TZA3001BHL [NXP]

SDH/SONET STM4/OC12 laser drivers; SDH / SONET STM4 / OC12激光驱动器
TZA3001BHL
型号: TZA3001BHL
厂家: NXP    NXP
描述:

SDH/SONET STM4/OC12 laser drivers
SDH / SONET STM4 / OC12激光驱动器

驱动器
文件: 总22页 (文件大小:474K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser  
drivers  
Preliminary specification  
1999 Aug 24  
Supersedes data of 1997 Sep 08  
File under Integrated Circuits, IC19  
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
FEATURES  
APPLICATIONS  
622 Mbits/s data input, both Current-Mode Logic (CML)  
and Positive Emitter Coupled Logic (PECL) compatible;  
maximum 800 mV (p-p)  
SDH/SONET STM4/OC12 optical transmission systems  
SDH/SONET STM4/OC12 optical laser modules.  
Adaptive laser output control with dual loop, stabilizing  
optical ONE and ZERO levels  
GENERAL DESCRIPTION  
The TZA3001AHL, TZA3001BHL and TZA3001U are fully  
integrated laser drivers for STM4/OC12 (622 Mbits/s)  
systems, incorporating the RF path between the data  
multiplexer and the laser diode. Since the dual loop bias  
and modulation control circuits are integrated on the IC,  
the external component count is low. Only decoupling  
capacitors and adjustment resistors are required.  
Optional external control of laser modulation and biasing  
currents (non-adaptive)  
Automatic laser shutdown  
Few external components required  
Rise and fall times of 120 ps (typical value)  
Jitter <50 mUI (p-p)  
The TZA3001AHL features an alarm function for signalling  
extreme bias current conditions. The alarm low and high  
threshold levels can be adjusted to suit the application  
using only a resistor or a current Digital-to-Analog  
Converter (DAC).  
RF output current sinking capability of 60 mA  
Bias current sinking capability of 90 mA  
Power dissipation of 430 mW (typical value)  
Low cost LQFP32 plastic package  
Single 5 V power supply.  
The TZA3001BHL is provided with an additional RF data  
input to facilitate remote (loop mode) system testing.  
TZA3001AHL  
The TZA3001U is a bare die version for use in compact  
laser module designs. The die contains 40 pads and  
features the combined functionality of the TZA3001AHL  
and the TZA3001BHL.  
Laser alarm output for signalling extremely low and high  
bias current conditions.  
TZA3001BHL  
Extra STM4 622 Mbits/s loop mode input; both CML and  
PECL compatible.  
TZA3001U  
Bare die version with combined bias alarm and loop  
mode functionality.  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TZA3001AHL  
TZA3001BHL  
TZA3001U  
LQFP32  
plastic low profile quad flat package; 32 leads; body 5 × 5 × 1.4 mm  
SOT401-1  
bare die; 2000 × 2000 × 380 µm  
1999 Aug 24  
2
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
BLOCK DIAGRAM  
ALARM TONE TZERO ALARMLO ALARMHI  
26  
4
5
21  
18  
2
MONIN  
LASER  
CONTROL  
BLOCK  
22  
23  
ONE  
ZERO  
13  
12  
15  
data input  
(differential)  
LA  
28  
29  
CURRENT  
SWITCH  
DIN  
LAQ  
BIAS  
DINQ  
6
BAND GAP  
REFERENCE  
BGAP  
TZA3001AHL  
1, 3, 8, 9,  
19, 20  
27, 30  
11, 14, 16, 17  
24, 25, 32  
7
10  
31  
MGK271  
4
11  
GND  
V
V
V
ALS  
CC(R) CC(G) CC(B)  
Fig.1 Block diagram of TZA3001AHL.  
ENL TONE TZERO  
h
26  
4
5
2
22  
23  
MONIN  
ONE  
LASER  
CONTROL  
BLOCK  
ZERO  
28  
29  
DIN  
13  
12  
15  
LA  
DINQ  
CURRENT  
SWITCH  
MUX  
LAQ  
BIAS  
19  
20  
DLOOP  
DLOOPQ  
6
BAND GAP  
REFERENCE  
BGAP  
TZA3001BHL  
1, 3, 8, 9,  
18, 21  
27, 30  
11, 14, 16, 17  
24, 25, 32  
7
10  
31  
MGK270  
4
11  
GND  
V
V
V
ALS  
CC(R) CC(G) CC(B)  
Fig.2 Block diagram of TZA3001BHL.  
3
1999 Aug 24  
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
PINNING  
PIN  
PAD  
SYMBOL  
DESCRIPTION  
TZA3001AHL TZA3001BHL TZA3001U  
GND  
1
2
3
4
1
2
3
4
1
2
3
4
5
ground  
MONIN  
GND  
monitor photodiode current input  
ground  
IGM  
not used; leave unbonded  
TONE  
connection for external capacitor used to set optical  
ONE control loop time constant (optional)  
TZERO  
5
5
6
connection for external capacitor used to set optical  
ZERO control loop time constant (optional)  
BGAP  
VCC(G)  
VCC(G)  
GND  
6
7
6
7
7
connection for external band gap decoupling capacitor  
supply voltage (green domain)  
supply voltage (green domain)  
ground  
8
9
8
8
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
GND  
9
9
ground  
VCC(B)  
VCC(B)  
GND  
10  
10  
supply voltage (blue domain)  
supply voltage (blue domain)  
ground  
11  
12  
13  
14  
15  
16  
17  
11  
12  
13  
14  
15  
16  
17  
LAQ  
laser modulation output inverted  
laser modulation output  
ground  
LA  
GND  
BIAS  
laser bias current output  
ground  
GND  
GND  
ground  
GND  
ground  
ALARMHI  
VCC(R)  
VCC(R)  
DLOOP  
VCC(R)  
DLOOPQ  
VCC(R)  
ALARMLO  
VCC(R)  
ONE  
18  
maximum bias current alarm reference level input  
supply voltage (red domain)  
supply voltage (red domain)  
loop mode data input  
18  
19  
19  
24  
20  
supply voltage (red domain)  
loop mode data input inverted  
supply voltage (red domain)  
minimum bias current alarm reference level input  
supply voltage (red domain)  
optical ONE reference level input  
optical ZERO reference level input  
ground  
20  
25  
26  
27  
21  
21  
22  
23  
24  
25  
22  
23  
24  
25  
26  
28  
29  
30  
31  
32  
33  
34  
ZERO  
GND  
GND  
ground  
ALARM  
ENL  
alarm output  
26  
27  
loop mode enable input  
supply voltage (red domain)  
VCC(R)  
27  
1999 Aug 24  
4
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
PIN  
PAD  
SYMBOL  
DIN  
DESCRIPTION  
TZA3001AHL TZA3001BHL TZA3001U  
28  
29  
30  
31  
32  
28  
29  
30  
31  
32  
35  
36  
37  
38  
39  
40  
data input  
DINQ  
VCC(R)  
ALS  
data input inverted  
supply voltage (red domain)  
automatic laser shutdown input  
ground  
GND  
GND  
ground  
GND  
GND  
1
2
3
4
5
6
7
8
24  
23  
ZERO  
MONIN  
GND  
22 ONE  
ALARMLO  
TONE  
TZERO  
BGAP  
21  
20  
19  
TZA3001AHL  
V
V
CC(R)  
CC(R)  
V
18 ALARMHI  
17 GND  
CC(G)  
GND  
MGK273  
Fig.3 Pin configuration of TZA3001AHL.  
1999 Aug 24  
5
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
GND  
GND  
MONIN  
GND  
1
2
3
4
5
6
7
8
24  
23  
ZERO  
22 ONE  
V
TONE  
TZERO  
BGAP  
21  
CC(R)  
TZA3001BHL  
20 DLOOPQ  
19  
18  
17  
DLOOP  
V
V
CC(G)  
CC(R)  
GND  
GND  
MGK272  
Fig.4 Pin configuration of TZA3001BHL.  
FUNCTIONAL DESCRIPTION  
The RF path is fully differential and contains a differential  
preamplifier and a main amplifier. The main amplifier is  
designed to handle large peak currents required at the  
output laser driving stage and is insensitive to supply  
voltage variations. The output signal from the main  
amplifier drives a current switch which supplies a  
guaranteed maximum modulation current of 60 mA at  
pins LA and LAQ. Pin BIAS delivers a guaranteed  
maximum DC bias current of up to 90 mA for adjusting the  
optical laser output to a level above its light emitting  
threshold.  
The TZA3001AHL, TZA3001BHL and TZA3001U laser  
drivers accept a 622 Mbits/s STM4 Non-Return to Zero  
(NRZ) input data stream and generate an output signal  
with sufficient current to drive a solid state Fabry Perot  
(FP) or Distributed FeedBack (DFB) laser. They also  
contain dual loop control circuitry for stabilizing the true  
laser optical power levels representing logic 1 and logic 0.  
The input buffers present a high impedance to the data  
stream on the differential inputs (pins DIN and DINQ).  
The input signal can be at CML level of approximately  
200 mV (p-p) below the supply voltage, or at PECL level  
up to 800 mV (p-p). The inputs can be configured to accept  
CML signals by connecting external 50 pull-up resistors  
between pins DIN and DINQ to VCC(R). If PECL  
compatibility is required, the usual Thevenin termination  
can be applied.  
Automatic laser control  
A laser with a Monitor PhotoDiode (MPD) is required for  
the laser control circuit (see Figs 6 and 7).  
The MPD current is proportional to the laser emission and  
is applied to pin MONIN. The MPD current range is from  
100 to 1000 µA (p-p). The input buffer is optimized to cope  
with MPD capacitances up to 50 pF. To prevent the input  
buffer breaking into oscillation with a low MPD  
capacitance, it is required to increase the capacitance to  
the minimum value specified in Chapter “Characteristics”  
by connecting an extra capacitor between pin MONIN and  
For ECL signals (negative and referenced to ground) the  
inputs should be AC-coupled to the signal source.  
If AC-coupling is applied, a constant input signal (either  
low of high) will bring the device in an undefined state.  
To avoid this, it is recommended to apply a slight offset to  
the input stage. The applied offset must be higher than the  
specified value in Chapter “Characteristics”, but much  
lower than the applied input voltage swing.  
VCC(G)  
.
1999 Aug 24  
6
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
DC reference currents are applied to pins ZERO and ONE  
to set the MPD reference levels for laser LOW and laser  
HIGH. A resistor connected between pin ZERO and VCC(R)  
and a resistor connected between pin ONE and VCC(R) is  
sufficient, but current DACs can also be used.  
It should be noted that the MPD current is stabilized, rather  
than the actual laser optical output power. Deviations  
between optical output power and MPD current, known as  
‘tracking errors’, cannot be corrected.  
The voltages on pins ZERO and ONE are held constant at  
a level of 1.5 V below VCC(R). The reference current  
applied to pin ZERO is multiplied by 4 and the reference  
current flowing into pin ONE is multiplied internally by 16.  
Designing the modulation and bias loop  
The optical ONE and ZERO regulation loop time constants  
are determined by on-chip capacitances. If the resulting  
time constants are found to be too small in a specific  
application, they can be increased by connecting external  
capacitors to pins TZERO and TONE, respectively.  
The reference current and the resistor for the optical ONE  
regulation loop (modulation current control) can be  
calculated using the following formulae:  
The optical ONE loop time constant and bandwidth can be  
estimated using the following formulae:  
1
16  
IONE  
=
× I  
[A]  
(1)  
------  
MPD (ONE)  
80 × 103  
ηLASER  
τONE = (40 × 1012 + CTONE) ×  
[s]  
(5)  
(6)  
---------------------  
1.5  
24  
IMPD (ONE)  
RONE  
=
=
[Ω]  
(2)  
-----------  
IONE  
-------------------------  
1
BONE  
=
=
[Hz]  
-------------------------  
The reference current and resistor for the optical ZERO  
regulation loop (bias current control) can be calculated  
using the following formulae:  
2π × τONE  
ηLASER  
BONE  
-------------------------------------------------------------------------------------------------  
1
4
2π × (40 × 1012 + CTONE) × 80 × 103  
IZERO  
=
× I  
[A]  
(3)  
--  
MPD (ZERO)  
The optical ZERO loop time constant and bandwidth can  
be estimated using the following formulae:  
1.5  
-------------  
IZERO  
6
RZERO  
=
=
[Ω]  
(4)  
----------------------------  
IMPD (ZERO)  
50 × 103  
ηLASER  
τZERO = (40 × 1012 + CTZERO) ×  
[s] (7)  
In these formulae, IMPD(ONE) and IMPD(ZERO) represent the  
monitor photodiode current during an optical ONE and an  
optical ZERO, respectively.  
---------------------  
1
BZERO  
=
=
[Hz]  
(8)  
----------------------------  
2π × τZERO  
Example: A laser is operating at optical output power  
levels of 0.3 mW for laser HIGH and 0.03 mW for laser  
LOW (extinction ratio of 10 dB). Suppose the  
corresponding MPD currents for this type of laser are  
260 and 30 µA, respectively.  
ηLASER  
BZERO  
----------------------------------------------------------------------------------------------------  
2π × (40 × 1012 + CTZERO) × 50 × 103  
The term ηLASER (dimensionless) in the above formulae is  
the product of the two terms:  
In this example the reference current is  
1
IONE  
=
× 260 = 16.25 µA and flows into pin ONE.  
------  
16  
• ηEO is the electro-optical efficiency which accounts for  
the steepness of the laser slope. It is the amount of the  
extra optical output power in W/A of modulation current  
optical output power.  
This current can be set using a current source or simply by  
a resistor of the appropriate value connected between  
pin ONE and VCC(R). In this example the resistor would be  
R is the monitor photodiode responsivity. It is the  
amount of the extra monitor photodiode current in A/W  
optical output power.  
1.5  
16.25  
RONE  
=
= 92.3 kΩ  
----------------  
The reference current at pin ZERO in this example is  
1
--  
4
˙
× 30 = 7.5 µA and can be set using a resistor  
IZERO  
=
1.5  
RZERO  
=
= 200 kΩ  
---------  
7.5  
1999 Aug 24  
7
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
Example: A laser with an MPD has the following  
specifications: PO = 1 mW, Ith = 25 mA, ηEO = 30 mW/A,  
R = 500 mA/W. The term Ith is the required threshold  
current to switch-on the laser. If the laser operates just  
above the threshold level, it may be assumed that ηEO  
around the optical ZERO level is 50% of ηEO around the  
optical ONE level, due to the decreasing slope near the  
threshold level.  
Manual laser override  
The automatic laser control function can be overridden by  
connecting voltage sources to pins TZERO and TONE to  
take direct control of, respectively, the bias current source  
and the modulation current source. The control voltages  
should be in the range from 1.4 to 3.4 V to sweep the  
modulation current through the range from 1 to 60 mA and  
the bias current through the range from 1 to 90 mA. These  
current ranges are guaranteed. Depending on the  
temperature and manufacturing process spread, current  
values higher than the specified ranges can be achieved.  
However, bias and modulation currents in excess of the  
specified range are not supported and should be avoided.  
In this example the resulting bandwidth for the optical ONE  
regulation loop, without external capacitance, would be:  
30 × 103 × 500 × 103  
2π × 40 × 1012 × 80 × 103  
BONE  
=
750 Hz  
---------------------------------------------------------------------  
Currents into or out pins TZERO and TONE in excess of  
10 µA must be avoided to prevent damage of the circuit.  
The resulting bandwidth for the optical ZERO regulation  
loop, without external capacitance, would be:  
0.5 × 30 × 103 × 500 × 103  
2π × 40 × 1012 × 50 × 103  
Automatic laser shut-down and laser slow start  
BZERO  
=
600 Hz  
-------------------------------------------------------------------------  
The laser modulation and bias currents can be rapidly  
switched off when a HIGH-level (CMOS) is applied to  
pin ALS. This function allows the circuit to be shut-down in  
the event of an optical system malfunction. A 25 kΩ  
pull-down resistor defaults the input of pin ALS to the  
non active state.  
It is not necessary to add additional capacitance with this  
type of laser.  
Data pattern and bit rate dependency of the control  
loop  
When a LOW-level is applied to pin ALS, the modulation  
and bias current slowly increase to the desired values with  
the typical time constants of τONE and τZERO, respectively.  
This can be used as a laser slow start.  
The constants in Equations (1) and (3) are valid, provided  
a frequent presence of sufficiently long runs of ‘constant  
zero’ and ‘constant one’. The longest run of zeros and  
ones, occurring typically within a single loop time period  
(τONE and τZERO), must be at least approximately 6 ns  
(e.g. as provided by the A1/A2 frame alignment bytes for  
STM4/OC12). In practice, it can be witnessed that the  
optical extinction ratio will increase if the bit rate is  
increased. Therefore it is important to use the actual data  
patterns and bit rate of the final application circuit for  
adjusting the optical levels.  
Bias alarm for TZA3001AHL  
The bias current alarm circuit detects and flags whenever  
the bias current is outside a predefined range. This feature  
can detect excessive bias current due to laser aging and  
laser malfunctioning. The maximum permitted bias current  
should be applied to pin ALARMHI with an attenuation  
ratio of 1500; the minimum to pin ALARMLO with an  
attenuation ratio of 300.  
Monitoring the bias and modulation current  
Although not recommended, the bias and modulation  
currents generated by the laser driver can be monitored by  
measuring the voltages on pins TZERO and TONE,  
respectively. The relations between these voltages and  
the corresponding currents are given as transconductance  
values and are specified in Chapter “Characteristics”.  
The voltages on pins TZERO and TONE range from  
1.4 to 3.4 V. The impedance connected at these pins  
should have an extremely high value. It is mandatory to  
use a CMOS buffer or an amplifier with an input  
impedance higher than 100 Gand an extremely low  
input leakage current (pA range).  
Like the reference currents for the laser current control  
loop, the alarm reference currents can be set using  
external resistors connected between pins ALARMHI  
or ALARMLO and VCC(R). The resistor values can be  
calculated using the following formulae:  
1.5 × 1500  
RALARMHI  
=
[Ω]  
(9)  
---------------------------  
IBIAS(max)  
1.5 × 300  
------------------------  
IBIAS(min)  
RALARMLO  
=
[Ω]  
(10)  
1999 Aug 24  
8
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
Example: The following reference currents are required to  
limit the bias current range between 6 and 90 mA:  
To maximize power supply isolation, the MPD cathode on  
the laser should be connected to VCC(G) and the laser  
diode anode to VCC(B). It is recommended to provide the  
laser anode with a separate decoupling capacitor C11.  
6 mA  
IALARMLO  
IALARMHI  
=
= 20 µA and  
= 60 µA  
-------------  
300  
The inverted laser driver modulation pin LAQ is generally  
not used. To properly balance the output stage, an  
equalization network Z1 with an impedance comparable to  
90 mA  
----------------  
1500  
=
the laser is connected between pin LAQ and VCC(B)  
.
The corresponding resistor values are:  
1.5 V × 1500  
All external components should be SMD, preferably of  
size 0603 or smaller. The components must be mounted  
as close to the IC as possible. It is specially recommended  
to mount the following components very close to the IC:  
RALARMHI  
RALARMLO  
=
= 25 kand  
= 75 kΩ  
---------------------------------  
90 mA  
1.5 V × 300  
-----------------------------  
6 mA  
=
Power supply decoupling capacitors C2, C4 and C6  
Input matching network on pins DIN and DINQ  
Capacitor C7 on pin MONIN  
If the alarm condition is true, the voltage on pin ALARM  
goes to HIGH-level (CMOS). This signal could be used, for  
example, to disable the laser driver by driving pin ALS  
(a latch is needed in between to prevent oscillation).  
Output matching network Z1 at the unused output.  
Loop mode for TZA3001BHL  
Grounding bare die  
In the loop mode the total system application can be  
tested. It allows for uninhibited optical transmission  
through the fibre front-end (from the photodiode through  
the transimpedance stage and the data and clock recovery  
unit, to the laser driver and via the laser back to the fibre).  
It should be noted that the optical receiver used in  
conjunction with the TZA3001BHL must have a loop mode  
output in order to complete the test loop.  
In addition to the separate VCC domains, the bare die  
contains three corresponding ground domains. Isolation  
between the GND domains is limited due to the finite  
substrate conductance.  
Mount the die on a, preferably large and highly conductive,  
grounded die pad. All pads GND have to be bonded to  
the die pad. The external ground is thus optimally  
combined with the die ground, avoiding ground bouncing  
problems.  
A HIGH-level on pin ENL selects the loop mode. By default  
pin ENL is pulled at LOW-level by a 25 kpull-down  
resistor.  
Layout recommendations  
Power supply connections  
Layout recommendations for the TZA3001AHL and  
TZA3001BHL can be found in application note “AN98090  
Fiber optic transceiverboard STM1/4/8, OC3,12,24,  
FC/GE”.  
Three separate supply domains [labelled VCC(B), VCC(G)  
and VCC(R)] are used to provide isolation between the  
high-current outputs, the PECL or CML inputs, and the  
monitor photodiode current input. The three domains  
should be individually filtered before being connected to a  
central VCC (see Figs 6 and 7). All supply pins need to  
be connected. The supply levels should be equal and in  
accordance with the values specified in  
Chapter “Characteristics”.  
1999 Aug 24  
9
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
0.5  
MAX.  
+6  
UNIT  
VCC  
Vn  
supply voltage  
DC voltage on  
pin MONIN  
V
1.3  
VCC + 0.5  
VCC + 0.5  
+3.2  
V
V
V
V
V
V
V
V
V
V
V
V
pins TONE and TZERO  
pin BGAP  
0.5  
0.5  
0.5  
1.3  
pin BIAS  
VCC + 0.5  
VCC + 0.5  
VCC + 0.5  
VCC + 0.5  
VCC + 0.5  
pins LA and LAQ  
pin ALS  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
pins ONE and ZERO  
pins DIN and DINQ  
pin ALARM  
TZA3001AHL  
VCC + 0.5  
pins ALARMHI and ALARMLO  
pins DLOOP and DLOOPQ  
pin ENL  
TZA3001AHL  
TZA3001BHL  
TZA3001BHL  
VCC + 0.5  
VCC + 0.5  
VCC + 0.5  
In  
DC current on  
pin MONIN  
0.5  
0.5  
2.0  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
40  
+2.5  
+0.5  
+2.5  
+200  
+100  
+0.5  
+0.5  
+0.5  
+10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
pins TONE and TZERO  
pin BGAP  
pin BIAS  
pins LA and LAQ  
pin ALS  
pins ONE and ZERO  
pins DIN and DINQ  
pin ALARM  
TZA3001AHL  
TZA3001AHL  
TZA3001BHL  
TZA3001BHL  
pins ALARMHI and ALARMLO  
pins DLOOP and DLOOPQ  
pin ENL  
+0.5  
+0.5  
+0.5  
+85  
Tamb  
Tj  
ambient temperature  
junction temperature  
storage temperature  
40  
+125  
+150  
°C  
Tstg  
65  
°C  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
VALUE  
UNIT  
Rth(j-s)  
Rth(j-c)  
thermal resistance from junction to solder point  
thermal resistance from junction to case  
15  
23  
K/W  
K/W  
1999 Aug 24  
10  
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
CHARACTERISTICS  
VCC = 5 V; Tamb = 40 to +85 °C; all voltages measured with respect to GND.  
SYMBOL PARAMETER CONDITIONS  
Supply  
MIN.  
TYP.  
MAX.  
UNIT  
VCC  
ICC  
supply voltage  
4.75  
5
5.25  
V
supply current  
note 1  
note 2  
65  
90  
mA  
Ptot  
total power dissipation  
430  
810  
mW  
Data inputs: pins DIN and DINQ (and pins DLOOP and DLOOPQ on TZA3001BHL); see Fig.5  
Vi(p-p)  
input voltage  
differential  
100  
250  
800  
mV  
(peak-to-peak value)  
VIO  
input offset voltage  
minimum input voltage  
maximum input voltage  
input impedance  
25  
+25  
mV  
V
VI(min)  
VI(max)  
Zi  
V
8
CC(R) 2 −  
VCC(R) + 0.25 V  
for low frequencies;  
single-ended  
10  
12  
kΩ  
CMOS inputs: pin ALS (and pin ENL on TZA3001BHL)  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
1.5  
V
VIH  
3.5  
21  
V
Rpd(ALS)  
internal pull-down resistance on  
pin ALS  
25.5  
30  
kΩ  
Rpd(ENL)  
internal pull-down resistance on  
pin ENL  
15  
25  
35  
kΩ  
CMOS output: pin ALARM (on TZA3001AHL)  
VOL  
VOH  
LOW-level output voltage  
HIGH-level output voltage  
IOH = 200 µA  
IOH = 200 µA  
0
0.2  
5
V
V
4.8  
Monitor photodiode input: pin MONIN  
VI  
DC input voltage  
1.5  
24  
96  
30  
1.8  
2.0  
V
IMPD  
monitor photodiode current  
laser optical ‘0’  
laser optical ‘1’  
note 3  
260  
1040  
50  
µA  
µA  
pF  
CMPD  
monitor photodiode capacitance  
Control loop reference currents: pins ONE and ZERO  
Iref(ONE)  
reference current on pin ONE  
reference voltage on pin ONE  
reference current on pin ZERO  
reference voltage on pin ZERO  
note 4  
6
65  
µA  
V
Vref(ONE)  
Iref(ZERO)  
Vref(ZERO)  
referenced to VCC(R)  
note 4  
1.55  
6
1.5  
1.45  
65  
µA  
V
referenced to VCC(R)  
1.55  
1.5  
1.45  
Control loop time constants: pins TONE and TZERO  
VTONE  
voltage on pin TONE  
floating output  
note 5  
1.4  
3.4  
V
gm(TONE)  
VTZERO  
gm(TZERO)  
transconductance of pin TONE  
voltage on pin TZERO  
100  
mA/V  
V
floating output  
1.4  
3.4  
transconductance of pin TZERO note 6  
160  
mA/V  
1999 Aug 24  
11  
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Laser modulation outputs: pins LA and LAQ  
IO  
modulation output current  
note 7  
3
60  
10  
mA  
IO(off)  
output current during laser  
shutdown  
µA  
VO  
output voltage  
current rise time  
current fall time  
2
5
V
tr  
note 8  
note 8  
note 9  
120  
120  
300  
300  
50  
ps  
ps  
mUI  
tf  
Jo(p-p)  
intrinsic electrical output jitter  
(peak-to-peak value)  
Bias current output: pin BIAS  
IO  
output current  
note 10  
2.5  
90  
10  
mA  
IO(off)  
output current during laser  
shutdown  
µA  
tres(off)  
response time after laser  
shutdown  
IBIAS = 90 mA;  
note 11  
1
5
µs  
VO  
output voltage  
1
V
Alarm threshold inputs: pin ALARMHI and ALARMLO (on TZA3001AHL)  
Iref(ALARMLO)  
threshold reference current on  
pin ALARMLO  
lower alarm; note 12  
referenced to VCC(R)  
higher alarm; note 12  
referenced to VCC(R)  
6
65  
µA  
V
Vref(ALARMLO) optical reference voltage on  
pin ALARMLO  
1.55  
6
1.5  
1.45  
65  
Iref(ALARMHI)  
threshold reference current on  
pin ALARMHI  
µA  
V
Vref(ALARMHI) optical reference voltage on  
pin ALARMHI  
1.55  
1.5  
1.45  
Notes  
1. Remarks to the supply current:  
a) The value for ICC does not include the modulation and bias currents through pins LA, LAQ and BIAS.  
b) Typical value for ICC refers to, but does not include, IMOD = 30 mA and IBIAS = 45 mA.  
c) The maximum value of ICC refers to, but does not include, IMOD = 60 mA and IBIAS = 90 mA.  
2. Remarks to the power dissipation:  
a) The value for Ptot includes the modulation and bias currents through pins LA, LAQ and BIAS.  
b) The typical value for Ptot is the on-chip dissipation with IMOD = 30 mA and VLA = VLAQ = 2 V, IBIAS = 45 mA and  
VBIAS = 1 V and typical process parameters.  
c) The maximum value for Ptot is the on-chip dissipation with IMOD = 60 mA and VLA = VLAQ = 2 V, IBIAS = 90 mA and  
VBIAS = 1 V and worst case process parameters.  
3. The minimum value of the capacitance on pin MONIN is required to prevent instability.  
4. The reference currents can be set using a resistor connected between pins ONE or ZERO and VCC  
(see Section “Automatic laser control”). The corresponding ZERO level MPD current range is from 24 to 260 µA.  
The ONE level MPD current range is from 96 to 1040 µA.  
5. The specified transconductance is the ratio between the modulation current at pins LA or LAQ and the voltage at  
pin TONE, under small signal conditions.  
1999 Aug 24  
12  
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
6. The specified transconductance is the ratio between the biasing current at pin BIAS and the voltage at pin TZERO,  
under small signal conditions.  
7. The values indicate the guaranteed interval, i.e. the lowest attainable output current is always lower than 3 mA and  
the highest output current always higher than 60 mA.  
8. The voltage rise and fall times can be larger, due to capacitive effects. Specifications are guaranteed by design and  
characterization. Each device is tested at full operating speed to guarantee the RF functionality.  
9. Measured in a frequency band from 250 kHz to 5 MHz, according to “ITU-T Recommendation G.813”.  
The electrically generated (current) jitter is assumed to be less than 50% of the optical output jitter. The specification  
is guaranteed by design.  
10. The values indicate the guaranteed interval, i.e. the lowest output current always is less than 2.5 mA and the highest  
output current is always more than 90 mA.  
11. The response time is defined as the delay between the onset of the ramp on pin ALS (at 10% of the HIGH-level) and  
the extinction of the bias current (at 10% of the original value).  
12. The reference currents can be set by using a resistor between VCC(R) and pins ALARMLO or ALARMHI;  
see Section “Bias alarm for TZA3001AHL” for detailed information. The corresponding range of low-bias thresholds  
is between 1.8 and 19.5 mA. The high-bias threshold range is from 9 to 97.5 mA.  
V
I(max)  
V
CC(R)  
V
i(p-p)  
V
IO  
V
I(min)  
MGK274  
Fig.5 Logic level symbol definitions for data inputs.  
1999 Aug 24  
13  
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
APPLICATION INFORMATION  
L1  
C1  
C2  
1 µF  
22 nF  
L2  
V
CC  
C3  
C4  
1 µF  
22 nF  
L3  
C5  
C6  
1 µF  
22 nF  
data inputs  
normal mode  
(CML/PECL compatible)  
4
V
V
V
ALS  
DINQ DIN  
ALARM  
CC(G) CC(B) CC(R)  
(1)  
(4)  
(4)  
(5)  
(5)  
C7  
R1  
R2  
R3  
R4  
7
10  
19, 20,  
27, 30  
31  
29  
28  
26  
23  
MONIN  
ZERO  
ONE  
2
(2)  
(3)  
C8  
C9  
22  
TONE  
4
5
6
TZA3001AHL  
TZERO  
ALARMLO  
ALARMHI  
21  
18  
1, 3, 8, 9, 11,  
14, 16, 17,  
24, 25, 32  
C10  
BGAP  
22 nF  
15  
BIAS  
13  
LA  
12  
GND  
11  
LAQ  
R5  
18 Ω  
(6)  
Z1  
L1  
C11  
MGK276  
MPD  
laser  
(1) C7 is required to meet the minimum capacitance value on pin MONIN (optional, see Section “Automatic laser control”).  
(2) C8 enhances modulation control loop time constant (optional).  
(3) C9 enhances bias control loop time constant (optional).  
(4) R1 and R2 are used for optical ZERO and ONE reference currents setting (see Section “Automatic laser control”).  
(5) R3 and R4 are used for minimum and maximum bias currents setting (see Section “Bias alarm for TZA3001AHL”).  
(6) Z1 is required for balancing the output stage (see Section “Power supply connections”).  
Fig.6 Application diagram showing the TZA3001AHL configured for 622 Mbits/s (STM4/OC12).  
1999 Aug 24  
14  
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
L1  
C1  
C2  
1 µF  
22 nF  
L2  
V
CC  
C3  
C4  
1 µF  
22 nF  
L3  
C5  
C6  
1 µF  
22 nF  
data inputs  
normal mode  
(CML/PECL compatible)  
4
V
V
V
ALS DINQ DIN  
ENL  
26  
CC(G) CC(B) CC(R)  
(1)  
(4)  
(4)  
C7  
R1  
R2  
7
10  
18, 21,  
27, 30  
31  
29  
28  
MONIN  
ZERO  
2
23  
22  
ONE  
(2)  
(3)  
C8  
C9  
TONE  
4
5
6
TZA3001BHL  
TZERO  
DLOOPQ  
DLOOP  
20  
19  
loop mode inputs  
(CML/PECL  
1, 3, 8, 9, 11,  
14, 16, 17,  
24, 25, 32  
C10  
BGAP  
compatible)  
22 nF  
15  
BIAS  
13  
LA  
12  
GND  
11  
LAQ  
R3  
18 Ω  
(5)  
Z1  
L1  
C11  
MGK275  
MPD  
laser  
(1) C7 is required to meet the minimum capacitance value on pin MONIN (optional, see Section “Automatic laser control”).  
(2) C8 enhances modulation control loop time constant (optional).  
(3) C9 enhances bias control loop time constant (optional).  
(4) R1 and R2 are used for optical ZERO and ONE reference currents setting (see Section “Automatic laser control”).  
(5) Z1 is required for balancing the output stage (see Section “Power supply connections”).  
Fig.7 Application diagram showing the TZA3001BHL configured for 622 Mbits/s (STM4/OC12).  
1999 Aug 24  
15  
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
BONDING PADS  
COORDINATES(1)  
COORDINATES(1)  
SYMBOL  
PAD  
SYMBOL  
PAD  
X
Y
X
Y
GND  
1
2
664  
524  
367  
227  
70  
910  
910  
910  
910  
910  
910  
910  
910  
910  
910  
630  
490  
350  
210  
70  
VCC(R)  
DLOOP  
DLOOPQ  
VCC(R)  
ALARMLO  
ONE  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
+384  
+227  
+87  
+910  
+910  
+910  
+910  
+910  
+910  
+910  
+910  
+681  
+541  
+384  
+227  
+70  
MONIN  
GND  
3
IGM  
4
70  
TONE  
TZERO  
BGAP  
VCC(G)  
VCC(G)  
GND  
5
210  
367  
524  
681  
910  
910  
910  
910  
910  
910  
910  
910  
910  
910  
6
+87  
7
+244  
+384  
+524  
+664  
+910  
+910  
+910  
+910  
+910  
+910  
+910  
+910  
+910  
+910  
+681  
+541  
ZERO  
GND  
8
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
ALARM  
ENL  
GND  
VCC(B)  
VCC(B)  
GND  
VCC(R)  
DIN  
DINQ  
VCC(R)  
ALS  
70  
LAQ  
227  
367  
551  
664  
LA  
+70  
GND  
+210  
+350  
+490  
+630  
+910  
+910  
GND  
BIAS  
GND  
GND  
Note  
GND  
1. All x and y coordinates represent the position of the  
centre of the pad in µm with respect to the centre of the  
die (see Fig.8).  
GND  
ALARMHI  
1999 Aug 24  
16  
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
(1)  
2 mm  
30 29 28 27 26  
31  
25 24 23 22 21  
20  
GND  
ALARM  
ENL  
GND  
GND  
BIAS  
GND  
LA  
32  
33  
34  
35  
19  
18  
17  
16  
V
CC(R)  
DIN  
(1)  
x
0
2 mm  
0
y
DINQ  
LAQ  
36  
37  
38  
39  
40  
15  
14  
13  
12  
11  
V
GND  
V
CC(R)  
ALS  
GND  
GND  
CC(B)  
TZA3001U  
V
CC(B)  
GND  
1
2
3
4
5
6
7
8
9
10  
MGL192  
(1) Typical value.  
Fig.8 Bonding pad locations of TZA3001U.  
Table 1 Physical characteristics of bare die  
PARAMETER  
VALUE  
Glass passivation  
Bonding pad dimension  
Metallization  
Thickness  
2.1 µm PSG (PhosphoSilicate Glass) on top of 0.7 µm silicon nitride  
minimum dimension of exposed metallization is 90 × 90 µm (pad size = 100 × 100 µm)  
1.2 µm AlCu (1% Cu)  
380 µm nominal  
Size  
2.000 × 2.000 mm (4.000 mm2)  
Backing  
silicon; electrically connected to GND potential through substrate contacts  
<430 °C; recommended die attache is glue  
<15 s  
Attache temperature  
Attache time  
1999 Aug 24  
17  
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
PACKAGE OUTLINE  
LQFP32: plastic low profile quad flat package; 32 leads; body 5 x 5 x 1.4 mm  
SOT401-1  
c
y
X
A
E
17  
24  
Z
16  
25  
E
e
A
H
2
E
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
32  
9
L
1
8
detail X  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.5  
0.05 1.3  
0.27 0.18 5.1  
0.17 0.12 4.9  
5.1  
4.9  
7.15 7.15  
6.85 6.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
mm  
1.60  
0.25  
0.5  
1.0  
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-12-19  
97-08-04  
SOT401-1  
1999 Aug 24  
18  
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Introduction to soldering surface mount packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
Reflow soldering  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Wave soldering  
Manual soldering  
Conventional single wave soldering is not recommended  
for surface mount devices () or printed-circuit boards with  
a high component density, as solder bridging and  
non-wetting can present major problems.  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
1999 Aug 24  
19  
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
REFLOW(1)  
BGA, SQFP  
not suitable  
suitable  
suitable  
suitable  
suitable  
suitable  
HLQFP, HSQFP, HSOP, HTSSOP, SMS not suitable(2)  
PLCC(3), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
not recommended(3)(4)  
not recommended(5)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
1999 Aug 24  
20  
Philips Semiconductors  
Preliminary specification  
TZA3001AHL; TZA3001BHL;  
TZA3001U  
SDH/SONET STM4/OC12 laser drivers  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
BARE DIE DISCLAIMER  
All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing for a period of  
ninety (90) days from the date of Philips' delivery. If there are data sheet limits not guaranteed, these will be separately  
indicated in the data sheet. There is no post waffle pack testing performed on individual die. Although the most modern  
processes are utilized for wafer sawing and die pick and place into waffle pack carriers, Philips Semiconductors has no  
control of third party procedures in the handling, packing or assembly of the die. Accordingly, Philips Semiconductors  
assumes no liability for device functionality or performance of the die or systems after handling, packing or assembly of  
the die. It is the responsibility of the customer to test and qualify their application in which the die is used.  
1999 Aug 24  
21  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 62 5344, Fax.+381 11 63 5777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
67  
SCA  
© Philips Electronics N.V. 1999  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
465012/02/pp24  
Date of release: 1999 Aug 24  
Document order number: 9397 750 05282  

相关型号:

TZA3001BHL-T

IC SPECIALTY INTERFACE CIRCUIT, PQFP32, Interface IC:Other
NXP

TZA3001BHL/C4

IC SPECIALTY INTERFACE CIRCUIT, PQFP32, PLASTIC, SOT-401, LQFP-32, Interface IC:Other
NXP

TZA3001U

SDH/SONET STM4/OC12 laser drivers
NXP

TZA3001U/C4

IC SPECIALTY INTERFACE CIRCUIT, UUC40, DIE-40, Interface IC:Other
NXP

TZA3004

SDH/SONET STM1/OC3 and STM4/OC12 transceiver
NXP

TZA3004HL

SDH/SONET data and clock recovery unit STM1/4 OC3/12
NXP

TZA3004HL-T

IC CLOCK RECOVERY CIRCUIT, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-313-2, LQFP-48, ATM/SONET/SDH IC
NXP

TZA3004HL/C3

IC CLOCK RECOVERY CIRCUIT, PQFP48, PLASTIC, SOT-313, LQFP-48, ATM/SONET/SDH IC
NXP

TZA3004HLBE-S

IC CLOCK RECOVERY CIRCUIT, PQFP48, PLASTIC, SOT-313, LQFP-48, ATM/SONET/SDH IC
NXP

TZA3005

SDH/SONET STM1/OC3 and STM4/OC12 transceiver
NXP

TZA3005H

SDH/SONET STM1/OC3 and STM4/OC12 transceiver
NXP

TZA3005H-T

IC TRANSCEIVER, PQFP64, ATM/SONET/SDH IC
NXP