SA1630 [NXP]

IF quadrature transceiver; 正交IF收发器
SA1630
型号: SA1630
厂家: NXP    NXP
描述:

IF quadrature transceiver
正交IF收发器

文件: 总22页 (文件大小:150K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
SA1630  
IF quadrature transceiver  
Product specification  
IC17 Data Handbook  
1998 Jul 21  
Philips  
Semiconductors  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
DESCRIPTION  
Internal IF PLL for synthesizing the local IF oscillator signal.  
The SA1630 is a 70–400 MHz I/Q transceiver for wireless LAN.  
The Receive Path contains a digitally gain controlled linear IF  
amplifier, a pair of quadrature down conversion mixers and a pair of  
baseband amplifiers. The transmit path contains a pair of quadrature  
up conversion mixers that transposes a quadrature baseband input  
signal up to IF frequency. An external VCO signal is divided  
internally and provides quadrature local oscillator signals for the  
mixers. Another divider chain, reference divider and phase detector  
are provided to avoid the need for an external synthesizer. To keep  
power consumption to a minimum the transmit, receive and local  
oscillator functions can be powered down under digital control.  
Bandwidth of baseband Tx inputs is 20 MHz and that of baseband  
Rx outputs is 8.5MHz.  
Designed for IEEE 802.11 wireless LAN using Direct Sequence  
Spread Spectrum modulation.  
Control registers power up in a default state.  
Only a standard reference input frequency required, choice of 8,  
11, 22 or 44 MHz.  
Digital gain control of 70 dB in steps of 2 dB.  
Rx Baseband amplifiers are capable of driving 1kW ||15pF  
FEATURES  
Rx Baseband o/p’s clamp symmetrically, above 1Vp–p in order to  
Low supply voltage operation of 2.7V for main chip and 2.9V for  
prevent dc bias shift under overdrive conditions.  
charge pump.  
Package: LQFP–48, PCMCIA compatible  
Low current consumption: 33.5 mA in RX, 26.5 mA in TX, typical  
at 3V.  
APPLICATIONS  
Flexible power up/down options.  
IF circuitry for IEEE 802.11 DSSS wireless LAN.  
Optional 2.5V regulated reference voltage available during  
transmit.  
Applications for high speed wireless data.  
Input IF frequency range of 70–400 MHz.  
BE Package  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
GNDCP  
CP  
V
Rx  
1
2
CC  
GNDRX  
V
CP  
CC  
V
3
Rx  
CC  
DATA  
4
PLL_ON  
Rx_ON  
CLOCK  
STROBE  
LOCK  
5
6
GNDHDR  
GC0  
7
LO_INX  
LO_IN  
GC1  
8
GC2  
9
GNDRx  
CLK IN  
10  
11  
GC3  
GC4  
CLK  
INX  
GC5 12  
13 14 15 16 17 18 19 20 21 22 23 24  
SR01549  
Figure 1.  
Pin Configuration  
ORDERING INFORMATION  
DESCRIPTION  
TEMPERATURE RANGE  
ORDER CODE  
DWG #  
48–Pin Plastic Low Profile Quad Flat package  
–40 to +85°C  
SA1630BE  
SOT313–2  
2
1998 Jul 21  
853–2049 19763  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
(4)  
(38)  
(1,3)  
V
(39)  
V
V
2.5  
R
T R  
CC X X  
PLL–ON  
REF  
CC  
X
GND_BB  
(13, 14)  
(15)  
R
XON  
(5)  
2.5V REGULATOR  
V
_BB  
CC  
MODE  
CONTROL  
Tx  
ON  
(23)  
I_Tx  
I_Tx  
IN  
(18)  
(19)  
INX  
Tx  
IFOUT  
(43)  
(42)  
Tx  
IFOUTX  
Q_Tx  
Q_Tx  
IN  
(20)  
(21)  
INX  
(7)  
GC0  
(8)  
(9)  
GC1  
GC2  
I_Rx  
OUT  
(17)  
1
1
(46)  
Rx  
IFIN  
(45)  
Rx  
IFINX  
(10)  
GC3  
GC4  
GC5  
Q_Rx  
(11)  
(12)  
OUT  
(16)  
LO IN  
(28)  
(29)  
LO INX  
BUFFERS  
2
÷
V
CCCP  
(34)  
N
÷
DAC  
CP  
(35)  
(37)  
(30)  
I
REF  
CHARGE  
PHASE  
SYNTH  
REGISTER  
GND HDR  
PUMP  
DETECTOR  
(6)  
LOCK  
GNDT R  
X
X
(40, 41)  
SERIAL  
INPUT  
GNDCP  
TEST REGISTER  
8, 11, 22, 44  
÷
(36)  
CLK  
CLK  
V
GND DIG  
(24)  
IN  
INX  
CCDIG  
(22)  
DATA CLOCK STROBE  
(33) (32) (31)  
GND RX  
(2, 27, 44, 47, 48)  
(26)  
(25)  
SR01551  
Figure 2.  
Block Diagram  
3
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
PIN DESCRIPTIONS  
Pin No.  
Pin Name  
Rx  
Description  
1, 3  
V
Supply Pin for Rx section (IF circuits)  
Ground pins for Rx section (IF circuits)  
CC  
2, 27,  
44,47,  
48  
GNDRx  
4
5
PLL_ON  
Rx_ON  
GNDHDR  
GCO  
One of the three digital CMOS logic control inputs to the mode control section  
One of the three digital CMOS logic control inputs to the mode control section  
Substrate ground  
6
7
Control bit 0 for IF VGA gain control, CMOS input  
Control bit 1 for IF VGA gain control, CMOS input  
Control bit 2 for IF VGA gain control, CMOS input  
Control bit 3 for IF VGA gain control, CMOS input  
Control bit 4 for IF VGA gain control, CMOS input  
Control bit 5 for IF VGA gain control, CMOS input  
Ground pin for Rx baseband circuits  
8
GC1  
9
GC2  
10  
11  
12  
GC3  
GC4  
GC5  
13, 14 GND_BB  
_BB  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
V
CC  
Supply Pin for Rx Baseband circuits  
Q_RXOUT  
I_RxOUT  
I_Tx IN  
Quadrature–phase Rx baseband output, single–ended  
In–phase Rx baseband output, single–ended  
In–phase differential Tx baseband input, positive  
In–phase differential Tx baseband input, negative  
Quadrature differential Tx baseband input, positive  
Quadrature differential Tx baseband input, negative  
Supply for digital circuits  
I_Tx INX  
Q_Tx IN  
Q_Tx INX  
V
CC  
_DIG  
Tx_ON  
GNDDIG  
CLK INX  
CLK IN  
LO_IN  
One of the Three digital CMOS logic control inputs to the mode control section  
Digital ground  
Differential reference input for synthesizer, negative  
Differential reference input for synthesizer, positive  
Differential LO input,positive  
LO INX  
LOCK  
Differential LO input, negative  
Test control output and synthesizer lock indicator  
Serial bus strobe input  
STROBE  
CLOCK  
DATA  
Serial bus clock input  
Serial bus data input  
V
CC  
CP  
Supply for charge pump circuits  
CP  
GNDCP  
Charge pump output  
Ground for charge pump circuits  
I
Charge pump reference current  
REF  
V
V
2.5  
Reference voltage of 2.5V available for external use  
Supply pin used by Tx circuits  
REF  
TxRx  
CC  
40,41 GNDTxRx  
Ground pins used by Tx circuits  
42  
43  
45  
46  
TxIFOUTX  
TxIFOUT  
RxIF INX  
RxIF IN  
Differential transmitter IF output (open collector), positive  
Differential transmitter IF output (open collector), negative  
Differential receiver IF input, negative  
Differential receiver IF input, positive  
4
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
RATING  
UNITS  
V
V
CCXX  
Supply voltages  
-0.3 to +6.0  
V
IN  
Voltage applied to any other pin  
-0.3 to V  
+0.3  
V
CCXX  
VG  
Any GND pin to any other GND pin  
0
V
P
Power dissipation, T = 25°C (still air)  
300  
mW  
°C  
D
A
T
Maximum operating junction temperature  
Maximum power input/output  
150  
+20  
JMAX  
P
dBm  
°C  
MAX  
STG  
T
Storage temperature range  
–65 to +150  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
RATING  
2.7 to 3.6  
2.7 to 3.6  
-40 to +85  
UNITS  
V
Supply voltages:  
V
V
CCXXXX  
V
CC  
CP  
Charge pump supply voltage  
Operating ambient temperature range  
T
A
°C  
NOTES:  
1. There are no ESD protection diodes between pins 42, 43 and V to allow higher AC peak voltage. The ESD protection level has thus been  
CC  
reduced. Proper ESD handling precautions should be followed.  
MODE CONTROL  
NO:  
PLL_ON  
RX_ON  
TX_ON  
STATE DESCRIPTION  
SLEEP mode  
MODE  
SLEEP  
2.5V REF  
Off  
1
0
1
1
1
1
X
0
1
1
0
X
1
1
0
0
2
Synthesizer ON, Rx STDBY, Tx OFF  
Synthesizer ON, Rx STDBY, Tx ON  
Synthesizer ON, Rx ON, Tx OFF  
Synthesizer ON, Rx OFF, Tx ON  
WAIT  
Off  
3
TRANSMIT  
RECEIVE  
TRANSMIT  
On  
4
Off  
5
Off  
’0’ – LOGIC LOW  
’1’ – LOGIC HIGH  
’X’ – DON’T CARE  
except for the bias and baseband circuits needed to hold the  
baseband output voltages in the active state. This mode is useful if  
the Rx baseband outputs are AC coupled via a large capacitor and  
the application demands quick turn–on for the Rx, from Tx.  
1. Sleep mode (PLL OFF, Rx OFF, Tx OFF)  
In this mode everything is switched off except the 3–wire digital bus.  
As long as the digital supply is still on, the programmed values are  
active and the 3–wire bus will continue to be programmable.  
4. Receive Mode (Tx Off)  
The Transmitter is completely shut–off. The PLL and receiver  
sections are operating.  
2. Wait Mode (Tx Off, Rx Standby)  
PLL is on. Receiver is in the reduced current standby mode and the  
transmitter is completely switched off. This mode maybe useful if the  
PLL is to be kept on and is waiting for a quick turn–on to either  
transmit or receive modes, especially when Rx outputs are AC  
coupled.  
5. Transmit Mode (Rx OFF)  
PLL and Transmit sections are on. However, the Receiver is  
completely shut–down. This mode is useful if the Rx baseband  
outputs are DC coupled to the external world.  
3. Transmit mode (Rx standby)  
The PLL and transmitter are on. The receive section is in a reduced  
current mode wherein most of the Rx circuitry is powered down  
5
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
RX VGA CONTROL TABLE  
REDUCTION  
FROM Gmax  
GC5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
GC4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
GC3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
GC2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
GC1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
GC0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
DECIMAL NUMBER  
0
0
1
–2  
2
–4  
3
–6  
4
–8  
5
–10  
–12  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–28  
–30  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
–52  
–54  
–56  
–58  
–60  
–62  
–64  
–66  
–68  
–70  
6
7
8
9
10  
11  
12  
13  
14  
15  
23  
24  
25  
26  
27  
28  
29  
30  
31  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
6
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
DC ELECTRICAL CHARACTERISTICS  
V
CC  
XXX=+3V; V XXX = 0V; TA=25°C, unless otherwise stated.  
EE  
LIMITS  
SYMBOL  
PARAMETER  
TEST CONDITION  
UNITS  
MAX  
MIN  
TYP  
PLL_ON=Rx_ON=Hi  
Tx_ON = Low  
I
Supply Current, Receive (mode #4)  
33.5  
17  
41.5  
mA  
CC–4  
CC–2  
Wait mode (2)  
PLL_ON = Hi  
Tx_ON = Hi  
I
Supply Current, Wait (mode #2)  
23  
mA  
Rx_ON = Low  
PLL_ON = TX_ON = Hi  
RX_ON = Hi  
I
I
I
Supply Current, Transmit (mode #3)  
Supply Current, Sleep mode (mode #1)  
Supply current transmit (mode 5)  
26.5  
0.012  
22  
34.5  
0.1  
mA  
mA  
mA  
CC–3  
CC–1  
CC–5  
PLL_ON = Low  
RX_ON = DC  
TX_ON = DC  
PLL_ON = Hi  
T _ON = RX_ON = Low  
X
28.5  
V
_2.5  
Reference voltage (mode 3, enabled)  
Output impedance of reference voltage  
Load = 1.5mA  
2.5  
15  
V
REF  
Z
_V  
I = 1.4 to 1.6mA  
W
OUT REF  
CMOS LOGIC INPUTS (DATA, CLOCK, STROBE)  
V
Input logic 1 level  
Input logic 0 level  
Input logic current  
Input logic capacitance  
2.0  
0
V
V
V
IH  
CCD  
V
I
0.8  
IL  
1
4
µA  
pF  
I
C
I
CMOS Logic output (LOCK)  
V
Output logic 1 level  
Output logic 0 level  
I
= –2mA  
= 2mA  
V –0.4  
CCD  
V
V
OH  
O
V
I
0.4  
OL  
O
CMOS Logic Inputs (PLL_ON, RX_ON, TX_ON)  
2.0  
0
V
Input logic 1 level  
Input logic 0 level  
Input logic current  
V
V
V
IH  
CCTXRX  
V
I
0.8  
IL  
1
µA  
I
7
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
AC ELECTRICAL CHARACTERISTICS IF TRANSMIT MODULATOR  
(Mode #3, Tx ON Rx Standby) V XXX = +3V; GNDXXX = 0V; LO_in = 100 mV peak at 704 MHz, CLKin = 100mV peak at 22 MHz, T  
=
CC  
amb  
25°C, unless otherwise stated.  
LIMITS  
TYP  
SYMBOL  
PARAMETER  
TEST CONDITION  
UNITS  
MIN  
MAX  
–45  
2
4,5  
BW  
Input modulation bandwidth  
500 ohms source impedance  
22  
MHz  
Vpp  
1
V
IN  
Input signal amplitude, Differential  
Voltage common mode = 1 to 2V  
1
Input signal amplitude = 1 V  
,
PP  
5
THD_3  
Third harmonic distortion  
–55  
dBc  
kΩ  
pF  
V
8 MHz, V  
= 1.5  
CM  
Between pins I_T IN, I_T INX  
X
X
R
Input resistance  
98  
INTx  
Q_T IN, Q_T INX  
X
X
Between pins I_T IN, I_T INX  
X
X
4
C
Input Capacitance  
INTx  
Q_T IN, Q_T INX  
X
X
V
IN  
= IV  
PP  
Minimum Tx output DC voltage  
Mean output DC current  
V
CC  
–0.3  
V
I = V Q = V /2  
CM  
CM CC  
IO DC  
At T IF  
and T IF  
OUTX  
2
2.75  
40  
mA  
µA  
X
OUT  
X
4
Output current DC offset  
Mismatch at T IF  
and T IF  
OUT X OUTX  
X
2
Output current available  
At T IF  
and T IF  
0.475  
190  
36  
mA rms  
mV rms  
dBc  
X
OUT  
X
OUTX  
2
1,2  
Output differential voltage  
400 tuned load  
1,3  
30  
CS  
Carrier suppression  
Differential output  
= 352 MHz  
1,3  
SBS  
SB Suppression  
f
35  
47  
dBc  
OUT  
Noise floor  
offset = 10 MHz  
156  
0.5  
dBc/Hz  
dB  
4
6
nG  
Gain stability  
2.0  
T _ON, R _ON transition  
to transmit signal at 90% level  
X
X
4
t
Turn–on time  
Turn–off time  
4
4
µs  
µs  
ON  
T _ON, R _ON transition to transmit  
X
X
4
T
OFF  
signal at 10% level  
NOTES:  
1. Tx inputs are differential sine wave, 0.5 V peak, with quadrature relationship between I and Q Tx input. The output spectrum will be SSB.  
The tone is at a frequency of 1 MHz.  
2. The output current in each arm is the same but 180 degrees out of phase with each other. Also the tuned load of 400 ohms differential, is  
assumed. The power delivered to 400 ohms will be –10.4 dBm (typ.). The output current measurement is indirect based on output power  
2
measurement according to P = 10 log I rms (400W)/IMV. See typical performance characteristic curve.  
3. This is measured with respect to the SSB output.  
4. Guaranteed by design and or characterization but not final tested.  
5. The input bandwidth may be verified by measuring the output THD and signal level using a DSB spectrum where I = Q.  
6. Measured over temperature and supply.  
8
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
AC ELECTRICAL CHARACTERISTICS IF RECEIVER DEMODULATOR  
(Mode #4, Rx_ON, Tx_OFF) V XXX = +3V = GNDXXX = 0V; LO IN = 100 mV  
at 704 MHz, CLKIN = 100mV , at 22 MHz, Ta = 25°C,  
CC  
peak  
peak  
unless otherwise stated.  
LIMITS  
TYP  
6.6K||0.7  
88  
SYMBOL  
PARAMETER  
TEST CONDITION  
UNITS  
MIN  
81  
MAX  
f
IN  
= 352 MHz  
RInRx  
VG  
Differential input impedance  
Voltage gain  
k||pF  
dB  
AGC at maximum gain  
VGA at maximum gain  
1
NF  
Input noise figure  
7.5  
dB  
AGC range  
67  
70  
dB  
AGC step size  
2
dB  
AGC differential error  
AGC settling time  
2
dB  
any AGC step  
200  
nS  
Channel matching  
gain  
phase  
0.1  
0.25  
dB  
deg  
Output DC offset between IRx Out and  
QRx Out  
Maximum Gain, Output at 1 MHz  
6
mV  
2
AGC G , into load  
0.9  
1.0  
1.15  
1.4  
1.9  
7
Vp–p  
MIN  
OVS  
Output voltage swing  
AGC Gain, except G  
MIN  
Output common mode voltage  
Output impedance  
V
3
THD  
Total Harmonic Distortion  
Rx Bandwidth  
Max. Gain, rated output at 1 MHz  
3
%
5
BW  
7
8.5  
10  
2
MHz  
R _ON, T _ON transition to  
X
X
4
t
Turn–on time  
Turn–off time  
µs  
µs  
ON  
baseband signal out  
R _ON, T _ON transition to no  
X
X
4
t
2
OFF  
baseband signal out  
NOTES:  
1. The Receive input is to be differential (using a balun or a differential source such as a differential SAW filter) and matched to external  
generator’s impedance (ex: 50 ohms). The balun may or may not provide any impedance transformation depending on availability. An  
external L–C matching circuit can provide the rest of the impedance transformation and absorb the input capacitance of the receiver input.  
Such a differential input scheme is mandatory to avoid pickup, and keep the noise figure low. A shunt resistor across the input (value TBD)  
will be used to set the input impedance as a compromise between the matching ease in production versus the noise figure of the receiver.  
The system board layout has to keep the isolation between the receive inputs and the LO signal as high as possible. Otherwise the LO  
leakage will overload the receiver.  
2. The load is 1000 ohms in parallel with 15pF of capacitor.  
3. THD is total harmonic distortion. We measure harmonics 2, 3, 4.  
4. Guaranteed by design.  
5. 3dB bandwidth relative to a passband measurement taken at 1MHz.  
9
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
AC ELECTRICAL CHARACTERISTICS IF SYNTHESIZER  
V
XXX = RX_ON = TX_ON = PLL_ON = +3V, V XXX = 0V; LO_IN = 100 mV  
at 704 MHz, CLKIN = 100mV at 22 MHz, Ta = 25°C,  
peak  
CC  
EE  
peak  
unless otherwise stated.  
LIMITS  
SYMBOL  
PARAMETER  
TEST CONDITION  
UNITS  
MAX.  
MIN  
TYP  
3
f
Local oscillator input frequency range  
140  
800  
MHz  
||pF  
mVpk  
LO  
Z
LOIN  
LOIN  
Differential input impedance  
Between LO_IN and LO_INX  
276||0.6  
4
V
LO input sensitivity  
Single ended Referred to 50Ω  
50  
64  
350  
511  
Programmable divider:  
division range  
step size  
1
3
f
Reference clock maximum frequency  
1
44  
MHz  
CLK  
10||  
1.0  
kΩ  
pF  
Z
CLKIN  
Differential input impedance  
Between Clk and Clk  
IN  
INX  
4
CLK input sensitivity  
Referred to 50Ω  
50  
200  
400  
mVpk  
Phase detector minimum comparison  
frequency  
f
1
MHz  
CMIN  
Phase detector maximum comparison  
freq  
f
Ref Divider = 44  
2.5  
MHz  
CMAX  
I
Charge pump reference current  
R
= 50KΩ  
EXT  
31.25  
µA  
REF  
Charge pump output current:  
C0...C2 = 000  
C0...C2 = 111  
I
V
= 31.25 µA  
0.160  
0.320  
0.023  
0.200  
0.400  
0.029  
0.240  
0.480  
0.035  
mA  
mA  
mA  
REF  
CP  
|I  
|
CP  
= V CP/2  
CC  
step size  
nI  
I
CP  
CP  
1
1.3  
Relative output current variation  
I
= 31.25 µA  
= 31.25 µA  
%
"8  
REF  
REF  
I
V
2
nI  
CP_M  
Output current matching  
"12  
"15  
%
= V CP/2  
CP  
CC  
Output leakage current  
0.2  
nA  
Output current tolerance  
with temperature  
with output voltage  
"1  
"5  
%
3
Serial Interface  
f
Clock frequency  
10  
MHz  
ns  
CLOCK  
Set–up time; DATA to clock,  
CLOCK to STROBE  
t
30  
SU  
t
Hold time: CLOCK to DATA  
Pulse width: CLOCK  
30  
30  
30  
ns  
ns  
ns  
H
t
W
Pulse width: STROBE  
NOTES:  
1. The relative output current variation is defined thus:  
ǒ
Ǔ
DIOUT  
I2 – I1  
+ 2 .  
; WITH V1 + 0.7V, V2 + VCCCP – 0.8V (see Figure 3).  
IOUT  
ǒ
Ǔ
I I2 ) 11  
2. The output current matching is measured when both (positive current and negative current) sections of the output charge pumps are on  
3. Guaranteed by design.  
4. Maximum level guaranteed by design.  
10  
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
The baseband amplifiers can interface directly to the Track/Hold  
switch/capacitor combination with capacitance values up to 15 pF.  
When sampled at 22MHz the output can settle to within 1/4 LSB  
when swinging 1V p–p.  
CURRENT  
I
2
I
1
The chip has a unique mode in which the Rx is on standby while the  
Tx is ON. In this mode the Rx Baseband circuits are idling at  
reduced currents and all Rx I/O outputs retain their DC bias  
unchanged from their values when the Rx was fully ON. This mode  
is very essential if ac coupling through a large capacitor, such as,  
10nF is used. From this mode the chip can quickly be switched to  
the Rx ON mode (Tx OFF) without worrying about  
VOLTAGE  
V
1
V
2
charging/discharging the large AC coupling capacitor.  
I
2
The VGA can be programmed in 2 ways: 1) Directly programming  
external control pins. 2) programming over the serial 3–wire bus.  
The former method can switch gain in less than 200 ns.  
I
1
SR00526  
Figure 3.  
Relative Output Current Variation  
The Rx baseband section also incorporates simple low pass active  
filters of the Sallen key type. The Rx bandwidth is mainly set by  
these filters. The function of these filters is twofold: 1) attenuate high  
frequency signals from the Rx mixers. 2) act as anti–aliasing filters  
for any A to D converters following this chip.  
APPLICATION DESCRIPTION  
IF synthesizer  
General  
The SA1630 has an integrated synthesizer that uses an external  
VCO operating on twice the IF frequency. It is internally divided by 2  
for obtaining quadrature signals. The divided VCO signal is not  
externally available. This minimizes the LO feedthrough to the IF  
input port and hence minimizes output dc glitches when the IF gain  
is switched.  
The 1630 performs the IF modulator and demodulator functionality  
for high–speed wireless data transceivers. The design is optimized  
for IEEE 802.11 wireless LAN using 11 chips/symbol Direct  
Sequence Spread Spectrum.  
Transmitter  
The IF quadrature transmitter baseband modulator input is driven  
differentially by the D/A converters in the DSP chip. The baseband  
signals are DC coupled for fast turn–on and turn–off and for  
constant carrier testing. The typical common–mode input voltage is  
VCC/2.  
The open collector outputs of the mixers are biased by two  
inductors, which are part of an LC tank. The LC tank matches the  
output impedance of the mixers to the input impedance of the  
upconverter chip (or any filter in between) and suppresses IF  
harmonics.  
The PLL reference clock is derived from the 22 MHz DSP clock. The  
available divider ratios facilitate both 1 and 2 MHz phase  
comparison frequency from a 22 MHz and an optional 44 MHz clock  
respectively. In essence the reference divider will have  
programmable dividers ratios of 8, 11, 22 and 44.  
The VCO shall be fed from a stabilized supply. Such a stabilized  
supply is necessary in order to prevent oscillator jitters due to Rx/Tx  
switching. The effect of oscillator jitters is further minimized when  
using a high PLL loop bandwidth, which on its turn requires a high  
phase comparison frequency (1 MHz, preferably 2 MHz).  
An optional 2.5V reference is available during mode (3) and (5), the  
transmit mode with Rx in standby. This reference can be enabled or  
disabled via the 3 wire bus (in this mode). This voltage is provided  
for use by an external current DAC if needed.  
If the IF Synthesizer is not used, the CLK pins should be  
IN  
terminated to ac ground.  
Serial Programming Input  
Receiver  
The serial input is a 3–wire input (CLOCK, STROBE, DATA) to  
program the counter ratios, charge pump current, status– and  
DC–offset register, mode select and test register. The programming  
data is structured into two 21–bit words; each word includes 4 chip  
address bits and 1 subaddress bit. Figure 2 shows the timing  
diagram of the serial input. When the STROBE = L, the clock driver  
is enabled and on the positive edges of the CLOCK the signal on  
DATA input is clocked into a shift register. When the STROBE = H,  
the clock is disabled and the data in the shift register remains stable.  
Depending on the value of the subaddress bit the data is latched  
into different working registers. Table 3 shows the contents of each  
word.  
The receiver part of the SA1630 consists of an IF Variable gain  
amplifier, a quadrature demodulator and a pair of baseband  
amplifiers. The IF amplifier has its gain controlled by the DSP chip.  
This ensures linear operation of the receiver chain over a wide  
dynamic range of input signals. Linear operation is essential for  
resolving echo’s due to multipath reception.  
The digital controlled AGC is meant for fast level training for the  
receiver.  
The high gain receiver, which is distributed between the IF and  
baseband part facilitates interfacing with the RF front–end chip,  
which normally have moderate gains (up to 20 dB), and SAW IF  
filters, which mostly have considerable loss (up to 8 dB) without  
external amplifiers.  
Default States  
Upon power up (V DIG is applied) a reset signal is generated,  
CC  
The baseband amplifiers have a high drive capability (1 Vpp into  
1kΩ, 15 pF for VCC = 3V) that facilitates direct interfacing to the A/D  
converter without active external elements.  
which sets all registers to a default state. The logic level at the  
11  
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
STROBE pin should be low during power up to guarantee a proper  
reset. These default states are shown in Table 2.  
The current can be set to zero by connecting the pin I  
to V CP.  
REF CC  
Charge Pumps  
Reference Divider  
The reference divider can be programmed to four different division  
ratios (:8, :11, :22, :44), see registers r0, r1; default setting: divide by  
22.  
The charge pumps at pin CP are driven by the phase detector and  
the current value is determined by the binary value of the charge  
pumps register CN = c2, c1, c0, default .4mA. The active charge  
pump current is typically:  
|ICP| + (c0 ) 2c1 ) 4c2) @ 29mA ) 200mA  
Main Divider  
The external VCO signal, applied to the LO and LO X inputs, is  
IN  
IN  
divided by two and then fed to the main divider (:N). The main  
divider is a programmable 9 bit divider, the minimum division ratio is  
divide by 64. The division ratio is binary coded and set in the  
registers n0 to n8. The default setting is a divide by 352.  
Lock Detect  
The output LOCK is H when the phase detector indicates a lock  
condition. This condition is defined as a phase difference of less  
than ±1 cycle on the reference input CLK , CLK X.  
IN  
IN  
At the completion of a main divider cycle, a main divider output is  
generated which will drive the phase detector.  
Test Modes (Synthesizer, Transmit Mixer)  
The LOCK output is selectable as a test output. Bits x0, x1 control  
the selection, the default setting is normal lock output as described  
in the Lock detect section. The selection of a Bit x0, x1 combination  
has a twofold effect: First it routes a divider output signal to the  
LOCK pin, second it disables mixer stages in the transmit path.  
Setting x0,1 = 11 disables both transmit path mixers. This mode can  
be used to prevent the transmitter from producing an IF output  
signal even if the transmit part is powered on. This can be used to  
simplify the control timing while commanding the transmit and  
receive simultaneously without the transmit part causing  
interference.  
Phase Detector  
The phase detector is a D-type flip-flop phase and frequency  
detector shown in Figure 5. The flip-flops are set by the negative  
edges of the output signals of the dividers. The rising edge of the  
signal L will reset the flip-flops after both flip-flops have been set.  
Around zero phase error this has the effect of delaying the reset for  
1 reference input cycle. This avoids non-linearity or deadband  
around zero phase error. The flip-flops drive on-chip charge pumps.  
A source current from the charge pump acts to increase the VCO  
frequency; a sink current acts to decrease the VCO frequency.  
Table 1. Test Modes  
Current Setting  
Transmit Mixer  
Synthesizer Signal  
at LOCK Pin  
The charge pump current is defined by the current set between the  
x0 x1  
pin I  
and V CP. The current value to be set there is 31.2µA.  
Q-mixer I-mixer  
REF  
EE  
This current can be set by an external resistor to be connected  
between the pin I and V CP. The typical value R (current  
setting resistor) can be calculated with the formula  
0
1
0
1
0
0
1
1
normal lock detect  
on  
off  
on  
off  
on  
on  
off  
off  
REF  
EE  
EXT  
CLK divided by reference  
IN  
divider ratio  
V
CCCP–1.6V  
LO ÷ 2 * (main divider ratio)  
IN  
REXT  
+
(44.87K for 3V)  
31.2mA  
main divider output, that goes to  
the phase detector  
12  
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
Table 2. Definition of SA1630 Serial Registers  
First data word: (shown with default values)  
Sub  
Reference  
Divider  
Address SA1630  
N-Divider  
Charge-Pump  
Test  
Adr  
MSB  
LSB  
a0  
a1  
a2  
a3  
sa  
n0  
n1  
n2  
n3  
n4  
n5  
n6  
n7  
n8  
r0  
r1  
c0  
c1  
c2  
x0  
x1  
1
1
1
0
0
1
0
1
1
0
0
0
0
0
1
0
1
1
1
0
0
Address: 4 bits, a0...a3, fixed to 1110  
Sub:Address: 1 bit, sa, fixed to 0 for first data word  
9 bits, n0...n8, values 64 (00100 0000) to 511 (11111 1111) allowed for IF choice, default 352 (assuming LO  
input frequency is 704 MHz).  
N-Divider:  
Reference Divider Register: 2 bits, r0...r1, 00 = /8, 01 = 11, 10 = /22, 11 = /44. Default: 10  
Charge-Pump Register: 3 bits, c0...c2, Binary setting factor for charge pumps, values 000 = minimum current to 111 = maximum  
current, default is maximum charge pump current (111)  
Test Register: 2 bits, x0...x1, default 00, see functional description for details  
Second data word: (shown with default values)  
Misc  
Control  
bits  
Sub LLL Mode  
Q Offset  
Register  
Address SA1630  
I Offset Register  
VGA Gain Control  
Adr  
Control  
MSB  
LSB  
a0  
a1  
a2  
a3  
sa  
s0  
s1  
i0  
i1  
i2  
q0  
q1  
q2  
b0  
b1  
b2  
b3  
b4  
b5  
bc  
vc  
1
1
1
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
1
Address: 4 bits, a0...a3, fixed to 1110  
Sub:Address: 1 bit, sa, fixed to 1 for second data word  
LLL Mode control: 2 bits, s0, s1 Not used, always set to 0, 0  
I Offset Register: 3 bits, i0...i2 .10 Not used, always set to 0, 0, 0  
Q Offset Register: 3 bits, q0...q2. q0. Currently not being used, always set to 0, 0, 0  
VGA Gain Control 6 bits, b0...b5. 000 000 corresponds to maximum gain and 111 111 to minimum gain in 2 dB increments.  
Check control table contained elsewhere in this document.  
VGA Control Enable 1 bit, bc. When bc=0 the VGA is controlled by external pins. When bc=1 then bits b0...b5 control the VGA.  
Default bc=0, control by external pins  
Regulator Disable 1 bit, Vc. When Vc=0 the 2.5V reference output is completely powered down. When Vc=1 the reference  
voltage is enabled (provided Tx_ON=HIGH). Default: Vc = 1, enable the 2.5 reference.  
13  
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
LSB  
MSB  
DATA  
a
a
0
X
or t  
X or t  
0 4  
1
1
5
t
H
t
t
SU  
SU  
50%  
CLOCK  
FIRST CLOCK  
LAST CLOCK  
FIRST CLOCK  
t
SU  
STROBE  
CLOCK ENABLED  
SHIFT IN DATA  
CLOCK  
DISABLED  
STORE DATA  
t
W
50%  
CLOCK  
SR00527  
STROBE  
Figure 4.  
Serial Input Timing Sequence  
L
“1”  
R
D
C
Q
REFERENCE  
DIVIDER  
CLK  
IN  
V
CP  
CC  
R
R
P
P-TYPE  
CHARGE PUMP  
C
P
“1”  
X
D
C
MAIN  
DIVIDER  
LO  
IN  
÷2  
N-TYPE  
CHARGE PUMP  
Q
N
V
SS  
CLK  
IN  
L
R
X
P
N
I
CP  
SR00528  
Figure 5.  
Phase Detector Structure with Timing  
14  
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
3V  
SUPPLY  
10m  
1
48  
GNDRX  
GNDRX  
V
Rx  
CC  
100n  
47  
2
GNDRx  
1.8p  
5K  
3
46  
45  
V
Rx  
RxIF IN  
CC  
RxIN  
100n  
44nH  
4
PLL_ON  
Rx_ON  
RxIF INX  
PLL_ON  
1.8p  
17.4  
44  
43  
5
GNDRX  
1n  
Rx_ON  
TxIFOUT  
TxOUT  
6
1n  
GNDHDR  
GC0  
294  
1n  
294  
7
GC0  
42  
TxIFOUTX  
8
GC1  
GC2  
GC1  
41  
40  
GNDTxRx  
GNDTxRx  
9
GC2  
10  
39  
38  
37  
36  
35  
34  
GC3  
GC4  
GC5  
GC3  
V
TXRX  
CC  
I0n  
V
20Ω  
REF  
11  
GC4  
V
2.5  
REF  
12  
I
REF  
GC5  
10n  
GNDCP  
CP  
13  
14  
15  
GND_BB  
GND_BB  
CP  
V
__BB  
CC  
V
CP  
CC  
100n  
100n  
16  
DATA  
CLOCK  
33  
32  
31  
Q_RXOUT  
3 WIRE  
15P  
SERIAL BUS  
1K  
STROBE  
LOCK  
30  
29  
17  
LOCK  
I_RxOUT  
10n  
15P  
LO INX  
LO IN  
1K  
W
10n  
28  
27  
26  
LO_IN  
GNDRx  
CLK IN  
18  
I_TX IN  
I/Q GEN  
1MHZ  
FOR SSB  
TESTING  
10n  
10n  
19  
20  
CLKIN  
I_Tx INX  
50W  
25  
24  
23  
CLK INX  
GNDDIG  
Q_Tx IN  
(8MHZ  
FOR DSB  
TEST-  
ING)  
Q_Tx INX  
21  
22  
Tx_ON  
TX_ON  
1n  
V
CC DIG  
100nF  
SR01550  
Figure 6.  
Typical SA1630 Test Circuit  
15  
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
Supply Current Wait Mode 2  
Vs. Temperature and Supply  
Supply Current Sleep Mode 1  
Vs. Temperature and Supply  
22  
20  
19  
18  
17  
16  
15  
14  
20  
18  
16  
14  
12  
10  
3.6 V  
3 V  
2.7 V  
3.6 V  
3 V  
2.7 V  
–50  
0
50  
100  
–50  
0
50  
100  
Temperature °C  
Temperature °C  
Supply Current Transmit Mode 3  
Vs. Temperature and Supply  
Supply Current Receive Mode 4  
Vs. Temperature and Supply  
30  
40  
38  
29  
28  
27  
26  
25  
24  
23  
22  
36  
34  
3.6 V  
3.6 V  
2.7 V  
3 V  
32  
30  
28  
26  
2.7 V  
–50  
0
50  
100  
–50  
0
50  
100  
Temperature °C  
Temperature °C  
Supply Current Transmit Mode 5  
Vs. Temperature and Supply  
Receiver Third Harmonic Distortion  
Vs. Temperature and Supply  
26  
24  
22  
20  
18  
16  
40  
38  
36  
34  
32  
30  
28  
dB below signal with Rx input  
IV at maximum gain  
PP  
2.7 V  
3.6 V  
3 V  
3 V  
2.7 V  
3.6 V  
–50  
0
50  
100  
Temperature °C  
–50  
0
50  
100  
Temperature °C  
SR01601  
Figure 7.  
16  
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
Receiver AGC Gain Range  
Vs. Temperature and Supply  
Receiver Maximum Gain  
Vs. Temperature and Supply  
100  
75  
70  
65  
95  
90  
85  
80  
2.7 V  
3 V  
3.6 V  
3.6 V  
3 V  
2.7 V  
–50  
0
50  
100  
–50  
0
50  
100  
Temperature °C  
Temperature °C  
Transmitter Carrier and  
Sideband Suppression  
Transmitter Third Harmonic Distortion  
Vs. Temperature and Supply  
Vs. Temperature and Supply  
–50  
–55  
–60  
–65  
–70  
–30  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
–50  
Carrier Suppression  
3.6  
3
2.7 V  
2.7 V  
3
3.6  
Sideband  
Suppression  
3.6  
3
2.7 V  
–50  
0
50  
100  
–50  
0
50  
100  
Temperature °C  
Temperature °C  
Transmitter AC Output Current  
Vs. Temperature and Supply  
P Charge Pump Current 000  
Vs. Temperature and Supply  
0.5  
0.4  
0.3  
0.2  
–190  
–195  
–200  
–205  
–210  
Average output at 353MHz  
Input 1V  
PP  
3.6  
3
2.7V to 3,6 V  
2.7 V  
–50  
0
50  
Temperature °C  
100  
–50  
0
50  
100  
Temperature °C  
SR01600  
Figure 8.  
17  
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
N Charge Pump Current 000  
Vs. Temperature and Supply  
P Charge Pump Current 111  
Vs. Temperature and Supply  
205  
200  
195  
190  
–390  
–395  
–400  
–405  
–410  
–415  
–420  
3.6  
3
3.6  
3
2.7 V  
2.7 V  
–50  
0
50  
100  
–50  
0
50  
100  
Temperature °C  
Temperature °C  
Charge Pump Match 111  
Vs. Temperature and Supply  
N Charge Pump Current 111  
Vs. Temperature and Supply  
5
0
410  
405  
400  
395  
390  
3.6  
V
–5  
3
2.7 V  
3 V  
V
2.7 V  
3.6 V  
–10  
–15  
–50  
0
50  
100  
–50  
0
50  
100  
Temperature °C  
Temperature °C  
N Charge Pump Step Size  
Vs. Temperature and Supply  
35  
33  
P Charge Pump Step Size  
Vs. Temperature and Supply  
–25  
–27  
–29  
–31  
–33  
–35  
31  
29  
2.7 V  
3 V  
3.6 V  
3.6 V  
3 V  
2.7 V  
27  
25  
–50  
0
50  
100  
–50  
0
50  
100  
Temperature  
C
Temperature °C  
SR01599  
Figure 9.  
18  
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
Transmitter Input Modulation  
Bandwidth Vs. Frequency  
2.5 Reference Voltage Vs. Load  
and Temperature  
3.0  
–21  
–22  
–23  
–24  
–25  
–26  
85°C  
25°C  
–40°C  
2.8  
2.6  
2.4  
–2.0  
–1.2  
–0.4  
0.4  
1.2  
2.0  
0
4
8
12  
16  
20  
24  
28  
32  
36  
Load Current mA  
Vcc= 3V  
Frequency MHz  
Vcc = 3V  
Transmitter RMS Output Current  
Vs. Input Voltage  
Receiver Filter Bandwidth Vs.  
Frequency and Temperature  
0.6  
0.5  
0.4  
0.3  
0.2  
–14  
–16  
–18  
–20  
–22  
–24  
–26  
–40°C  
25°C  
85°C  
0.50  
0.70  
0.90  
1.10  
1.30  
1.50  
0
3
6
9
12  
15  
Single Ended Input Vpp V  
Output Frequency MHz  
Vcc= 3V  
Vcc= 3V Gain= –70  
Charge Pump Relative Variation  
Vs. Temperature and Supply  
3
2
1
0
Vcm – 0.7V to V –0.8V  
CC  
2.7 V  
P Pump  
3 V  
3.6 V  
N Pump 2.7V to 3.6V  
100  
–50  
0
50  
Temperature °C  
SR01602  
Figure 10.  
19  
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
20  
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
NOTES  
21  
1998 Jul 21  
Philips Semiconductors  
Product specification  
IF quadrature transceiver  
SA1630  
Data sheet status  
[1]  
Data sheet  
status  
Product  
status  
Definition  
Objective  
specification  
Development  
This data sheet contains the design target or goal specifications for product development.  
Specification may change in any manner without notice.  
Preliminary  
specification  
Qualification  
This data sheet contains preliminary data, and supplementary data will be published at a later date.  
Philips Semiconductors reserves the right to make chages at any time without notice in order to  
improve design and supply the best possible product.  
Product  
specification  
Production  
This data sheet contains final specifications. Philips Semiconductors reserves the right to make  
changes at any time without notice in order to improve design and supply the best possible product.  
[1] Please consult the most recently issued datasheet before initiating or completing a design.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1998  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
print code  
Date of release: 07-98  
9397 750 04166  
Document order number:  
Philips  
Semiconductors  

相关型号:

SA163040

CONN IC DIP SOCKET 16POS GOLD
ETC

SA1630BE

IF quadrature transceiver
NXP

SA1638

Low voltage IF I/Q transceiver
NXP

SA1638BE

Low voltage IF I/Q transceiver
NXP

SA1638BE-S

暂无描述
NXP

SA1638BE-T

IC TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PQFP48, Cellular Telephone Circuit
NXP

SA1641-.10K

1 ELEMENT, 0.1 uH, PHENOLIC-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK

SA1641-.15K

1 ELEMENT, 0.15 uH, PHENOLIC-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK

SA1641-.18K

1 ELEMENT, 0.18 uH, PHENOLIC-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK

SA1641-.27K

1 ELEMENT, 0.27 uH, PHENOLIC-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK

SA1641-.39K

1 ELEMENT, 0.39 uH, PHENOLIC-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK

SA1641-.47K

1 ELEMENT, 0.47 uH, PHENOLIC-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK