ReloadLo  
Low byte of the reload value of Timer2.  
Table 93. T2ReloadLo register (address 1Bh)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T2ReloadLo  
r/w  
Access  
rights  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
73 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 94. T2ReloadLo bits  
Bit  
Symbol  
Description  
7 to 0  
T2ReloadLo  
Defines the low byte of the reload value of the Timer2. With the start  
event the timer load the value of the T2ReloadValHi and  
T2RelaodVaLo. Changing this register affects the timer only at the next  
start event.  
9.7.2.13 T2CounterValHi  
High byte of the counter register of Timer2.  
Table 95. T2CounterValHi register (address 1Ch)  
Bit  
7
6
5
4
3
2
1
0
0
0
Symbol  
T2CounterHi  
dy  
Access  
rights  
Table 96. T2CounterValHi bits  
Bit  
Symbol  
Description  
7 to 0  
T2Counter  
ValHi  
High byte current counter value of Timer2.  
This value shall not be read out during reception.  
9.7.2.14 T2CounterValLoReg  
Low byte of the current value of Timer 2.  
Table 97. T2CounterValLo register (address 1Dh)  
Bit  
7
6
5
4
3
2
1
Symbol  
T2CounterValLo  
dy  
Access  
rights  
Table 98. T2CounterValLo bits  
Bit  
Symbol  
Description  
7 to 0  
T2Counter  
ValLo  
Low byte of the current counter value of Timer1Timer2.  
This value shall not be read out during reception.  
9.7.2.15 T3Control  
Control register of the Timer 3.  
Table 99. T3Control register (address 1Eh)  
Bit  
7
6
-
5
4
3
T3AutoRestart  
r/w  
2
-
1
Symbol  
T3StopRx  
r/w  
T3Start  
r/w  
T3Clk  
r/w  
Access  
rights  
RFU  
RFU  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
74 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 100. T3Control bits  
Bit  
Symbol  
Description  
7
T3StopRx  
If set, the timer stops immediately after receiving the first 4 bits. If  
cleared, indicates that the timer is not stopped automatically.  
Note: If LFO Trimming is selected by T3Start, this bit has no effect.  
RFU  
6
-
5 to 4  
T3Start  
00b - timer is not started automatically  
01b - timer starts automatically at the end of the transmission  
10b - timer is used for LFO trimming without underflow (Start/Stop on  
PosEdge)  
11b - timer is used for LFO trimming with underflow (Start/Stop on  
PosEdge).  
3
T3AutoRestart Set to logic 1, the timer automatically restarts its countdown from  
T3ReloadValue, after the counter value has reached the value zero.  
Set to logic 0 the timer decrements to zero and stops.  
The bit Timer1IRq is set to logic 1 when the timer underflows.  
2
-
RFU  
1 to 0  
T3Clk  
00b - the timer input clock is 13.56 MHz.  
01b - the timer input clock is 211,875 kHz.  
10b - the timer input clock is an underflow of Timer0  
11b - the timer input clock is an underflow of Timer1  
9.7.2.16 T3ReloadHi  
High byte of the reload value of Timer3.  
Table 101. T3ReloadHi register (address 1Fh);  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T3ReloadHi  
r/w  
Access  
rights  
Table 102. T3ReloadHi bits  
Bit  
Symbol  
Description  
7 to 0  
T3ReloadHi  
Defines the high byte of the reload value of the Timer3. With the start  
event the timer load the value of the T3ReloadValHi and  
T3ReloadValLo. Changing this register affects the timer only at the  
next start event.  
9.7.2.17 T3ReloadLo  
Low byte of the reload value of Timer3.  
Table 103. T3ReloadLo register (address 20h)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T3ReloadLo  
r/w  
Access  
rights  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
75 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 104. T3ReloadLo bits  
Bit  
Symbol  
Description  
7 to 0  
T3ReloadLo  
Defines the low byte of the reload value of Timer3. With the start event  
the timer load the value of the T3ReloadValHi and T3RelaodValLo.  
Changing this register affects the timer only at the next start event.  
9.7.2.18 T3CounterValHi  
High byte of the current counter value the 16-bit Timer3.  
Table 105. T3CounterValHi register (address 21h)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T3CounterHi  
dy  
Access  
rights  
Table 106. T3CounterValHi bits  
Bit  
Symbol  
Description  
7 to 0  
T3Counter  
ValHi  
High byte of the current counter value of Timer3.  
This value shall not be read out during reception.  
9.7.2.19 T3CounterValLo  
Low byte of the current counter value the 16-bit Timer3.  
Table 107. T3CounterValLo register (address 22h)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T3CounterValLo  
dy  
Access  
rights  
Table 108. T3CounterValLo bits  
Bit  
Symbol  
Description  
7 to 0  
T3Counter  
ValLo  
Low byte current counter value of Timer3.  
This value shall not be read out during reception.  
9.7.2.20 T4Control  
The wake-up timer T4 activates the system after a given time. If enabled, it can start the  
low power card detection function.  
Table 109. T4Control register (address 23h)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T4Running  
T4Start  
StopNow  
T4Auto  
Trimm  
T4Auto  
LPCD  
T4Auto  
Restart  
T4AutoWakeUp  
T4Clk  
r/w  
Access  
rights  
dy  
w
r/w  
r/w  
r/w  
r/w  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
76 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 110. T4Control bits  
Bit  
Symbol  
Description  
7
T4Running  
Shows if the timer T4 is running. If the bit T4StartStopNow is set, this  
bit and the timer T4 can be started/stopped.  
6
5
T4Start  
StopNow  
if set, the bit T4Running can be changed.  
T4AutoTrimm  
If set to one, the timer activates an LPO trimming procedure when it  
underflows. For the T4AutoTrimm function, at least one timer (T0 to  
T3) has to be configured properly for trimming (T3 is not allowed if  
T4AutoLPCD is set in parallel).  
4
T4AutoLPCD  
If set to one, the timer activates a low-power card detection  
sequence. If a card is detected an interrupt request is raised and the  
system remains active if enabled. If no card is detected the  
MFRC630 enters the Power down mode if enabled. The timer is  
automatically restarted (no gap). Timer 3 is used to specify the time  
where the RF field is enabled to check if a card is present. Therefor  
you may not use Timer 3 for T4AutoTrimm in parallel.  
3
2
T4AutoRestart  
Set to logic 1, the timer automatically restarts its countdown from  
T4ReloadValue, after the counter value has reached the value zero.  
Set to logic 0 the timer decrements to zero and stops. The bit  
Timer4Irq is set to logic 1 at timer underflow.  
T4AutoWakeUp If set, the MFRC630 wakes up automatically, when the timer T4 has  
an underflow. This bit has to be set if the IC should enter the Power  
down mode after T4AutoTrimm and/or T4AutoLPCD is finished and  
no card has been detected. If the IC should stay active after one of  
these procedures this bit has to be set to 0.  
1 to 0  
T4Clk  
00b - the timer input clock is the LFO clock  
01b - the timer input clock is the LFO clock/8  
10b - the timer input clock is the LFO clock/16  
11b - the timer input clock is the LFO clock/32  
9.7.2.21 T4ReloadHi  
High byte of the reload value of the 16-bit timer 4.  
Table 111. T4ReloadHi register (address 24h)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T4ReloadHi  
r/w  
Access  
rights  
Table 112. T4ReloadHi bits  
Bit  
Symbol  
Description  
7 to 0  
T4ReloadHi  
Defines high byte of the for the reload value of timer 4. With the start  
event the timer 4 loads the T4ReloadVal. Changing this register affects  
the timer only at the next start event.  
9.7.2.22 T4ReloadLo  
Low byte of the reload value of the 16-bit timer 4.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
77 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 113. T4ReloadLo register (address 25h)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T4ReloadLo  
r/w  
Access  
rights  
Table 114. T4ReloadLo bits  
Bit  
Symbol  
Description  
7 to 0  
T4ReloadLo  
Defines the low byte of the reload value of the timer 4. With the start  
event the timer loads the value of the T4ReloadVal. Changing this  
register affects the timer only at the next start event.  
9.7.2.23 T4CounterValHi  
High byte of the counter value of the 16-bit timer 4.  
Table 115. T4CounterValHi register (address 26h)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T4CounterValHi  
dy  
Access  
rights  
Table 116. T4CounterValHi bits  
Bit  
Symbol  
Description  
High byte of the current counter value of timer 4.  
7 to 0  
T4CounterValHi  
9.7.2.24 T4CounterValLo  
Low byte of the counter value of the 16-bit timer 4.  
Table 117. T4CounterValLo register (address 27h)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T4CounterValLo  
dy  
Access  
rights  
Table 118. T4CounterValLo bits  
Bit  
Symbol  
Description  
Low byte of the current counter value of the timer 4.  
7 to 0  
T4CounterValLo  
9.8 Transmitter configuration registers  
9.8.1 TxMode  
Table 119. DrvMode register (address 28h)  
Bit  
7
6
5
-
4
-
3
2
1
TxClk Mode  
r/w  
0
Symbol  
Tx2Inv  
r/w  
Tx1Inv  
r/w  
TxEn  
r/w  
Access  
rights  
RFU  
RFU  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
78 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 120. DrvMode bits  
Bit  
Symbol  
Tx2Inv  
Tx1Inv  
Description  
7
Inverts transmitter 2 at TX2 pin  
6
Inverts transmitter 1 at TX1 pin  
5
RFU  
4
-
RFU  
3
TxEn  
If set to 1 both transmitter pins are enabled  
2 to 0  
TxClkMode  
Transmitter clock settings (see 8.6.2. Table 27). Codes 011b and  
0b110 are not supported. This register defines, if the output is  
operated in open drain, push-pull, at high impedance or pulled to a fix  
high or low level.  
9.8.2 TxAmp  
With the set_cw_amplitude register output power can be traded off against power supply  
rejection. Spending more headroom leads to better power supply rejection ration and  
better accuracy of the modulation degree.  
With CwMax set, the voltage of TX1 will be pulled to the maximum possible. This register  
overrides the settings made by set_cw_amplitude.  
Table 121. TxAmp register (address 29h)  
Bit  
7
6
5
-
4
3
2
set_residual_carrier  
r/w  
1
0
Symbol  
set_cw_amplitude  
r/w  
Access  
rights  
RFU  
Table 122. TxAmp bits  
Bit  
Symbol  
Description  
7 to 6  
set_cw_amplitude  
Allows to reduce the output amplitude of the transmitter by a fix  
value.  
Four different preset values that are subtracted from TVDD can  
be selected:  
0: TVDD -100 mV  
1: TVDD -250 mV  
2: TVDD -500 mV  
3: TVDD -1000 mV  
-
5
RFU  
4 to 0  
set_residual_ carrier Set the residual carrier percentage. refer to Section 8.6.2  
9.8.3 TxCon  
Table 123. TxCon register (address 2Ah)  
Bit  
7
6
5
OvershootT2  
r/w  
4
3
2
1
0
Symbol  
CwMax  
r/w  
TxInv  
r/w  
TxSel  
r/w  
Access  
rights  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
79 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 124. TxCon bits  
Bit  
Symbol  
Description  
7 to 4  
OvershootT2 Specifies the length (number of carrier clocks) of the additional  
modulation for overshoot prevention. Refer to Section 8.6.2.1  
“Overshoot protection”  
3
Cwmax  
Set amplitude of continuous wave carrier to the maximum.  
If set, set_cw_amplitude in Register TxAmp has no influence on the  
continuous amplitude.  
2
TxInv  
TxSel  
If set, the resulting modulation signal defined by TxSel is inverted  
1 to 0  
Defines which signal is used as source for modulation  
00b ... no modulation  
01b ... TxEnvelope  
10b ... SigIn  
11b ... RFU  
9.8.4 Txl  
Table 125. Txl register (address 2Bh)  
Bit  
7
6
5
OvershootT1  
r/w  
4
3
2
1
0
Symbol  
tx_set_iLoad  
r/w  
Access  
rights  
Table 126. Txl bits  
Bit  
Symbol  
Description  
7 to 4  
OvershootT1 Overshoot value for Timer1. Refer to Section 8.6.2.1 “Overshoot  
protection”  
3 to 0  
tx_set_iLoad  
Factory trim value, sets the expected Tx load current.  
9.9 CRC configuration registers  
9.9.1 TxCrcPreset  
Table 127. TXCrcPreset register (address 2Ch)  
Bit  
7
RFU  
-
6
5
4
3
2
1
TxCRCInvert  
r/w  
0
Symbol  
TXPresetVal  
r/w  
TxCRCtype  
r/w  
TxCRCEn  
r/w  
Access  
rights  
Table 128. TxCrcPreset bits  
Bit  
7
Symbol  
RFU  
Description  
-
6 to 4  
TXPresetVal  
Specifies the CRC preset value for transmission (see Table 129).  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
80 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 128. TxCrcPreset bits  
Bit  
Symbol  
Description  
3 to 2  
TxCRCtype  
Defines which type of CRC (CRC8/CRC16/CRC5) is calculated:  
00h -- CRC5  
01h -- CRC8  
02h -- CRC16  
03h -- RFU  
1
0
TxCRCInvert if set, the resulting CRC is inverted and attached to the data frame  
(ISO/IEC 3309)  
TxCRCEn  
if set, a CRC is appended to the data stream  
Table 129. Transmitter CRC preset value configuration  
TXPresetVal[6...4]  
CRC16  
0000h  
6363h  
A671h  
FFFEh  
-
CRC8  
CRC5  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
00h  
00h  
12h  
12h  
BFh  
-
FDh  
-
-
-
-
-
-
User defined  
FFFFh  
User defined  
FFh  
User defined  
1Fh  
Remark: User defined CRC preset values can be configured by EEprom (see  
Section 8.7.2.1, Table 26 “Configuration area (Page 0)”).  
9.9.2 RxCrcCon  
Table 130. RxCrcCon register (address 2Dh)  
Bit  
7
RxForceCRCWrite  
r/w  
6
5
4
3
2
1
RxCRCInvert  
r/w  
0
RxCRCEn  
r/w  
Symbol  
RXPresetVal  
r/w  
RXCRCtype  
r/w  
Access  
rights  
Table 131. RxCrcCon bits  
Bit  
Symbol  
Description  
7
RxForceCrc  
Write  
If set, the received CRC byte(s) are copied to the FIFO.  
If cleared CRC Bytes are only checked, but not copied to the FIFO.  
This bit has to be always set in case of a not byte aligned CRC (e.g.  
ISO/IEC 18000-3 mode 3/ EPC Class-1HF)  
6 to 4  
RXPresetVal  
Defines the CRC preset value (Hex.) for transmission. (see Table 132).  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
81 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 131. RxCrcCon bits  
Bit  
Symbol  
Description  
3 to 2  
RxCRCtype  
Defines which type of CRC (CRC8/CRC16/CRC5) is calculated:  
00h -- CRC5  
01h -- CRC8  
02h -- CRC16  
03h -- RFU  
1
0
RxCrcInvert  
RxCrcEn  
If set, the CRC check is done for the inverted CRC.  
If set, the CRC is checked and in case of a wrong CRC an error flag is  
set. Otherwise the CRC is calculated but the error flag is not modified.  
Table 132. Receiver CRC preset value configuration  
RXPresetVal[6...4]  
CRC16  
0000h  
6363h  
A671h  
FFFEh  
-
CRC8  
CRC5  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
00h  
00h  
12h  
12h  
BFh  
-
FDh  
-
-
-
-
-
-
User defined  
FFFFh  
User defined  
FFh  
User defined  
1Fh  
9.10 Transmitter configuration registers  
9.10.1 TxDataNum  
Table 133. TxDataNum register (address 2Eh)  
Bit  
7
6
5
4
KeepBitGrid  
r/w  
3
2
1
TxLastBits  
r/w  
0
Symbol  
RFU  
RFU-  
RFU-  
DataEn  
r/w  
Access  
rights  
Table 134. TxDataNum bits  
Bit  
7 to 5  
4
Symbol  
RFU  
Description  
-
KeepBitGrid  
If set, the time between consecutive transmissions starts is a multiple  
of the ETU.  
3
DataEn  
If cleared - it is possible to send a single symbol pattern.  
If set - data is sent.  
2 to 0  
TxLastBits  
Defines how many bits of the last data byte to be sent. If set to 000b all  
bits of the last data byte are sent.  
Note - bits are skipped at the end of the byte.  
Example - Data byte B2h (sent LSB first).  
TxLastBits = 011b (3h) => 010b (LSB first) is sent  
TxLastBits = 110b (6h) => 010011b (LSB first) is sent  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
82 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
9.10.2 TxDATAModWidth  
Transmitter data modulation width register  
Table 135. TxDataModWidth register (address 2Fh)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
DModWidth  
r/w  
Access  
rights  
Table 136. TxDataModWidth bits  
Bit  
Symbol  
Description  
7 to 0  
DModWidth  
Specifies the length of a pulse for sending data with enabled pulse  
modulation. The length is given by the number of carrier clocks + 1.  
A pulse can never be longer than from the start of the pulse to the end  
of the bit. The starting position of a pulse is given by the setting of  
TxDataMod.DPulseType. Note: This register is only used if Miller  
modulation (ISO/IEC 14443A PCD) is used. The settings are also  
used for the modulation width of start and/or stop symbols.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
83 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
9.10.3 TxSym10BurstLen  
If a protocol requires a burst (an unmodulated subcarrier) the length can be defined with  
this TxSymBurstLen, the value high or low can be defined by TxSym10BurstCtrl.  
Table 137. TxSym10BurstLen register (address 30h)  
Bit  
7
RFU  
-
6
5
4
3
RFU  
-
2
1
RFU  
-
0
Symbol  
Sym1Burst Len  
r/w  
Access  
rights  
Table 138. TxSym10BurstLen bits  
Bit  
7
Symbol  
Description  
RFU  
-
6 to 4  
Sym1BurstLen Specifies the number of bits issued for symbol 1 burst. The 3 bits  
encodes a range from 8 to 256 bit:  
00h - 8bit  
01h - 16bit  
02h - 32bit  
04h - 48bit  
05h - 64bit  
06h - 96bit  
07h - 128bit  
08h - 256bit  
3 to 0  
RFU  
-
9.10.4 TxWaitCtrl  
Table 139. TxWaitCtrl register (address 31h); reset value: C0h  
Bit  
7
TxWaitStart  
r/w  
6
5
4
TxWait High  
r/w  
3
2
1
RFU  
-
0
Symbol  
TxWaitEtu  
r/w  
Access  
rights  
Table 140. TXWaitCtrl bits  
Bit  
Symbol  
Description  
7
TxWaitStart  
If cleared, the TxWait time is starting at the End of the send data  
(TX).  
If set, the TxWait time is starting at the End of the received data  
(RX).  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
84 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 140. TXWaitCtrl bits  
Bit  
Symbol  
Description  
6
TxWaitEtu  
If cleared, the TxWait time is TxWait 16/13.56 MHz.  
If set, the TxWait time is TxWait 0.5 / DBFreq (DBFreq is the  
frequency of the bit stream as defined by TxDataCon).  
5 to 3  
2 to 0  
TxWait High  
Bit extension of TxWaitLo. TxWaitCtrl bit 5 is MSB.  
TxStopBitLength  
Defines stop-bits and EGT (= stop-bit + extra guard time EGT) to  
be send:  
0h: no stop-bit, no EGT  
1h: 1 stop-bit, no EGT  
2h: 1 stop-bit + 1 EGT  
3h: 1 stop-bit + 2 EGT  
4h: 1 stop-bit + 3 EGT  
5h: 1 stop-bit + 4 EGT  
6h: 1 stop-bit + 5 EGT  
7h: 1 stop-bit + 6 EGT  
Note: This is only valid for ISO/IEC14443 Type B  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
85 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
9.10.5 TxWaitLo  
Table 141. TxWaitLo register (address 32h)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
TxWaitLo  
r/w  
Access  
rights  
Table 142. TxWaitLo bits  
Bit  
Symbol  
Description  
7 to 0  
TxWaitLo  
Defines the minimum time between receive and send or between two  
send data streams  
Note: TxWait is a 11bit register (additional 3 bits are in the TxWaitCtrl  
register)!  
See also TxWaitEtu and TxWaitStart.  
9.11 FrameCon  
Table 143. FrameCon register (address 33h)  
Bit  
7
TxParityEn  
r/w  
6
RxParityEn  
r/w  
5
-
4
-
3
2
1
0
Symbol  
StopSym  
r/w  
StartSym  
r/w  
Access  
rights  
RFU  
RFU  
Table 144. FrameCon bits  
Bit  
Symbol  
Description  
7
TxParityEn  
If set, a parity bit is calculated and appended to each byte  
transmitted.  
6
RxParityEn  
If set, the parity calculation is enabled. The parity is not transferred to  
the FIFO.  
5 to 4  
3 to 2  
-
RFU  
StopSym  
Defines which symbol is sent as stop-symbol:  
0h: No symbol is sent  
1h: Symbol1 is sent  
2h symbol2 is sent  
3h Symbol3 is sent  
1 to 0  
StartSym  
Defines which symbol is sent as start-symbol:  
0h: No symbol is sent  
1h: Symbol1 is sent  
2h symbol2 is sent  
3h Symbol3 is sent  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
86 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
9.12 Receiver configuration registers  
9.12.1 RxSofD  
Table 145. RxSofD register (address 34h)  
Bit  
7
6
5
4
SOFDetected  
dy  
3
RFU  
-
2
1
0
Symbol  
RFU  
-
SOF_En  
r/w  
SubC_En  
r/w  
SubC_Detected  
dy  
SubC_Present  
r
Access  
rights  
Table 146. RxSofD bits  
Bit Symbol  
7 to 6 RFU  
Description  
-
5
4
3
2
1
0
SOF_En  
If set and a SOF is detected an RxSOFIrq is raised.  
SOF_Detected  
RFU  
Shows that a SOF is or was detected. Can be cleared by SW.  
-
SubC_En  
If set and a subcarrier is detected an RxSOFIrq is raised.  
Shows that a subcarrier is or was detected. Can be cleared by SW.  
Shows that a subcarrier is currently detected.  
SubC_Detected  
SubC_Present  
9.12.2 RxCtrl  
Table 147. RxCtrl register (address 35h)  
Bit  
7
RxAllowBits  
r/w  
6
RxMultiple  
r/w  
5
RFU  
-
4
RFU  
-
3
EMD_Sup  
r/w  
2
1
0
Symbol  
Baudrate  
r/w  
Access  
rights  
Table 148. RxCtrl bits  
Bit  
Symbol  
Description  
7
RxAllowBits  
If set, data is written into FIFO even if CRC is enabled, and no  
complete byte has been received.  
6
RxMultiple  
If set, RxMultiple is activated and the receiver will not terminate  
automatically (refer Section 8.10.3.5 “Receive command”).  
If set to logic 1, at the end of a received data stream an error byte is  
added to the FIFO. The error byte is a copy of the Error register.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
87 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 148. RxCtrl bits  
Bit  
5 to 4  
3
Symbol  
RFU  
Description  
-
EMD_Sup  
Enables the EMD suppression according ISO/IEC14443. If an error  
occurs within the first three bytes, these three bytes are assumed to be  
EMD, ignored and the FIFO is reset. A collision is treated as an error  
as well If a valid SOF was received, the EMD_Sup is set and a frame  
of less than 3 bytes had been received. RX_IRq is not set in this EMD  
error cases. If RxForceCRCWrite is set, the FIFO should not be read  
out before three bytes are written into.  
2 to 0  
Baudrate  
Defines the baud rate of the receiving signal.  
4h: 106 kBd  
5h: 212 kBd  
6h: 424 kBd  
7h: 847 kBd  
all remaining values are RFU  
9.12.3 RxWait  
Selects internal receiver settings.  
Table 149. RxWait register (address 36h)  
Bit  
7
RxWaitEtu  
r/w  
6
5
4
3
2
1
0
Symbol  
RxWait  
r/w  
Access  
rights  
Table 150. RxWait bits  
Bit  
Symbol  
Description  
7
RXWaitEtu  
If set to 0, the RxWait time is RxWait 16/13.56 MHz.  
If set to 1, the RxWait time is RxWait (0.5/DBFreq).  
Defines the time after sending, where every input is ignored.  
6 to 0  
RxWait  
9.12.4 RxThreshold  
Selects minimum threshold level for the bit decoder.  
Table 151. RxThreshold register (address 37h)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
MinLevel  
r/w  
MinLevelP  
r/w  
Access  
rights  
Table 152. RxThreshold bits  
Bit  
Symbol  
Description  
Defines the MinLevel of the reception.  
Note: The MinLevel should be higher than the noise level in the system.  
7 to 4  
MinLevel  
3 to 0  
MinLevelP Defines the MinLevel of the phase shift detector unit.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
88 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
9.12.5 Rcv  
Table 153. Rcv register (address 38h)  
Bit  
7
Rcv_Rx_single  
r/w  
6
Rx_ADCmode  
r/w  
5
4
3
2
1
0
Symbol  
SigInSel  
r/w  
RFU  
-
CollLevel  
r/w  
Access  
rights  
Table 154. Rcv bits  
Bit  
Symbol  
Description  
7
Rcv_Rx_single  
Single RXP Input Pin Mode;  
0: Fully Differential  
1: Quasi-Differential  
6
Rx_ADCmode  
SigInSel  
Defines the operation mode of the Analog Digital Converter (ADC)  
0: normal reception mode for ADC  
1: LPCD mode for ADC  
5 to 4  
Defines input for the signal processing unit:  
0h - idle  
1h - internal analog block (RX)  
2h - signal in over envelope (ISO/IEC14443A)  
3h - signal in over s3c-generic  
3 to 2  
1 to 0  
RFU  
-
CollLevel  
Defines the strength of a signal to be interpreted as a collision:  
0h - Collision has at least 1/8 of signal strength  
1h - Collision has at least 1/4 of signal strength  
2h - Collision has at least 1/2 of signal strength  
3h - Collision detection is switched off  
9.12.6 RxAna  
This register allows to set the gain (rcv_gain) and high pass corner frequencies  
(rcv_hpcf).  
Table 155. RxAna register (address 39h)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
VMid_r_sel  
r/w  
RFU  
-
rcv_hpcf  
r/w  
rcv_gain  
r/w  
Access  
rights  
Table 156. RxAna bits  
Bit  
Symbol  
VMid_r_setl  
RFU  
Description  
Factory trim value, needs to be 0.  
7, 6  
5, 4  
3, 2  
rcv_hpcf  
The rcv_hpcf [1:0] signals allow 4 different settings of the base band  
amplifier lower cut-off frequency from ~40 kHz to ~300 kHz.  
1 to 0  
rcv_gain  
With rcv_gain[1:0] four different gain settings from 30 dB and 60 dB  
can be configured (differential output voltage/differential input voltage).  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
89 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 157. Effect of gain and highpass corner register settings  
rcv_gain  
rcv_hpcf  
(Hex.)  
fl (kHz)  
fU (MHz)  
gain (dB20)  
bandwith  
(MHz)  
(Hex.)  
03  
03  
03  
03  
02  
02  
02  
02  
01  
01  
01  
01  
00  
00  
00  
00  
00  
01  
02  
03  
00  
01  
02  
03  
00  
01  
02  
03  
00  
01  
02  
03  
38  
2,3  
2,4  
2,6  
2,9  
2,3  
2,4  
2,6  
3,0  
2,6  
2,7  
2,9  
3,3  
2,6  
2,7  
2,9  
3,4  
60  
59  
58  
55  
51  
50  
49  
41  
43  
42  
41  
39  
35  
34  
33  
30  
2,3  
2,3  
2,5  
2,6  
2,3  
2,3  
2,4  
2,7  
2,6  
2,6  
2,7  
3,0  
2,6  
2,6  
2,7  
3,1  
79  
150  
264  
41  
83  
157  
272  
42  
84  
157  
273  
43  
85  
159  
276  
9.13 Clock configuration  
9.13.1 SerialSpeed  
This register allows to set speed of the RS232 interface. The default speed is set to  
9,6kbit/s. The transmission speed of the interface can be changed by modifying the  
entries for BR_T0 and BR_T1. The transfer speed can be calculated by using the  
following formulas:  
BR_T0 = 0: transfer speed = 27.12 MHz / (BR_T1 + 1)  
BR_T0 > 0: transfer speed = 27.12 MHz / (BR_T1 + 33) / 2^(BR_T0 1)  
The framing is implemented with 1 startbit, 8 databits and 1 stop bit. A parity bit is not  
used. Transfer speeds above 1228,8 kbit/s are not supported.  
Table 158. SerialSpeed register (address3Bh); reset value: 7Ah  
Bit  
7
6
5
4
3
2
BR_T1  
r/w  
1
0
Symbol  
BR_T0  
r/w  
Access  
rights  
Table 159. SerialSpeed bits  
Bit Symbol Description  
7 to 5 BR_T0 BR_T0 = 0: transfer speed = 27.12 MHz / (BR_T1 + 1)  
BR_T0 > 0: transfer speed = 27.12 MHz / (BR_T1 + 33) / 2^(BR_T0 1)  
4 to 0 BR_T1 BR_T0 = 0: transfer speed = 27.12 MHz / (BR_T1 + 1)  
BR_T0 > 0: transfer speed = 27.12 MHz / (BR_T1 + 33) / 2^(BR_T0 1)  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
90 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 160. RS232 speed settings  
Transfer speed (kbit/s)  
SerialSpeed register content (Hex.)  
7,2  
FA  
EB  
DA  
CB  
AB  
9A  
7A  
74  
9,6  
14,4  
19,2  
38,4  
57,6  
115,2  
128,0  
230,4  
460,8  
921,6  
1228,8  
5A  
3A  
1C  
15  
9.13.2 LPO_Trimm  
Table 161. LPO_Trim register (address 3Ch)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
lpo_trimm  
r/w  
Access  
rights  
Table 162. LPO_Trim bits  
Bit  
Symbol  
Description  
7 to 0  
lpo_trimm  
Trimm value. Refer to Section 8.8.3 “Low-Power Oscillator (LPO)”  
Note: If the trimm value is increased, the frequency of the oscillator  
decreases.  
9.13.3 PLL_Ctrl Register  
The PLL_Ctrl register implements the control register for the IntegerN PLL. Two stages  
exist to create the ClkOut signal from the 27,12MHz input. In the first stage the 27,12Mhz  
input signal is multiplied by the value defined in PLLDiv_FB and divided by two, and the  
second stage divides this frequency by the value defined by PLLDIV_Out.  
Table 163. PLL_Ctrl register (address3Dh)  
Bit  
7
6
5
4
3
ClkOut_En  
r/w  
2
1
0
Symbol  
ClkOutSel  
r/w  
PLL_PD  
r/w  
PLLDiv_FB  
r/w  
Access  
rights  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
91 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 164. PLL_Ctrl register bits  
Bit  
Symbol  
Description  
7 to 4  
CLkOutSel  
0h - pin CLKOUT is used as I/O  
1h - pin CLKOUT shows the output of the analog PLL  
2h - pin CLKOUT is hold on 0  
3h - pin CLKOUT is hold on 1  
4h - pin CLKOUT shows 27.12 MHz from the crystal  
5h - pin CLKOUT shows 13.56 MHz derived from the crystal  
6h - pin CLKOUT shows 6.78 MHz derived from the crystal  
7h - pin CLKOUT shows 3.39 MHz derived from the crystal  
8h - pin CLKOUT is toggled by the Timer0 overflow  
9h - pin CLKOUT is toggled by the Timer1 overflow  
Ah - pin CLKOUT is toggled by the Timer2 overflow  
Bh - pin CLKOUT is toggled by the Timer3 overflow  
Ch...Fh - RFU  
3
ClkOut_En  
PLL_PD  
Enables the clock at Pin CLKOUT  
2
PLL power down  
1-0  
PLLDiv_FB  
PLL feedback divider (see table 174)  
Table 165. Setting of feedback divider PLLDiv_FB [1:0]  
Bit 1  
Bit 0  
Division  
0
0
1
1
0
1
0
1
23 (VCO frequency 312Mhz)  
27 (VCO frequency 366MHz)  
28 (VCO frequency 380Mhz)  
23 (VCO frequency 312Mhz)  
9.13.4 PLLDiv_Out  
Table 166. PLLDiv_Out register (address 3Eh)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
PLLDiv_Out  
r/w  
Access  
rights  
Table 167. PLLDiv_Out bits  
Bit  
Symbol  
Description  
PLL output divider factor; Refer to Section 8.8.2  
7 to 0  
PLLDiv_Out  
Table 168. Setting for the output divider ratio PLLDiv_Out [7:0]  
Value  
Division  
RFU  
0
1
2
3
4
RFU  
RFU  
RFU  
RFU  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
92 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 168. Setting for the output divider ratio PLLDiv_Out [7:0]  
Value  
5
Division  
RFU  
RFU  
RFU  
8
6
7
8
9
9
10  
...  
10  
...  
253  
254  
253  
254  
9.14 Low-power card detection configuration registers  
The LPCD registers contain the settings for the low-power card detection. The setting for  
LPCD_IMax (6 bits) is done by the two highest bits (bit 7, bit 6) of the registers  
LPCD_QMin, LPCD_QMax and LPCD_IMin each.  
9.14.1 LPCD_QMin  
Table 169. LPCD_QMin register (address 3Fh)  
Bit  
7
LPCD_IMax.5  
r/w  
6
LPCD_IMax.4  
r/w  
5
4
3
2
1
0
Symbol  
LPCD_QMin  
r/w  
Access  
rights  
Table 170. LPCD_QMin bits  
Bit  
Symbol  
Description  
7, 6  
LPCD_IMax  
Defines the highest two bits of the higher border for the LPCD. If the  
measurement value of the I channel is higher than LPCD_IMax, a  
LPCD interrupt request is indicated by bit IRQ0.LPCDIrq.  
5 to 0  
LPCD_QMin  
Defines the lower border for the LPCD. If the measurement value of  
the Q channel is higher than LPCD_QMin, a LPCDinterrupt request is  
indicated by bit IRQ0.LPCDIrq.  
9.14.2 LPCD_QMax  
Table 171. LPCD_QMax register (address 40h)  
Bit  
7
LPCD_IMax.3  
r/w  
6
LPCD_IMax.2  
r/w  
5
4
3
2
1
0
Symbol  
LPCD_QMax  
r/w  
Access  
rights  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
93 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 172. LPCD_QMax bits  
Bit  
Symbol  
Description  
7
LPCD_IMax.3  
Defines the bit 3 of the high border for the LPCD. If the measurement  
value of the I channel is higher than LPCD IMax, a LPCD IRQ is  
raised.  
6
LPCD_IMax.2  
LPCD_QMax  
Defines the bit 2 of the high border for the LPCD. If the measurement  
value of the I channel is higher than LPCD IMax, a LPCD IRQ is  
raised.  
5 to 0  
Defines the high border for the LPCD. If the measurement value of  
the Q channel is higher than LPCD QMax, a LPCD IRQ is raised.  
9.14.3 LPCD_IMin  
Table 173. LPCD_IMin register (address 41h)  
Bit  
7
LPCD_IMax.1  
r/w  
6
5
4
3
2
1
0
Symbol  
LPCD_IMax.0 LPCD_IMin  
r/w  
Access  
rights  
r/w  
Table 174. LPCD_IMin bits  
Bit  
Symbol  
Description  
7 to 6  
LPCD_IMax  
Defines lowest two bits of the higher border for the low-power card  
detection (LPCD). If the measurement value of the I channel is higher  
than LPCD IMax, a LPCD IRQ is raised.  
5 to 0  
LPCD_IMin  
Defines the lower border for the ow power card detection. If the  
measurement value of the I channel is lower than LPCD IMin, a LPCD  
IRQ is raised.  
9.14.4 LPCD_Result_I  
Table 175. LPCD_Result_I register (address 42h)  
Bit  
7
RFU-  
-
6
RFU-  
-
5
4
3
2
1
0
Symbol  
LPCD_Result_I  
r
Access  
rights  
Table 176. LPCD_I_Result bits  
Bit  
Symbol  
Description  
7 to 6  
5 to 0  
RFU  
-
LPCD_Result_I Shows the result of the last low-power card detection (I-Channel).  
9.14.5 LPCD_Result_Q  
Table 177. LPCD_Result_Q register (address 43h)  
Bit  
7
6
LPCD_Irq_Clr  
r/w  
5
4
3
2
1
0
Symbol  
RFU  
LPCD_Reslult_Q  
r
Access  
rights  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
94 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 178. LPCD_Q_Result bits  
Bit  
7
Symbol  
RFU  
Description  
-
6
LPCD_Irq_Clr  
If set no LPCD IRQ is raised any more until the next low-power  
card detection procedure. Can be used by software to clear the  
interrupt source.  
5 to 0  
LPCD_Q_Result  
Shows the result of the last ow power card detection (Q-Channel).  
9.15 Pin configuration  
9.15.1 PinEn  
Table 179. PinEn register (address 44h)  
Bit  
7
6
5
IFSEL1_EN  
r/w  
4
IFSEL0_EN  
r/w  
3
2
1
0
Symbol  
SIGIN_EN CLKOUT_EN  
r/w r/w  
TCK_EN  
r/w  
TDI_EN  
r/w  
TDO_EN TMS_EN  
r/w r/w  
Access  
rights  
Table 180. PinEn bits  
Bit  
Symbol  
Description  
7
SIGIN_EN  
Enables the output functionality on SIGIN (pin 5). The pin is then used  
as I/O.  
6
5
4
3
CLKOUT_EN Enables the output functionality of the CLKOUT (pin 22). The pin is  
then used as I/O. The CLKOUT function is switched off.  
IFSEL1_EN  
IFSEL0_EN  
TCK_EN  
Enables the output functionality of the IFSEL1 (pin 27). The pin is then  
used as I/O.  
Enables the output functionality of the IFSEL0 (pin 26). The pin is then  
used as I/O.  
Enables the output functionality of the TCK (pin 4) of the boundary  
scan interface. The pin is then used as I/O. If the boundary scan is  
activated in EEPROM, this bit has no function.  
2
1
0
TDI_EN  
TDO_EN  
TMS_EN  
Enables the output functionality of the TDI (pin 2) of the boundary scan  
interface. The pin is then used as I/O. If the boundary scan is activated  
in EEPROM, this bit has no function.  
Enables the output functionality of the TDO (pin 1) of the boundary  
scan interface. The pin is then used as I/O. If the boundary scan is  
activated in EEPROM, this bit has no function.  
Enables the output functionality of the TMS (pin 3) of the boundary  
scan interface. The pin is then used as I/O. If the boundary scan is  
activated in EEPROM, this bit has no function.  
9.15.2 PinOut  
Table 181. PinOut register (address 45h)  
Bit  
7
6
5
4
3
2
1
0
Symbol SIGIN_OUT CLKOUT_OUT IFSEL1_OUT IFSEL0_OUT TCK_OU TMI_OUT TDO_OUT TMS_OUT  
T
Access  
rights  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
95 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 182. PinOut bits  
Bit  
7
Symbol  
Description  
SIGIN_OUT  
Output buffer of the SIGIN pin  
6
CLKOUT_OUT Output buffer of the CLKOUT pin  
5
IFSEL1_OUT  
IFSEL0_OUT  
TCK_OUT  
TDI_OUT  
Output buffer of the IFSEL1 pin  
Output buffer of the IFSEL0 pin  
Output buffer of the TCK pin  
Output buffer of the TDI pin  
Output buffer of the TDO pin  
Output buffer of the TMS pin  
4
3
2
1
TDO_OUT  
TMS_OUT  
0
9.15.3 PinIn  
Table 183. PinIn register (address 46h)  
Bit  
7
6
5
4
3
2
TDI_IN  
r
1
0
Symbol  
SIGIN_IN CLKOUT_IN IFSEL1_IN IFSEL0_IN  
TCK_IN  
r
TDO_IN  
r
TMS_IN  
r
Access  
rights  
r
r
r
r
Table 184. PinIn bits  
Bit  
7
Symbol  
Description  
SIGIN_IN  
Input buffer of the SIGIN pin  
Input buffer of the CLKOUT pin  
Input buffer of the IFSEL1 pin  
Input buffer of the IFSEL0 pin  
Input buffer of the TCK pin  
Input buffer of the TDI pin  
Input buffer of the TDO pin  
Input buffer of the TMS pin  
6
CLKOUT_IN  
IFSEL1_IN  
IFSEL0_IN  
TCK_IN  
5
4
3
2
TDI_IN  
1
TDO_IN  
0
TMS_IN  
9.15.4 SigOut  
Table 185. SigOut register (address 47h)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Pad  
RFU  
SigOutSel  
Speed  
Access  
rights  
r/w  
-
r/w  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
96 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 186. SigOut bits  
Bit  
Symbol  
Description  
7
PadSpeed  
If set, the I/O pins are supporting a fast switching mode.The fast mode  
for the I/O’s will increase the peak current consumption of the device,  
especially if multiple I/Os are switching at the same time. The power  
supply needs to be designed to deliver this peak currents.  
6 to 4  
3 to 0  
RFU  
-
SIGOutSel  
0h, 1h - The pin SIGOUT is 3-state  
2h - The pin SIGOUT is 0  
3h - The pin SIGOUT is 1  
4h - The pin SIGOUT shows the TX-envelope  
5h - The pin SIGOUT shows the TX-active signal  
6h - The pin SIGOUT shows the S3C (generic) signal  
7h - The pin SIGOUT shows the RX-envelope  
(only valid for ISO/IEC 14443A, 106 kBd)  
8h - The pin SIGOUT shows the RX-active signal  
9h - The pin SIGOUT shows the RX-bit signal  
9.16 Version register  
9.16.1 Version  
Table 187. Version register (address 7Fh)  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Version  
r
SubVersion  
r
Access  
rights  
Table 188. Version bits  
Bit  
Symbol  
Description  
7 to 4  
3 to 0  
Version  
Includes the version of the MFRC630 silicon.  
Includes the subversion of the MFRC630 silicon.  
SubVersion  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
97 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
10. Limiting values  
Table 189. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
VDD supply voltage  
Conditions  
Min  
-0.5  
0.5  
0.5  
-0.5  
-0.5  
-
Max  
+5.5  
+5.5  
+5.5  
+2.0  
+2.0  
1125  
2000  
Unit  
V
VDD(PVDD) PVDD supply voltage  
VDD(TVDD) TVDD supply voltage  
V
V
Vi(RXP)  
Vi(RXN)  
Ptot  
input voltage on pin RXP  
input voltage on pin RXN  
total power dissipation  
V
V
per package  
mW  
V
VESD(HBM) electrostatic discharge voltage Human Body Model (HBM);  
-
1500 , 100 pF;  
JESD22-A114-B  
VESD(  
electrostatic discharge voltage Charge Device Model (CDM);  
-
-
500  
150  
V
CDM  
)
Tj(max)  
maximum junction  
temperature  
°C  
11. Recommended operating conditions  
Table 190. Operating conditions  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
VDD  
supply voltage  
3
5
5
5
-
5.5  
5.5  
5.5  
V
V
V
[1]  
VDD(TVDD) TVDD supply voltage  
VDD(PVDD) PVDD supply voltage  
3
3
Tamb  
ambient temperature  
25  
+85 C  
[1] VDD(PVDD) must always be the same or lower than VDD  
.
12. Thermal characteristics  
Table 191. Thermal characteristics  
Symbol Parameter  
Conditions  
Package Typ Unit  
Rth(j-a)  
thermal resistance from junction to  
ambient  
in still air with exposed pin soldered on a  
4 layer JEDEC PCB  
HVQFN32 40 K/W  
13. Characteristics  
Table 192. Characteristics  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Input characteristics I/O Pin Characteristics IF3-SDA in I2C configuration  
ILI  
input leakage current  
LOW-level input voltage  
HIGH-level input voltage  
output disabled  
-
2
-
100  
nA  
V
VIL  
VIH  
VOL  
0.5  
+0.3VDD(PVDD)  
VDD(PVDD) + 0.5  
0.3  
0.7VDD(PVDD)  
-
-
V
LOW-level output voltage IOL = 3 mA  
-
V
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
98 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 192. Characteristics …continued  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IOL  
LOW-level output current VOL = 0.4 V; Standard  
mode, Fast mode  
4
-
-
mA  
V
OL = 0.6 V; Standard  
6
-
-
-
-
mA  
ns  
mode, Fast mode  
tf(o)  
output fall time  
Standard mode, Fast  
mode, CL < 400 pF  
250  
Fast mode +; CL < 550 pF  
-
-
-
120  
50  
ns  
ns  
tSP  
pulse width of spikes that  
must be suppressed by  
the input filter  
0
Ci  
input capacitance  
load capacitance  
-
3.5  
5
pF  
CL  
Standard mode  
Fast mode  
-
-
-
-
400  
550  
-
pF  
-
pF  
tEER  
EEPROM data retention  
time  
Tamb = +55 °C  
10  
year  
NEEC  
EEPROM endurance  
under all operating  
5 x 105  
-
-
cycle  
(number of programming conditions  
cycles)  
Analog and digital supply AVDD,DVDD  
VDDA  
VDDD  
CL  
analog supply voltage  
digital supply voltage  
load capacitance  
-
1.8  
1.8  
-
-
-
-
V
-
V
AVDD  
DVDD  
220  
220  
470  
470  
nF  
nF  
CL  
load capacitance  
Current consumption  
Istb  
IDD  
standby current  
supply current  
Standby bit = 1  
modem on  
-
-
-
-
3
6
A  
17  
20  
0.5  
200  
mA  
mA  
mA  
modem off  
0.45  
100  
IDD(TVDD) TVDD supply current  
I/O pin characteristics SIGIN, SIGOUT, CLKOUT, IFSEL0,  
IFSEL1, TCK, TMS, TDI, TDO, IRQ, IF0, IF1, IF2, SCL2, SDA2  
ILI  
input leakage current  
LOW-level input voltage  
HIGH-level input voltage  
output disabled  
-
50  
-
500  
nA  
V
VIL  
VIH  
VOL  
0.5  
0.3VDD(PVDD)  
VDD(PVDD) + 0.5  
0.4  
0.7VDD(PVDD)  
-
-
V
LOW-level output voltage IOL = 4 mA,  
VDD(PVDD) = 5.0 V  
-
V
IOL = 4 mA,  
DD(PVDD) = 3.3 V  
-
-
0.4  
-
V
V
VOH  
HIGH-level output voltage IOL = 4 mA,  
VDD(PVDD) = 5.0 V  
4.6  
2.9  
-
-
V
IOL = 4 mA,  
-
-
V
VDD(PVDD) = 3.3 V  
Ci  
input capacitance  
2.5  
4.5  
pF  
Pull-up resistance for TCK, TMS, TDI, IF2  
Rpu  
pull-up resistance  
50  
72  
120  
K  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
99 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 192. Characteristics …continued  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Pin characteristics AUX 1, AUX 2  
Vo  
CL  
output voltage  
0
-
-
-
1.8  
V
load capacitance  
400  
pF  
Pin characteristics RXP, RXN  
Vi  
input voltage  
0
2
-
-
1.8  
5
V
Ci  
input capacitance  
modulation voltage  
3.5  
2.5  
pF  
mV  
Vmod(pp)  
Vmod(pp) = Vi(pp)(max) Vi(pp)  
-
(min)  
Vpp  
signal on RXP, RXN  
-
-
1.65  
V
Pins TX1 and TX2  
Vo  
Ro  
output voltage  
output resistance  
Vss(TVSS)  
-
-
VDD(TVDD)  
-
V
1.5  
Current consumption  
Ipd  
power-down current  
power-down  
-
-
-
-
-
-
-
8
200  
6
nA  
[1]  
[1]  
standby current  
3
A  
A  
mA  
mA  
A  
mA  
ILPCD  
IDD  
LPCD sleep current  
supply current  
3
6
17  
0.45  
-
20  
0.5  
10  
200  
modem off; transceiver off  
no load on digital pin  
[2]  
IDD(PVDD) PVDD supply current  
IDD(TVDD) TVDD supply current  
Clock frequency Pin CLKOUT  
[3][4][5]  
100  
fclk  
clock frequency  
clock duty cycle  
configured to 27.12 Mhz  
pin XTAL1  
-
-
27.12  
50  
-
-
MHz  
%
clk  
Crystal oscillator  
Vo(p-p)  
peak-to-peak output  
-
1
-
V
voltage  
Vi  
Ci  
input voltage  
input capacitance  
pin XTAL1  
pin XTAL1  
0
-
-
1.8  
-
V
3
pF  
Typical input requirements  
fxtal  
crystal frequency  
-
-
27.12  
50  
-
MHz  
ESR  
equivalent series  
resistance  
100  
CL  
load capacitance  
-
-
10  
50  
-
pF  
Pxtal  
crystal power dissipation  
100  
W  
[1] Ipd is the total current for all supplies.  
[2] IDD(PVDD) depends on the overall load at the digital pins.  
[3] IDD(TVDD) depends on VDD(TVDD) and the external circuit connected to pins TX1 and TX2.  
[4] During typical circuit operation, the overall current is below 100 mA.  
[5] Typical value using a complementary driver configuration and an antenna matched to 40 between pins TX1 and TX2 at 13.56 MHz.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
100 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
V
mod  
V
V
i(p-p)(min)  
i(p-p)(max)  
VMID  
13.56 MHz  
carrier  
0 V  
001aak012  
Fig 29. Pin RX input voltage  
13.1 Timing characteristics  
Table 193. SPI timing characteristics  
Symbol  
tSCKL  
Parameter  
Conditions  
Min Typ Max Unit  
SCK LOW time  
SCK HIGH time  
50  
50  
25  
-
-
-
-
-
-
ns  
ns  
ns  
tSCKH  
th(SCKH-D)  
SCK HIGH to data input hold SCK to changing MOSI  
time  
tsu(D-SCKH)  
th(SCKL-Q)  
data input to SCK HIGH  
set-up time  
changing MOSI to SCK  
25  
-
-
-
-
-
-
ns  
ns  
ns  
ns  
SCK LOW to data output  
hold time  
SCK to changing MISO  
25  
-
t(SCKL-NSSH) SCK LOW to NSS HIGH  
time  
0
tNSSH  
NSS HIGH time  
before communication  
50  
-
Remark: To send more bytes in one data stream the NSS signal must be LOW during the  
send process. To send more than one data stream the NSS signal must be HIGH between  
each data stream.  
Table 194. I2C-bus timing in fast mode and fast mode plus  
Symbol Parameter  
Conditions  
Fast mode Fast mode Unit  
Plus  
Min Max Min Max  
fSCL  
SCL clock frequency  
0
400  
-
0
1000 kHz  
tHD;STA  
hold time (repeated) START  
condition  
after this period,  
the first clock pulse  
is generated  
600  
260  
-
ns  
tSU;STA  
set-up time for a repeated  
START condition  
600  
-
260  
-
ns  
tSU;STO set-up time for STOP condition  
600  
1300  
600  
0
-
260  
500  
260  
-
-
-
-
ns  
ns  
ns  
tLOW  
tHIGH  
LOW period of the SCL clock  
HIGH period of the SCL clock  
-
-
tHD;DAT data hold time  
900  
450 ns  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
101 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Table 194. I2C-bus timing in fast mode and fast mode plus …continued  
Symbol Parameter  
Conditions  
Fast mode Fast mode Unit  
Plus  
Min Max Min Max  
tSU;DAT  
data set-up time  
rise time  
100  
20  
-
-
-
-
-
-
ns  
tr  
tf  
tr  
SCL signal  
SCL signal  
300  
300  
300  
120 ns  
120 ns  
120 ns  
fall time  
20  
rise time  
SDA and SCL  
signals  
20  
tf  
fall time  
SDA and SCL  
signals  
20  
300  
-
-
120 ns  
tBUF  
bus free time between a STOP  
and START condition  
1.3  
0.5  
-
s  
SDA  
t
t
t
t
r
f
SU;DAT  
SP  
t
t
t
t
BUF  
LOW  
f
HD;STA  
SCL  
t
t
t
SU;STO  
r
HIGH  
t
t
SU;STA  
HD;STA  
t
HD;DAT  
S
Sr  
P
S
001aaj635  
Fig 30. Timing for fast and standard mode devices on the I2C-bus  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
102 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
14. Application information  
A typical application diagram using a complementary antenna connection to the  
MFRC630 is shown in Figure 31.  
The antenna tuning and RF part matching is described in the application note Ref. 1 and  
Ref. 2.  
VDD  
PVDD  
25  
TVDD  
18  
8
C
C
RXN  
vmid  
AVDD  
RXN  
9
13  
14  
17  
16  
R1  
VMID  
TX1  
R2  
PDOWN  
21  
C1  
C1  
L0  
Ra  
C2  
host  
interface  
antenna  
Lant  
READER IC  
C0  
C0  
MICRO-  
PROCESSOR  
28-31  
32  
TVSS  
TX2  
IRQ  
C2  
Ra  
L0  
15  
14  
12  
DVDD  
7
RXP  
R3  
R4  
33  
19  
20  
XTAL2  
C
RXP  
VSS XTAL1  
27.12 MHz  
001aam269  
Fig 31. Typical application antenna circuit diagram  
14.1 Antenna design description  
The matching circuit for the antenna consists of an EMC low pass filter (L0 and C0), a  
matching circuitry (C1 and C2), and a receiving circuits (R1 = R3, R2 = R4, C3 = C5 and  
C4 = C6;), and the antenna itself. The receiving circuit component values needs to be  
designed for operation with the MFRC630. A reuse of dedicated antenna designs done for  
other products without adaptation of component values will result in degraded  
performance.  
For a more detailed information about designing and tuning the antenna, please refer to  
the relevant application notes:  
MICORE reader IC family; Directly Matched Antenna Design, Ref. 1 and  
MIFARE (14443A) 13.56 MHz RFID Proximity Antennas, Ref. 2.  
14.1.1 EMC low pass filter  
The MIFARE system operates at a frequency of 13.56 MHz. This frequency is derived  
from a quartz oscillator to clock the MFRC630 and is also the basis for driving the antenna  
with the 13.56 MHz energy carrier. This will not only cause emitted power at 13.56 MHz  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
103 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
but will also emit power at higher harmonics. The international EMC regulations define the  
amplitude of the emitted power in a broad frequency range. Thus, an appropriate filtering  
of the output signal is necessary to fulfil these regulations.  
Remark: The PCB layout has a major influence on the overall performance of the filter.  
14.1.2 Antenna matching  
Due to the impedance transformation of the given low pass filter, the antenna coil has to  
be matched to a certain impedance. The matching elements C1 and C2 can be estimated  
and have to be fine tuned depending on the design of the antenna coil.  
The correct impedance matching is important to provide the optimum performance. The  
overall quality factor has to be considered to guarantee a proper ISO/IEC 14443  
communication scheme. Environmental influences have to be considered as well as  
common EMC design rules.  
For details refer to the NXP application notes.  
14.1.3 Receiving circuit  
The internal receiving concept of the MFRC630 makes use both side-bands of the  
sub-carrier load modulation of the card response via a differential receiving concept (RXP,  
RXN). No external filtering is required.  
It is recommended to use the internally generated VMID potential as the input potential of  
pin RX. This DC voltage level of VMID has to be coupled to the Rx-pins via R2 and R4. To  
provide a stable DC reference voltage capacitances C4, C6 has to be connected between  
VMID and ground. Refer to Figure 31  
Considering the (AC) voltage limits at the Rx-pins the AC voltage divider of R1 + C3 and  
R2 as well as R3 + C5 and R4 has to be designed. Depending on the antenna coil design  
and the impedance matching the voltage at the antenna coil varies from antenna design to  
antenna design. Therefore the recommended way to design the receiving circuit is to use  
the given values for R1(= R3), R2 (= R4), and C3 (= C5) from the above mentioned  
application note, and adjust the voltage at the RX-pins by varying R1(= R3) within the  
given limits.  
Remark: R2 and R4 are AC-wise connected to ground (via C4 and C6).  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
104 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
14.1.4 Antenna coil  
The precise calculation of the antenna coils’ inductance is not practicable but the  
inductance can be estimated using the following formula. We recommend designing an  
antenna either with a circular or rectangular shape.  
I1  
------  
18  
L1 = 2 I1 ln   K N1  
(4)  
D1  
I1 - Length in cm of one turn of the conductor loop  
D1 - Diameter of the wire or width of the PCB conductor respectively  
K - Antenna shape factor (K = 1,07 for circular antennas and K = 1,47 for square  
antennas)  
L1 - Inductance in nH  
N1 - Number of turns  
Ln: Natural logarithm function  
The actual values of the antenna inductance, resistance, and capacitance at  
13.56 MHz depend on various parameters such as:  
antenna construction (Type of PCB)  
thickness of conductor  
distance between the windings  
shielding layer  
metal or ferrite in the near environment  
Therefore a measurement of those parameters under real life conditions, or at least a  
rough measurement and a tuning procedure is highly recommended to guarantee a  
reasonable performance. For details refer to the above mentioned application notes.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
105 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
15. Package outline  
HVQFN32: plastic thermal enhanced very thin quad flat package; no leads;  
32 terminals; body 5 x 5 x 0.85 mm  
SOT617-1  
B
A
D
terminal 1  
index area  
A
A
1
E
c
detail X  
C
e
1
y
y
e
1/2 e  
v
M
M
b
C
C
A B  
C
1
w
9
16  
L
17  
8
e
e
E
h
2
1/2 e  
1
24  
terminal 1  
index area  
32  
25  
X
D
h
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
(1)  
(1)  
UNIT  
A
b
c
E
e
e
e
2
y
D
D
E
L
v
w
y
1
1
h
1
h
max.  
0.05 0.30  
0.00 0.18  
5.1  
4.9  
3.25  
2.95  
5.1  
4.9  
3.25  
2.95  
0.5  
0.3  
mm  
0.05 0.1  
1
0.2  
0.5  
3.5  
3.5  
0.1  
0.05  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
01-08-08  
02-10-18  
SOT617-1  
- - -  
MO-220  
- - -  
Fig 32. Package outline SOT617-1 (HVQFN32)  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
106 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Detailed package information can be found at  
http://www.nxp.com/package/SOT617-1.html.  
16. Handling information  
Moisture Sensitivity Level (MSL) evaluation has been performed according to  
SNW-FQ-225B rev.04/07/07 (JEDEC J-STD-020C). MSL for this package is level 2 which  
means 260 C convection reflow temperature.  
For MSL2:  
Dry pack is required.  
1 year out-of-pack floor life at maximum ambient temperature 30 C/ 85 % RH.  
For MSL1:  
No dry pack is required.  
No out-of-pack floor live spec. required.  
17. Packing information  
strap 46 mm from corner  
The straps around the package of  
stacked trays inside the piano-box  
have sufficient pre-tension to avoid  
loosening of the trays.  
tray  
ESD warning preprinted  
barcode label (permanent)  
barcode label (peel-off)  
chamfer  
PIN 1  
chamfer  
PIN 1  
QA seal  
Hyatt patent preprinted  
In the traystack (2 trays)  
only ONE tray type* allowed  
printed piano box  
*one supplier and one revision number.  
001aaj740  
Fig 33. Packing information 1 tray  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
107 of 118  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
strap 46 mm from the corner  
PQ-label (permanent)  
bag  
dry-agent  
relative humidity indicator  
preprinted:  
tray  
recycling symbol  
moisture caution label  
ESD warning  
manufacturer bag info  
chamfer  
ESD warning preprinted  
PQ-label (permanent)  
PIN 1  
PLCC52  
dry-pack ID preprinted  
strap  
chamfer  
PIN 1  
QA seal  
chamfer  
PIN 1  
printed plano box  
aaa-004952  
Fig 34. Packing information 5 tray  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
BC  
BB  
BA  
BA  
BD  
BD  
section BC-BC  
scale 4:1  
BC  
BB  
0.50  
A B  
C
16.60 0.08ꢁ7ꢂ/S SQ.  
13.85 0.08ꢁ12ꢂ/S SQ.  
(14.40ꢁ5ꢂ/S SQ.)  
vacuum cell  
end lock  
side lock  
AN  
AJ  
AJ  
AK  
12.80-5ꢂ/S SQ.  
AM  
AM  
AL  
AL  
AR  
AR  
14.20 0.08ꢁ10ꢂ/S SQ.  
0.50  
A B  
C
section BA-BA  
scale 4:1  
AK  
AN  
section AK-AK  
scale 5:1  
section AN-AN  
scale 4:1  
detail AC  
scale 20:1  
section AJ-AJ  
scale 2:1  
section AM-AM  
scale 4:1  
section AL-AL  
scale 5:1  
section AR-AR  
scale 2:1  
section BD-BD  
scale 4:1  
aaa-004949  
Fig 35. Tray details  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
ASSY REEL ꢁ LABELS  
tape  
see: ASSY REEL ꢁ LABELS  
label side  
(see: HOW TO SECURE)  
Ø 330x12/16/24/32 (hub 7’’)  
guard band  
embossed  
ESD logo  
tape  
circular sprocket holes  
opposite the label side of reel  
(see: HOW TO SECURE)  
printed plano-box  
Ø 330x16/24/32/44 (hub 4’’)  
Ø 330x44 (hub 6’’)  
cover tape  
embossed  
ESD logo  
carrier tape  
Ø 180x12/16/24  
enlongated  
product orientation ONLY for turned  
products with 12nc ending 128  
HOW TO SECURE LEADER END TO THE GUARD BAND,  
HOW TO SECURE GUARD BAND  
PIN1 has to be  
in quadrant 1  
circular  
PIN1  
SO  
PIN1  
PIN1  
PIN1  
PIN1  
PIN1  
product orientation  
1
2
4
1
2
trailer : lenght of trailer shall be 160 mm min.  
in carrier tape  
tapeslot  
QFP  
PLCC  
SO  
PIN1  
3
QFP  
3
4
PIN1  
for SOT505-2  
and covered with cover tape  
for SOT765  
BGA  
BGA  
ending 125  
PIN1  
bare die  
bare die  
ending 125  
leader : lenght of trailer shall be 400 mm min.  
and covered with cover tape  
unreeling direction  
label side  
trailer  
(HV)QFN  
(HV)SON  
(H)BCC  
(HV)QFN  
(HV)SON  
(H)BCC  
enlongated  
circular sprocket hole side  
guard band  
leader  
QA seal  
tape  
(with pull tabs on both ends)  
preprinted ESD warning  
lape double-backed  
onto itself on both ends  
PQ-label  
(permanent)  
dry-pack ID preprinted  
guard band  
aaa-004950  
Fig 36. Packing information Reel  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
18. Abbreviations  
Table 195. Abbreviations  
Acronym  
ADC  
BPSK  
CRC  
CW  
Description  
Analog-to-Digital Converter  
Binary Phase Shift Keying  
Cyclic Redundancy Check  
Continuous Wave  
EGT  
EMC  
EMD  
EOF  
EPC  
ETU  
GPIO  
HBM  
I2C  
Extra Guard Time  
Electro Magnetic Compatibility  
Electro Magnetic Disturbance  
End Of Frame  
Electronic Product Code  
Elementary Time Unit  
General Purpose Input/Output  
Human Body Model  
Inter-Integrated Circuit  
Low Frequency Oscillator  
Low-Power Card Detection  
Least Significant Bit  
Master In Slave Out  
Master Out Slave In  
Most Significant Bit  
LFO  
LPCD  
LSB  
MISO  
MOSI  
MSB  
NRZ  
NSS  
PCD  
PLL  
Not Return to Zero  
Not Slave Select  
Proximity Coupling Device  
Phase-Locked Loop  
Return To Zero  
RZ  
RX  
Receiver  
SAM  
SOF  
SPI  
Secure Access Module  
Start Of Frame  
Serial Peripheral Interface  
Software  
SW  
TTimer  
TX  
Timing of the clk period  
Transmitter  
UART  
UID  
Universal Asynchronous Receiver Transmitter  
Unique IDentification  
Voltage Controlled Oscillator  
VCO  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
111 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
19. References  
[1] Application note — MFRC52x Reader IC Family Directly Matched Antenna  
Design  
[2] Application note — MIFARE (ISO/IEC 14443 A) 13.56 MHz RFID Proximity  
Antennas  
[3] BSDL File — Boundary scan description language file of the MFRC630  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
112 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
20. Revision history  
Table 196. Revision history  
Document ID  
MFRC630 v.3.1  
Modifications:  
Release date  
20120906  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
MFRC630 v.3.0  
Section 5 “Ordering information”: updated  
Section 17 “Packing information”: Figures added  
General update  
MFRC630 v.3.0  
20120717  
Product data sheet  
-
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
113 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
21. Legal information  
21.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
21.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
21.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
114 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
21.4 Licenses  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
Purchase of NXP ICs with NFC technology  
Purchase of an NXP Semiconductors IC that complies with one of the Near  
Field Communication (NFC) standards ISO/IEC 18092 and ISO/IEC 21481  
does not convey an implied license under any patent right infringed by  
implementation of any of those standards.  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
21.5 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
MIFARE — is a trademark of NXP B.V.  
MIFARE Ultralight is a trademark of NXP B.V.  
DESFire — is a trademark of NXP B.V.  
MIFARE Plus is a trademark of NXP B.V.  
22. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
115 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
23. Contents  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
8.4.6.4  
8.4.6.5  
8.4.6.6  
8.4.6.7  
8.4.6.8  
8.4.6.9  
Test Data Input (TDI) . . . . . . . . . . . . . . . . . . . 25  
Test Data Output (TDO). . . . . . . . . . . . . . . . . 25  
Data register . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Boundary scan cell. . . . . . . . . . . . . . . . . . . . . 26  
Boundary scan path. . . . . . . . . . . . . . . . . . . . 26  
Boundary Scan Description Language  
2
General description. . . . . . . . . . . . . . . . . . . . . . 1  
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
4
5
6
(BSDL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.4.6.10 Non-IEEE1149.1 commands . . . . . . . . . . . . . 28  
8.5  
7
7.1  
Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Accessing the FIFO buffer . . . . . . . . . . . . . . . 29  
Controlling the FIFO buffer . . . . . . . . . . . . . . 29  
Status Information about the FIFO buffer. . . . 29  
Analog interface and contactless UART . . . . 31  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
TX transmitter . . . . . . . . . . . . . . . . . . . . . . . . 31  
Overshoot protection . . . . . . . . . . . . . . . . . . . 33  
Bit generator . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Receiver circuitry . . . . . . . . . . . . . . . . . . . . . . 34  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . 35  
Active antenna concept . . . . . . . . . . . . . . . . . 36  
Symbol generator. . . . . . . . . . . . . . . . . . . . . . 39  
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Memory overview. . . . . . . . . . . . . . . . . . . . . . 39  
EEPROM memory organization. . . . . . . . . . . 40  
Product information and configuration  
- Page 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
EEPROM initialization content LoadProtocol. 42  
Clock generation . . . . . . . . . . . . . . . . . . . . . . 44  
Crystal oscillator. . . . . . . . . . . . . . . . . . . . . . . 44  
IntegerN PLL clock line . . . . . . . . . . . . . . . . . 44  
Low-Power Oscillator (LPO) . . . . . . . . . . . . . 45  
Power management. . . . . . . . . . . . . . . . . . . . 46  
Supply concept . . . . . . . . . . . . . . . . . . . . . . . 46  
Power reduction mode. . . . . . . . . . . . . . . . . . 46  
Power-down. . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Standby mode . . . . . . . . . . . . . . . . . . . . . . . . 46  
Modem off mode . . . . . . . . . . . . . . . . . . . . . . 46  
Low-Power Card Detection (LPCD). . . . . . . . 47  
Reset and start-up time . . . . . . . . . . . . . . . . . 47  
Command set. . . . . . . . . . . . . . . . . . . . . . . . . 48  
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Command set overview . . . . . . . . . . . . . . . . . 48  
Command functionality . . . . . . . . . . . . . . . . . 49  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.6  
8.6.1  
8.6.2  
8.6.2.1  
8.6.2.2  
8.6.3  
8.6.3.1  
8.6.3.2  
8.6.4  
8.6.5  
8.7  
8
8.1  
8.2  
8.2.1  
8.2.1.1  
8.2.1.2  
8.2.1.3  
8.2.1.4  
8.2.1.5  
8.3  
Functional description . . . . . . . . . . . . . . . . . . . 6  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . . 7  
Timer module . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Timer modes. . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Time-Out- and Watch-Dog-Counter . . . . . . . . 10  
Wake-up timer . . . . . . . . . . . . . . . . . . . . . . . . 10  
Stop watch . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Programmable one-shot timer . . . . . . . . . . . . 10  
Periodical trigger. . . . . . . . . . . . . . . . . . . . . . . 10  
Contactless interface unit . . . . . . . . . . . . . . . 11  
ISO/IEC14443A/MIFARE functionality . . . . . . 11  
Host interfaces . . . . . . . . . . . . . . . . . . . . . . . . 12  
Host interface configuration . . . . . . . . . . . . . . 12  
SPI interface. . . . . . . . . . . . . . . . . . . . . . . . . . 13  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Read data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Write data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Address byte. . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Timing Specification SPI. . . . . . . . . . . . . . . . . 14  
RS232 interface . . . . . . . . . . . . . . . . . . . . . . . 15  
Selection of the transfer speeds. . . . . . . . . . . 15  
Framing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
I2C-bus interface . . . . . . . . . . . . . . . . . . . . . . 18  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
I2C Data validity . . . . . . . . . . . . . . . . . . . . . . . 18  
I2C START and STOP conditions . . . . . . . . . . 19  
I2C byte format . . . . . . . . . . . . . . . . . . . . . . . . 19  
I2C Acknowledge . . . . . . . . . . . . . . . . . . . . . . 20  
I2C 7-bit addressing . . . . . . . . . . . . . . . . . . . . 20  
I2C-register write access . . . . . . . . . . . . . . . . 21  
I2C-register read access. . . . . . . . . . . . . . . . . 21  
I2CL-bus interface. . . . . . . . . . . . . . . . . . . . . . 22  
SAM interface I2C. . . . . . . . . . . . . . . . . . . . . . 23  
SAM functionality . . . . . . . . . . . . . . . . . . . . . . 23  
SAM connection . . . . . . . . . . . . . . . . . . . . . . . 24  
Boundary scan interface. . . . . . . . . . . . . . . . . 24  
Interface signals . . . . . . . . . . . . . . . . . . . . . . . 25  
Test Clock (TCK) . . . . . . . . . . . . . . . . . . . . . . 25  
Test Mode Select (TMS) . . . . . . . . . . . . . . . . 25  
8.3.1  
8.4  
8.4.1  
8.4.2  
8.4.2.1  
8.4.2.2  
8.4.2.3  
8.4.2.4  
8.4.2.5  
8.4.3  
8.4.3.1  
8.4.3.2  
8.4.4  
8.4.4.1  
8.4.4.2  
8.4.4.3  
8.4.4.4  
8.4.4.5  
8.4.4.6  
8.4.4.7  
8.4.4.8  
8.4.4.9  
8.4.5  
8.7.1  
8.7.2  
8.7.2.1  
8.7.3  
8.8  
8.8.1  
8.8.2  
8.8.3  
8.9  
8.9.1  
8.9.2  
8.9.2.1  
8.9.2.2  
8.9.2.3  
8.9.3  
8.9.4  
8.10  
8.10.1  
8.10.2  
8.10.3  
8.4.5.1  
8.4.5.2  
8.4.6  
8.4.6.1  
8.4.6.2  
8.4.6.3  
8.10.3.1 Idle command . . . . . . . . . . . . . . . . . . . . . . . . 49  
8.10.3.2 LPCD command. . . . . . . . . . . . . . . . . . . . . . . 49  
8.10.3.3 Load key command . . . . . . . . . . . . . . . . . . . . 49  
continued >>  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
116 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
8.10.3.4 MFAuthent command . . . . . . . . . . . . . . . . . . . 49  
8.10.3.5 Receive command . . . . . . . . . . . . . . . . . . . . . 50  
8.10.3.6 Transmit command. . . . . . . . . . . . . . . . . . . . . 50  
8.10.3.7 Transceive command . . . . . . . . . . . . . . . . . . . 51  
8.10.3.8 WriteE2 command . . . . . . . . . . . . . . . . . . . . . 51  
8.10.3.9 WriteE2PAGE command . . . . . . . . . . . . . . . . 51  
8.10.3.10 ReadE2 command . . . . . . . . . . . . . . . . . . . . . 51  
8.10.3.11 LoadReg command . . . . . . . . . . . . . . . . . . . . 51  
8.10.3.12 LoadProtocol command . . . . . . . . . . . . . . . . . 51  
8.10.3.13 LoadKeyE2 command . . . . . . . . . . . . . . . . . . 52  
8.10.3.14 StoreKeyE2 command . . . . . . . . . . . . . . . . . . 52  
8.10.3.15 GetRNR command . . . . . . . . . . . . . . . . . . . . . 52  
8.10.3.16 SoftReset command . . . . . . . . . . . . . . . . . . . . 53  
9.7.2.14 T2CounterValLoReg . . . . . . . . . . . . . . . . . . . 74  
9.7.2.15 T3Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
9.7.2.16 T3ReloadHi . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
9.7.2.17 T3ReloadLo . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
9.7.2.18 T3CounterValHi . . . . . . . . . . . . . . . . . . . . . . . 76  
9.7.2.19 T3CounterValLo. . . . . . . . . . . . . . . . . . . . . . . 76  
9.7.2.20 T4Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
9.7.2.21 T4ReloadHi . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
9.7.2.22 T4ReloadLo . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
9.7.2.23 T4CounterValHi . . . . . . . . . . . . . . . . . . . . . . . 78  
9.7.2.24 T4CounterValLo. . . . . . . . . . . . . . . . . . . . . . . 78  
9.8  
Transmitter configuration registers. . . . . . . . . 78  
TxMode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
TxAmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
TxCon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Txl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
CRC configuration registers. . . . . . . . . . . . . . 80  
TxCrcPreset. . . . . . . . . . . . . . . . . . . . . . . . . . 80  
RxCrcCon . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Transmitter configuration registers. . . . . . . . . 82  
TxDataNum . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
TxDATAModWidth . . . . . . . . . . . . . . . . . . . . . 83  
TxSym10BurstLen . . . . . . . . . . . . . . . . . . . . . 84  
TxWaitCtrl . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
TxWaitLo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
FrameCon . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Receiver configuration registers . . . . . . . . . . 87  
RxSofD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
RxCtrl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
RxWait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
RxThreshold. . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Rcv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
RxAna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Clock configuration . . . . . . . . . . . . . . . . . . . . 90  
SerialSpeed . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
LPO_Trimm . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
PLL_Ctrl Register. . . . . . . . . . . . . . . . . . . . . . 91  
PLLDiv_Out . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Low-power card detection configuration  
9.8.1  
9.8.2  
9.8.3  
9.8.4  
9.9  
9.9.1  
9.9.2  
9.10  
9.10.1  
9.10.2  
9.10.3  
9.10.4  
9.10.5  
9.11  
9
9.1  
9.2  
9.2.1  
9.3  
MFRC630 registers . . . . . . . . . . . . . . . . . . . . . 54  
Register bit behavior. . . . . . . . . . . . . . . . . . . . 54  
Command configuration . . . . . . . . . . . . . . . . . 57  
Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
SAM configuration register . . . . . . . . . . . . . . . 57  
HostCtrl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
FIFO configuration register. . . . . . . . . . . . . . . 58  
FIFOControl . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
WaterLevel . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
FIFOLength . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
FIFOData . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Interrupt configuration registers . . . . . . . . . . . 60  
IRQ0 register . . . . . . . . . . . . . . . . . . . . . . . . . 61  
IRQ1 register . . . . . . . . . . . . . . . . . . . . . . . . . 61  
IRQ0En register . . . . . . . . . . . . . . . . . . . . . . . 62  
IRQ1En . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Contactless interface configuration registers . 63  
Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
RxBitCtrl . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
RxColl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Timer configuration registers . . . . . . . . . . . . . 68  
TControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
T0Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
T0ReloadHi. . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
T0ReloadLo . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
T0CounterValHi . . . . . . . . . . . . . . . . . . . . . . . 70  
T0CounterValLo . . . . . . . . . . . . . . . . . . . . . . . 70  
T1Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
T1ReloadHi. . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
T1ReloadLo . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
T1CounterValHi . . . . . . . . . . . . . . . . . . . . . . . 72  
T1CounterValLo . . . . . . . . . . . . . . . . . . . . . . . 72  
9.3.1  
9.4  
9.4.1  
9.4.2  
9.4.3  
9.4.4  
9.5  
9.5.1  
9.5.2  
9.5.3  
9.5.4  
9.6  
9.6.1  
9.6.2  
9.6.3  
9.6.4  
9.7  
9.7.1  
9.7.2  
9.7.2.1  
9.7.2.2  
9.7.2.3  
9.7.2.4  
9.7.2.5  
9.7.2.6  
9.7.2.7  
9.7.2.8  
9.7.2.9  
9.12  
9.12.1  
9.12.2  
9.12.3  
9.12.4  
9.12.5  
9.12.6  
9.13  
9.13.1  
9.13.2  
9.13.3  
9.13.4  
9.14  
registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
LPCD_QMin. . . . . . . . . . . . . . . . . . . . . . . . . . 93  
LPCD_QMax . . . . . . . . . . . . . . . . . . . . . . . . . 93  
LPCD_IMin. . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
LPCD_Result_I . . . . . . . . . . . . . . . . . . . . . . . 94  
LPCD_Result_Q . . . . . . . . . . . . . . . . . . . . . . 94  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . 95  
PinEn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
PinOut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
PinIn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
SigOut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Version register . . . . . . . . . . . . . . . . . . . . . . . 97  
9.14.1  
9.14.2  
9.14.3  
9.14.4  
9.14.5  
9.15  
9.15.1  
9.15.2  
9.15.3  
9.15.4  
9.16  
9.7.2.10 T2Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
9.7.2.11 T2ReloadHi. . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
9.7.2.12 T2ReloadLo . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
9.7.2.13 T2CounterValHi . . . . . . . . . . . . . . . . . . . . . . . 74  
continued >>  
MFRC630  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.1 — 6 September 2012  
227531  
117 of 118  
MFRC630  
NXP Semiconductors  
Contactless reader IC  
9.16.1  
10  
Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 98  
Recommended operating conditions. . . . . . . 98  
Thermal characteristics . . . . . . . . . . . . . . . . . 98  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 98  
Timing characteristics. . . . . . . . . . . . . . . . . . 101  
11  
12  
13  
13.1  
14  
14.1  
14.1.1  
14.1.2  
14.1.3  
14.1.4  
Application information. . . . . . . . . . . . . . . . . 103  
Antenna design description . . . . . . . . . . . . . 103  
EMC low pass filter. . . . . . . . . . . . . . . . . . . . 103  
Antenna matching. . . . . . . . . . . . . . . . . . . . . 104  
Receiving circuit . . . . . . . . . . . . . . . . . . . . . . 104  
Antenna coil . . . . . . . . . . . . . . . . . . . . . . . . . 105  
15  
16  
17  
18  
19  
20  
Package outline . . . . . . . . . . . . . . . . . . . . . . . 106  
Handling information. . . . . . . . . . . . . . . . . . . 107  
Packing information . . . . . . . . . . . . . . . . . . . 107  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . 111  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Revision history. . . . . . . . . . . . . . . . . . . . . . . 113  
21  
Legal information. . . . . . . . . . . . . . . . . . . . . . 114  
Data sheet status . . . . . . . . . . . . . . . . . . . . . 114  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . 115  
21.1  
21.2  
21.3  
21.4  
21.5  
22  
23  
Contact information. . . . . . . . . . . . . . . . . . . . 115  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2012.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 6 September 2012  
227531  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY