TISP4400M3LM [POINN]

BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS; 双向晶闸管过电压保护
TISP4400M3LM
型号: TISP4400M3LM
厂家: POWER INNOVATIONS LTD    POWER INNOVATIONS LTD
描述:

BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
双向晶闸管过电压保护

文件: 总16页 (文件大小:353K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TISP4070M3LM THRU TISP4095M3LM, TISP4125M3LM THRU TISP4220M3LM,  
TISP4240M3LM THRU TISP4400M3LM  
BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS  
Copyright © 1999, Power Innovations Limited, UK  
NOVEMBER 1997 - REVISED APRIL 1999  
TELECOMMUNICATION SYSTEM MEDIUM CURRENT OVERVOLTAGE PROTECTORS  
4 kV 10/700, 100 A 5/310 ITU-T K20/21 rating  
LM PACKAGE  
(TOP VIEW)  
Ion-Implanted Breakdown Region  
Precise and Stable Voltage  
Low Voltage Overshoot under Surge  
T(A)  
NC  
R(B)  
1
2
3
MD4XAT  
V
V
(BO)  
DRM  
DEVICE  
NC - No internal connection on pin 2  
V
V
‘4070  
‘4080  
‘4095  
‘4125  
‘4145  
‘4165  
‘4180  
‘4220  
‘4240  
‘4260  
‘4300  
‘4350  
‘4400  
58  
65  
75  
70  
80  
95  
LMF PACKAGE  
(LM PACKAGE WITH FORMED LEADS)  
(TOP VIEW)  
100  
120  
135  
145  
160  
180  
200  
230  
275  
300  
125  
145  
165  
180  
220  
240  
260  
300  
350  
400  
T(A)  
1
2
3
NC  
R(B)  
MD4XAKB  
NC - No internal connection on pin 2  
device symbol  
T
Rated for International Surge Wave Shapes  
I
TSP  
WAVE SHAPE  
STANDARD  
A
2/10 µs  
8/20 µs  
GR-1089-CORE  
IEC 61000-4-5  
FCC Part 68  
300  
220  
120  
R
SD4XAA  
10/160 µs  
Terminals T and R correspond to the  
alternative line designators of A and B  
ITU-T K20/21  
FCC Part 68  
10/700 µs  
100  
10/560 µs  
FCC Part 68  
75  
50  
Ordering Information  
10/1000 µs  
GR-1089-CORE  
DEVICE TYPE  
TISP4xxxM3LM  
TISP4xxxM3LMR  
PACKAGE TYPE  
Straight Lead DO-92 Bulk Pack  
Low Differential Capacitance . . . 43 pF max.  
Straight Lead DO-92 Tape and Reeled  
TISP4xxxM3LMFR Formed Lead DO-92 Tape and Reeled  
description  
These devices are designed to limit overvoltages on the telephone line. Overvoltages are normally caused by  
a.c. power system or lightning flash disturbances which are induced or conducted on to the telephone line. A  
single device provides 2-point protection and is typically used for the protection of 2-wire telecommunication  
equipment (e.g. between the Ring to Tip wires for telephones and modems). Combinations of devices can be  
used for multi-point protection (e.g. 3-point protection between Ring, Tip and Ground).  
The protector consists of a symmetrical voltage-triggered bidirectional thyristor. Overvoltages are initially  
clipped by breakdown clamping until the voltage rises to the breakover level, which causes the device to  
crowbar into a low-voltage on state. This low-voltage on state causes the current resulting from the  
overvoltage to be safely diverted through the device. The high crowbar holding current prevents d.c. latchup  
as the diverted current subsides.  
P R O D U C T  
I N F O R M A T I O N  
Information is current as of publication date. Products conform to specifications in accordance  
with the terms of Power Innovations standard warranty. Production processing does not  
necessarily include testing of all parameters.  
1
TISP4070M3LM THRU TISP4095M3LM, TISP4125M3LM THRU TISP4220M3LM,  
TISP4240M3LM THRU TISP4400M3LM  
BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS  
NOVEMBER 1997 - REVISED APRIL 1999  
description (continued)  
This TISP4xxxM3LM range consists of thirteen voltage variants to meet various maximum system voltage  
levels (58 V to 300 V). They are guaranteed to voltage limit and withstand the listed international lightning  
surges in both polarities. These protection devices are supplied in a DO-92 (LM) cylindrical plastic package.  
The TISP4xxxM3LM is a straight lead DO-92 supplied in bulk pack and on tape and reeled. The  
TISP4xxxM3LMF is a formed lead DO-92 supplied only on tape and reeled.  
T = 25°C (unless otherwise noted)  
absolute maximum ratings,  
A
RATING  
SYMBOL  
VALUE  
± 58  
UNIT  
‘4070  
‘4080  
‘4095  
‘4125  
‘4145  
‘4165  
‘4180  
‘4220  
‘4240  
‘4260  
‘4300  
‘4350  
‘4400  
± 65  
± 75  
±100  
±120  
±135  
±145  
±160  
±180  
±200  
±230  
±275  
±300  
Repetitive peak off-state voltage, (see Note 1)  
V
V
DRM  
Non-repetitive peak on-state pulse current (see Notes 2, 3 and 4)  
2/10 µs (GR-1089-CORE, 2/10 µs voltage wave shape)  
300  
220  
120  
110  
100  
100  
100  
100  
75  
8/20 µs (IEC 61000-4-5, combination wave generator, 1.2/50 voltage, 8/20 current)  
10/160 µs (FCC Part 68, 10/160 µs voltage wave shape)  
5/200 µs (VDE 0433, 10/700 µs voltage wave shape)  
0.2/310 µs (I3124, 0.5/700 µs voltage wave shape)  
5/310 µs (ITU-T K20/21, 10/700 µs voltage wave shape)  
5/310 µs (FTZ R12, 10/700 µs voltage wave shape)  
5/320 µs (FCC Part 68, 9/720 µs voltage wave shape)  
10/560 µs (FCC Part 68, 10/560 µs voltage wave shape)  
10/1000 µs (GR-1089-CORE, 10/1000 µs voltage wave shape)  
Non-repetitive peak on-state current (see Notes 2, 3 and 5)  
20 ms (50 Hz) full sine wave  
I
A
TSP  
50  
30  
32  
16.7 ms (60 Hz) full sine wave  
I
A
TSM  
1000 s 50 Hz/60 Hz a.c.  
2.1  
Initial rate of rise of on-state current, Exponential current ramp, Maximum ramp value < 100 A  
Junction temperature  
di /dt  
300  
A/µs  
°C  
T
T
-40 to +150  
-65 to +150  
J
Storage temperature range  
T
°C  
stg  
NOTES: 1. See Applications Information and Figure 10 for voltage values at lower temperatures.  
2. Initially the TISP4xxxM3LM must be in thermal equilibrium with T = 25°C.  
J
3. The surge may be repeated after the TISP4xxxM3LM returns to its initial conditions.  
4. See Applications Information and Figure 11 for current ratings at other temperatures.  
5. EIA/JESD51-2 environment and EIA/JESD51-3 PCB with standard footprint dimensions connected with 5 A rated printed wiring  
track widths. See Figure 8 for the current ratings at other durations. Derate current values at -0.61 %/°C for ambient temperatures  
above 25 °C  
P R O D U C T  
I N F O R M A T I O N  
2
TISP4070M3LM THRU TISP4095M3LM, TISP4125M3LM THRU TISP4220M3LM,  
TISP4240M3LM THRU TISP4400M3LM  
BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS  
NOVEMBER 1997 - REVISED APRIL 1999  
electrical characteristics for the T and R terminals, T = 25°C (unless otherwise noted)  
A
PARAMETER  
Repetitive peak off-  
state current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
±5  
UNIT  
T = 25°C  
A
I
V
= ±V  
DRM  
µA  
DRM  
D
T = 85°C  
±10  
A
‘4070  
±70  
‘4080  
‘4095  
‘4125  
‘4145  
‘4165  
‘4180  
‘4220  
‘4240  
‘4260  
‘4300  
‘4350  
‘4400  
‘4070  
‘4080  
‘4095  
‘4125  
‘4145  
‘4165  
‘4180  
‘4220  
‘4240  
‘4260  
‘4300  
‘4350  
‘4400  
±80  
±95  
±125  
±145  
±165  
±180  
±220  
±240  
±260  
±300  
±350  
±400  
±78  
V
Breakover voltage  
dv/dt = ±750 V/ms,  
R
= 300  
SOURCE  
V
(BO)  
±88  
±102  
±132  
±151  
±171  
±186  
±227  
±247  
±267  
±308  
±359  
±410  
±0.6  
±3  
dv/dt ±1000 V/µs, Linear voltage ramp,  
Maximum ramp value = ±500 V  
Impulse breakover  
voltage  
V
V
(BO)  
di/dt = ±20 A/µs, Linear current ramp,  
Maximum ramp value = ±10 A  
I
Breakover current  
On-state voltage  
Holding current  
dv/dt = ±750 V/ms,  
I = ±5 A, t = 100 µs  
T
R
= 300 Ω  
±0.15  
A
V
A
(BO)  
SOURCE  
V
T
W
I
I = ±5 A, di/dt = +/-30 mA/ms  
±0.15  
±5  
±0.6  
H
T
Critical rate of rise of  
off-state voltage  
Off-state current  
dv/dt  
Linear voltage ramp, Maximum ramp value < 0.85V  
kV/µs  
µA  
DRM  
I
V
= ±50 V  
T = 85°C  
±10  
110  
80  
70  
96  
74  
64  
90  
70  
60  
47  
36  
30  
30  
24  
D
D
A
f = 100 kHz, V = 1 V rms, V = 0,  
‘4070 thru ‘4095  
‘4125 thru ‘4220  
‘4240 thru ‘4400  
‘4070 thru ‘4095  
‘4125 thru ‘4220  
‘4240 thru ‘4400  
‘4070 thru ‘4095  
‘4125 thru ‘4220  
‘4240 thru ‘4400  
‘4070 thru ‘4095  
‘4125 thru ‘4220  
‘4240 thru ‘4400  
‘4125 thru ‘4220  
‘4240 thru ‘4400  
86  
60  
54  
80  
56  
50  
74  
52  
46  
36  
26  
20  
20  
16  
d
D
f = 100 kHz, V = 1 V rms, V = -1 V  
d
D
f = 100 kHz, V = 1 V rms, V = -2 V  
d
D
C
Off-state capacitance  
pF  
off  
f = 100 kHz, V = 1 V rms, V = -50 V  
d
D
f = 100 kHz, V = 1 V rms, V = -100 V  
d
D
(see Note 6)  
NOTE 6: To avoid possible voltage clipping, the ‘4125 is tested with V = -98 V.  
D
P R O D U C T  
I N F O R M A T I O N  
3
TISP4070M3LM THRU TISP4095M3LM, TISP4125M3LM THRU TISP4220M3LM,  
TISP4240M3LM THRU TISP4400M3LM  
BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS  
NOVEMBER 1997 - REVISED APRIL 1999  
thermal characteristics  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
TEST CONDITIONS  
EIA/JESD51-3 PCB, I = I  
,
TSM(1000)  
T
120  
T = 25 °C, (see Note 7)  
A
R
Junction to free air thermal resistance  
°C/W  
θJA  
265 mm x 210 mm populated line card,  
4-layer PCB, I = I , T = 25 °C  
57  
T
TSM(1000)  
A
NOTE 7: EIA/JESD51-2 environment and PCB has standard footprint dimensions connected with 5 A rated printed wiring track widths.  
PARAMETER MEASUREMENT INFORMATION  
+i  
Quadrant I  
Switching  
ITSP  
Characteristic  
ITSM  
IT  
V(BO)  
VT  
I(BO)  
IH  
IDRM  
ID  
VDRM  
VD  
+v  
-v  
ID  
VD  
VDRM  
IDRM  
IH  
I(BO)  
VT  
V(BO)  
IT  
ITSM  
Quadrant III  
ITSP  
Switching  
Characteristic  
-i  
PMXXAAB  
Figure 1. VOLTAGE-CURRENT CHARACTERISTIC FOR T AND R TERMINALS  
ALL MEASUREMENTS ARE REFERENCED TO THE R TERMINAL  
P R O D U C T  
I N F O R M A T I O N  
4
TISP4070M3LM THRU TISP4095M3LM, TISP4125M3LM THRU TISP4220M3LM,  
TISP4240M3LM THRU TISP4400M3LM  
BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS  
NOVEMBER 1997 - REVISED APRIL 1999  
TYPICAL CHARACTERISTICS  
OFF-STATE CURRENT  
vs  
NORMALISED BREAKOVER VOLTAGE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
TC4MAF  
TCMAG  
1.10  
1.05  
1.00  
0.95  
100  
10  
VD = ±50 V  
1
0·1  
0·01  
0·001  
-25  
0
25  
50  
75  
100 125 150  
-25  
0
25  
50  
75  
100  
125  
150  
TJ - Junction Temperature - °C  
TJ - Junction Temperature - °C  
Figure 2.  
Figure 3.  
NORMALISED HOLDING CURRENT  
vs  
ON-STATE CURRENT  
vs  
JUNCTION TEMPERATURE  
TC4MAD  
ON-STATE VOLTAGE  
TC4MAJ  
2.0  
1.5  
100  
70  
TA = 25 °C  
tW = 100 µs  
50  
40  
30  
20  
15  
1.0  
0.9  
10  
7
0.8  
0.7  
'4125  
THRU  
'4220  
5
4
0.6  
0.5  
3
'4240  
THRU  
'4400  
'4070  
THRU  
'4095  
2
1.5  
0.4  
1
-25  
0
25  
50  
75  
100 125 150  
0.7  
1
1.5  
2
3
4
5
7
10  
TJ - Junction Temperature - °C  
VT - On-State Voltage - V  
Figure 4.  
Figure 5.  
P R O D U C T  
I N F O R M A T I O N  
5
TISP4070M3LM THRU TISP4095M3LM, TISP4125M3LM THRU TISP4220M3LM,  
TISP4240M3LM THRU TISP4400M3LM  
BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS  
NOVEMBER 1997 - REVISED APRIL 1999  
TYPICAL CHARACTERISTICS  
DIFFERENTIAL OFF-STATE CAPACITANCE  
NORMALISED CAPACITANCE  
vs  
vs  
RATED REPETITIVE PEAK OFF-STATE VOLTAGE  
OFF-STATE VOLTAGE  
TC4MAL  
TC4MAK  
50  
1
0.9  
TJ = 25°C  
0.8  
0.7  
Vd = 1 Vrms  
45  
0.6  
0.5  
40  
C = Coff(-2 V) - Coff(-50 V)  
'4070 THRU '4095  
0.4  
0.3  
35  
30  
25  
'4125 THRU '4220  
'4240 THRU '4400  
0.2  
0.5  
1
2
3
5
10  
20 30 50  
100150  
50 60 70 80 90100  
150  
200 250 300  
VD - Off-state Voltage - V  
VDRM - Repetitive Peak Off-State Voltage - V  
Figure 6.  
Figure 7.  
P R O D U C T  
I N F O R M A T I O N  
6
TISP4070M3LM THRU TISP4095M3LM, TISP4125M3LM THRU TISP4220M3LM,  
TISP4240M3LM THRU TISP4400M3LM  
BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS  
NOVEMBER 1997 - REVISED APRIL 1999  
RATING AND THERMAL INFORMATION  
NON-REPETITIVE PEAK ON-STATE CURRENT  
THERMAL IMPEDANCE  
vs  
vs  
CURRENT DURATION  
POWER DURATION  
TI4MAF  
TI4MAG  
30  
150  
VGEN = 600 Vrms, 50/60 Hz  
RGEN = 1.4*VGEN/ITSM(t)  
100  
90  
20  
15  
80  
EIA/JESD51-2 ENVIRONMENT  
EIA/JESD51-3 PCB  
TA = 25 °C  
70  
60  
50  
10  
9
40  
8
30  
7
6
20  
15  
5
4
ITSM(t) APPLIED FOR TIME t  
10  
9
3
EIA/JESD51-2 ENVIRONMENT  
EIA/JESD51-3 PCB  
TA = 25 °C  
8
7
6
5
2
1.5  
0·1  
4
0·1  
1
10  
100  
1000  
1
10  
100  
1000  
t - Current Duration - s  
t - Power Duration - s  
Figure 8.  
Figure 9.  
VDRM DERATING FACTOR  
vs  
IMPULSE RATING  
vs  
AMBIENT TEMPERATURE  
MINIMUM AMBIENT TEMPERATURE  
TC4MAA  
TI4MAH  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
0.94  
0.93  
400  
BELLCORE 2/10  
300  
250  
'4125 THRU '4220  
IEC 1.2/50, 8/20  
200  
150  
120  
FCC 10/160  
100  
90  
80  
ITU-T 10/700  
FCC 10/560  
'4070 THRU '4095  
70  
60  
50  
'4240 THRU '4400  
BELLCORE 10/1000  
40  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
-40 -35 -30 -25 -20 -15 -10 -5  
0
5
10 15 20 25  
TA - Ambient Temperature - °C  
TAMIN - Minimum Ambient Temperature - °C  
Figure 10.  
Figure 11.  
P R O D U C T  
I N F O R M A T I O N  
7
TISP4070M3LM THRU TISP4095M3LM, TISP4125M3LM THRU TISP4220M3LM,  
TISP4240M3LM THRU TISP4400M3LM  
BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS  
NOVEMBER 1997 - REVISED APRIL 1999  
APPLICATIONS INFORMATION  
deployment  
These devices are two terminal overvoltage protectors. They may be used either singly to limit the voltage  
between two conductors (Figure 12) or in multiples to limit the voltage at several points in a circuit (Figure 13).  
Th3  
Th1  
Th1  
Th2  
Figure 12. TWO POINT PROTECTION  
Figure 13. MULTI-POINT PROTECTION  
In Figure 12, protector Th1 limits the maximum voltage between the two conductors to ±V(BO). This  
configuration is normally used to protect circuits without a ground reference, such as modems. In Figure 13,  
protectors Th2 and Th3 limit the maximum voltage between each conductor and ground to the ±V(BO) of the  
individual protector. Protector Th1 limits the maximum voltage between the two conductors to its ±V(BO)  
value. If the equipment being protected has all its vulnerable components connected between the conductors  
and ground, then protector Th1 is not required.  
impulse testing  
To verify the withstand capability and safety of the equipment, standards require that the equipment is tested  
with various impulse wave forms. The table below shows some common values.  
PEAK VOLTAGE  
SETTING  
V
VOLTAGE  
WAVE FORM  
µs  
PEAK CURRENT  
CURRENT  
TISP4xxxM3  
SERIES  
STANDARD  
VALUE  
A
WAVE FORM 25 °C RATING RESISTANCE  
µs  
A
2500  
2/10  
500  
100  
200  
100  
37.5  
25  
2/10  
300  
50  
GR-1089-CORE  
11  
1000  
10/1000  
10/160  
10/1000  
10/160  
10/560  
5/320 †  
5/320 †  
0.2/310  
1500  
120  
75  
2x5.6  
FCC Part 68  
(March 1998)  
800  
10/560  
3
0
0
0
1500  
9/720 †  
9/720 †  
0.5/700  
100  
100  
100  
1000  
I3124  
1500  
37.5  
37.5  
100  
1500  
ITU-T K20/K21  
10/700  
5/310  
100  
0
4000  
† FCC Part 68 terminology for the waveforms produced by the ITU-T recommendation K21 10/700 impulse generator  
If the impulse generator current exceeds the protectors current rating then a series resistance can be used to  
reduce the current to the protectors rated value and so prevent possible failure. The required value of series  
resistance for a given waveform is given by the following calculations. First, the minimum total circuit  
impedance is found by dividing the impulse generators peak voltage by the protectors rated current. The  
impulse generators fictive impedance (generators peak voltage divided by peak short circuit current) is then  
subtracted from the minimum total circuit impedance to give the required value of series resistance.  
For the FCC Part 68 10/560 waveform the following values result. The minimum total circuit impedance is  
800/75 = 10.7 and the generators fictive impedance is 800/100 = 8 . This gives a minimum series  
resistance value of 10.7 - 8 = 2.7 . After allowing for tolerance, a 3 ±10% resistor would be suitable. The  
10/160 waveform needs a standard resistor value of 5.6 per conductor. These would be R1a and R1b in  
P R O D U C T  
I N F O R M A T I O N  
8
TISP4070M3LM THRU TISP4095M3LM, TISP4125M3LM THRU TISP4220M3LM,  
TISP4240M3LM THRU TISP4400M3LM  
BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS  
NOVEMBER 1997 - REVISED APRIL 1999  
Figure 15 and Figure 16. FCC Part 68 allows the equipment to be non-operational after the 10/160 (conductor  
to ground) and 10/560 (inter-conductor) impulses. The series resistor value may be reduced to zero to pass  
FCC Part 68 in a non-operational mode e.g. Figure 14. In some cases the equipment will require verification  
over a temperature range. By using the rated waveform values from Figure 11, the appropriate series resistor  
value can be calculated for ambient temperatures in the range of -40 °C to 85 °C.  
a.c. power testing  
The protector can withstand currents applied for times not exceeding those shown in Figure 8. Currents that  
exceed these times must be terminated or reduced to avoid protector failure. Fuses, PTC (Positive  
Temperature Coefficient) resistors and fusible resistors are overcurrent protection devices which can be used  
to reduce the current flow. Protective fuses may range from a few hundred milliamperes to one ampere. In  
some cases it may be necessary to add some extra series resistance to prevent the fuse opening during  
impulse testing. The current versus time characteristic of the overcurrent protector must be below the line  
shown in Figure 8. In some cases there may be a further time limit imposed by the test standard (e.g. UL  
1459 wiring simulator failure).  
capacitance  
The protector characteristic off-state capacitance values are given for d.c. bias voltage, VD, values of 0, -1 V,  
-2 V and -50 V. Where possible values are also given for -100 V. Values for other voltages may be calculated  
by multiplying the VD = 0 capacitance value by the factor given in Figure 6. Up to 10 MHz the capacitance is  
essentially independent of frequency. Above 10 MHz the effective capacitance is strongly dependent on  
connection inductance. In many applications, such as Figure 15 and Figure 17, the typical conductor bias  
voltages will be about -2 V and -50 V. Figure 7 shows the differential (line unbalance) capacitance caused by  
biasing one protector at -2 V and the other at -50 V.  
normal system voltage levels  
The protector should not clip or limit the voltages that occur in normal system operation. For unusual  
conditions, such as ringing without the line connected, some degree of clipping is permissible. Under this  
condition about 10 V of clipping is normally possible without activating the ring trip circuit.  
Figure 10 allows the calculation of the protector VDRM value at temperatures below 25 °C. The calculated  
value should not be less than the maximum normal system voltages. The TISP4260M3LM, with a VDRM of  
200 V, can be used for the protection of ring generators producing 100 V rms of ring on a battery voltage of  
-58 V (Th2 and Th3 in Figure 17). The peak ring voltage will be 58 + 1.414*100 = 199.4 V. However, this is the  
open circuit voltage and the connection of the line and its equipment will reduce the peak voltage. In the  
extreme case of an unconnected line, clipping the peak voltage to 190 V should not activate the ring trip. This  
level of clipping would occur at the temperature when the VDRM has reduced to 190/200 = 0.95 of its 25 °C  
value. Figure 10 shows that this condition will occur at an ambient temperature of -28 °C. In this example, the  
TISP4260M3LM will allow normal equipment operation provided that the minimum expected ambient  
temperature does not fall below -28 °C.  
JESD51 thermal measurement method  
To standardise thermal measurements, the EIA (Electronic Industries Alliance) has created the JESD51  
standard. Part 2 of the standard (JESD51-2, 1995) describes the test environment. This is a 0.0283 m3 (1 ft3)  
cube which contains the test PCB (Printed Circuit Board) horizontally mounted at the centre. Part 3 of the  
standard (JESD51-3, 1996) defines two test PCBs for surface mount components; one for packages smaller  
than 27 mm on a side and the other for packages up to 48 mm. The LM package measurements used the  
smaller 76.2 mm x 114.3 mm (3.0 “ x 4.5 “) PCB. The JESD51-3 PCBs are designed to have low effective  
thermal conductivity (high thermal resistance) and represent a worse case condition. The PCBs used in the  
majority of applications will achieve lower values of thermal resistance and so can dissipate higher power  
levels than indicated by the JESD51 values.  
P R O D U C T  
I N F O R M A T I O N  
9
TISP4070M3LM THRU TISP4095M3LM, TISP4125M3LM THRU TISP4220M3LM,  
TISP4240M3LM THRU TISP4400M3LM  
BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS  
NOVEMBER 1997 - REVISED APRIL 1999  
typical circuits  
MODEM  
TIP  
TIP  
WIRE  
WIRE  
FUSE  
R1a  
RING DETECTOR  
HOOK SWITCH  
D.C. SINK  
Th3  
Th2  
PROTECTED  
EQUIPMENT  
Th1  
E.G. LINE CARD  
TISP4350  
OR  
TISP4400  
SIGNAL  
R1b  
RING  
WIRE  
RING  
WIRE  
AI6XBK  
AI6XBM  
Figure 14. MODEM INTER-WIRE PROTECTION  
Figure 15. PROTECTION MODULE  
R1a  
Th3  
SIGNAL  
Th1  
Th2  
R1b  
AI6XBL  
D.C.  
Figure 16. ISDN PROTECTION  
OVER-  
CURRENT  
PROTECTION  
SLIC  
PROTECTION  
RING/TEST  
PROTECTION  
TEST  
RELAY  
RING  
RELAY  
SLIC  
RELAY  
TIP  
WIRE  
S3a  
R1a  
Th4  
Th5  
Th3  
S1a  
S2a  
SLIC  
Th1  
Th2  
R1b  
RING  
WIRE  
S3b  
TISP6xxxx,  
TISPPBLx,  
½TISP6NTP2  
S1b  
S2b  
VBAT  
C1  
220 nF  
TEST  
EQUIP-  
MENT  
RING  
GENERATOR  
AI6XBJ  
Figure 17. LINE CARD RING/TEST PROTECTION  
P R O D U C T  
I N F O R M A T I O N  
10  
TISP4070M3LM THRU TISP4095M3LM, TISP4125M3LM THRU TISP4220M3LM,  
TISP4240M3LM THRU TISP4400M3LM  
BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS  
NOVEMBER 1997 - REVISED APRIL 1999  
MECHANICAL DATA  
device symbolization code  
Devices will be coded as below.  
SYMOBLIZATION  
CODE  
DEVICE  
TISP4070M3  
TISP4080M3  
TISP4095M3  
TISP4125M3  
TISP4145M3  
TISP4165M3  
TISP4180M3  
TISP4220M3  
TISP4240M3  
TISP4260M3  
TISP4300M3  
TISP4350M3  
TISP4400M3  
4070M3  
4080M3  
4095M3  
4125M3  
4145M3  
4165M3  
4180M3  
4220M3  
4240M3  
4260M3  
4300M3  
4350M3  
4400M3  
carrier information  
Devices are shipped in one of the carriers below. A reel contains 2 000 devices.  
PACKAGE TYPE  
CARRIER  
ORDER #  
Straight Lead DO-92  
Bulk Pack  
TISP4xxxM3LM  
Straight Lead DO-92 Tape and Reeled TISP4xxxM3LMR  
Formed Lead DO-92 Tape and Reeled TISP4xxxM3LMFR  
P R O D U C T  
I N F O R M A T I O N  
11  
TISP4070M3LM THRU TISP4095M3LM, TISP4125M3LM THRU TISP4220M3LM,  
TISP4240M3LM THRU TISP4400M3LM  
BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS  
NOVEMBER 1997 - REVISED APRIL 1999  
MECHANICAL DATA  
LM002 (DO-92)  
2-pin cylindrical plastic package  
This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic  
compound. The compound will withstand soldering temperature with no deformation, and circuit performance  
characteristics will remain stable when operated in high humidity conditions. Leads require no additional  
cleaning or processing when used in soldered assembly.  
.
LM002 Package (DO-92)  
5,21  
4,44  
4,19  
3,17  
3,43 MIN.  
2,67  
2,03  
2,67  
2,03  
5,34  
4,32  
2,20 MAX.  
A
2
2
12,7 MIN.  
0,56  
0,40  
1
3
3
1
VIEW A  
0,41  
0,35  
1,40  
1,14  
2,67  
2,41  
ALL LINEAR DIMENSIONS IN MILLIMETERS  
MD4XARA  
P R O D U C T  
I N F O R M A T I O N  
12  
TISP4070M3LM THRU TISP4095M3LM, TISP4125M3LM THRU TISP4220M3LM,  
TISP4240M3LM THRU TISP4400M3LM  
BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS  
NOVEMBER 1997 - REVISED APRIL 1999  
MECHANICAL DATA  
LM002 (DO-92) - Formed Leads Version  
2-pin cylindrical plastic package  
This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic  
compound. The compound will withstand soldering temperature with no deformation, and circuit performance  
characteristics will remain stable when operated in high humidity conditions. Leads require no additional  
cleaning or processing when used in soldered assembly.  
LMF002 (DO-92) - Formed Leads Version of LM002  
5,21  
4,44  
4,19  
3,17  
3,43 MIN.  
2,67  
2,03  
2,67  
2,03  
5,34  
4,32  
2,20 MAX.  
4,00 MAX.  
A
2
2
0,56  
0,40  
1
3
3
1
VIEW A  
2,90  
2,40  
0,41  
0,35  
2,90  
2,40  
ALL LINEAR DIMENSIONS IN MILLIMETERS  
MD4XASA  
P R O D U C T  
I N F O R M A T I O N  
13  
TISP4070M3LM THRU TISP4095M3LM, TISP4125M3LM THRU TISP4220M3LM,  
TISP4240M3LM THRU TISP4400M3LM  
BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS  
NOVEMBER 1997 - REVISED APRIL 1999  
MECHANICAL DATA  
tape dimensions  
LM002 Package (Straight Lead DO-92) Tape  
LM002 Tape Dimensions Conform to  
the Requirements of EIA-468-B  
13,70  
11,70  
Body Indent Visible  
0,50  
0,00  
32,00  
23,00  
2,50 MIN.  
27,68  
17,66  
11,00  
8,50  
9,75  
8,50  
19,00  
5,50  
19,00  
17,50  
3,14  
2,14  
4,30  
3,70  
φ
Adhesive Tape on Reverse  
Side - Shown Dashed  
VIEW A  
5,48  
4,68  
13,00  
12,40  
Tape Section  
Shown in  
View A  
Flat of DO-92 Body  
Towards Reel Axis  
Direction of Feed  
ALL LINEAR DIMENSIONS IN MILLIMETERS  
MD4XAPC  
P R O D U C T  
I N F O R M A T I O N  
14  
TISP4070M3LM THRU TISP4095M3LM, TISP4125M3LM THRU TISP4220M3LM,  
TISP4240M3LM THRU TISP4400M3LM  
BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS  
NOVEMBER 1997 - REVISED APRIL 1999  
MECHANICAL DATA  
tape dimensions  
LMF002 Package (Formed Lead DO-92) Tape  
LMF002 Tape Dimensions Conform to  
the Requirements of EIA-468-B  
13,70  
11,70  
Body Indent Visible  
0,50  
0,00  
32,00  
23,00  
2,50 MIN.  
27,68  
17,66  
16,53  
15,50  
11,00  
8,50  
9,75  
8,50  
19,00  
5,50  
19,00  
17,50  
5,28  
4,88  
4,30  
3,70  
φ
Adhesive Tape on Reverse  
Side - Shown Dashed  
VIEW A  
4,21  
3,41  
13,00  
12,40  
Tape Section  
Shown in  
View A  
Flat of DO-92 Body  
Towards Reel Axis  
Direction of Feed  
ALL LINEAR DIMENSIONS IN MILLIMETERS  
MD4XAQC  
P R O D U C T  
I N F O R M A T I O N  
15  
TISP4070M3LM THRU TISP4095M3LM, TISP4125M3LM THRU TISP4220M3LM,  
TISP4240M3LM THRU TISP4400M3LM  
BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS  
NOVEMBER 1997 - REVISED APRIL 1999  
IMPORTANT NOTICE  
Power Innovations Limited (PI) reserves the right to make changes to its products or to discontinue any semiconductor product  
or service without notice, and advises its customers to verify, before placing orders, that the information being relied on is  
current.  
PI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with  
PI's standard warranty. Testing and other quality control techniques are utilized to the extent PI deems necessary to support this  
warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government  
requirements.  
PI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents  
or services described herein. Nor is any license, either express or implied, granted under any patent right, copyright, design  
right, or other intellectual property right of PI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used.  
PI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORISED, OR WARRANTED TO BE SUITABLE  
FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS.  
Copyright © 1999, Power Innovations Limited  
P R O D U C T  
I N F O R M A T I O N  
16  

相关型号:

TISP4400M3LM-S

BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
BOURNS

TISP4400M3LMFR

BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
BOURNS

TISP4400M3LMFRS

BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
BOURNS

TISP4400M3LMR

BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
BOURNS

TISP4400M3LMR-S

BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
BOURNS

TISP4400M3LPR

400V, 30A, SILICON SURGE PROTECTOR, PLASTIC, TO-92, 3 PIN
TI

TISP4400T3BJ

BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS
BOURNS

TISP44070M3BJR-S

Trigger Device
BOURNS

TISP44072F3LMFR-S

Trigger Device
BOURNS

TISP44082F3LMFR-S

Trigger Device
BOURNS

TISP44082F3LMR-S

Trigger Device
BOURNS

TISP44095M3BJR-S

Trigger Device
BOURNS