3239-12 [PSEMI]

2.2 GHz Integer-N PLL for Low Phase Noise Applications; 2.2 GHz的整数N分频PLL的低相位噪声应用
3239-12
型号: 3239-12
厂家: Peregrine Semiconductor    Peregrine Semiconductor
描述:

2.2 GHz Integer-N PLL for Low Phase Noise Applications
2.2 GHz的整数N分频PLL的低相位噪声应用

文件: 总12页 (文件大小:214K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Product Specification  
PE3239  
2.2 GHz UltraCMOS™ Integer-N PLL  
for Low Phase Noise Applications  
Product Description  
Features  
Peregrine’s PE3239 is a high performance integer-N PLL  
capable of frequency synthesis up to 2.2 GHz. The  
superior phase noise performance of the PE3239 is ideal  
for applications such as wireless local loop basestations,  
LMDS systems and other demanding terrestrial systems.  
2.2 GHz operation  
÷10/11 dual modulus prescaler  
Internal phase detector with  
charge pump  
The PE3239 features a 10/11 dual modulus prescaler,  
counters, phase detector and a charge pump as shown in  
Figure 1. Counter values are programmable through a  
three wire serial interface.  
Serial programmable  
Low power— 20 mA at 3 V  
Ultra-low phase noise  
The PE3239 is manufactured on Peregrine’s UltraCMOS™  
process, a patented variation of silicon-on-insulator (SOI)  
technology on a sapphire substrate, offering the  
performance of GaAs with the economy and integration of  
conventional CMOS.  
Available in 20-lead TSSOP  
Figure 1. Block Diagram  
Fin  
Fin  
Prescaler  
10/11  
Main  
Counter  
13  
Primary  
20-bit  
Latch  
Secon-  
dary  
PD_U  
Charge  
Pump  
Phase  
Detector  
20  
20  
20  
CP  
Sdata  
20-bit  
Latch  
PD_D  
6
6
fr  
R Counter  
Document No. 70-0047-02 www.psemi.com  
©2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 1 of 12  
PE3239  
Product Specification  
Figure 2. Pin Configuration (Top View)  
Figure 3. Package Type  
20-lead TSSOP  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
VDD  
Enh  
fr  
GND  
N/C  
CP  
3
S_WR  
Sdata  
Sclk  
4
5
VDD  
Dout  
LD  
6
GND  
FSELS  
E_WR  
VDD  
7
8
Cext  
GND  
9
10  
Fin  
Fin  
Table 1. Pin Descriptions  
Pin No. Pin Name  
Type  
Description  
1
2
VDD  
(Note 1)  
Power supply input. Input may range from 2.85 V to 3.15 V. Bypassing required.  
Enhancement mode. When asserted low (“0”), enhancement register bits are functional. Internal 70 kΩ  
pull-up resistor.  
Enh  
Input  
Serial load enable input. While S_WR is “low”, Sdata can be serially clocked. Primary register data are  
transferred to the secondary register on S_WR rising edge.  
3
4
5
6
7
S_WR  
Sdata  
Sclk  
Input  
Input  
Input  
Binary serial data input. Input data entered MSB first.  
Serial clock input. Sdata is clocked serially into the 20-bit primary register (E_WR “low”) or the 8-bit  
enhancement register (E_WR “high”) on the rising edge of Sclk.  
GND  
Ground.  
Selects contents of primary register (FSELS=1) or secondary register (FSELS=0) for programming of internal  
counters. Internal 70 kpull-down resistor.  
FSELS  
Input  
Input  
Enhancement register write enable. While E_WR is “high”, Sdata can be serially clocked into the  
enhancement register on the rising edge of Sclk. Internal 70 kpull-down resistor.  
8
E_WR  
9
VDD  
Fin  
(Note 1)  
Input  
Same as pin 1.  
10  
Prescaler input from the VCO. Max frequency input is 2.2 GHz.  
Prescaler complementary input. A bypass capacitor should be placed as close as possible to this pin and be  
connected in series with a 50 resistor to the ground plane.  
Fin  
11  
12  
13  
Input  
GND  
Cext  
Ground.  
Logical “NAND” of PD_U and PD_D terminated through an on chip, 2 kseries resistor. Connecting Cext to  
an external capacitor will low pass filter the input to the inverting amplifier used for driving LD.  
Output  
Output  
Lock detect is an open drain logical inversion of CEXT. When the loop is in lock, LD is high impedance,  
otherwise LD is a logic low (“0”).  
14  
LD  
15  
16  
Dout  
VDD  
Output  
Data out function, Dout, enabled in enhancement mode.  
Same as pin 1.  
(Note 1)  
©2006 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0047-02 UltraCMOS™ RFIC Solutions  
Page 2 of 12  
PE3239  
Product Specification  
Table 1. Pin Descriptions (continued)  
Pin No. Pin Name  
Type  
Output  
Output  
Description  
17  
18  
19  
20  
CP  
NC  
GND  
fr  
Charge pump current is sourced when fc leads fp and sinked when fc lags fp.  
No connection.  
Ground.  
Input  
Reference frequency input.  
Note 1: VDD pins 1, 9, and 16 are connected by diodes and must be supplied with the same positive voltage level.  
Table 2. Absolute Maximum Ratings  
Electrostatic Discharge (ESD) Precautions  
When handling this UltraCMOS™ device, observe  
the same precautions that you would use with  
other ESD-sensitive devices. Although this device  
contains circuitry to protect it from damage due to  
ESD, precautions should be taken to avoid  
exceeding the specified rating in Table 4.  
Symbol  
Parameter/Conditions Min Max Units  
VDD  
Supply voltage  
-0.3  
-0.3  
4.0  
VDD  
V
V
+
VI  
Voltage on any input  
0.3  
II  
DC into any input  
-10  
-10  
-65  
+10  
mA  
mA  
°C  
IO  
DC into any output  
+10  
150  
Latch-Up Avoidance  
Tstg  
Storage temperature range  
Unlike conventional CMOS devices, UltraCMOS™  
devices are immune to latch-up.  
Table 3. Operating Ratings  
Symbol  
Parameter/Conditions Min Max Units  
VDD  
Supply voltage  
2.85  
-40  
3.15  
85  
V
Operating ambient  
temperature range  
TA  
°C  
Table 4. ESD Ratings  
Symbol  
Parameter/Conditions  
Level Units  
VESD  
ESD voltage human body model  
1000  
V
Note 1: Periodically sampled, not 100% tested. Tested per  
MIL-STD-883, M3015 C2  
Document No. 70-0047-02 www.psemi.com  
©2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 3 of 12  
PE3239  
Product Specification  
Table 5. DC Characteristics: VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Operational supply current;  
Prescaler enabled  
IDD  
VDD = 2.85 to 3.15 V  
20  
26  
mA  
Digital Inputs: S_WR, Sdata, Sclk  
VIH  
VIL  
IIH  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
VDD = 2.85 to 3.15 V  
VDD = 2.85 to 3.15 V  
VIH = VDD = 3.15 V  
0.7 x VDD  
V
V
0.3 x VDD  
+1  
µA  
µA  
IIL  
VIL = 0, VDD = 3.15 V  
-1  
Digital Inputs: Enh (contains a 70 kpull-up resistor)  
VIH  
VIL  
IIH  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
VDD = 2.85 to 3.15 V  
VDD = 2.85 to 3.15 V  
VIH = VDD = 3.15 V  
0.7 x VDD  
V
V
0.3 x VDD  
+1  
µA  
µA  
IIL  
VIL = 0, VDD = 3.15 V  
-100  
Digital Inputs: FSELS, E_WR (contains a 70 kpull-down resistor)  
VIH  
VIL  
IIH  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
VDD = 2.85 to 3.15 V  
VDD = 2.85 to 3.15 V  
VIH = VDD = 3.15 V  
0.7 x VDD  
V
V
0.3 x VDD  
+100  
µA  
µA  
IIL  
VIL = 0, VDD = 3.15 V  
-1  
Reference Divider input: fr  
IIHR High level input current  
IILR Low level input current  
Counter output: Dout  
VIH = VDD = 3.15 V  
+100  
0.4  
µA  
µA  
VIL = 0, VDD = 3.15 V  
-100  
VOLD  
VOHD  
Output voltage LOW  
Output voltage HIGH  
Iout = 6 mA  
Iout = -3 mA  
V
V
VDD - 0.4  
Lock detect outputs: (Cext, LD)  
VOLC  
VOHC  
VOLLD  
Output voltage LOW, Cext  
Iout = 0.1 mA  
Iout = -0.1 mA  
Iout = 1 mA  
0.4  
0.4  
V
V
V
Output voltage HIGH, Cext  
Output voltage LOW, LD  
VDD - 0.4  
Charge Pump output: CP  
CP – Source Drive current  
I
VCP = VDD / 2  
-2.6  
1.4  
-1  
-2  
2
-1.4  
2.6  
1
mA  
mA  
µA  
ICP – Sink  
Drive current  
VCP = VDD / 2  
ICPL  
Leakage current  
1.0 V < VCP < VDD – 1.0 V  
ICP – Source  
VS. 1CP Sink  
Sink vs. source mismatch  
V
CP = VDD / 2, TA = 25° C  
15  
15  
%
%
ICP VS. VCP  
Output current magnitude variation vs. voltage 1.0 V < VCP < VDD – 1.0 V TA = 25° C  
©2006 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0047-02 UltraCMOS™ RFIC Solutions  
Page 4 of 12  
PE3239  
Product Specification  
Table 6. AC Characteristics: VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Max  
Units  
Control Interface and Latches (see Figures 6, 7, 8)  
fClk  
tClkH  
tClkL  
tDSU  
tDHLD  
tPW  
Serial data clock frequency  
(Note 1)  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial clock HIGH time  
30  
30  
10  
10  
30  
30  
30  
30  
30  
Serial clock LOW time  
Sdata set-up time to Sclk rising edge  
Sdata hold time after Sclk rising edge  
S_WR pulse width  
tCWR  
tCE  
tWRC  
tEC  
Sclk rising edge to S_WR rising edge  
Sclk falling edge to E_WR transition  
S_WR falling edge to Sclk rising edge  
E_WR transition to Sclk rising edge  
Main Divider (Including Prescaler)  
Fin  
Operating frequency  
Input level range  
200  
-5  
2200  
5
MHz  
dBm  
PFin  
External AC coupling  
External AC coupling  
Main Divider (Prescaler Bypassed)  
Fin  
Operating frequency  
Input level range  
20  
-5  
220  
5
MHz  
dBm  
PFin  
Reference Divider  
fr  
Operating frequency  
(Note 3)  
100  
20  
MHz  
dBm  
Pfr  
Reference input power (Note 2)  
Single ended input  
-2  
Phase Detector  
fc  
Comparison frequency  
(Note 3)  
MHz  
SSB Phase Noise (Fin = 1.3 GHz, fr = 10 MHz, fc = 1.25 MHz, LBW = 70 kHz, VDD = 3.0 V, Temp = -40° C)  
100 Hz Offset  
1 kHz Offset  
-75  
-85  
dBc/Hz  
dBc/Hz  
Note 1: fclk is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10 MHz to verify fclk  
specification.  
Note 2: CMOS logic levels can be used to drive reference input if DC coupled. Voltage input needs to be a minimum of 0.5 Vp-p. For optimum  
phase noise performance, the reference input falling edge rate should be faster than 80 mV/ns.  
Note 3: Parameter is guaranteed through characterization only and is not tested.  
Document No. 70-0047-02 www.psemi.com  
©2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 5 of 12  
PE3239  
Product Specification  
Typical Performance Data (VDD = 3.0 V, TA = 25°C)  
Figure 4. Typical RF Input Sensitivity  
0
-5  
-10  
-15  
-20  
-25  
-30  
0
500  
1000  
1500  
2000  
2500  
3000  
Fr equency (MHz)  
Figure 5. Typical Phase Noise Performance  
-60  
-70  
Frequency = 1300 MHz  
Reference = 10 MHz  
Loop Band Width = 30 kHz  
Comparison Frequency = 1.25 MHz  
-80  
-90  
-100  
-110  
-120  
-130  
100  
1000  
10000  
Frequency Offset (Hz)  
100000  
1000000  
©2006 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0047-02 UltraCMOS™ RFIC Solutions  
Page 6 of 12  
PE3239  
Product Specification  
Functional Description  
The PE3239 consists of a prescaler, counters, a  
phase detector, charge pump and control logic.  
The dual modulus prescaler divides the VCO  
frequency by either 10 or 11, depending on the  
value of the modulus select. Counters “R” and “M”  
divide the reference and prescaler output,  
respectively, by integer values stored in a 20-bit  
register. An additional counter (“A”) is used in  
the modulus select logic.  
The phase-frequency detector generates up and  
down frequency control signals which direct the  
charge pump operation. The control logic includes  
a selectable chip interface. Data is written into the  
internal registers via the three wire serial bus.  
There are also various operational and test modes  
and a lock detect output.  
Figure 6. Functional Block Diagram  
R Counter  
(6-bit)  
fr  
fc  
PD_U  
PD_D  
R(5:0)  
M(8:0)  
A(3:0)  
Sdata  
Phase  
Detector  
Control  
Logic  
Charge  
Pump  
CP  
Control  
Pins  
LD  
Cext  
Modulus  
Select  
Fin  
Fin  
10/11  
Prescaler  
M Counter  
(9-bit)  
fp  
Document No. 70-0047-02 www.psemi.com  
©2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 7 of 12  
PE3239  
Product Specification  
Main Counter Chain  
Note that programming R with “0” will pass the  
reference frequency (fr) directly to the phase  
detector.  
Normal Operating Mode  
Setting the Pre_en control bit “low” enables the  
÷10/11 prescaler. The main counter chain then  
divides the RF input frequency (Fin) by an integer  
derived from the values in the “M” and “A”  
counters.  
Register Programming  
Serial Interface Mode  
While the E_WR input is “low” and the S_WR  
input is “low”, serial input data (Sdata input), B0  
to B19, are clocked serially into the primary  
register on the rising edge of Sclk, MSB (B0)  
first. The contents from the primary register are  
transferred into the secondary register on the  
rising edge of either S_WR according to the  
timing diagrams shown in Figure 7. Data are  
transferred to the counters as shown in Table 7  
on page 9.  
In this mode, the output from the main counter  
chain (fp) is related to the VCO frequency (Fin) by  
the following equation:  
fp = Fin / [10 x (M + 1) + A]  
(1)  
where A M + 1, 1 M 511  
When the loop is locked, Fin is related to the  
reference frequency (fr) by the following equation:  
The double buffering provided by the primary  
and secondary registers allows for “ping-pong”  
counter control using the FSELS input. When  
FSELS is “high”, the primary register contents  
set the counter inputs. When FSELS is “low”, the  
secondary register contents are utilized.  
Fin = [10 x (M + 1) + A] x (fr / (R+1))  
(2)  
where A M + 1, 1 M 511  
A consequence of the upper limit on A is that Fin  
must be greater than or equal to 90 x (fr / (R+1)) to  
obtain contiguous channels. The A counter can  
accept values as high as 15, but in typical  
operation it will cycle from 0 to 9 between  
increments in M.  
While the E_WR input is “high” and the S_WR  
input is “low”, serial input data (Sdata input), B0  
to B7, are clocked serially into the enhancement  
register on the rising edge of Sclk, MSB (B0)  
first. The enhancement register is double  
buffered to prevent inadvertent control changes  
during serial loading, with buffer capture of the  
serially entered data performed on the falling  
edge of E_WR according to the timing diagram  
shown in Figure 7. After the falling edge of  
E_WR, the data provide control bits as shown in  
Table 8 on page 9 will have their bit functionality  
enabled by asserting the Enh input “low”.  
Programming the M counter with the minimum  
allowed value of “1” will result in a minimum M  
counter divide ratio of “2”.  
Prescaler Bypass Mode  
Setting the frequency control register bit Pre_en  
“high” allows Fin to bypass the ÷10/11 prescaler.  
In this mode, the prescaler and A counter are  
powered down, and the input VCO frequency is  
divided by the M counter directly. The following  
equation relates Fin to the reference frequency fr:  
Fin = (M + 1) x (fr / (R+1))  
(3)  
where 1 M 511  
Reference Counter  
The reference counter chain divides the reference  
frequency fr down to the phase detector  
comparison frequency fc.  
The output frequency of the 6-bit R Counter is  
related to the reference frequency by the following  
equation:  
fc = fr / (R + 1)  
(4)  
where 0 R 63  
©2006 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0047-02 UltraCMOS™ RFIC Solutions  
Page 8 of 12  
PE3239  
Product Specification  
Table 7. Primary Register Programming  
Interface Mode  
R5  
R4  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
M0  
R3  
R2  
R1  
R0  
A3  
A2  
A1  
A0  
Enh  
Pre_en  
Serial*  
1
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
*Serial data clocked serially on Sclk rising edge while E_WR “low” and captured in secondary register on S_WR rising edge.  
MSB (first in)  
(last in) LSB  
Table 8. Enhancement Register Programming  
Interface  
Mode  
Power  
down  
Counter  
load  
MSEL  
output  
fc output  
Reserved  
Reserved  
fp Output  
Reserved  
Enh  
Serial*  
0
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
*Serial data clocked serially on Sclk rising edge while E_WR “high” and captured in the double buffer on E_WR falling edge.  
MSB (first in)  
(last in) LSB  
Figure 7. Serial Interface Mode Timing Diagram  
Sdata  
E_WR  
tEC  
tCE  
Sclk  
S_WR  
tDSU  
tDHLD  
tClkH  
tClkL  
tCWR  
tPW  
tWRC  
Document No. 70-0047-02 www.psemi.com  
©2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 9 of 12  
PE3239  
Product Specification  
Enhancement Register  
The functions of the enhancement register bits are shown below with all bits active “high”.  
Table 9. Enhancement Register Bit Functionality  
Bit Function  
Description  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Reserved**  
Reserved**  
fp output  
Drives the M counter output onto the Dout output.  
Power down  
Counter load  
MSEL output  
fc output  
Power down of all functions except programming interface.  
Immediate and continuous load of counter programming.  
Drives the internal dual modulus prescaler modulus select (MSEL) onto the Dout output.  
Drives the reference counter output onto the Dout output  
Reserved**  
** Program to 0  
Phase Detector  
The phase detector is triggered by rising edges  
from the main Counter (fp) and the reference  
counter (fc). It has two outputs, namely PD_U,  
and PD_D. If the divided VCO leads the divided  
reference in phase or frequency (fp leads fc),  
PD_D pulses “low”. If the divided reference leads  
the divided VCO in phase or frequency (fc leads  
fp), PD_U pulses “low”. The width of either pulse  
is directly proportional to phase offset between the  
two input signals, fp and fc.  
CP. The current pulses from pin CP are low pass  
filtered externally and then connected to the VCO  
tune voltage. PD_U pulses result in a current  
source, which increases the VCO frequency and  
PD_D results in a current sink, which decreases  
VCO frequency when using a positive Kv VCO.  
A lock detect output, LD is also provided, via the  
pin Cext. Cext is the logical “NAND” of PD_U and  
PD_D waveforms, which is driven through a series  
2 kohm resistor. Connecting Cext to an external  
shunt capacitor provides low pass filtering of this  
signal. Cext also drives the input of an internal  
inverting comparator with an open drain output.  
Thus LD is an “AND” function of PD_U and PD_D.  
The signals from the phase detector couple  
directly to a charge pump. PD_U controls a  
current source at pin CP with constant amplitude  
and pulse duration approximately the same as  
PD_U. PD_D similarly drives a current sink at pin  
Figure 8. Typical PE3239 Loop Filter Application Example  
Charge  
Pump  
R
To VCO  
Tune  
C2  
C1  
©2006 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0047-02 UltraCMOS™ RFIC Solutions  
Page 10 of 12  
PE3239  
Product Specification  
Figure 9. Package Drawing  
20-lead TSSOP  
TOP VIEW  
0.65BSC  
20 19  
18 17 16 15 14 13 12 11  
12o REF  
3.20  
2X  
0.20  
R 0.90 MIN  
4.40±0.10  
Ø1.00±0.10  
R 0.90 MIN  
GAGE  
PLANE  
0o  
8o  
1.00  
12o REF  
0.25  
- B -  
+.15  
-.10  
0.60  
1.0 REF  
.20 C B A  
1
2
3
4
5
6
7
8
9
10  
1.00  
0.325  
- A -  
6.50±0.10  
0.90±0.05  
1.10 MAX  
- C -  
0.10  
C
0.30 MAX  
C B A  
0.10±0.05  
6.40  
SIDE VIEW  
0.10  
FRONT VIEW  
Table 10. Ordering Information  
Order Code  
3239-11  
Part Marking  
PE3239  
Description  
Package  
Shipping Method  
74 units / Tube  
2000 units / T&R  
1 / Box  
PE3239-20TSSOP-74A  
20-lead TSSOP  
20-lead TSSOP  
Evaluation Board  
3239-12  
PE3239  
PE3239-20TSSOP-2000C  
PE3239-20TSSOP-EVAL KIT  
3239-00  
PE3239EK  
Document No. 70-0047-02 www.psemi.com  
©2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 11 of 12  
PE3239  
Product Specification  
Sales Offices  
The Americas  
North Asia Pacific  
Peregrine Semiconductor Corporation  
Peregrine Semiconductor K.K.  
9450 Carroll Park Drive  
San Diego, CA 92121  
Tel 858-731-9400  
5A-5, 5F Imperial Tower  
1-1-1 Uchisaiwaicho, Chiyoda-ku  
Tokyo 100-0011 Japan  
Tel: +81-3-3502-5211  
Fax 858-731-9499  
Fax: +81-3-3502-5213  
Europe  
Peregrine Semiconductor, Korea  
#B-2402, Kolon Tripolis, #210  
Geumgok-dong, Bundang-gu, Seongnam-si  
Gyeonggi-do, 463-480 S. Korea  
Tel: +82-31-728-4300  
Peregrine Semiconductor Europe  
Bâtiment Maine  
13-15 rue des Quatre Vents  
F-92380 Garches, France  
Tel: +33-1-47-41-91-73  
Fax : +33-1-47-41-91-73  
Fax: +82-31-728-4305  
South Asia Pacific  
Space and Defense Products  
Peregrine Semiconductor, China  
Shanghai, 200040, P.R. China  
Tel: +86-21-5836-8276  
Americas:  
Tel: 505-881-0438  
Fax: 505-881-0443  
Fax: +86-21-5836-7652  
Europe, Asia Pacific:  
180 Rue Jean de Guiramand  
13852 Aix-En-Provence cedex 3, France  
Tel: +33(0) 4 4239 3361  
Fax: +33(0) 4 4239 7227  
For a list of representatives in your area, please refer to our Web site at: www.psemi.com  
Data Sheet Identification  
Advance Information  
The information in this data sheet is believed to be reliable.  
However, Peregrine assumes no liability for the use of this  
information. Use shall be entirely at the user’s own risk.  
The product is in a formative or design stage. The data  
sheet contains design target specifications for product  
development. Specifications and features may change in  
any manner without notice.  
No patent rights or licenses to any circuits described in this  
data sheet are implied or granted to any third party.  
Preliminary Specification  
Peregrine’s products are not designed or intended for use in  
devices or systems intended for surgical implant, or in other  
applications intended to support or sustain life, or in any  
application in which the failure of the Peregrine product could  
create a situation in which personal injury or death might occur.  
Peregrine assumes no liability for damages, including  
consequential or incidental damages, arising out of the use of  
its products in such applications.  
The data sheet contains preliminary data. Additional data  
may be added at a later date. Peregrine reserves the right  
to change specifications at any time without notice in order  
to supply the best possible product.  
Product Specification  
The data sheet contains final data. In the event Peregrine  
decides to change the specifications, Peregrine will notify  
customers of the intended changes by issuing a DCN  
(Document Change Notice).  
The Peregrine name, logo, and UTSi are registered trademarks  
and UltraCMOS and HaRP are trademarks of Peregrine  
Semiconductor Corp.  
©2006 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0047-02 UltraCMOS™ RFIC Solutions  
Page 12 of 12  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY