TDA8939TH [NXP]

Zero dead time Class-D 7.5 A power comparator; 零死区时间,D类7.5 A功耗比较
TDA8939TH
型号: TDA8939TH
厂家: NXP    NXP
描述:

Zero dead time Class-D 7.5 A power comparator
零死区时间,D类7.5 A功耗比较

文件: 总21页 (文件大小:97K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA8939  
Zero dead time Class-D 7.5 A power comparator  
Rev. 01 — 22 April 2004  
Objective data sheet  
1. General description  
Zero dead time Class-D 7.5 A power comparator  
The TDA8939 is a power comparator designed for use in a high efficiency class-D audio  
power amplifier system.  
It contains power switches, drive logic, protection circuitry, bias circuitry and a fully  
differential input stage (comparator).  
This device is optimized for applications in fully digital open-loop class-D audio systems  
(in combination with a digital PWM controller).  
The TDA8939 power comparator operates with high efficiency and low dissipation. The  
system operates over a wide supply voltage range from ±10 V up to ±30 V.  
2. Features  
Zero dead time switching  
Maximum output current 7.5 A  
Standby mode  
High efficiency  
Operating voltage from ±10 V to ±30 V (symmetrical) or 20 V to 60 V (asymmetrical)  
Low quiescent current  
High output power  
Diagnostic output  
Thermal protection, current protection and voltage protection.  
3. Applications  
Television sets  
Home-sound sets  
Multimedia systems  
All mains fed audio systems  
Car audio (boosters).  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
4. Quick reference data  
Table 1:  
Quick reference data  
VP = ±25 V; fcarrier = 384 kHz.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
[1]  
VP  
supply voltage  
symmetrical supply  
voltage  
±10  
±25  
±30  
V
asymmetrical supply  
voltage  
20  
-
50  
50  
60  
V
Iq(tot)  
total quiescent current no load connected; no  
filters; no snubbers  
70  
mA  
connected  
η
efficiency  
Prated  
-
90  
-
%
[1] When the supply voltage is below ±12.5 V the PWM outputs will not be able to switch to the high side at the  
first PWM cycle.  
5. Ordering information  
Table 2:  
Ordering information  
Type  
number  
Package  
Name  
Description  
Version  
TDA8939TH HSOP24 plastic, heatsink small outline package; 24 leads; low  
stand-off height  
SOT566-3  
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
2 of 21  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
6. Block diagram  
22  
BOOT1  
23  
TDA8939TH  
V
DDP1  
3
DRIVER  
HIGH  
V
DDA1  
4
2
21  
ZERO  
DEAD TIME  
CONTROL  
IN1P  
IN1N  
OUT1  
1
DRIVER  
LOW  
V
SSA1  
19  
20  
5
STAB  
12 V  
POWERUP  
DIAGN  
STAB1  
V
SSP1  
OTP temperature sensor  
OCP current protection  
OVP overvoltage protection  
UVP undervoltage protection  
S
R
7
PROTECTION  
LATCH  
Q
15  
14  
6
8
ENABLE  
CGND  
BOOT2  
V
DDP2  
10  
DRIVER  
HIGH  
V
DDA2  
9
16  
ZERO  
DEAD TIME  
CONTROL  
IN2P  
IN2N  
OUT2  
11  
12  
DRIVER  
LOW  
V
SSA2  
18  
17  
STAB  
12 V  
STAB2  
V
SSP2  
24  
sub  
13  
001aaa624  
V
heatsink  
n.c.  
SSD  
Fig 1. Block diagram.  
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
3 of 21  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
7. Pinning information  
7.1 Pinning  
V
24  
23  
1
2
V
SSA1  
SSD  
V
IN1N  
DDP1  
BOOT1 22  
OUT1 21  
3
V
DDA1  
4
IN1P  
V
20  
5
POWERUP  
ENABLE  
DIAGN  
CGND  
SSP1  
STAB1 19  
STAB2 18  
6
TDA8939  
7
V
SSP2  
17  
8
OUT2 16  
9
IN2P  
BOOT2 15  
10 V  
DDA2  
V
14  
11 IN2N  
12  
DDP2  
n.c. 13  
V
SSA2  
001aaa625  
Fig 2. Pin configuration.  
7.2 Pin description  
Table 3:  
Symbol  
VSSA1  
Pin description  
Pin  
1
Description  
negative analog supply voltage for channel 1  
inverting input channel 1  
IN1N  
2
VDDA1  
3
positive analog supply voltage for channel 1  
non-inverting input channel 1  
IN1P  
4
POWERUP  
ENABLE  
DIAGN  
5
enable input for switching on internal reference sources  
digital enable input  
6
7
digital open-drain diagnostic output for OTP, OCP, OVP and UVP  
(active LOW)  
CGND  
8
common ground, reference ground for diagnostic, enable and  
power-up  
IN2P  
9
non-inverting input channel 2  
VDDA2  
IN2N  
10  
11  
12  
13  
14  
15  
16  
17  
18  
positive analog supply voltage for channel 2  
inverting input channel 2  
VSSA2  
n.c.  
negative analog supply voltage for channel 2  
not connected  
VDDP2  
BOOT2  
OUT2  
VSSP2  
STAB2  
positive power supply voltage for channel 2  
bootstrap capacitor 2  
PWM output channel 2  
negative power supply voltage for channel 2  
decoupling internal stabilizer for logic supply channel 2  
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
4 of 21  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
Table 3:  
Symbol  
STAB1  
VSSP1  
Pin description …continued  
Pin  
19  
20  
21  
22  
23  
24  
-
Description  
decoupling internal stabilizer for logic supply channel 1  
negative power supply voltage for channel 1  
PWM output channel 1  
OUT1  
BOOT1  
VDDP1  
VSSD  
bootstrap capacitor 1  
positive power supply voltage for channel 1  
negative digital supply voltage  
SUB  
heat spreader of package; internally connected to VSSD  
8. Functional description  
8.1 General  
The TDA8939 class-D power comparator is designed for use in fully digital open-loop  
class-D audio applications. Excellent timing accuracy with respect to delay times and rise  
and fall times is achieved and one of the most important sources of distortion in a full  
digital open-loop audio amplifier is eliminated; the zero dead time switching concept is  
included. The TDA8939 contains two independent class-D output stages with high power  
D-MOS switches, drivers, timing and control logic. For protection a temperature sensor, a  
maximum current detection and overvoltage detection circuit are integrated. An internal  
protection latch keeps the power comparator in shut-down mode after a fault condition has  
been detected. External reset of the latch is required via the enable input.  
8.2 Protections  
Overtemperature, overcurrent and overvoltage sensors are included in the TDA8939  
power comparator. In the event that the maximum temperature, maximum current or  
maximum supply voltage is exceeded the diagnostic output is activated (open-drain output  
pulled-down via external pull-up resistor).  
The diagnostic output pin is activated (active LOW) in case of:  
1. Overtemperature (OTP): the junction temperature (Tj) exceeds a threshold level.  
2. Overcurrent (OCP): the output current exceeds the maximum output current threshold  
level (e.g. when the loudspeaker terminals are short-circuited it will be detected by the  
current protection).  
3. Overvoltage (OVP): the supply voltage applied to the power comparator exceeds the  
maximum supply voltage threshold level.  
The TDA8939 is self-protecting. If a fault condition (OTP, OCP or OVP) is detected it will  
pull-down the diagnostic output (pin 7), while at the same time shutting down the power  
stage. In case of a fault condition in one of the half-bridges or output channel the other  
half-bridge and output channel will also shut down. All protections trigger a latch which  
ensures that the power stage remains deactivated until the latch is reset again.  
The latch is reset by switching the enable voltage of the power stage to LOW level. Both  
set (S) and reset (R) inputs of the protection latch trigger on a negative falling slope.  
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
5 of 21  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
The block diagram of diagnostic output including OTP, OCP and OVP is illustrated in  
Figure 3. The diagnostic output (pin 7) is an open-drain output; a pull-up resistor  
connected to +Vpull-up has to be applied externally.  
TDA8939  
+V  
int  
disable power stage  
OTP  
OCP  
OVP  
R1  
+V  
pull-up  
S
R
R
pu  
LATCH  
R2  
C1  
open-drain  
Q
DIAGN  
CGND  
enable  
001aaa623  
Fig 3. OCP, OTP and OVP protection: S/R latch.  
8.3 Interfacing between controller and the TDA8939  
For interfacing with a digital PWM controller IC or microcontroller in the final system  
application the following inputs and outputs are available see Table 4 and 5.  
8.3.1 Inputs  
Table 4:  
Inputs  
Pin number  
Pin name  
Description  
IN1P and  
IN1N  
4 and 2  
9 and 11  
5
full differential input for output channel 1; referenced with respect  
to each other; common mode referenced to VSSD  
IN2P and  
IN2N  
full differential input for output channel 2; referenced with respect  
to each other; common mode referenced to VSSD  
POWERUP  
ENABLE  
standby switch; reference to CGND; at a LOW level the device is  
in standby mode and consumes a very low standby current. At  
HIGH level the device is DC-biased (switch-on of internal  
reference voltages and currents). The device can only be  
switched to full operating mode by the enable input, if the  
power-up input is at HIGH level.  
6
mode switch; reference to CGND; at a LOW level the power  
D-MOS switches are open and the PWM output is floating; all  
internal logic circuits are in reset condition. At a HIGH level the  
power comparator is fully operational if the power-up input is also  
at a HIGH level. In this condition the power comparator outputs  
are controlled by the input pins (IN1P, IN1N, IN2P and IN2N); see  
also Figure 6. The enable input signal is also used to reset the  
protection latch.  
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
6 of 21  
TDA8939  
Philips Semiconductors  
8.3.2 Outputs  
Zero dead time Class-D 7.5 A power comparator  
Table 5:  
Pin name  
DIAGN  
Outputs  
Pin number  
Description  
7
Digital open-drain output; referenced to CGND; output indicates  
the following fault conditions: OTP, OCP, OVP and UVP. In the  
event of a fault condition the output is pulled to the CGND voltage  
(active LOW). If the diagnostic output functionality is used in the  
application, an external pull-up resistor is required.  
8.3.3 Reference voltages  
Table 6:  
Pin name  
CGND  
Reference voltages  
Pin number  
Description  
8
common ground; reference ground for diagnostic  
output, enable input and power-up input  
VSSD  
24  
negative digital supply; reference ground digital circuits.  
The VSSD pin should be connected to VSS voltage in the  
application. Internally the VSSD pin is connected to the  
VSSAx and VSSPx (e.g. VSSA1 and VSSP1) via an ESD  
protection diode.  
8.4 Start-up timing  
Power comparator mode selection:  
Standby mode: when pin POWERUP is LOW, the power comparator is in standby  
mode, independent of the signal on the enable input  
Reset mode: when pin POWERUP is HIGH, the status of the power comparator is  
controlled by pin ENABLE; if pin ENABLE is LOW, the status of the power stage is  
reset and the outputs are floating  
Operating mode: when pin ENABLE is HIGH, the power stage is in operating mode.  
To ensure correct start-up of the power stage, the enable input should never be HIGH  
when the power-up input is LOW. Before switching to operating mode, the amplifier should  
first be switched to reset mode.  
Remark: It is possible to directly connect the power-up input to the positive supply line  
(e.g. VDDA1). As soon as the supply voltage is applied the device will be DC-biased (reset  
mode).  
Table 7:  
Pin  
Mode selection  
Mode  
POWERUP  
LOW  
ENABLE  
X
standby  
reset  
HIGH  
LOW  
HIGH  
HIGH  
operating  
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
7 of 21  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
ENABLE  
POWERUP  
status  
standby  
reset  
operating  
reset  
standby  
start-up sequence  
switch-off sequence  
001aaa062  
Fig 4. Mode selection timing diagram.  
9. Limiting values  
Table 8:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Vp  
Parameter  
Conditions  
Min  
Max  
60  
Unit  
V
supply voltage  
-
-
IORM  
repetitive peak current on  
output pins  
7.5  
A
Tstg  
Tamb  
Tvj  
storage temperature  
55  
40  
-
+150  
+85  
°C  
°C  
°C  
ambient temperature  
virtual junction temperature  
150  
10. Thermal characteristics  
Table 9:  
Symbol  
Rth(j-a)  
Thermal characteristics  
Parameter  
Conditions  
Value  
40  
Unit  
K/W  
K/W  
thermal resistance from junction to ambient in free air  
thermal resistance from junction to case  
Rth(j-c)  
1.3  
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
8 of 21  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
11. Static characteristics  
Table 10: Static characteristics  
VP = ±25 V; fcarrier = 384 kHz; Tamb = 25 °C; unless otherwise specified.  
Symbol  
Supplies  
VP  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
supply voltage  
quiescent current  
symmetrical supply voltage  
asymmetrical supply voltage  
±10  
20  
-
±25  
50  
±30  
60  
V
V
Iq  
no load; no filters; no  
snubbers connected  
50  
70  
mA  
reset mode  
-
-
10  
20  
mA  
Istb  
standby current  
standby mode  
120  
170  
µA  
Internal stabilizer logic supplies  
VSTAB1  
,
stabilizer output voltage  
11  
12  
15  
V
VSTAB2  
Comparator full differential input stage: pins IN1P, IN1N, IN2P and IN2N  
Vi(diff)  
Vi(com)  
Ii(bias)  
differential input voltage range  
common mode input voltage  
input bias current  
1
3.3  
12  
V
VSSA1  
-
-
-
VDDA1 7.5 V  
10  
µA  
Common ground: pin CGND  
VCGND common ground reference  
voltage  
Diagnostic output: pin DIAGN  
asymmetrical supply  
referenced to CGND;  
-
0
-
-
V
[2]  
VOL  
LOW-level output voltage  
0
1
V
IDIAGN = 1 mA  
Vpu(max)  
IL  
maximum pull-up voltage  
leakage current  
referenced to CGND  
no error condition  
-
-
-
-
12  
50  
V
µA  
Enable input: pin ENABLE  
VIL  
VIH  
II  
LOW-level input voltage  
referenced to CGND  
referenced to CGND  
VENABLE = 12 V  
0
3
-
-
1
V
HIGH-level input voltage  
input current  
-
12  
140  
V
70  
µA  
Power-up input: pin POWERUP  
VIL  
VIH  
Vhys  
II  
LOW-level input voltage  
HIGH-level input voltage  
hysteresis voltage  
input current  
referenced to CGND  
referenced to CGND  
0
3
-
-
0.5  
VDDA  
-
V
-
V
0.3  
70  
V
VPOWERUP = 12 V  
-
140  
µA  
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
9 of 21  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
Table 10: Static characteristics …continued  
VP = ±25 V; fcarrier = 384 kHz; Tamb = 25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
150  
7.5  
Typ  
Max  
Unit  
°C  
Temperature protection  
Tdiag  
diagnostic trigger temperature  
VDIAGN = VOL  
-
-
-
-
Overcurrent protection  
Iprot  
diagnostic and protection trigger VDIAGN = VOL  
current  
A
Overvoltage protection  
VDD(max) diagnostic and protection trigger VDIAGN = VOL  
maximum supply voltage  
±30  
±33  
-
V
[1] When the supply voltage is below ±12.5 V the PWM outputs will not be able to switch to the high side at the first PWM cycle.  
[2] OTP, OCP and/or OVP protection activated.  
12. Dynamic characteristics  
Table 11: Dynamic characteristics  
VP = ±25 V; Tamb = 25 °C; fcarrier = 384 kHz; see also Figure 8 for definitions.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
PWM output  
tr  
rise time output voltage  
fall time output voltage  
dead time  
-
-
-
-
20  
20  
0
-
-
-
-
ns  
ns  
ns  
ns  
tf  
tdead  
tr(LH)  
large signal response time  
LOW-to-HIGH transition at  
output  
input amplitude = 3.3 V  
input amplitude = 3.3 V  
90  
tr(HL)  
large signal response time  
HIGH-to-LOW transition at  
output  
-
90  
-
ns  
tW(min)  
RDS_ON  
η
minimal pulse width  
RDS_ON output transistors  
efficiency  
-
-
-
150  
0.2  
-
-
ns  
-
0.3  
90  
[1]  
Po = Prated  
[1] Output power measured across the loudspeaker load. Power measurement based on indirect measurement by measuring the RDS_ON  
.
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
10 of 21  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
input  
V
i(dif)  
3.3 V  
V
com  
t
t
t
W(min)  
r(LH)  
r(HL)  
V
DD  
output  
0 V  
V
o
V
SS  
t
t
f
r
1/f  
c
time  
001aaa063  
Vcommon = VSSA1 to (VDDA1 7.5 V).  
tdead cannot be represented in the figure.  
Response times depend on input signal amplitude.  
The second input pulse is not reproduced with same pulse width by the output due to minimum pulse width limitation.  
Fig 5. Timing diagram PWM output.  
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
11 of 21  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
13. Output power estimation  
The maximum achievable output power is not only determined by the power comparator  
characteristics, but by the total system application.  
The following application blocks determine the maximum achievable output power:  
Power comparator:  
Minimum pulse width  
Series resistances: RDS_ON, bond wires, printed-circuit board tracks, series resistance  
of the coil, etc.  
System application:  
Power supply voltage  
Load impedance  
Controller characteristics: maximum modulation depth and carrier frequency.  
In Figure 6 an estimate is given for the output power in full-bridge application as function  
of the (symmetrical) supply voltage for different values of the load-impedance. The  
following variables are taken into account:  
Minimum pulse width: 150 ns  
Total series resistance: 0.4 Ω  
Carrier frequency: 384 kHz.  
001aaa626  
001aaa627  
200  
250  
P
P
out  
out  
(W)  
(W)  
160  
200  
120  
80  
40  
0
150  
100  
50  
(1)  
(2)  
(1)  
(2)  
(3)  
(3)  
0
10  
14  
18  
22  
26  
30  
10  
14  
18  
22  
26  
30  
V
(V)  
V (V)  
P
P
(1) ZL = 4 .  
(2) ZL = 6 .  
(3) ZL = 8 .  
(1) ZL = 4 .  
(2) ZL = 6 .  
(3) ZL = 8 .  
Fig 6. Output power estimation as a function of  
(symmetrical) supply voltage for THD = 1 %.  
Fig 7. Output power estimation as a function of  
(symmetrical) supply voltage for THD = 10 %.  
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
12 of 21  
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx  
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x  
L1  
BEAD  
V+  
CON1  
SUPPLY  
V+  
V
+50 V  
DD  
V+  
1
C3  
470 µF  
(63 V)  
C2  
1000 µF  
(63 V)  
C8  
220 pF  
C9  
220 pF  
C1  
100 nF  
R3  
10 Ω  
R4  
10 Ω  
2
V
CC  
C4  
100 nF  
C5  
100 nF  
C6  
C7  
100 nF  
R6  
10 Ω  
100 nF  
(0.25 W)  
R1  
10 kΩ  
R2  
1 kΩ  
V
DDA1  
V
V
V
DDP2  
DDA2  
DDP1  
3
10  
23 14  
(1)  
L2  
R5  
IN1  
IN1  
OUT1  
neg  
2
OUT  
OUT  
21  
neg  
47 Ω  
R8  
22 Ω  
(1 W)  
(1)  
C11  
C10  
100 nF  
R7  
pos  
4
pos  
BOOT1  
STAB1  
47 Ω  
22  
19  
C12  
POWERUP  
220 nF  
DIGITAL PWM  
CONTROLLER  
5
C13  
CON3  
OUTPUT  
100 nF  
C14  
R9  
ENABLE  
DIAGN  
CGND  
1
power stage on/off  
overload  
6
OUT  
pos  
47 Ω  
TDA8939TH  
STAB2  
BOOT2  
OUT  
neg  
18  
15  
R10  
2
7
100 nF  
47 Ω  
8
C15  
100 nF  
R11  
IN2  
neg  
pos  
OUT2  
n.c.  
11  
16  
13  
(1)  
L3  
47 Ω  
R12  
22 Ω  
(1)  
C18  
R13  
IN2  
(1 W)  
9
47 Ω  
R14  
10 Ω  
1
12  
24  
20  
17  
C19  
220 nF  
(0.25 W)  
V
V
V
V
SSP2  
SSA1  
SSA2  
SSP1  
C16  
220 pF  
C17  
220 pF  
V
SSD  
001aaa628  
V+  
(1) For 8 BTL and fcorner = 40.2 kHz: L2 = L3 = 27 µH; C11 = C18 = 470 nF.  
For 8 BTL and fcorner = 44.5 kHz: L2 = L3 = 22 µH; C11 = C18 = 470 nF.  
For 4 BTL and fcorner = 47.7 kHz: L2 = L3 = 10 µH; C11 = C18 = 1 µF.  
Fig 8. Typical application diagram using a single (asymmetrical) supply voltage.  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
15. Test information  
15.1 Quality information  
The General Quality Specification for Integrated Circuits, SNW-FQ-611 is applicable.  
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
14 of 21  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
16. Package outline  
HSOP24: plastic, heatsink small outline package; 24 leads; low stand-off height  
SOT566-3  
E
A
D
x
X
c
y
E
H
2
v
M
A
E
D
1
D
2
12  
1
pin 1 index  
Q
A
A
2
(A )  
3
E
1
A
4
θ
L
p
detail X  
24  
13  
w
M
Z
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
max.  
(1)  
(2)  
(2)  
A
A
A
b
c
D
D
D
E
E
1
E
e
H
E
L
p
Q
v
w
x
y
Z
θ
UNIT  
2
3
4
p
1
2
2
8°  
0°  
+0.08 0.53 0.32  
0.04 0.40 0.23  
16.0 13.0 1.1 11.1 6.2  
15.8 12.6 0.9 10.9 5.8  
2.9  
2.5  
14.5 1.1  
13.9 0.8  
1.7  
1.5  
2.7  
2.2  
3.5  
3.2  
mm  
1
3.5  
0.35  
0.25 0.25 0.03 0.07  
Notes  
1. Limits per individual lead.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
03-02-18  
03-07-23  
SOT566-3  
Fig 9. Package outline.  
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
15 of 21  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
17. Soldering  
17.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
17.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
17.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
16 of 21  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 to 4 seconds at 250 °C or  
265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
17.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 to 5 seconds between 270 and 320 °C.  
17.5 Package related soldering information  
Table 12: Suitability of surface mount IC packages for wave and reflow soldering methods  
Package [1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, USON, VFBGA  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
17 of 21  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
18 of 21  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
18. Revision history  
Table 13: Revision history  
Document ID  
Release date Data sheet status  
20040422 Objective data sheet  
Change notice Order number  
9397 750 13023  
Supersedes  
TDA8939_1  
-
-
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
19 of 21  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
19. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
20. Definitions  
21. Disclaimers  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
22. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 13023  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 01 — 22 April 2004  
20 of 21  
TDA8939  
Philips Semiconductors  
Zero dead time Class-D 7.5 A power comparator  
23. Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
8
Functional description . . . . . . . . . . . . . . . . . . . 5  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Interfacing between controller and the TDA8939 .  
6
8.1  
8.2  
8.3  
8.3.1  
8.3.2  
8.3.3  
8.4  
Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Reference voltages. . . . . . . . . . . . . . . . . . . . . . 7  
Start-up timing . . . . . . . . . . . . . . . . . . . . . . . . . 7  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal characteristics. . . . . . . . . . . . . . . . . . . 8  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 9  
Dynamic characteristics . . . . . . . . . . . . . . . . . 10  
Output power estimation. . . . . . . . . . . . . . . . . 12  
Application information. . . . . . . . . . . . . . . . . . 13  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 14  
Quality information . . . . . . . . . . . . . . . . . . . . . 14  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 15  
10  
11  
12  
13  
14  
15  
15.1  
16  
17  
17.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 16  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 16  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 17  
Package related soldering information . . . . . . 17  
17.2  
17.3  
17.4  
17.5  
18  
19  
20  
21  
22  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 19  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 20  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Contact information . . . . . . . . . . . . . . . . . . . . 20  
© Koninklijke Philips Electronics N.V. 2004  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 22 April 2004  
Document order number: 9397 750 13023  
Published in The Netherlands  

相关型号:

TDA8941

1.5 W mono Bridge Tied Load BTL audio amplifier
NXP

TDA8941P

1.5 W mono Bridge Tied Load BTL audio amplifier
NXP
NXP

TDA8942

2 x 1.5 W stereo Bridge Tied Load BTL audio amplifier
NXP

TDA8942P

2 x 1.5 W stereo Bridge Tied Load BTL audio amplifier
NXP

TDA8942P/N1,112

IC 1.5 W, 2 CHANNEL, AUDIO AMPLIFIER, PDIP16, 0.300 INCH, PLASTIC, SOT-38-1, MO-001, DIP-16, Audio/Video Amplifier
NXP

TDA8943

6 W mono Bridge Tied Load BTL audio amplifier
NXP

TDA8943SF

6 W mono Bridge Tied Load BTL audio amplifier
NXP
NXP

TDA8944

2 x 7 W stereo Bridge Tied Load BTL audio amplifier
NXP

TDA8944AJ

2 x 7 W BTL audio amplifier with DC gain control
NXP

TDA8944AJ/N2,112

TDA8944AJ - 2 x 7 W BTL audio amplifier with DC gain control ZIP 17-Pin
NXP