LNK6436D [POWERINT]

IC SWITCHER CV/CC 5.5W 8SOIC;
LNK6436D
型号: LNK6436D
厂家: Power Integrations    Power Integrations
描述:

IC SWITCHER CV/CC 5.5W 8SOIC

文件: 总18页 (文件大小:2342K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LNK64x4-64x8  
LinkSwitch-3 Family  
Energy-Efficient, Accurate Primary-Side Regulation  
CV/CC Switcher for Adapters and Chargers  
Product Highlights  
DC  
Output  
Dramatically Simplifies CV/CC Converters  
Eliminates optocoupler and all secondary CV/CC control circuitry  
Eliminates all control loop compensation circuitry  
Advanced Performance Features  
ꢀide Range  
High-ꢁoltage  
DC Input  
Compensates for transformer inductance tolerances  
Compensates for input line voltage variations  
Compensates for cable voltage drop  
D
S
FB  
BP  
Compensates for external component temperature variations  
Very accurate IC parameter tolerances using test trimming technology  
Frequency jittering greatly reduces EMI filter cost  
Programmable switching frequency up to 85 kHz to reduce trans-  
former size  
LinkSwitch-3  
Pꢀ-6907-020515  
Minimum operation frequency fixed to improve transient load  
response  
Figure 1. Typical Application – Not a Simplified Circuit.  
Advanced Protection/Safety Features  
Auto-restart protection reduces power delivered by >90% for output  
short-circuit and control loop faults (open and shorted components)  
Hysteretic thermal shutdown – automatic recovery reduces power  
supply returns from the field  
Meets high-voltage creepage requirements between DRAIN and all  
other pins both on the PCB and at the package  
Output Power Table1,2,3,4  
90-264 VAC  
D (SO-8C) Package  
Adapter Open Frame  
3.5 W 4.1 W  
Product5  
EcoSmart™– Energy Efficient  
Easily meets all global energy efficiency regulations with no added  
components  
No-load consumption at 230 VAC input with bias winding <10 mW for  
LNK64x4-LNK64x6 and <30 mW for LNK64x7-LNK64x8  
ON/OFF control provides constant efficiency down to very light loads  
– ideal for CEC regulations  
LNK6404D / LNK6424D  
LNK6405D / LNK6415D /  
LNK6425D  
4.5 W  
5.5 W  
7.5 W  
5.1 W  
6.1 W  
7.5 W  
LNK6406D / LNK6416D /  
LNK6426D / LNK6436D /  
LNK6446D  
LNK6407D / LNK6417D /  
LNK6427D  
No current sense resistors – maximizes efficiency  
Green Package  
Halogen free and RoHS compliant package  
E (eSIP-7C) and  
K (eSOP-12B) Packages  
Product5  
Applications  
Adapter  
Open Frame  
Chargers for cell/cordless phones, PDAs, MP3/portable audio  
devices, adapters, etc.  
LNK6407K / LNK6417K /  
LNK6427K  
8.5 W  
9 W  
Description  
LNK6408K / LNK6418K /  
LNK6428K / LNK6448K  
10 W  
10 W  
10 W  
10 W  
The LinkSwitch™-3 family of ICs dramatically simplifies low power CV/  
CC charger designs by eliminating an optocoupler and secondary  
control circuitry. The device introduces a revolutionary control  
technique to provide very accurate output voltage and current  
regulation, compen-sating for transformer and internal parameter  
tolerances along with input voltage variations.  
LNK6408E / LNK6418E /  
LNK6428E / LNK6448E  
Table 1. Output Power Table.  
Notes:  
1. Assumes minimum input DC voltage >90 VDC, KP ≥1 (Recommend KP ≥1.15  
for accurate CC regulation), η >78%, DMAX <55%.  
2. Output power capability is reduced if a lower input voltage is used.  
3. Minimum continuous power with adequate heat sink measured at 50 °C  
ambient with device junction below 110 °C.  
4. Assumes bias winding is used to supply BYPASS pin.  
5. Package: D: SO-8C, E: eSIP-7C, K: eSOP-12B.  
The device incorporates a 725 V power MOSFET, a novel ON/OFF control  
state machine, a high-voltage switched current source for self biasing,  
frequency jittering, cycle-by-cycle current limit and hysteretic thermal  
shutdown circuitry onto a monolithic IC.  
www.power.com  
March 2016  
This Product is Covered by Patents and/or Pending Patent Applications.  
LNK64x4-64x8  
ꢉꢃꢈꢊN  
ꢆꢉꢇ  
ꢃꢅꢋꢂLꢈꢎꢁꢃ  
6 ꢏ  
ꢌꢐꢑꢈꢀꢀ  
ꢆꢌꢑꢇ  
-
6 ꢌ  
ꢄ ꢌ  
ꢅꢆ  
ꢇꢈꢉ  
Reꢊeꢋ  
ꢁꢐꢁꢏꢁꢉ  
ꢀꢎꢈꢎꢅ  
ꢓꢈꢄꢔꢊNꢅ  
ꢒꢅꢅꢉꢌꢈꢄK  
ꢆꢒꢌꢇ  
ꢉꢓ  
-
ꢍꢎꢏꢀꢐꢑꢂꢇꢈꢉ  
ꢐꢁꢏ  
ꢔCꢏꢎꢗ  
ꢔꢕꢖve  
ꢁꢐꢁꢏꢁꢉ  
ꢄꢈꢌLꢅ ꢉꢃꢁꢑ  
ꢄꢁꢓꢑꢅNꢀꢈꢎꢊꢁN  
ꢒꢈꢂLꢎ  
ꢈꢂꢎꢁ-ꢃꢅꢀꢎꢈꢃꢎ  
ꢁꢑꢅN-Lꢁꢁꢑ  
ꢅꢆ  
6.ꢄ ꢌ  
ꢎꢔꢅꢃꢓꢈL  
ꢀꢔꢂꢎꢉꢁꢕN  
ꢊNꢉꢂꢄꢎꢈNꢄꢅ  
ꢄꢁꢃꢃꢅꢄꢎꢊꢁN  
ꢔCꢏꢎꢗ  
ꢍꢎꢏꢀꢐꢑꢂꢁꢒꢀꢈꢉ  
ꢍꢎꢏꢀꢐꢑꢂꢇꢈꢉ  
ꢀꢈꢓꢑLꢅ  
ꢉꢅLꢈꢐ  
ꢍꢎꢏꢀꢐꢑꢂꢁꢒꢀꢈꢉ  
ꢁꢀꢄꢊLLꢈꢎꢁꢃ  
ꢀꢁꢂꢃꢄꢅ  
ꢆꢀꢇ  
-
ꢐꢁꢏ  
ꢀꢁꢂꢃꢄꢅ  
ꢆꢀꢇ  
ꢁꢐꢁꢏꢁꢉ  
ꢄꢁNꢀꢎꢈNꢎ  
ꢄꢂꢃꢃꢅNꢎ  
Cꢘꢕꢕeꢙꢋ ꢐꢖꢚꢖꢋ  
Cꢛꢚꢜꢝꢕꢝꢋꢛꢕ  
LꢅꢈꢉꢊNꢋ  
ꢅꢉꢋꢅ  
ꢌLꢈNKꢊNꢋ  
ꢀꢁꢂ6660ꢂ0ꢃ0ꢄ1ꢄ  
Figure 2  
Functional Block Diagram.  
Pin Functional Description  
ꢌ ꢈꢒꢖꢗꢒꢡꢐ  
ꢓꢐꢂꢚꢈ-ꢅꢉꢙ  
DRAIN (D) Pin:  
This pin is the power MOSFET drain connection. It provides  
internal operating current for both start-up and steady-state  
operation.  
ꢌxꢍꢎꢏꢐꢑ ꢈꢒꢑ  
ꢓꢔꢕ ꢇꢒꢖꢗ ꢂꢘꢑꢐꢙ  
ꢚꢕꢛꢐꢜꢕꢒꢝꢝꢞ  
ꢉꢎꢕꢕꢐꢖꢛꢐꢑ ꢛꢎ  
ꢂꢔꢟꢠꢉꢌ ꢈꢘꢕ  
BYPASS (BP) Pin:  
ꢋ ꢈꢒꢖꢗꢒꢡꢐ ꢓꢂꢔ-8ꢉꢙ  
This pin is the connection point for an external 1 mF bypass capacitor  
for the internally generated 6 V supply.  
ꢆꢇ ꢀ  
8 ꢂ  
ꢅ ꢂ  
6 ꢂ  
ꢣ ꢂ  
FEEDBACK (FB) Pin:  
ꢇꢈ ꢁ  
ꢀ ꢁ ꢊ 4 ꢣ  
During normal operation, switching of the power MOSFET is  
controlled by this pin. This pin senses the AC voltage on the  
bias winding. This control input regulates both the output  
voltage in CV mode and output current in CC mode based on  
the flyback voltage of the bias winding. The internal induc-  
tance correction circuit uses the forward voltage on the bias  
winding to sense the bulk capacitor voltage.  
ꢋ 4  
ꢌxꢍꢎꢏꢐꢑ ꢈꢒꢑ ꢓꢔꢕ ꢇꢎꢛꢛꢎꢢꢙ  
ꢚꢕꢛꢐꢜꢕꢒꢝꢝꢞ ꢉꢎꢕꢕꢐꢖꢛꢐꢑ ꢛꢎ  
ꢂꢔꢟꢠꢉꢌ ꢈꢘꢕ  
K ꢈꢒꢖꢗꢒꢡꢐ  
ꢓꢐꢂꢔꢈ-ꢀꢁꢇꢙ  
ꢆꢇ ꢀ  
ꢇꢈ ꢁ  
Nꢉ ꢊ  
Nꢉ 4  
ꢀꢁ ꢂ  
ꢀꢀ ꢂ  
ꢀꢃ ꢂ  
ꢄ ꢂ  
SOURCE (S) Pin:  
This pin is internally connected to the output MOSFET source  
for high-voltage power and control circuit common returns.  
8 ꢂ  
ꢋ 6  
ꢅ ꢂ  
ꢀꢁꢂ6ꢃ06ꢂ0ꢄ0ꢅ1ꢅ  
Figure 3. Pin Configuration.  
2
Rev. C 03/16  
www.power.com  
LNK64x4-64x8  
Auto-Restart and Open-Loop Protection  
LinkSwitch-3 Functional Description  
In the event of a fault condition such as an output short or an  
open-loop condition the LinkSwitch-3 enters into an appropriate  
protection mode as described below.  
The LinkSwitch-3 combines a high-voltage power MOSFET switch with  
a power supply controller in one device. It uses an ON/OFF control to  
regulate the output voltage. In addition, the switching frequency is  
modulated to regulate the output current to provide a constant current  
characteristic. The LinkSwitch-3 controller consists of an oscillator,  
feedback (sense and logic) circuit, 6 V regulator, over-temperature  
protection, frequency jittering, current limit circuit, leading-edge  
blanking, inductance correction circuitry, frequency control for  
constant current regulation and ON/OFF state machine for CV control.  
In the event the FEEDBACK pin voltage during the flyback period falls  
below 0.7 V before the FEEDBACK pin sampling delay (~2.5 ms) for a  
duration in excess of ~300 ms (auto-restart on-time (tAR-ON) the  
converter enters into auto-restart, wherein the power MOSFET is  
disabled for 1500 ms. The auto-restart alternately enables and  
disables the switching of the power MOSFET until the fault condition  
is removed.  
Inductance Correction Circuitry  
In addition to the conditions for auto-restart described above,  
if the sensed FEEDBACK pin current during the forward period of the  
conduction cycle (switch “on” time) falls below 120 mA, the converter  
annunciates this as an open-loop condition (top resistor in potential  
divider is open or missing) and reduces the auto-restart time from  
300 ms to approximately 6 clock cycles (90 ms), whilst keeping the  
disable period of 2 seconds.  
If the primary magnetizing inductance is either too high or low the  
converter will automatically compensate for this by adjusting the  
oscillator frequency. Since this controller is designed to operate in  
discontinuous-conduction mode the output power is directly  
proportional to the set primary inductance and its tolerance can be  
completely compensated with adjustments to the switching  
frequency.  
Over-Temperature Protection  
Constant Current (CC) Operation  
The thermal shutdown circuitry senses the die temperature. The  
threshold is set at 142 °C typical with a 60 °C hysteresis. When the  
die temperature rises above this threshold (142 °C) the power  
MOSFET is disabled and remains disabled until the die temperature  
falls by 60 °C, at which point the MOSFET is re-enabled.  
As the output voltage and therefore the flyback voltage across the  
bias winding ramps up, the FEEDBACK pin voltage increases. The  
switching frequency is adjusted as the FEEDBACK pin voltage increases  
to provide a constant output current regulation. The constant current  
circuit and the inductance correction circuit are designed to operate  
concurrently in the CC region.  
Current Limit  
The current limit circuit senses the current in the power MOSFET.  
When this current exceeds the internal threshold (ILIMIT), the power  
MOSFET is turned off for the remainder of that cycle. The leading  
edge blanking circuit inhibits the current limit comparator for a short  
time (tLEB) after the power MOSFET is turned on. This leading edge  
blanking time has been set so that current spikes caused by  
capacitance and rectifier reverse recovery time will not cause  
premature termination of the MOSFET conduction. The LinkSwitch-3  
also contains a “di/dt” correction feature to minimize CC variation across  
the input line range.  
Constant Voltage (CV) Operation  
As the FEEDBACK pin approaches 2 V from the constant current  
regulation mode, the power supply transitions into CV operation.  
The switching frequency at this point is at its maximum value,  
corresponding to the peak power point of the CV/CC characteristic.  
The controller regulates the FEEDBACK pin voltage to remain at  
FEEDBACK pin threshold (VFBTH) using an ON/OFF state-machine.  
The FEEDBACK pin voltage is sampled 2.5 ms after the turn-off of the  
high-voltage switch.  
At light loads the current limit is also reduced to decrease the  
transformer flux density and the FEEDBACK pin sampling is done  
earlier.  
6 V Regulator  
The 6 V regulator charges the bypass capacitor connected to the  
BYPASS pin to 6 V by drawing a current from the voltage on the  
DRAIN, whenever the MOSFET is off. The BYPASS pin is the internal  
supply voltage node. When the MOSFET is on, the device runs off of  
the energy stored in the bypass capacitor. Extremely low power  
consumption of the internal circuitry allows the LinkSwitch-3 to  
operate continuously from the current drawn from the DRAIN pin  
however for the best no-load input power, the BYPASS pin should be  
supplied current of IS1 from the bias winding at no-load conditions.  
A bypass capacitor value of 1 mF is sufficient for both high frequency  
decoupling and energy storage.  
Output Cable Compensation  
This compensation provides a constant output voltage at the end of  
the cable over the entire load range in CV mode. As the converter  
load increases from no-load to the peak power point (transition point  
between CV and CC) the voltage drop introduced across the output  
cable is compensated by increasing the FEEDBACK pin reference  
voltage. The controller determines the output load and therefore the  
correct degree of compensation based on the output of the state  
machine. The amount of cable drop compensation is determined by  
the third digit in the device part number.  
3
Rev. C 03/16  
www.power.com  
LNK64x4-64x8  
reducing the output diode voltage stress by allowing a greater  
transformer turns ratio. The device is completely self-powered from  
the BYPASS pin and decoupling capacitor C7. For the LNK64xx  
devices, there are 4 options for different amount of cable drop  
compensation determined by the third digit in the device part  
number. Table 2 shows the amount of compensation for each device.  
The LNK644x devices do not provide cable drop compensation.  
Applications Example  
Circuit Description  
This circuit shown in Figure 4 is configured as a primary-side  
regulated flyback power supply utilizing the LNK6448K. With an  
average efficiency of 78% and <30 mW no-load input power this  
design easily exceeds the most stringent current energy efficiency  
requirements.  
The optional bias supply formed by D3 and C8 provides the operating  
current for U1 via resistor R8. This reduces the no-load consumption  
from ~200 mW to <30 mW and also increases light load efficiency.  
Input Filter  
AC input power is rectified by bridge BR1. The rectified DC is filtered  
by the bulk storage capacitors C1 and C2. Inductors L2 and L3,  
together with C1 and C2 form a pi (π) filter, which attenuates  
conducted differential-mode EMI noise. This configuration along with  
Power Integrations transformer E-Shield™ technology allows this  
design to meet EMI standard EN55022 class B with good margin  
without requiring a Y capacitor, even with the output connected to  
safety earth ground. A ferrite bead for L3 is sufficient especially  
when the output of the supply is floating. Fuse F1 provides protection  
against catastrophic failure. NTC (Negative Thermal Coefficient)  
thermistor RT1 is used to limit the rush current to below the peak  
specification of BR1 during start-up especially at high-line input  
voltage. High-line results in the highest current into C1 and C2. F1  
and RT1 can be replaced by a single fusible resistor. If the reduction  
in efficiency is acceptable, a bridge with a higher IFSM rating may also  
allow removal of RT1. If a fusible resistor is selected, use a  
flameproof type. It should be suitably rated (typically a wire wound  
type) to withstand the instantaneous dissipation while the input  
capacitors charge when first connected to the AC line.  
The rectified and filtered input voltage is applied to one side of the  
primary winding of T1. The other side of the transformer’s primary  
winding is driven by the integrated MOSFET in U1. The leakage  
inductance drain voltage spike is limited by an RCD-R clamp  
consisting of D2, R3, R11, and C6.  
Output Rectification  
The secondary of the transformer is rectified by D1, a 10 A, 45 V  
Schottky barrier type for higher efficiency, and filtered by C3, L1 and  
C4. If lower efficiency is acceptable then this can be replaced with a  
5 A PN junction diode for lower cost. In this application C3 and C4  
are sized to meet the required output voltage ripple specification with  
a ferrite bead L1, which eliminates the high switching noise on the  
output. A pre-load resistor R2 is used to meet the regulation  
specification. If the battery self-discharge is required, the pre-load  
resistor can be replaced with a series resistor and Zener network.  
Output Regulation  
The LNK64xx family of devices regulates the output using ON/OFF  
control in the constant voltage (CV) regulation region of the output  
characteristic and frequency control for constant current (CC)  
regulation. The feedback resistors (R6 and R7) were selected using  
standard 1% resistor values to center both the nominal output  
voltage and constant current regulation thresholds.  
LNK6448K Primary  
The LNK6448K device (U1) incorporates the power switching device,  
oscillator, CC/CV control engine, start-up, and protection functions.  
The integrated 725 V MOSFET provides a large drain voltage margin  
in universal input AC applications, increasing reliability and also  
Cꢆ  
R1 1 ꢔꢒ  
10 ꢆ0 ꢓ  
R10  
ꢉ.ꢃ ꢇΩ  
ꢍ1  
R11  
ꢄ00 ꢇΩ  
ꢐ1  
ꢑꢀC1ꢃ  
ꢒeꢗꢗꢘꢙe ꢏeꢚꢛ  
ꢜ3.ꢆ × ꢃ.6 ꢕꢕꢝ  
ꢑ ꢒꢗ ꢐ ꢓ  
ꢘꢖ-ꢖ  
6
ꢒꢍ1  
ꢍꢄ  
1 ꢕꢖ  
ꢊ1  
C6  
ꢉꢃ0 ꢞꢒ  
ꢄꢆ0 ꢓ  
C3  
Cꢉ  
6ꢎ0 µꢒ  
10 ꢓ  
Rꢄ  
ꢄ.ꢆꢆ ꢇΩ  
1ꢈ  
ꢋꢏR10ꢉꢆꢋꢀꢆꢂ13  
6ꢎ0 µꢒ  
10 ꢓ  
ꢏR1  
ꢏ10ꢋꢂꢢ  
1000 ꢓ  
ꢙꢕN  
ꢘꢖ-4  
ꢒꢍꢄ  
R3  
1ꢆ0 Ω  
6.0  
ꢁ.0  
ꢀ.0  
3.0  
ꢂ.0  
1.0  
0.0  
11ꢁ ꢃꢄC  
ꢂ30 ꢃꢄC  
3
ꢊꢄ  
ꢋ1ꢌꢍ  
C1  
Cꢄ  
1ꢆ µꢒ  
ꢉ00 ꢓ  
10 µꢒ  
Rꢆ  
ꢒ1  
1 ꢣ  
Rꢐ1  
10 Ω  
ꢉ00 ꢓ  
R6  
ꢄ.ꢉ Ω  
ꢉꢉ.ꢄ ꢇΩ  
1ꢈ  
Lꢅꢆꢇꢁꢈꢅꢉꢊꢋ-ꢌ  
ꢟ1  
ꢍꢠꢡ6ꢉꢉꢎꢡ  
ꢎꢏ - ꢐ6ꢑ  
ꢒꢓꢔ  
ꢊ3  
Rꢋ1ꢌꢍ  
L
ꢕꢄꢖ  
N
ꢕꢄꢐ  
ꢂꢃ  
ꢃꢄ  
Rꢎ  
ꢄ.3ꢃ ꢇΩ  
1ꢈ  
Cꢃ  
1 µꢒ  
ꢆ0 ꢓ  
Rꢃ  
10 ꢇΩ  
1ꢈ  
Cꢎ  
10 µꢒ  
ꢄꢆ ꢓ  
ꢍ3  
ꢒeꢗꢗꢘꢙe ꢏeꢚꢛ  
ꢜ3.ꢆ × ꢃ.6 ꢕꢕꢝ  
0
0.ꢁ  
1
1.ꢁ  
ꢂ.ꢁ  
3
ꢀꢁꢂꢃꢄ0ꢅꢂ0ꢄ0ꢆ1ꢆ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁꢅꢅꢆꢇꢂ ꢈꢉꢊ  
Figure 4.  
Energy Efficient USB Charger Power Supply (78% Average Efficiency, <30 mW No-load Input Power).  
4
Rev. C 03/16  
www.power.com  
LNK64x4-64x8  
Key Application Considerations  
Output Power Table  
LinkSwitch-3 Layout Considerations  
Circuit Board Layout  
LinkSwitch-3 is a highly integrated power supply solution that  
integrates on a single die, both, the controller and the high- voltage  
MOSFET. The presence of high switching currents and voltages  
together with analog signals makes it especially important to follow  
good PCB design practice to ensure stable and trouble free operation  
of the power supply. See Figure 5 for a recommended circuit board  
layout for LinkSwitch-3.  
The data sheet maximum output power table (Table 1) repre- sents  
the maximum practical continuous output power level that can be  
obtained under the following assumed conditions:  
1. Assumes minimum input DC voltage >90 VDC, KP ≥1 (Recom-  
mend KP ≥1.15 for accurate CC regulation), η >78%, DMAX <55%.  
2. Output power capability is reduced if a lower input voltage  
is used.  
When designing a printed circuit board for the LinkSwitch-3 based  
power supply, it is important to follow the following guidelines:  
3. Minimum continuous power with adequate heat sink measured at  
50 °C ambient with device junction below  
110 °C.  
Single Point Grounding  
4. Assumes bias winding is used to supply BYPASS pin.  
Use a single point (Kelvin) connection at the negative terminal of the  
input filter capacitor for the LinkSwitch-3 SOURCE pin and bias  
winding return. This improves surge capabilities by returning surge  
currents from the bias winding directly to the input filter capacitor.  
Output Tolerance  
LinkSwitch-3 provides an overall output tolerance (including  
line, component variation and temperature) of ±5% for the output  
voltage in CV operation and ±10% for the output current during CC  
operation over a junction temperature range of 0 °C to 110 °C.  
Bypass Capacitor  
The BYPASS pin capacitor should be located as close as possible to  
the SOURCE and BYPASS pins.  
BYPASS Pin Capacitor Selection  
A 1 mF BYPASS pin capacitor is recommended. The capacitor  
voltage rating should be greater than 7 V. The capacitor’s dielectric  
material is not important but tolerance of capacitor should be ≤  
±50%. The capacitor must be physically located adjacent to the  
LinkSwitch-3 BYPASS pin.  
Feedback Resistors  
Place the feedback resistors directly at the FEEDBACK pin of the  
LinkSwitch-3 device. This minimizes noise coupling.  
Thermal Considerations  
The copper area connected to the SOURCE pins provides the  
LinkSwitch-3 heat sink. A good estimate is that the LinkSwitch-3 will  
dissipate 10% of the output power. Provide enough copper area to  
keep the SOURCE pin temperature below 110 °C is recommended to  
provide margin for part to part RDS(ON) variation.  
Cable Drop Compensation  
The amount of output cable compensation is determined by the third  
digit in the device part number. Table 2 shows the amount of  
compensation for each LinkSwitch-3 device.  
The output voltage that is entered into PIXls design spreadsheet is  
the voltage at the end of the output cable when the power supply is  
delivering maximum power. The output voltage at the terminals of  
the supply is the value measured at the end of the cable multiplied by  
the output voltage change factor.  
Secondary Loop Area  
To minimize leakage inductance and EMI the area of the loop connecting  
the secondary winding, the output diode and the output filter capacitor  
should be minimized. In addition, sufficient copper area should be  
provided at the anode and cathode terminal of the diode for heat  
sinking. A larger area is preferred at the quiet cathode terminal.  
A large anode area can increase high frequency radiated EMI.  
LinkSwitch-3 Output Cable Voltage  
Drop Compensation  
Electrostatic Discharge Spark Gap  
A spark gap is created between the output and the AC input. The  
spark gap directs ESD energy from the secondary back to the AC  
input. The trace from the AC input to the spark gap electrode should  
be spaced away from other traces to prevent unwanted arcing  
occurring and possible circuit damage.  
Device  
Output Voltage Change Factor (±1%)  
LNK640x  
LNK641x  
LNK642x  
LNK643x  
LNK644x  
1.02  
1.04  
1.06  
1.08  
1.01  
Drain Clamp Optimization  
LinkSwitch-3 senses the feedback winding on the primary-side to  
regulate the output. The voltage that appears on the feedback  
winding is a reflection of the secondary winding voltage while the  
internal MOSFET is off. Therefore any leakage inductance induced  
ringing can affect output regulation. Optimizing the drain clamp to  
Table 2. Cable Compensation Change Factor vs. Device.  
5
Rev. C 03/16  
www.power.com  
LNK64x4-64x8  
Figure 5.  
PCB (Bottom Layer on Left) (Top Layer on Right) Layout Example Showing 10 W Design using K Package.  
minimize the high frequency ringing will give the best regulation.  
Figure 6 shows the desired drain voltage waveform compared to  
Figure 7 with a large undershoot due to the leakage inductance  
induced ring. This will reduce the output voltage regulation  
performance. To reduce this adjust the value of the resistor in series  
with the clamp diode.  
0.7 mA typ.) is the IC supply current and VBP (6.2 V typ.) is the  
BYPASS pin voltage. The parameters IS2 and VBP are provided in the  
parameter table of the LinkSwitch-3 data sheet. Diode D3 can be any  
low cost diode such as FR102, 1N4148 or BAV19/20/21.  
Quick Design Checklist  
As with any power supply design, all LinkSwitch-3 designs should be  
verified on the bench to make sure that component specifications are  
not exceeded under worst-case conditions.  
Addition of a Bias Circuit for Higher Light Load  
Efficiency and Lower No-load Input Power  
Consumption  
The following minimum set of tests is strongly recommended:  
The addition of a bias circuit can decrease the no-load input power  
from ~200 mW down to less than 30 mW at 230 VAC input. Light  
load efficiency also increases which may avoid the need to use a  
Schottky barrier vs. PN junction output diode while still meeting  
average efficiency requirements.  
1. Maximum drain voltage – Verify that peak VDS does not exceed  
680 V at the highest input voltage and maximum output power.  
2. Maximum drain current – At maximum ambient temperature,  
maximum input voltage and maximum output load, verify drain  
current waveforms at start-up for any signs of transformer  
saturation and excessive leading edge current spikes.  
The power supply schematic shown in Figure 4 has only one winding  
for both feedback and bias circuit. Diode D3, C8, R5 and R8 form the  
bias circuit. The feedback winding voltage is designed at 11 V, this  
provides a high enough voltage to supply the BYPASS pin even during  
low switching frequency operation at no-load.  
LinkSwitch-3 has a leading edge blanking time of 170 ns to  
prevent premature termination of the ON-cycle.  
3. Thermal check – At maximum output power, both minimum and  
maximum input voltage and maximum ambient temperature;  
verify that temperature specifications are not exceeded for  
LinkSwitch-3, transformer, output diodes and output capacitors.  
Enough thermal margin should be allowed for part-to-part variation  
of the RDS(ON) of LinkSwitch-3, as specified in the data sheet.  
A 10 mF capacitance value is recommended for C8 to hold up the bias  
voltage at the low switching frequencies that occur at light to  
no-load. The capacitor type is not critical but the voltage rating  
should be above the maximum value of VBIAS. The recommended  
current into the BYPASS pin is equal to IC supply current (0.6 mA to  
0.7 mA) at the minimum bias winding voltage. The BYPASS pin  
current should not exceed 10 mA at the maximum bias winding  
voltage. The value of R8 is calculated according to (VBIAS – VBP)/IS2,  
where VBIAS (10 V typ.) is the voltage across C8, IS2 (0.6 mA to  
Design Tools  
Up-to-date information on design tools can be found at the Power  
Integrations web site: www.power.com  
6
Rev. C 03/16  
www.power.com  
LNK64x4-64x8  
ꢆꢇ ꢈveꢉꢊꢋꢈꢈꢌ  
ꢍꢊ ꢎꢏꢏeꢐꢌꢎꢑꢒe  
ꢇeꢈꢉꢊꢋve ꢌꢋꢍꢈ ꢎꢉꢏ  
ꢋꢍꢐꢌeꢉꢑe ꢒꢓꢊꢔꢓꢊ  
ꢌꢋꢔꢔꢕe ꢉꢍꢖ/ꢒꢌ  
ꢖeꢈꢌꢉꢖe ꢒꢓꢊꢔꢓꢊ  
ꢌeꢈꢓꢕꢉꢊꢋꢒꢍ  
Figure 6. Desired Drain Voltage Waveform with Minimal Leakage  
Figure 7.  
Undesirable Drain Voltage Waveform with Large Leakage  
Ring Undershoot.  
Ringing Undershoot.  
7
Rev. C 03/16  
www.power.com  
LNK64x4-64x8  
Absolute Maximum Ratings(1,5)  
DRAIN Voltage ........................................................-0.3 V to 725 V Notes:  
DRAIN Pin Peak Current: LNK64x4............................ 400 (600) mA(4) 1. All voltages referenced to SOURCE, TA = 25 °C.  
LNK64x5.............................504 (750) mA(4) 2. Duration not to exceed 2 ms.  
LNK64x6 ............................654 (980) mA(4) 3. 1/16 in. from case for 5 seconds.  
LNK64x7...........................670 (1003) mA(4) 4. The higher peak DRAIN current is allowed while the DRAIN voltage  
LNK64x8........................... 718 (1076) mA(4)  
is simultaneously less than 400 V.  
Peak Negative Pulsed Drain Current.................................. -100 mA(2) 5. Maximum ratings specified may be applied, one at a time without  
FEEDBACK Pin Voltage .................................................-0.3 to 9 V(6)  
FEEDBACK Pin Current .........................................................100 mA  
BYPASS Pin Voltage ........................................................ -0.3 to 9 V  
causing permanent damage to the product. Exposure to Absolute  
Maximum ratings for extended periods of time may affect product  
reliability.  
BYPASS Pin Current ...............................................................10 mA 6. -1 V for current pulse ≤5 mA out of the pin and a duration  
Storage Temperature ................................................. -65 to 150 °C  
of ≤500 ns.  
Operating Junction Temperature(7) ...............................-40 to 150 °C 7. Normally limited by internal circuitry.  
Lead Temperature ..............................................................260 °C(3)  
Thermal Resistance  
Thermal Resistance: D Package:  
Notes:  
(qJA) .............................100 °C/W(2), 80 °C/W(3) 1. Measured on pin 8 (SOURCE) close to plastic interface.  
(qJC)(1) ...............................................30 °C/W 2. Soldered to 0.36 sq. in. (232 mm2), 2 oz. (610 g/m2) copper clad.  
3. Soldered to 1 sq. in. (645 mm2), 2 oz. (610 g/m2) copper clad.  
4. Free standing with no heat sink.  
5. Measured at the back surface of tab.  
6. Soldered (including exposed pad for K package) to typical  
application PCB with a heat sinking area of 0.36 sq. in.  
(232 mm2), 2 oz. (610 g/m2) copper clad.  
7. Soldered (including exposed pad for K package) to typical  
application PCB with a heat sinking area of 1 sq. in. (645 mm2),  
2 oz. (610 g/m2) copper clad.  
E Package  
(qJA)..................................... 105 °C/W(4)  
(qJC).........................................2 °C/W(5)  
K Package  
(qJA) .....................45 °C/W(6), 38 °C/W(7)  
(qJC).........................................2 °C/W(5)  
Conditions  
SOURCE = 0 V; TJ = 0 to 100 °C  
(Unless Otherwise Specified)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Control Functions  
TJ = 25 °C  
tON × IFB = 1.4 mA-ms  
Programmable  
Maximum Frequency  
fOSC  
VFB = VFBth  
85  
kHz  
Hz  
See Notes A, F  
LNK64x4-64x6  
LNK64x7  
350  
760  
560  
Minimum Operation  
Frequency  
TJ = 25 °C  
VFB = VFBth  
fOSC(MIN)  
LNK64x8  
Frequency Ratio  
(Constant Current)  
TJ = 25 °C  
Between VFB = 1.3 V and VFB = 1.9 V  
fRATIO(CC)  
1.42  
1.16  
1.47  
1.21  
1.53  
1.26  
Frequency Ratio  
(Inductance  
Correction)  
Between tON × IFB = 1.4 mA and  
tON × IFB = 2 mA-ms  
fRATIO(IC)  
Peak-to-Peak Jitter Compared to Average  
Frequency, TJ = 25 °C  
Frequency Jitter  
±7  
%
%
Maximum Duty Cycle  
DCMAX  
See Notes D, E  
55  
LNK6404/6405/  
1.915  
1.955  
1.940  
1.980  
1.965  
2.005  
TJ = 25 °C  
6406/6446  
FEEDBACK Pin Voltage  
VFBth  
V
CBP = 1 mF  
LNK6415/6416  
8
Rev. C 03/16  
www.power.com  
LNK64x4-64x8  
Conditions  
SOURCE = 0 V; TJ = 0 to 100 °C  
(Unless Otherwise Specified)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Control Functions (cont.)  
LNK6424/6425/  
1.995  
2.035  
1.915  
2.020  
2.060  
1.940  
2.045  
2.085  
1.965  
6426  
6436  
TJ = 25 °C  
FEEDBACK Pin Voltage  
VFBth  
V
LNK6407,  
CBP = 1 mF  
LNK6408, LNK6448  
LNK6417, LNK6418  
LNK6427, LNK6428  
1.955  
1.995  
1.980  
2.020  
2.005  
2.045  
FEEDBACK Pin Voltage  
at Turn-Off Threshold  
VFB(AR)  
tON(MIN)  
tFB  
1.14  
1.22  
700  
2.75  
300  
1.30  
V
Minimum Switch  
ON-Time  
See Note E  
See Note G  
ns  
ms  
mA  
FEEDBACK Pin  
Sampling Delay  
2.55  
2.95  
380  
FB Voltage > VFBth  
(MOSFET Not Switching  
IS1  
LNK64x4  
480  
500  
550  
600  
540  
560  
620  
680  
Feedback Voltage =  
VFBth -0.1 V,  
Switch ON-Time =  
DRAIN Supply  
Current  
LNK64x5  
IS2  
LNK64x6  
LNK64x7  
mA  
tON (MOSFET  
Switching at fOSC  
)
LNK64x8  
LNK64x4  
LNK64x5  
LNK64x6  
LNK64x7  
LNK64x8  
LNK64x4  
LNK64x5  
LNK64x6  
LNK64x7  
LNK64x8  
700  
-4.4  
-5.8  
-6.1  
-6.1  
-6.1  
-2.8  
-4.0  
-4.2  
-4.2  
-4.2  
780  
-2.7  
-3.3  
-3.5  
-3.5  
-3.5  
-1.5  
-1.8  
-2  
-5.2  
-6.8  
-7.5  
-7.5  
-7.5  
-5  
ICH1  
VBP = 0 V  
BYPASS Pin  
Charge Current  
mA  
-6.4  
-7  
ICH2  
VBP = 4 V  
-7  
-2.0  
-2.0  
-7  
BYPASS Pin  
Voltage  
VBP  
5.65  
0.70  
6.2  
5.90  
0.95  
6.4  
6.25  
1.20  
6.8  
V
V
V
BYPASS Pin  
Voltage Hysteresis  
VBPH  
BYPASS Pin  
Shunt Voltage  
VSHUNT  
9
Rev. C 03/16  
www.power.com  
LNK64x4-64x8  
Conditions  
SOURCE = 0 V; TJ = 0 to 100 °C  
(Unless Otherwise Specified)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Circuit Protection  
di/dt = 60 mA/ms  
VBP = 5.9 V  
LNK64x4  
LNK64x5  
LNK64x6  
LNK64x7  
LNK64x8  
232  
290  
359  
390  
446  
250  
315  
390  
420  
480  
268  
340  
421  
449  
513  
TJ = 25 °C  
di/dt = 75 mA/ms  
VBP = 5.9 V  
TJ = 25 °C  
di/dt = 95 mA/ms  
VBP = 5.9 V  
Current Limit  
ILIMIT  
mA  
TJ = 25 °C  
di/dt = 105 mA/ms  
VBP = 5.9 V  
TJ = 25 °C  
di/dt = 120 mA/ms  
VBP = 5.9 V  
TJ = 25 °C  
Minimum Current  
Limit Scale Factor  
ILIMIT(MIN)  
0.27  
0.975  
125  
0.32  
1.000  
170  
0.38  
Normalized Output  
Current  
IO  
TJ = 25 °C  
1.025  
TJ = 25 °C  
Set Note D  
Leading Edge  
Blanking Time  
tLED  
ns  
°C  
°C  
Thermal Shutdown  
Temperature  
tSD  
135  
142  
150  
Thermal Shutdown  
Hysteresis  
tSDH  
60  
Output  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
TJ = 25 °C  
TJ = 100 °C  
19.7  
30.0  
13.2  
19.8  
7.7  
23.7  
36.0  
15.8  
23.8  
9.3  
LNK64x4  
ID = 96 mA  
LNK64x5  
ID = 105 mA  
ON-State  
Resistance  
LNK64x6  
ID = 105 mA  
W
RDS(ON)  
11.5  
4.8  
13.8  
5.8  
LNK64x7  
ID = 96 mA  
7.2  
8.5  
3.1  
3.8  
LNK64x8  
ID = 105 mA  
4.6  
5.5  
VDS = 560 V  
IDSS1  
50  
TJ = 125 °C See Note C  
OFF-State  
Leakage  
mA  
VDS = 375 V  
TJ = 50 °C  
IDSS2  
15  
10  
Rev. C 03/16  
www.power.com  
LNK64x4-64x8  
Conditions  
SOURCE = 0 V; TJ = 0 to 100 °C  
(Unless Otherwise Specified)  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Output (cont.)  
Breakdown  
Voltage  
BVDSS  
TJ = 25 °C  
725  
50  
V
V
DRAIN Supply  
Voltage  
Auto-Restart  
ON-Time  
tAR-ON  
See Notes A, E  
300  
1.5  
ms  
s
Auto-Restart  
OFF-Time  
tAR-OFF  
Open-Loop  
FEEDBACK Pin  
Current Threshold  
IOL  
See Note E  
See Note E  
-90  
90  
mA  
ms  
Open-Loop  
ON-Time  
NOTES:  
A. Auto-restart ON-time is a function of switching frequency programmed by tON × IFB and minimum frequency in CC mode.  
B. The current limit threshold is compensated to cancel the effect of current limit delay. As a result the output current stays constant across  
the input line range.  
C. IDSS1 is the worst-case OFF-state leakage specification at 80% of BVDSS and maximum operating junction temperature. IDSS2 is a typical  
specification under worst-case application conditions (rectified 265 VAC) for no-load consumption calculations.  
D. When the duty cycle exceeds DCMAX the LinkSwitch-3 operates in on-time extension mode.  
E. This parameter is derived from characterization.  
F. The switching frequency is programmable between 60 kHz to 85 kHz.  
G. At light load tFB is reduced at 1.8 ms typical.  
11  
Rev. C 03/16  
www.power.com  
LNK64x4-64x8  
Typical Performance Characteristics  
1.ꢀ00  
1.ꢀ00  
1.000  
0.ꢁ00  
1.000  
0.ꢁ00  
0.600  
0.ꢂ00  
0.600  
0.ꢂ00  
0.ꢀ00  
0.000  
0.ꢀ00  
0.000  
ꢃꢂ0 ꢃ1ꢄ 10 3ꢄ 60  
ꢁꢄ 110 13ꢄ  
ꢃꢂ0 ꢃ1ꢄ 10 3ꢄ 60  
ꢁꢄ 110 13ꢄ  
ꢀꢁꢂꢃꢁꢄꢅꢆꢇꢄꢁ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃꢁꢄꢅꢆꢇꢄꢁ ꢈꢉꢊꢋ  
Figure 8. Current Limit vs. Temperature.  
Figure 9. Output Frequency vs. Temperature.  
1.ꢀ00  
1.ꢀ00  
1.000  
0.ꢁ00  
1.000  
0.ꢁ00  
0.600  
0.ꢂ00  
0.ꢀ00  
0.600  
0.ꢂ00  
0.ꢀ00  
0.000  
0.000  
ꢃꢂ0 ꢃ1ꢄ 10 3ꢄ 60  
ꢁꢄ 110 13ꢄ  
ꢃꢂ0 ꢃ1ꢄ 10 3ꢄ 60  
ꢁꢄ 110 13ꢄ  
ꢀꢁꢂꢃꢁꢄꢅꢆꢇꢄꢁ ꢈꢉꢊꢋ  
ꢀꢁꢂꢃꢁꢄꢅꢆꢇꢄꢁ ꢈꢉꢊꢋ  
Figure 10. Frequency Ratio vs. Temperature (Constant Current).  
Figure 11. Frequency Ratio vs. Temperature (Inductor Current).  
1.200  
1.ꢀ00  
1.000  
0.800  
1.000  
0.ꢁ00  
0.600  
0.ꢂ00  
0.600  
0.400  
0.ꢀ00  
0.000  
0.200  
0.000  
ꢃꢂ0 ꢃ1ꢄ 10 3ꢄ 60  
ꢁꢄ 110 13ꢄ  
-40 -15 10 35 60  
85 110 135  
ꢀꢁꢂꢃꢁꢄꢅꢆꢇꢄꢁ ꢈꢉꢊꢋ  
Temperature (°C)  
Figure 12. Feedback Voltage vs. Temperature.  
Figure 13. Normalized Output Current vs. Temperature.  
12  
Rev. C 03/16  
www.power.com  
LNK64x4-64x8  
Typical Performance Characteristics (cont.)  
1.1  
300  
ꢀꢁ0  
ꢀ00  
1ꢁ0  
100  
ꢁ0  
ꢆꢎꢏꢐꢑꢒꢓ ꢔꢏꢎꢕꢖꢗꢘꢙ  
ꢉꢊꢋ6ꢂꢌꢂ 1.0  
ꢉꢊꢋ6ꢂꢌꢁ 1.ꢁ  
ꢉꢊꢋ6ꢂꢌ6 ꢀ.ꢁ  
ꢉꢊꢋ6ꢂꢌꢍ ꢂ.0  
ꢉꢊꢋ6ꢂꢌꢃ 6.ꢁ  
1.0  
Cꢅꢆꢇꢈꢀꢁ °C  
Cꢅꢆꢇꢈ100 °C  
0
0.ꢀ  
0
6
10  
ꢁꢂ0 ꢁꢃꢂ  
0
ꢃꢂ ꢂ0 ꢄꢂ 100 1ꢃꢂ 1ꢂ0  
ꢀꢁꢂꢃꢄꢅꢆꢂ ꢇꢈꢉꢊꢈꢋꢌꢄꢁꢋꢈ ꢍ°ꢎꢏ  
ꢀꢁꢂꢃN ꢄꢅꢆꢇꢈꢉꢊ ꢋꢄꢌ  
Figure 14. Breakdown vs. Temperature.  
Figure 15. Output Characteristic.  
ꢀ0  
1000  
100  
10  
ꢉꢊꢋꢌꢍꢎꢏ ꢐꢋꢊꢑꢒꢓꢔꢕ  
ꢃꢄꢅ6ꢁꢆꢁ 1.0  
ꢃꢄꢅ6ꢁꢆꢀ 1.ꢀ  
ꢉꢊꢋꢌꢍꢎꢏ ꢐꢋꢊꢑꢒꢓꢔꢕ  
ꢃꢄꢅ6ꢁꢆꢁ 1.0  
ꢃꢄꢅ6ꢁꢆꢂ 1.ꢂ  
ꢃꢄꢅ6ꢁꢆ6 ꢀ.ꢂ  
ꢃꢄꢅ6ꢁꢆꢇ ꢁ.0  
ꢃꢄꢅ6ꢁꢆꢈ 6.ꢂ  
ꢁ0  
ꢃꢄꢅ6ꢁꢆ6 ꢂ.ꢀ  
ꢃꢄꢅ6ꢁꢆꢇ ꢁ.0  
ꢃꢄꢅ6ꢁꢆꢈ 6.ꢀ  
30  
ꢂ0  
10  
0
1
0
ꢂ00  
ꢁ00  
600  
0
100 ꢀ00 300 ꢁ00 ꢂ00 600  
ꢀꢁꢂꢃN ꢄꢅꢆꢇꢈꢉꢊ ꢋꢄꢌ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈꢂꢉꢊ ꢋꢅꢌ  
Figure 17. Drain Capacitance Power.  
Figure 16. COSS vs. Drain Voltage.  
13  
Rev. C 03/16  
www.power.com  
LNK64x4-64x8  
ꢌꢱ-8ꢃ ꢇꢀ ꢚꢛꢗꢜꢛꢝꢏꢊ  
ꢁꢅꢈꢁ ꢇꢁꢅꢁꢁ4ꢊ  
ꢧ-ꢋ  
ꢙꢫ  
ꢇꢋꢌꢈꢁꢍ ꢈ  
4ꢅꢆꢁ ꢇꢁꢅꢈꢆꢄꢊ ꢋꢌꢃ  
ꢬꢧꢭꢬꢓ  
ꢚLꢧNꢓ  
ꢌꢓꢧꢰꢩNꢬ  
ꢚLꢧNꢓ  
ꢄꢅꢆꢁ ꢇꢁꢅꢈꢉ4ꢊ ꢋꢌꢃ  
6ꢅꢁꢁ ꢇꢁꢅꢙꢄ6ꢊ ꢋꢌꢃ  
ꢁ - 8  
C
ꢁꢅꢙꢉ ꢇꢁꢅꢁꢈꢁꢊ  
ꢋꢌꢃ  
ꢈꢅꢁ4 ꢇꢁꢅꢁ4ꢈꢊ ꢮꢓꢯ  
ꢁꢅꢈꢁ ꢇꢁꢅꢁꢁ4ꢊ  
ꢃ ꢀ  
ꢁꢅ4ꢁ ꢇꢁꢅꢁꢈ6ꢊ  
ꢈꢅꢙꢂ ꢇꢁꢅꢁꢉꢁꢊ  
ꢙꢫ  
1
ꢚꢠꢖ ꢈ ꢩꢀ  
ꢁꢅꢙꢁ ꢇꢁꢅꢁꢁ8ꢊ ꢃ  
ꢙꢫ  
ꢂꢫ ꢁꢅꢄꢈ - ꢁꢅꢉꢈ ꢇꢁꢅꢁꢈꢙ - ꢁꢅꢁꢙꢁꢊ  
ꢁꢅꢙꢉ ꢇꢁꢅꢁꢈꢁꢊ  
ꢈꢅꢙꢂ ꢇꢁꢅꢁꢉꢁꢊ ꢋꢌꢃ  
ꢃ ꢧ-ꢋ ꢀ  
ꢈꢅꢄꢉ ꢇꢁꢅꢁꢉꢄꢊ  
ꢈꢅꢂꢉ ꢇꢁꢅꢁ6ꢆꢊ  
ꢈꢅꢙꢉ - ꢈꢅ6ꢉ  
ꢇꢁꢅꢁ4ꢆ - ꢁꢅꢁ6ꢉꢊ  
ꢇꢋꢌꢈꢁꢍ ꢈ  
ꢁꢅꢈꢁ ꢇꢁꢅꢁꢁ4ꢊ  
ꢁꢅꢙꢉ ꢇꢁꢅꢁꢈꢁꢊ  
ꢁꢅꢈꢁ ꢇꢁꢅꢁꢁ4ꢊ ꢃ  
ꢌꢓꢧꢰꢩNꢬ ꢚLꢧNꢓ  
ꢂꢫ  
ꢁꢅꢈꢂ ꢇꢁꢅꢁꢁꢂꢊ  
ꢁꢅꢙꢉ ꢇꢁꢅꢁꢈꢁꢊ  
C
ꢮꢏꢕꢏꢔꢏꢖꢗꢏ  
ꢌꢍꢟꢣꢏꢔ ꢚꢛꢣ  
ꢀꢠꢢꢏꢖꢐꢠꢍꢖꢐ  
Nꢍꢎꢏꢐꢑ  
ꢈꢅ ꢒꢓꢀꢓꢃ ꢔꢏꢕꢏꢔꢏꢖꢗꢏꢑ ꢘꢌ-ꢁꢈꢙꢅ  
ꢙꢅ ꢚꢛꢗꢜꢛꢝꢏ ꢍꢞꢎꢟꢠꢖꢏ ꢏxꢗꢟꢞꢐꢠꢡꢏ ꢍꢕ ꢢꢍꢟꢣ ꢕꢟꢛꢐꢤ ꢛꢖꢣ ꢢꢏꢎꢛꢟ ꢥꢞꢔꢔꢅ  
ꢄꢅ ꢚꢛꢗꢜꢛꢝꢏ ꢍꢞꢎꢟꢠꢖꢏ ꢠꢖꢗꢟꢞꢐꢠꢡꢏ ꢍꢕ ꢦꢟꢛꢎꢠꢖꢝ ꢎꢤꢠꢗꢜꢖꢏꢐꢐꢅ  
ꢙꢅꢁꢁ ꢇꢁꢅꢁꢂꢆꢊ  
4ꢅꢆꢁ ꢇꢁꢅꢈꢆꢄꢊ  
4ꢅ ꢀꢛꢎꢞꢢꢐ ꢧ ꢛꢖꢣ ꢋ ꢎꢍ ꢥꢏ ꢣꢏꢎꢏꢔꢢꢠꢖꢏꢣ ꢛꢎ ꢣꢛꢎꢞꢢ ꢦꢟꢛꢖꢏ ꢨꢅ  
ꢉꢅ ꢃꢍꢖꢎꢔꢍꢟꢟꢠꢖꢝ ꢣꢠꢢꢏꢖꢐꢠꢍꢖꢐ ꢛꢔꢏ ꢠꢖ ꢢꢠꢟꢟꢠꢢꢏꢎꢏꢔꢐꢅ ꢩꢖꢗꢤ ꢣꢠꢢꢏꢖꢐꢠꢍꢖꢐ  
ꢛꢔꢏ ꢐꢤꢍꢪꢖ ꢠꢖ ꢦꢛꢔꢏꢖꢎꢤꢏꢐꢠꢐꢅ ꢧꢖꢝꢟꢏꢐ ꢠꢖ ꢣꢏꢝꢔꢏꢏꢐꢅ  
ꢈꢅꢙꢂ ꢇꢁꢅꢁꢉꢁꢊ  
ꢁꢅ6ꢁ ꢇꢁꢅꢁꢙ4ꢊ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢅ6ꢂ01ꢅ31ꢄ  
14  
Rev. C 03/16  
www.power.com  
LNK64x4-64x8  
ꢓꢥꢄꢈ-ꢛꢲ ꢋꢇ ꢈꢑꢐꢱꢑꢡꢓꢔ  
ꢕꢖ4ꢕꢜ ꢋꢗꢕꢖꢘ4ꢔ  
ꢕꢖꢜꢚꢛ ꢋꢗꢕꢖꢕ8ꢔ  
ꢕꢖꢘ64 ꢋ6ꢖꢛꢕꢔ  
ꢊꢓꢩꢖ  
ꢕꢖꢕ8ꢗ ꢋꢘꢖꢕ6ꢔ  
ꢕꢖꢕꢛꢛ ꢋꢗꢖꢚ6ꢔ  
ꢞꢓꢎꢑꢟꢒ ꢉ  
ꢕꢖꢘꢚꢕ ꢋꢛꢖꢜꢛꢔ  
ꢊꢓꢩꢖ  
ꢕꢖꢜꢘꢙ ꢋ8ꢖꢘꢙꢔ  
ꢕꢖꢜꢘꢕ ꢋ8ꢖꢗꢜꢔ  
ꢕꢖꢗꢚ8 ꢋꢙꢖꢕ4ꢔ ꢊꢓꢩꢖ  
ꢕꢖꢙꢗꢚ ꢋꢗꢜꢖꢗ8ꢔ  
ꢊꢓꢩꢖ  
ꢕꢖꢘꢕꢛ ꢋꢙꢖꢘ6ꢔ  
ꢕꢖꢗ8ꢛ ꢋ4ꢖꢛꢙꢔ  
ꢈꢟꢌ ꢷꢗ  
ꢄꢖꢞꢖ  
ꢕꢖꢗ4ꢕ ꢋꢜꢖꢙ6ꢔ  
ꢕꢖꢗꢘꢕ ꢋꢜꢖꢕꢙꢔ  
ꢕꢖꢕꢗ6 ꢋꢕꢖ4ꢗꢔ  
ꢊꢓꢩꢖ  
4
ꢕꢖꢕ4ꢛ ꢋꢗꢖꢗꢚꢔ  
ꢕꢖꢕꢛꢕ ꢋꢗꢖꢛ8ꢔ ꢊꢓꢩꢖ  
ꢕꢖꢕꢗ6 ꢋꢕꢖ4ꢗꢔ  
ꢕꢖꢕꢜꢜ ꢋꢕꢖ84ꢔ  
ꢕꢖꢕꢘ8 ꢋꢕꢖꢛꢗꢔ  
ꢕꢖꢕꢗꢕ ꢀ ꢕꢖꢘꢙ ꢀ ꢲ ꢉ ꢶ  
6ꢸ  
ꢕꢖꢕꢙꢕ ꢋꢗꢖꢘꢛꢔ  
ꢕꢖꢗꢕꢕ ꢋꢘꢖꢙ4ꢔ  
6ꢸ  
ꢕꢖꢗꢗ8 ꢋꢜꢖꢕꢕꢔ  
ꢥꢄꢞꢇ ꢴꢄꢇꢵ  
ꢕꢖꢕꢗꢗ ꢋꢕꢖꢘ8ꢔ  
ꢕꢖꢕꢘꢕ ꢀ ꢕꢖꢙꢗ ꢀ ꢲ  
ꢳꢊꢁNꢃ ꢴꢄꢇꢵ  
ꢶꢉꢲK ꢴꢄꢇꢵ  
ꢕꢖꢗꢕꢕ ꢋꢘꢖꢙ4ꢔ  
ꢗꢕ° ꢊꢓꢩꢖ  
ꢉꢒꢒ ꢉꢣꢍꢨꢌꢢ  
ꢕꢖꢕꢘꢗ ꢋꢕꢖꢙꢜꢔ  
ꢕꢖꢕꢗꢚ ꢋꢕꢖ48ꢔ  
ꢕꢖꢕꢙꢕ ꢋꢗꢖꢘꢛꢔ  
ꢕꢖꢕꢙꢕ ꢋꢗꢖꢘꢛꢔ  
ꢕꢖꢕꢘꢕ ꢋꢕꢖꢙꢕꢔ  
ꢕꢖꢕ6ꢕ ꢋꢗꢖꢙꢘꢔ  
ꢊꢓꢩꢖ  
ꢀꢁꢈ 1  
ꢕꢖꢕ48 ꢋꢗꢖꢘꢘꢔ  
ꢕꢖꢕ46 ꢋꢗꢖꢗꢛꢔ  
ꢕꢖꢗꢙꢙ ꢋꢜꢖꢚꢜꢔ  
ꢕꢖꢕꢙꢚ ꢋꢗꢖꢙꢕꢔ  
ꢕꢖꢜꢛ8 ꢋꢚꢖ6ꢕꢔ  
ꢊꢓꢩꢖ  
ꢕꢖꢕꢗꢚ ꢋꢕꢖ48ꢔ ꢊꢓꢩꢖ  
ꢕꢖꢕꢘꢜ ꢋꢕꢖꢙ8ꢔ  
ꢕꢖꢕꢘꢛ ꢋꢕꢖꢛꢕꢔ  
ꢀꢁꢈ ꢅ  
ꢇNꢞ ꢴꢄꢇꢵ  
ꢕꢖꢕꢙꢚ ꢋꢗꢖꢙꢕꢔ  
ꢞꢇꢃꢉꢄL ꢉ  
Nꢍꢎꢓꢏꢝ  
ꢕꢖꢗꢕꢕ ꢋꢘꢖꢙ4ꢔ ꢕꢖꢗꢕꢕ ꢋꢘꢖꢙ4ꢔ  
ꢗꢖ ꢞꢟꢠꢓꢌꢏꢟꢍꢌꢟꢌꢡ ꢑꢌꢢ ꢎꢍꢒꢓꢣꢑꢌꢐꢟꢌꢡ ꢤꢓꢣ ꢉꢥꢀꢇ ꢦꢗ4ꢖꢙꢀ-ꢗꢚꢚ4ꢖ  
ꢘꢖ ꢞꢟꢠꢓꢌꢏꢟꢍꢌꢏ ꢌꢍꢎꢓꢢ ꢑꢣꢓ ꢢꢓꢎꢓꢣꢠꢟꢌꢓꢢ ꢑꢎ ꢎꢧꢓ ꢍꢨꢎꢓꢣꢠꢍꢏꢎ ꢓxꢎꢣꢓꢠꢓꢏ ꢍꢩ ꢎꢧꢓ ꢤꢒꢑꢏꢎꢟꢐ  
ꢀꢁꢂNꢃꢄNꢅ ꢆꢁLꢇ ꢈꢉꢃꢃꢇꢊN  
ꢋꢌꢍꢎ ꢎꢍ ꢏꢐꢑꢒꢓꢔ  
ꢪꢍꢢꢫ ꢓxꢐꢒꢨꢏꢟꢬꢓ ꢍꢩ ꢠꢍꢒꢢ ꢩꢒꢑꢏꢧꢭ ꢎꢟꢓ ꢪꢑꢣ ꢪꢨꢣꢣꢏꢭ ꢡꢑꢎꢓ ꢪꢨꢣꢣꢏꢭ ꢑꢌꢢ ꢟꢌꢎꢓꢣꢒꢓꢑꢢ ꢩꢒꢑꢏꢧꢭ ꢪꢨꢎ  
ꢟꢌꢐꢒꢨꢢꢟꢌꢡ ꢑꢌꢫ ꢠꢟꢏꢠꢑꢎꢐꢧ ꢪꢓꢎꢮꢓꢓꢌ ꢎꢧꢓ ꢎꢍꢤ ꢑꢌꢢ ꢪꢍꢎꢎꢍꢠ ꢍꢩ ꢎꢧꢓ ꢤꢒꢑꢏꢎꢟꢐ ꢪꢍꢢꢫꢖ  
ꢀꢑxꢟꢠꢨꢠ ꢠꢍꢒꢢ ꢤꢣꢍꢎꢣꢨꢏꢟꢍꢌ ꢟꢏ ꢕꢖꢕꢕꢛ ꢯꢕꢖꢗ8ꢰ ꢤꢓꢣ ꢏꢟꢢꢓꢖ  
ꢜꢖ ꢞꢟꢠꢓꢌꢏꢟꢍꢌꢏ ꢌꢍꢎꢓꢢ ꢑꢣꢓ ꢟꢌꢐꢒꢨꢏꢟꢬꢓ ꢍꢩ ꢤꢒꢑꢎꢟꢌꢡ ꢎꢧꢟꢐꢱꢌꢓꢏꢏꢖ  
4ꢖ ꢞꢍꢓꢏ ꢌꢍꢎ ꢟꢌꢐꢒꢨꢢꢓ ꢟꢌꢎꢓꢣ-ꢒꢓꢑꢢ ꢩꢒꢑꢏꢧ ꢍꢣ ꢤꢣꢍꢎꢣꢨꢏꢟꢍꢌꢏꢖ  
ꢙꢖ ꢲꢍꢌꢎꢣꢍꢒꢒꢟꢌꢡ ꢢꢟꢠꢓꢌꢏꢟꢍꢌꢏ ꢟꢌ ꢟꢌꢐꢧꢓꢏ ꢋꢠꢠꢔꢖ  
ꢀꢁꢂꢃꢄ1ꢅꢂ0ꢆ0ꢇ1ꢇ  
15  
Rev. C 03/16  
www.power.com  
LNK64x4-64x8  
ꢌꢀꢲꢳ-ꢆꢈꢭ ꢴK ꢳꢔꢘꢫꢔꢓꢌꢵ  
ꢧꢏꢧꢆꢧ ꢨꢧꢏꢈꢝꢩ  
ꢸꢌꢡꢏ  
ꢧꢏꢪꢝ6 ꢨꢞꢏꢧ4ꢩ  
ꢸꢌꢡꢏ  
ꢧꢏꢧꢝꢝ ꢨꢆꢏ4ꢧꢩ ꢸꢌꢡꢏ  
ꢧꢏꢧꢆꢧ ꢨꢧꢏꢈꢝꢩ  
ꢧꢏꢧꢧ4 ꢨꢧꢏꢆꢧꢩ ꢬ ꢚ ꢈꢻ  
ꢧꢏ4ꢧꢧ ꢨꢆꢧꢏꢆ6ꢩ  
ꢧꢏꢪꢈꢝ ꢨ8ꢏꢈ6ꢩ  
ꢳꢐꢒ ꢷꢆ ꢁꢏꢂꢏ  
ꢛꢔxꢏ  
ꢴLꢔꢍꢌꢗ ꢛꢔꢗꢫꢌꢕꢵ  
ꢈꢻ  
1ꢈ  
ꢹꢔꢠꢓꢌ  
ꢳꢖꢔꢒꢌ  
ꢧꢏꢧꢧ4 ꢨꢧꢏꢆꢧꢩ ꢬ ꢭ  
ꢀꢌꢔꢋꢐꢒꢓ ꢳꢖꢔꢒꢌ  
ꢧꢏꢧꢪ4 ꢨꢧꢏ8ꢝꢩ  
ꢧꢏꢧꢈ6 ꢨꢧꢏ6ꢝꢩ  
ꢧꢏꢧꢝꢞ ꢨꢆꢏꢝꢧꢩ  
ꢸꢌꢡꢥ ꢶꢣꢙ  
°
°
ꢧ - 8  
ꢧꢏꢈꢈꢝ ꢨꢝꢏꢉꢈꢩ  
ꢛꢔxꢏ  
ꢧꢏ46ꢧ ꢨꢆꢆꢏ68ꢩ  
ꢧꢏꢪꢝꢧ ꢨ8ꢏ8ꢞꢩ  
ꢧꢏꢧꢝꢞ ꢨꢆꢏꢝꢧꢩ  
ꢸꢌꢡꢥ ꢶꢣꢙ  
ꢂꢃꢶꢚꢁL ꢚ ꢴꢀꢘꢔꢖꢌ ꢺ ꢞꢻꢵ  
ꢧꢏꢧ4ꢞ ꢨꢆꢏꢈꢪꢩ  
ꢧꢏꢧ46 ꢨꢆꢏꢆ6ꢩ  
1
3
6
6
1
ꢧꢏꢧꢧ8 ꢨꢧꢏꢈꢧꢩ ꢬ  
ꢈꢻꢥ ꢝꢼ6 Lꢌꢔꢕ ꢶꢐꢙꢍ  
ꢧꢏꢧꢈ8 ꢨꢧꢏꢉꢆꢩ  
ꢸꢌꢡꢏ  
ꢆꢆꢇ  
4
ꢧꢏꢆꢈꢧ ꢨꢪꢏꢧꢝꢩ ꢸꢌꢡ  
ꢧꢏꢧꢈꢪ ꢨꢧꢏꢝ8ꢩ  
ꢧꢏꢧꢆ8 ꢨꢧꢏ46ꢩ  
ꢧꢏꢧꢉꢧ ꢨꢆꢏꢉ8ꢩ  
ꢧꢏꢧꢆꢧ ꢴꢧꢏꢈꢝꢵ ꢛ ꢬ ꢚ ꢭ  
ꢶꢲꢳ ꢄꢁꢃꢅ  
ꢭꢲꢶꢶꢲꢛ ꢄꢁꢃꢅ  
ꢧꢏꢧꢆꢞ ꢨꢧꢏ48ꢩ  
ꢸꢌꢡꢏ  
ꢧꢏꢧꢈꢧ ꢨꢧꢏꢝꢆꢩ  
ꢸꢌꢡꢏ  
ꢧꢏꢧꢈꢈ ꢨꢧꢏꢝ6ꢩ  
ꢸꢌꢡꢏ  
ꢧꢏꢧꢞꢈ ꢨꢈꢏꢪ4ꢩ  
ꢧꢏꢧ86 ꢨꢈꢏꢆ8ꢩ  
ꢧꢏꢧꢞ8 ꢨꢈꢏ4ꢞꢩ  
ꢧꢏꢧ86 ꢨꢈꢏꢆ8ꢩ  
ꢧꢏꢧꢪꢈ ꢨꢧꢏ8ꢧꢩ  
ꢧꢏꢧꢈꢞ ꢨꢧꢏꢉꢈꢩ  
ꢧꢏꢧꢆ6 ꢨꢧꢏ4ꢆꢩ  
ꢧꢏꢧꢆꢆ ꢨꢧꢏꢈ8ꢩ  
ꢆꢆꢇ  
ꢀꢌꢔꢋꢐꢒꢓ  
ꢳꢖꢔꢒꢌ  
ꢧꢏꢪꢧ6 ꢨꢉꢏꢉꢉꢩ  
ꢧꢏꢧꢧ6 ꢨꢧꢏꢆꢝꢩ  
ꢧꢏꢧꢧꢧ ꢨꢧꢏꢧꢧꢩ  
ꢧꢏꢧꢧ4 ꢨꢧꢏꢆꢧꢩ ꢬ  
ꢸꢌꢡꢏ  
ꢂꢌꢋꢔꢐꢖ ꢚ  
ꢀꢌꢔꢋꢐꢒꢓ ꢙꢖꢔꢒꢌ ꢋꢊ  
ꢙꢔꢘꢫꢔꢓꢌ ꢢꢊꢋꢋꢊꢑ  
ꢍꢋꢔꢒꢕꢊꢡꢡ  
ꢀꢁꢂꢃ ꢄꢁꢃꢅ  
ꢃNꢂ ꢄꢁꢃꢅ  
ꢉꢇꢊꢋ ꢀꢇꢌꢌeꢍꢊ  
ꢎꢏꢐeꢊꢑꢏꢒꢊꢑ  
ꢧꢏꢧ6ꢉ ꢨꢆꢏꢉꢧꢩ  
ꢧꢏꢈꢆꢉ ꢨꢝꢏꢝꢆꢩ  
Nꢊꢋꢌꢍꢎ  
ꢆꢏ ꢂꢐꢑꢌꢒꢍꢐꢊꢒꢐꢒꢓ ꢔꢒꢕ ꢋꢊꢖꢌꢗꢔꢒꢘꢐꢒꢓ ꢙꢌꢗ ꢚꢀꢛꢃ ꢜꢆ4ꢏꢝꢛ-ꢆꢞꢞ4ꢏ  
4
ꢆꢈ  
ꢆꢆ  
ꢆꢧ  
ꢈꢏ ꢂꢐꢑꢌꢒꢍꢐꢊꢒꢍ ꢒꢊꢋꢌꢕ ꢔꢗꢌ ꢕꢌꢋꢌꢗꢑꢐꢒꢌꢕ ꢔꢋ ꢋꢟꢌ ꢊꢠꢋꢌꢗꢑꢊꢍꢋ  
ꢌxꢋꢗꢌꢑꢌꢍ ꢊꢡ ꢋꢟꢌ ꢙꢖꢔꢍꢋꢐꢘ ꢢꢊꢕꢣ ꢌxꢘꢖꢠꢍꢐꢤꢌ ꢊꢡ ꢑꢊꢖꢕ ꢡꢖꢔꢍꢟꢥ  
ꢋꢐꢌ ꢢꢔꢗ ꢢꢠꢗꢗꢍꢥ ꢓꢔꢋꢌ ꢢꢠꢗꢗꢍꢥ ꢔꢒꢕ ꢐꢒꢋꢌꢗꢖꢌꢔꢕ ꢡꢖꢔꢍꢟꢥ ꢢꢠꢋ  
ꢐꢒꢘꢖꢠꢕꢐꢒꢓ ꢔꢒꢣ ꢑꢐꢍꢑꢔꢋꢘꢟ ꢢꢌꢋꢦꢌꢌꢒ ꢋꢟꢌ ꢋꢊꢙ ꢔꢒꢕ ꢢꢊꢋꢋꢊꢑ ꢊꢡ  
ꢋꢟꢌ ꢙꢖꢔꢍꢋꢐꢘ ꢢꢊꢕꢣꢏ ꢛꢔxꢐꢑꢠꢑ ꢑꢊꢖꢕ ꢙꢗꢊꢋꢗꢠꢍꢐꢊꢒ ꢐꢍ ꢧꢏꢧꢧꢉ  
ꢨꢧꢏꢆ8ꢩ ꢙꢌꢗ ꢍꢐꢕꢌꢏ  
ꢧꢏꢧꢈ8 ꢨꢧꢏꢉꢆꢩ  
ꢪꢏ ꢂꢐꢑꢌꢒꢍꢐꢊꢒꢍ ꢒꢊꢋꢌꢕ ꢔꢗꢌ ꢐꢒꢘꢖꢠꢍꢐꢤꢌ ꢊꢡ ꢙꢖꢔꢋꢐꢒꢓ ꢋꢟꢐꢘꢫꢒꢌꢍꢍꢏ  
4ꢏ ꢂꢊꢌꢍ ꢒꢊꢋ ꢐꢒꢘꢖꢠꢕꢌ ꢐꢒꢋꢌꢗꢖꢌꢔꢕ ꢡꢖꢔꢍꢟ ꢊꢗ ꢙꢗꢊꢋꢗꢠꢍꢐꢊꢒꢍꢏ  
ꢝꢏ ꢬꢊꢒꢋꢗꢊꢖꢖꢐꢒꢓ ꢕꢐꢑꢌꢒꢍꢐꢊꢒꢍ ꢐꢒ ꢐꢒꢘꢟꢌꢍ ꢨꢑꢑꢩꢏ  
ꢧꢏꢪꢈꢆ ꢨ8ꢏꢆꢝꢩ  
8
6ꢏ ꢂꢔꢋꢠꢑꢍ ꢚ ꢔꢒꢕ ꢭ ꢋꢊ ꢢꢌ ꢕꢌꢋꢌꢗꢑꢐꢒꢌꢕ ꢔꢋ ꢂꢔꢋꢠꢑ ꢮꢏ  
ꢉꢏ ꢃxꢙꢊꢍꢌꢕ ꢙꢔꢕ ꢐꢍ ꢒꢊꢑꢐꢒꢔꢖꢖꢣ ꢖꢊꢘꢔꢋꢌꢕ ꢔꢋ ꢋꢟꢌ ꢘꢌꢒꢋꢌꢗꢖꢐꢒꢌ ꢊꢡ  
ꢂꢔꢋꢠꢑꢍ ꢚ ꢔꢒꢕ ꢭꢏ ꢯꢛꢔxꢰ ꢕꢐꢑꢌꢒꢍꢐꢊꢒꢍ ꢒꢊꢋꢌꢕ ꢐꢒꢘꢖꢠꢕꢌ ꢢꢊꢋꢟ  
ꢍꢐꢱꢌ ꢔꢒꢕ ꢙꢊꢍꢐꢋꢐꢊꢒꢔꢖ ꢋꢊꢖꢌꢗꢔꢒꢘꢌꢍꢏ  
6
ꢧꢏ4ꢈꢞ ꢨꢆꢧꢏꢞꢧꢩ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢂ0ꢈ0ꢃ1ꢃ  
16  
Rev. C 03/16  
www.power.com  
LNK64x4-64x8  
Part Ordering Information  
• LinkSwitch Product Family  
• 3 Series Number  
• Package Identifier  
D
E
K
SO-8C  
eSIP-7C  
eSOP-12B  
• Tape & Reel and Other Options  
Blank  
Standard Configuration  
Tape & Reel, 2.5 k pcs for D package, 1 k pcs for K package.  
TL  
LNK 64x7 D - TL  
17  
Rev. C 03/16  
www.power.com  
Revision Notes  
Date  
A
A
A
Code A.  
10/16/13  
03/13/14  
06/11/14  
Specified Max BYPASS Pin Current.  
Code L. Updated Table 1 and Table 2.  
Added LNK64x4, 64x5 and 64x6 parts. Updated fRATIO(CC), ILIMIT(MIN), tFB, VFB(AR), fOSC(MIN), tAR-OFF and IOL. Updated ms values in  
B
C
03/31/15  
03/16  
Auto-Restart section on page 3. Removed fOSC(AR) and updated tAR-ON  
.
Added Note G on page 11.  
For the latest updates, visit our website: www.power.com  
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations  
does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY  
HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,  
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.  
Patent Information  
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one  
or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of  
Power Integrations patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set  
forth at http://www.power.com/ip.htm.  
Life Support Policy  
POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS  
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein:  
1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose  
failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or  
death to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the  
failure of the life support device or system, or to affect its safety or effectiveness.  
The PI logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, InnoSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS,  
HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, FluxLink, StakFET, PI Expert and PI FACTS are trademarks of Power  
Integrations, Inc. Other trademarks are property of their respective companies. ©2016, Power Integrations, Inc.  
Power Integrations Worldwide Sales Support Locations  
World Headquarters  
5245 Hellyer Avenue  
San Jose, CA 95138, USA.  
Main: +1-408-414-9200  
Customer Service:  
Phone: +1-408-414-9665  
Fax: +1-408-414-9765  
e-mail: usasales@power.com  
Germany  
Lindwurmstrasse 114  
80337 Munich  
Japan  
Kosei Dai-3 Bldg.  
2-12-11, Shin-Yokohama,  
Kohoku-ku  
Yokohama-shi, Kanagawa  
222-0033 Japan  
Phone: +81-45-471-1021  
Fax: +81-45-471-3717  
e-mail: japansales@power.com  
Taiwan  
5F, No. 318, Nei Hu Rd., Sec. 1  
Nei Hu Dist.  
Taipei 11493, Taiwan R.O.C.  
Phone: +886-2-2659-4570  
Fax: +886-2-2659-4550  
e-mail: taiwansales@power.com  
Germany  
Phone: +49-895-527-39110  
Fax: +49-895-527-39200  
e-mail: eurosales@power.com  
India  
#1, 14th Main Road  
Vasanthanagar  
Bangalore-560052 India  
Phone: +91-80-4113-8020  
Fax: +91-80-4113-8023  
e-mail: indiasales@power.com  
UK  
China (Shanghai)  
Rm 2410, Charity Plaza, No. 88  
North Caoxi Road  
Shanghai, PRC 200030  
Phone: +86-21-6354-6323  
Fax: +86-21-6354-6325  
e-mail: chinasales@power.com  
Cambridge Semiconductor,  
a Power Integrations company  
Westbrook Centre, Block 5, 2nd Floor  
Korea  
RM 602, 6FL  
Korea City Air Terminal B/D, 159-6 Milton Road  
Samsung-Dong, Kangnam-Gu,  
Seoul, 135-728, Korea  
Phone: +82-2-2016-6610  
Fax: +82-2-2016-6630  
e-mail: koreasales@power.com  
Cambridge CB4 1YG  
Phone: +44 (0) 1223-446483  
e-mail: eurosales@power.com  
Italy  
China (Shenzhen)  
17/F, Hivac Building, No. 2, Keji Nan 20099 Sesto San Giovanni (MI)  
Via Milanese 20, 3rd. Fl.  
8th Road, Nanshan District,  
Shenzhen, China, 518057  
Phone: +86-755-8672-8689  
Fax: +86-755-8672-8690  
e-mail: chinasales@power.com  
Italy  
Singapore  
51 Newton Road  
Phone: +39-024-550-8701  
Fax: +39-028-928-6009  
e-mail: eurosales@power.com  
#19-01/05 Goldhill Plaza  
Singapore, 308900  
Phone: +65-6358-2160  
Fax: +65-6358-2015  
e-mail: singaporesales@power.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY