3291-00 [PSEMI]

1200 MHz / 550 MHz Dual Fractional-N FlexiPower? PLL for Frequency Synthesis; 1200兆赫/ 550 MHz双通道小数N分FlexiPower ?锁相环频率合成
3291-00
型号: 3291-00
厂家: Peregrine Semiconductor    Peregrine Semiconductor
描述:

1200 MHz / 550 MHz Dual Fractional-N FlexiPower? PLL for Frequency Synthesis
1200兆赫/ 550 MHz双通道小数N分FlexiPower ?锁相环频率合成

文件: 总15页 (文件大小:238K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Product Specification  
PE3291  
1200 MHz / 550 MHz Dual  
Fractional-N FlexiPower™ PLL  
for Frequency Synthesis  
Product Description  
TM  
The PE3291 is a dual fractional-N FlexiPower phase-lock loop  
(PLL) IC designed for frequency synthesis. Each PLL includes  
Features  
TM  
a FlexiPower prescaler, phase detector, charge pump and on-  
Ultra-Low Power via FlexiPower  
board fractional spur compensation.  
variable supply voltages  
The FlexiPowerprescalers are supplied power on dedicated  
pins and can operate at a substantial power savings at  
voltages as low as 0.8 volts, while allowing a 3 volt charge  
pump supply. For 3 volt only systems, on-chip voltage  
regulation may be used to generate the prescaler power  
supplies.  
Modulo-32 fractional-N main counters  
On-board fractional spur compensation:  
No tuning required, stable over  
temperature  
Improved phase noise compared to  
integer-N architectures  
Figure 1 illustrates the implementation of the FlexiPower  
technology. The prescaler power supply may be provided  
externally or internally regulated down from VDD. In a typical  
950 MHz application the total current consumed by the PLL is  
2.1 mA. Operation at reduced current levels provides  
significant battery life extension. The PE3291 allows the  
system designer to minimize power consumption by controlling  
the voltage on the prescaler. For additional operating speeds  
and current consumptions refer to Figures 5 and 6.  
Applications  
CDMA handsets  
CDMA base stations  
Analog Cordless phones  
One and two way pagers  
PE3291 provides fractional-N division with power-of-two  
denominator values up to 32. This allows comparison  
frequencies up to 32 times the channel spacing, providing a  
lower phase noise floor than integer PLLs. The 32/33 RF  
prescaler (PLL1) operates up to 1200 MHz and the 16/17 IF  
prescaler (PLL2) operates up to 550 MHz.  
Figure 1: FlexiPower technology enables  
the prescaler to operate at voltages down to  
0.8 volts. This significantly reduces the total  
power.  
To Loop Filter  
3 Volts  
0.8 3 Volts  
Regulator  
The PE3291 Phase Locked-Loop is manufactured on  
Peregrine’s UltraCMOS™ process, a patented variation of  
silicon-on-insulator (SOI) technology on a sapphire substrate,  
offering the performance of GaAs with the economy and  
integration of conventional CMOS.  
Phase Comparator  
and  
Charge pump  
Ref.  
Input  
Prescaler  
Low  
Speed Counters  
PE3291  
Document No. 70-0009-04 www.psemi.com  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 1 of 15  
PE3291  
Product Specification  
Figure 2. Pin Configurations (Top View)  
Figure 3. Package Type  
20-lead TSSOP  
N/C  
VDD  
1
2
3
4
5
6
7
8
9
20 VDD  
19 VDD  
18 CP2  
17 GND  
16 fin2  
CP1  
GND  
fin1  
Dec1  
15 Dec2  
VDD  
1
fr  
14 VDD2  
13 LE  
GND  
12 Data  
11 Clock  
foLD 10  
Table 1. Pin Descriptions  
Pin No.  
Pin Name  
Type  
Description  
1
2
N / C  
No connect.  
Power supply voltage input. Input may range from 2.7 V to 3.3 V. A bypass capacitor should be placed  
as close as possible to this pin and be connected directly to the ground plane.  
VDD  
(Note 1)  
Output  
Internal charge-pump output from PLL1 for connection to a loop filter for driving the input of an external  
VCO.  
3
CP1  
4
5
GND  
fin1  
Ground.  
Input  
Prescaler input from the PLL1 (RF) VCO. Maximum frequency is 1.2 GHz.  
Power supply decoupling pin for PLL1. A capacitor should be placed as close as possible to this pin and  
be connected directly to the ground plane.  
6
Dec1  
7
8
9
VDD1  
fr  
PLL1 prescaler power supply (FlexiPower 1).  
Reference frequency input.  
Ground.  
Input  
GND  
Multiplexed output of the PLL1 and PLL2 main counters or reference counters, Lock Detect signals, and  
data out of the shift register. CMOS output (see Table 11, foLD Programming Truth Table).  
10  
foLD  
Output  
CMOS clock input. Serial data for the various counters is clocked in on the rising edge into the 21-bit shift  
register.  
11  
12  
13  
14  
15  
Clock  
Data  
LE  
Input  
Input  
Binary serial data input. CMOS input data entered MSB first. The two LSBs are the control bits.  
Load Enable CMOS input. When LE is high, data word stored in the 21-bit serial shift register is loaded  
into one of the four appropriate latches (as assigned by the control bits).  
Input  
VDD2  
Dec2  
Output  
Output  
Input  
PLL2 prescaler power supply (FlexiPower 2).  
Power supply decoupling pin for PLL2. A capacitor should be placed as close as possible to this pin and  
be connected directly to the ground plane.  
16  
17  
Fin2  
Prescaler input from the PLL2 (IF) VCO. Maximum frequency is 550 MHz.  
Ground.  
GND  
Internal charge-pump output for PLL2. For connection to a loop filter for driving the input of an external  
VCO.  
18  
CP2  
Output  
19  
20  
VDD  
VDD  
(Note 1)  
(Note 1)  
Same as pin 2.  
Same as pin 2.  
Note 1: VDD pins 2, 19, and 20 are connected by diodes and must be supplied with the same voltage level.  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0009-04 UltraCMOS™ RFIC Solutions  
Page 2 of 15  
PE3291  
Product Specification  
PE3291 Description  
FlexiPower Operation  
The PE3291 is intended for such applications as  
the local oscillator for the RF and first IF of dual-  
conversion transceivers. The RF PLL (PLL1)  
includes a 32/33 prescaler with a 1200 MHz  
maximum frequency of operation, where the IF  
PLL (PLL2) incorporates a 16/17 prescaler with a  
550 MHz maximum frequency of operation. Using  
an advanced fractional-N phase-locked loop  
technique, the PE3291 can generate a stable,  
very low phase-noise signal. The dual fractional  
architecture allows fine resolution in both PLLs,  
with no degradation in phase noise performance.  
Each FlexiPower PLL prescaler can be supplied  
its own dedicated supply voltage as low as 0.8  
volts for substantial power savings. The maximum  
frequency of operation scales with the FlexiPower  
supply voltage. If voltages less than VDD are not  
available, the FlexiPower supplies can be  
internally generated, but the power savings will  
not be as great as when using external  
FlexiPower supplies.  
Spurious Response  
A critical parameter for synthesizer designs is  
spurious output. Spurs occur at the integer  
multiples of the step size away from center tone.  
An important feature of fractional synthesizers is  
their ability to reduce these spurious sidebands.  
The PE3291 has a built-in method for reducing  
these spurs, with no external components or  
tuning required. In addition, this circuitry works  
over the full commercial temperature range.  
Data is transferred into the PE3291 via a three-  
wire interface (Data, Clock, LE). Supply voltage  
can range from 2.7 to 3.3 volts for VDD and from  
0.8 to 3.3 volts for the FlexiPower supply. PE3291  
features very low power consumption and is  
available in a 20-lead TSSOP (JEDEC MO-153-  
AC) package.  
Figure 4. PE3291 Block Diagram  
32/33  
Prescaler  
19-bit Fractional-N  
Main Divider  
Fractional Spur  
Compensation  
fin1  
Ref.  
Amp.  
9-bit Reference  
Divider  
Phase  
Charge  
Pump  
CP1  
foLD  
CP2  
fr  
Detector  
Clock  
Data  
LE  
21-bit Serial Control  
Interface  
Multiplexer  
9-bit Reference  
Divider  
Phase  
Detector  
Charge  
Pump  
Fractional Spur  
Compensation  
16/17  
Prescaler  
18-bit Fractional-N  
Main Divider  
fin2  
Document No. 70-0009-04 www.psemi.com  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 3 of 15  
PE3291  
Product Specification  
Table 2. Absolute Maximum Ratings  
Table 3. Operating Ratings  
Symbol  
Parameter/Conditions Min Max Units  
Symbol  
Parameter/Conditions Min Max Units  
VDD  
VI  
Supply voltage  
-0.3  
-0.3  
4.0  
V
V
VDD  
Supply voltage  
2.7  
3.3  
V
Voltage on any input  
VDD  
+ 0.3  
TA  
Operating ambient  
-40  
85  
°C  
II  
DC into any input  
DC into any output  
-10  
-10  
-65  
+10  
+10  
150  
mA  
mA  
°C  
Table 4. ESD Ratings  
IO  
Tstg  
Storage temperature  
range  
Symbol  
Parameter/Conditions  
Level Units  
VESD  
ESD voltage human body model  
1000  
V
Absolute Maximum Ratings are those values listed in  
the above table. Exceeding these values may cause  
permanent device damage. Functional operation  
should be restricted to the limits in the DC and AC  
Characteristics table. Exposure to absolute maximum  
ratings for extended periods may affect device  
reliability.  
Note 1: Periodically sampled, not 100% tested. Tested per MIL-  
STD-883, M3015 C2  
Electrostatic Discharge (ESD) Precautions  
When handling this UltraCMOS™ device, observe the  
same precautions that you would use with other ESD-  
sensitive devices. Although this device contains  
circuitry to protect it from damage due to ESD,  
precautions should be taken to avoid exceeding the  
specified rating in Table 4.  
Latch-Up Avoidance  
Unlike conventional CMOS devices, UltraCMOS™  
devices are immune to latch-up.  
Table 5. DC Characteristics: VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
IDD  
3 V supply current when VDD1  
and VDD2 are internally  
regulated down from VDD  
(10 MHz Ref. Freq.)  
P2, P1 = 01 RF  
RF PLL1 low speed  
1.4  
2.0  
2.1  
2.7  
3.1  
mA  
mA  
mA  
mA  
mA  
(note 1)  
P2, P1 = 1X  
C10, C20 = 01  
P2, P1 = 01  
C10, C20 = 00  
P2, P1 = 10  
C10, C20 = 00  
P2, P1 = 11  
C10, C20 = 00  
P2, P1 = 00  
RF PLL1 high speed  
IF PLL2 off  
RF PLL1 low speed  
IF PLL2 low speed  
RF PLL1 high speed  
IF PLL2 low speed  
RF PLL1 high speed  
IF PLL2 high speed  
2 PLL’s enabled  
IDD  
3 V supply current when VDD1  
and VDD2 are externally  
supplied (note 1)  
1.0  
0.7  
mA  
mA  
1 PLL enabled  
IDD1  
PLL1 FlexiPower Prescaler  
supply current (see fig. 5)  
P2, P1 = 00  
PLL1 enabled  
PLL2 enabled  
VDD1 = 1/0 volt  
VDD1 = 1.8 volts  
VDD1 = 2.7 volts  
0.5  
1.5  
4.0  
mA  
mA  
mA  
IDD2  
PLL2 FlexiPower Prescaler  
supply current (see fig. 5)  
P2, P1 = 00  
VDD2 = 1.0 volt  
VDD2 = 1.8 volts  
VDD2 = 2.7 volts  
0.4  
1.2  
2.0  
5
mA  
mA  
mA  
mA  
Istby  
Total standby current  
50  
Digital inputs: Clock, Data, LE  
VIH  
VIL  
IIH  
High level input voltage  
VDD = 2.7 to 3.3 volts  
VDD = 2.7 to 3.3 volts  
VIH = VDD = 3.3 volts  
0.7 x VDD  
V
V
Low level input voltage  
High level input current  
Low level input current  
0.3 x VDD  
-1  
-1  
+1  
+1  
mA  
IIL  
VIL = 0, VDD = 3.3 volts  
mA  
Note 1: The total current consumed by the device is IDD when internal regulation is employed and IDD + IDD1 + IDD2 when VDD1 and VDD2 are  
externally supplied. When VDD1 and VDD2 are internally generated, pins 7 and 14 should be left floating.  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0009-04 UltraCMOS™ RFIC Solutions  
Page 4 of 15  
PE3291  
Product Specification  
Table 5. DC Characteristics (continued): VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Reference Divider input: fr  
IIHR  
IILR  
Digital output: foLD  
Input current  
VIH = VDD = 3.6 volts  
+25  
mA  
mA  
Input current  
VIL = 0, VDD = 3.6 volts  
-25  
VOLD  
VOHD  
Output voltage LOW  
Output voltage HIGH  
Iout = 1 mA  
Iout = -1 mA  
V
V
VDD-0.4  
Charge Pump outputs: CP1, CP2  
ICP - Source  
-70  
70  
mA  
mA  
nA  
Drive current  
ICP - Sink  
VCP = VDD / 2  
ICPL  
ICP – Source  
vs.  
Leakage current  
0.5 V < VCP < VDD-0.5 volt  
-5  
5
Sink vs. Source mismatch  
VCP = VDD / 2, TA = 25° C  
VCP = VDD / 2  
10  
%
ICP vs. TA  
Output current vs. temperature  
10  
10  
%
%
ICP vs. VCP  
Output current magnitude variation vs.  
voltage  
0.5 V < VCP < VDD – 0.5  
volt, TA = 25° C  
Figure 5. Prescaler Current vs. FlexiPower Voltage (VDD1 and VDD2 externally supplied)  
4.00  
PLL1  
PLL2  
3.00  
2.00  
1.00  
0.00  
0.8  
1.2 1.6  
2
2.4 2.8 3.  
FlexiPower voltage (VDD1, VDD2  
)
Table 6. AC Characteristics: VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Max  
Units  
Control Interface and Latches (see figure 8)  
fClk  
tClockH  
tClockL  
tDSU  
Serial data clock frequency  
10  
MHz  
ns  
Serial clock HIGH time  
50  
50  
50  
10  
50  
50  
50  
Serial clock LOW time  
ns  
Data set-up time to Clock rising edge  
Data hold time after Clock rising edge  
LE pulse width  
ns  
tDHLD  
tLEW  
ns  
ns  
tCLE  
Clock falling edge to LE rising edge  
LE falling edge to Clock rising edge  
Data Out delay after Clock falling edge (foLD pin)  
ns  
tLEC  
ns  
tData Out  
CL = 50 pf  
90  
ns  
Document No. 70-0009-04 www.psemi.com  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 5 of 15  
PE3291  
Product Specification  
Table 6. AC Characteristics (continued): VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Max  
Units  
Main Divider (Including Prescaler)  
fin1  
Operating frequency (see figure 6)  
P2, P1 = 00  
VDD1 = 1.0 volts  
VDD1 = 1.8 volts  
VDD1 = 2.7 volts  
300  
300  
300  
450  
900  
MHz  
MHz  
MHz  
1200  
P2, P1 = 01  
V
DD1 = internally generated (low speed)  
300  
300  
800  
MHz  
MHz  
P2, P1 = 1X = (10 or 11)  
VDD1 = internally generated (high speed)  
1100  
fin2  
Operating frequency (see figure 6)  
P2, P1 = 00  
V
V
V
DD1 = 1.0 volts  
45  
45  
45  
300  
550  
550  
MHz  
MHz  
MHz  
DD1 = 1.8 volts  
DD1 = 2.7 volts  
P2, P1 = 01 or 10  
DD2 = internally generated (low speed)  
V
45  
300  
MHz  
P2, P1 = 11  
VDD1 = internally generated (high speed)  
45  
550  
MHz  
Pfin1  
Input level range  
External AC coupling  
External AC coupling  
-10  
-10  
5
5
dBm  
dBm  
MHz  
Pfin2  
Input level range  
fc  
Comparison frequency  
10  
Reference Divider  
fr  
Operating frequency  
Input sensitivity  
50  
MHz  
VP-P  
Vfr  
External AC coupling (note 1)  
0.5  
Note 1: CMOS logic levels may be used if DC coupled  
Figure 6. PLL Maximum Frequency vs. FlexiPower Voltage  
1400  
PLL1  
1200  
1000  
800  
600  
PLL2  
400  
200  
2.4  
FlexiPower voltage (VDD1 ,VDD2  
0.8 1.2 1.6  
2
2.8 3.2  
)
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0009-04 UltraCMOS™ RFIC Solutions  
Page 6 of 15  
PE3291  
Product Specification  
Functional Description  
the reference frequency fr by the following  
equation:  
The Functional Block Diagram in Figure 7 shows a  
21-bit serial control register, a multiplexed output,  
and PLL sections PLL1 and PLL2. Each PLL  
contains a fractional-N main counter chain, a  
reference counter, a phase detector, and an  
internal charge pump with on-chip fractional spur  
compensation. Each fractional-N main counter  
chain includes an internal dual modulus prescaler,  
supporting counters, and a fractional accumulator.  
fin1 = [(32 x M1) + A1 + (F1/32)] x (fr/R1)  
(1) Note that A1 must be less than M1. Also, fin1  
must be greater than or equal to 1024 x (fr/R1) to  
obtain contiguous channels.  
The PLL2 (IF) VCO frequency fin2 is related to the  
reference frequency fr by the following equation:  
Serial input data is clocked on the rising edge of  
Clock, MSB first. The last two bits are the address  
bits that determine the register address. Data is  
transferred into the counters as shown in Table 8,  
PE3291 Register Set. If the foLD pin is configured  
as data out, then the contents of shift register bit  
S20 are clocked on the falling edge of Clock onto  
the foLD pin. This feature allows the PE3291 and  
compatible devices to be connected in a daisy-  
chain configuration.  
fin2 = [(16 x M2) + A2 + (F2/32)] x (fr/R2)  
(2) Note that A2 must be less than M2. Also, fin2  
must be greater than or equal to 256 x (fr/R2) to  
obtain contiguous channels.  
F1 sets PLL1 fractionality. If F1 is an even number,  
the PE3291 automatically reduces the fraction.  
For example, if F1 = 12, then the fraction 12/32 is  
automatically reduced to 3/8. In this way,  
fractional denominators of 2, 4, 8, 16 and 32 are  
available. F2 sets the fractionality for PLL2 in the  
same manner.  
The PLL1 (RF) VCO frequency fin1 is related to  
Figure 7. Functional Block Diagram  
A1  
5
A1 Counter  
0<A1<31  
Prescaler  
Control Logic  
P1  
P2  
M1  
9
F1  
5
32/33  
M
1 Counter  
F
1 Counter  
Fractional Spur  
Compensation  
fin1  
Prescaler  
3<M1<511  
0<F1<31  
Ref.  
9-bit Reference  
Divider  
Phase  
Charge  
Pump  
CP1  
foLD  
CP2  
fr  
Amp.  
Detector  
R1  
9
C11  
C12  
C22  
C22  
Clock  
Data  
LE  
21-bit Serial Control  
Interface  
Multiplexer  
C22  
C22  
R2  
9
C21  
C22  
9-bit Reference  
Divider  
Phase  
Detector  
Charge  
Pump  
16/17  
M2 Counter  
3<M2<511  
F2 Counter  
0<F2<31  
Fractional Spur  
Compensation  
fin2  
Prescaler  
M2  
9
F2  
5
P1  
P2  
A2 Counter  
0<A2<15  
Prescaler  
Control Logic  
A2  
4
Document No. 70-0009-04 www.psemi.com  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 7 of 15  
PE3291  
Product Specification  
Table 7. Register Set  
S20  
S19  
S18  
S17  
S16  
S15  
S14  
S13  
S12  
S11  
S10  
S9  
S8  
S7  
S6  
S5  
S4  
S3  
S2  
S1  
S0  
Test  
0
PLL2 Synthesizer control  
C23 C22 C21  
PLL2 Reference counter R2 divide ratio  
R 26 R 25 R 24 R 23 R 22  
Address  
0 0  
Reserved  
C24  
C20  
R28  
R 27  
R 21  
R 20  
PLL2 Swallow counter A2  
divide ratio  
PLL2 Fractional counter F2  
numerator value  
PLL2 Main counter M2 divide ratio  
M26 M25 M24 M23 M22  
Address  
Res.  
M28  
M27  
M21  
M20  
C10  
A14  
A23  
A22  
A21  
A20  
F24  
F23  
F22  
F21  
F20  
0
1
FlexiPower voltage  
regulation  
PLL1 Synthesizer control  
C13 C12 C11  
PLL1 Reference counter R1 divide ratio  
R16 R15 R14 R13 R12  
Address  
Res.  
P2  
P1  
C14  
R18  
R17  
R11  
R10  
1
0
Res.  
PLL1 Swallow counter A1  
divide ratio  
PLL1 Fractional counter F1  
numerator value  
PLL1 Main counter M1 divide ratio  
M16 M15 M14 M13 M12  
Address  
M18  
M17  
M11  
M10  
A13  
A12  
A11  
A10  
F14  
F13  
F12  
F11  
F10  
1
1
MSB (first in)  
(last in) LSB  
Figure 8. Serial Interface Mode Timing Diagram  
Data  
tDSU  
tDHLD  
tClockL  
tClockH  
Clock  
LE  
tCLE  
tLEW  
tLEC  
tData Out  
Data Out  
(foLD pin)  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0009-04 UltraCMOS™ RFIC Solutions  
Page 8 of 15  
PE3291  
Product Specification  
Programmable Divide Values  
(R1, R2, F1, F2, A1, A2, M1, M2)  
Table 8. PE3291 Counter Programming Example  
Divide Value  
MSB  
LSB Address  
Data is clocked into the 21-bit shift register, MSB  
first. When LE is asserted HIGH, data is latched  
into the registers addressed by the last two bits  
shifted into the 21-bit register, according to Table  
7. For example, to program the PLL1 (RF)  
swallow counter, A1, the last two bits shifted into  
the register (S0, S1) would be (1,1). The 5-bit A1  
counter would then be programmed according to  
Table 8. For normal operation, S16 of address  
(0,0) (the Test bit) must be programmed to 0 even  
if PLL2 (IF) is not used.  
S11  
A14  
0
S10  
A13  
0
S9  
A12  
0
S8  
A11  
0
S7  
A10  
0
S1  
1
S0  
1
0
1
1
1
0
0
0
0
1
1
1
2
0
0
0
1
0
1
1
-
-
-
-
-
-
1
1
31  
1
1
1
1
1
1
1
Program Modes  
Several modes of operation can be programmed with bits C10 - C14 and C20 - C24, including the phase detector  
polarity, charge pump high impedance, output of the foLD pin and power-down modes. The PE3291 modes of  
operation are shown on Table 9. The truth table for the foLD output is shown in Table 10.  
Table 9. PE3291 Program Modes  
S15  
S14  
S13  
S12  
S11  
S1  
S0  
C24  
C23  
C22  
C21 (Note 2)  
C20 (Note 1)  
0 = PLL2 on  
0
0
See Table 10  
See Table 10  
0 = PLL2 CP normal  
0 = PLL2 Phase Detector inverted  
1 = PLL2 CP High Z  
C12  
1 = PLL2 Phase Detector normal  
C11 (Note 2)  
1 = PLL2 off  
C10 (Note 1)  
C14  
C13  
1
0
See Table 10  
See Table 10  
0 = PLL1 CP normal  
1 = PLL1 CP High Z  
0 = PLL1 Phase Detector inverted  
1 = PLL1 Phase Detector normal  
0 = PLL1 on  
1 = PLL1 off  
Note 1: The PLL1 power-down mode disables all of PLL1’s components except the R1 counter and the reference frequency input buffer, with  
CP1 (pin 3) and fin1 (pin 5) becoming high impedance. The power down of PLL2 has similar results with CP2 (pin 18) and fin2 (pin 16)  
becoming high impedance. Power down of both PLL1 and PLL2 further disables counters R1 and R2, the reference frequency input, and  
the foLD output, causing fr (pin 8) and foLD (pin 10) to become high impedance. The Serial Control Interface remains active at all times.  
Note 2: The C11 and C21 bits should be set according to the voltage versus frequency slope of the VCO as shown in Figure 9. This relationship  
presumes the use of a passive loop filter. If an inverting active loop filter is used the relationship is also inverted.  
Figure 9. VCO Characteristics  
(1) Positive slope VCO  
When VCO1 (RF) slope is positive like (1), C11 should be set HIGH.  
When VCO1 (RF) slope is negative like (2), C11 should be set LOW.  
When VCO2 (IF) slope is positive like (1), C21 should be set HIGH.  
When VCO2 (IF) slope is negative like (2), C21 should be set LOW.  
VCO  
Output  
Frequency  
(2) Negative slope VCO  
VCO Input voltage  
Document No. 70-0009-04 www.psemi.com  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 9 of 15  
PE3291  
Product Specification  
Table 10. foLD Programming Truth Table  
X = don’t care condition  
foLD  
C14  
C13  
C24  
C23  
Output State  
(PLL1F0)  
(PLL1LD)  
(PLL2F0)  
(PLL2LD)  
Disabled1  
0
0
0
0
1
0
1
0
1
1
1
1
0
1
0
1
X
X
X
X
0
0
1
1
0
0
0
0
0
1
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
PLL 1 Lock detect2 (LD1)  
PLL2 Lock detect2 (LD2)  
PLL1 / PLL2 Lock detect2  
PLL1 Reference divider output (fc1)  
PLL2 Reference divider output (fc2)  
PLL1 Programmable divider output (fp1)  
PLL2 Programmable divider output (fp2)  
Serial data out  
Reserved  
Reserved  
Counter reset3  
Note: 1. When the foLD is disabled the output is a CMOS LOW.  
2. Lock detect indicates when the VCO frequency is in “lock”. When PLL1 is in lock and PLL1 lock detect is selected, the foLD pin will be HIGH  
with narrow pulses LOW. When PLL2 is in lock and PLL2 lock detect is selected, the foLD pin will be HIGH with narrow pulses LOW. When  
PLL1 / PLL2 lock detect is selected the foLD pin will be HIGH with narrow pulses LOW only when both PLL1 and PLL2 are in lock.  
3. The counter reset state when activated resets all counters. Upon removal of the reset, counters M, A, and F resume counting in close  
alignment with the R counter (the maximum error is one prescaler cycle). The reset bits can be activated to allow smooth acquisition upon  
powering up.  
Programming the FlexiPower voltage  
The PE3291 can be programmed to internally regulate down from the VDD  
voltage to supply the FlexiPower voltage, as shown in Table 11. This is  
implemented by programming P2, P1 (S18 & S16 - address 1,0). When  
programmed with 0,0 external voltage supplies must be provided to the  
part at pins VDD1 and VDD2. When using internal regulation, the FlexiPower  
supply pins should be left grounded.  
Table 11. FlexiPower Voltage Regulation Programming  
FlexiPower 1 voltage  
(RF PLL1)  
FlexiPower 2 voltage  
(IF PLL2)  
P2 P1  
0
0
1
1
0
1
0
1
No regulation (FlexiPower externally provided)  
Low power  
High speed  
High speed  
Low power  
Low power  
High speed  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0009-04 UltraCMOS™ RFIC Solutions  
Page 10 of 15  
PE3291  
Product Specification  
Phase Comparator Characteristics  
PLL1 has the timing relationships shown below for fc1, fp1, LD1, UP1, and DOWN1. When C11 = HIGH, UP1  
directs the internal PLL1 charge pump to source current and DOWN1 directs the PLL1 internal charge pump  
to sink current. If C11 = LOW, UP1 and DOWN1 are interchanged.  
PLL2 has the timing relationships shown below for fc2, fp2, LD2, UP2, and DOWN2. When C21 = HIGH, UP2  
directs the internal PLL2 charge pump to source current and DOWN2 directs the PLL2 internal charge pump  
to sink current. If C21 = LOW, UP2 and DOWN2 are interchanged.  
Figure 10. Phase Comparator Timing Diagram  
fc1 (2)  
(Note 1)  
fp1 (2)  
(Note 1)  
LD1 (2)  
(Note 1)  
UP1 (2)  
DOWN1 (2)  
fc leads fp  
fc = fp  
fc lags fp  
fc lags fp  
fc lags fp  
Note 1: fc1(2), fp1(2), and LD1(2) are accessible via the foLD pin per programming in Table 11.  
Document No. 70-0009-04 www.psemi.com  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 11 of 15  
PE3291  
Product Specification  
Loop Filter  
Digital Control Lines  
Second/Third Order Loops  
Control Line Noise  
Choosing the optimum loop filter for a design  
encompasses many trade offs. The rule of thumb  
for choosing the loop filter bandwidth is 10 percent  
of the step size. A second order loop (C1 C2 R2  
and C4 C5 R5 in Figure 11 omitting C3 R3 C6 and  
R6) will provide the least amount of components  
and the fastest lock times. If lock time is an issue,  
one might try opening up the loop filter, although if  
it is too wide, instability will dominate and worsen  
lock time. If lock time is not an issue, a narrower  
second order filter will minimize residual FM  
without requiring additional components.  
We have noticed frequency jitter during  
programming when a low impedance, such as a  
capacitor to ground, is placed next to any control  
line pin (clock, data, and load enable). The use of  
a 51 k ohm resistor in series with the control line  
will eliminate the problem with no effect to  
programming time.  
Enable Line Voltage  
The PE329x series PLLs use a level sensitive  
load enable. Therefore the digital controller must  
provide an active low to the part at all times  
except when the data is to be loaded into the shift  
register. If the PLL controller does not hold the  
voltage low, a high impedance resistor to ground  
should be added to the enable line to ensure  
stable operation.  
Third Order loop filters (C1 C2 R2 C3 R3 and C4 C5  
R5 C6 R6 in Figure 11) provide a good  
compromise between lock time and residual FM.  
We have found using a third order loop with 20 dB  
of rejection at the step size will halve the Residual  
FM as measured with a similar second order loop,  
with minimum effect on lock time.  
5 Volt Operation:  
The PE329x series PLLs are not capable of  
accepting control voltages greater than 3.3 volts.  
Interface to 5 volt controllers requires the addition  
of resistor dividers to comply with the 3.3 volt  
maximum operation voltage.  
Loop Filter Bandwidth Design Considerations  
As part of the spur compensation circuitry, the  
PE329x series PLLs contain capacitors to ground  
internal to the charge pump. PLL1 contains a 50  
pF capacitor and PLL2 contains a 100 pF  
capacitor. To ensure accurate loop filter  
calculations, it is critical that the calculated value  
of the first shunt capacitor (C1 & C4 in Figure 11)  
be at least 100 pF for PLL1 and 200 pF for PLL2.  
With this requirement satisfied, the remaining loop  
components can be calculated.  
For a stable loop, it is also important that the loop  
bandwidth be less than or equal to one tenth of  
the step size.  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0009-04 UltraCMOS™ RFIC Solutions  
Page 12 of 15  
PE3291  
Product Specification  
Figure 11. Application Example  
Note 1: For optimum fractional spur and lock-time performance C2 and C5 should be polyester (or poly  
propylene). In addition, the loop filter components must be free from contamination. Contamination  
will result in poor spur performance. For accurate loop bandwidth, C1 must be greater than or equal to  
100 pF, and C4 must be greater than or equal to 200 pF.  
Document No. 70-0009-04 www.psemi.com  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 13 of 15  
PE3291  
Product Specification  
Figure 12. Package Drawing  
20-lead TSSOP (JEDEC MO-153-AC)  
12o REF  
0.20  
R 0.90 MIN  
TOP VIEW  
0.65BSC  
R 0.90 MIN  
GAGE  
PLANE  
20 19  
18  
17  
16 15  
14 13 12  
11  
0o  
8o  
12o REF  
0.25  
+.15  
0.60  
-.10  
1.0 REF  
3.20  
2X  
4.40±0.10  
Ø1.00±0.10  
1.00  
- B -  
.20  
C
B
A
1
2
3
4
5
6
7
8
9
10  
1.00  
6.40  
0.325  
SIDE VIEW  
S
Y
M
B
O
L
- A -  
COMMON DIMENSION(MILLIMETERS)  
6.50±0.10  
0.90±0.05  
0.10±0.05  
0.65mm LEAD PITCH  
MIN  
---  
NOM  
---  
---  
0.90  
0.60  
---  
---  
---  
0.22  
---  
---  
MAX  
1.10  
0.15  
0.95  
0.75  
---  
1.10 MAX  
A
A1  
A2  
L
R
R1  
b
b1  
c
c1  
01  
L1  
aaa  
bbb  
ccc  
ddd  
e
02  
03  
- C -  
0.05  
0.85  
0.50  
0.09  
0.09  
0.19  
0.19  
0.09  
0.09  
0°  
0.10  
C
0.30 MAX  
0.10  
C B A  
FRONT VIEW  
---  
S
0.30  
0.25  
0.20  
0.16  
8°  
Y
M
B
O
L
N
O
T
AC  
E
MIN  
6.40  
4.30  
NOM  
6.50  
4.40  
6.4 BSC  
0.65 BSC  
20  
MAX  
6.60  
4.50  
---  
3,8  
4,8  
D
1.0 REF  
0.10  
0.10  
0.05  
0.20  
0.65 BSC  
12° REF  
12° REF  
E1  
E
e
N
6
1,2  
A
NOTE  
ISSUE  
Table 12. Ordering Information  
Order Code  
3291-11  
Part Marking  
PE3291  
Description  
Package  
Shipping Method  
PE3291-20TSSOP-74A  
PE3291-20TSSOP-2000C  
PE3291-20TSSOP-Eval Kit  
20-lead TSSOP  
20-lead TSSOP  
Evaluation Kit  
74 units / Tube  
3291-12  
PE3291  
2000 unit / T&R  
1 / Box  
3291-00  
PE3291EK  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0009-04 UltraCMOS™ RFIC Solutions  
Page 14 of 15  
PE3291  
Product Specification  
Sales Offices  
The Americas  
North Asia Pacific  
Peregrine Semiconductor Corporation  
Peregrine Semiconductor K.K.  
9450 Carroll Park Drive  
San Diego, CA 92121  
Tel 858-731-9400  
5A-5, 5F Imperial Tower  
1-1-1 Uchisaiwaicho, Chiyoda-ku  
Tokyo 100-0011 Japan  
Tel: +81-3-3502-5211  
Fax 858-731-9499  
Fax: +81-3-3502-5213  
Europe  
Peregrine Semiconductor, Korea  
#B-2402, Kolon Tripolis, #210  
Geumgok-dong, Bundang-gu, Seongnam-si,  
Gyeonggi-do, 463-480 S. Korea  
Tel: +82-31-728-4300  
Peregrine Semiconductor Europe  
Bâtiment Maine  
13-15 rue des Quatre Vents  
F- 92380 Garches, France  
Tel: +33-1-47-41-91-73  
Fax : +33-1-47-41-91-73  
Fax: +82-31-728-4305  
South Asia Pacific  
Space and Defense Products  
Peregrine Semiconductor, China  
Shanghai, 200040, P.R. China  
Tel: +86-21-5836-8276  
Americas:  
Tel: 505-881-0438  
Fax: 505-881-0443  
Fax: +86-21-5836-7652  
Europe, Asia Pacific:  
180 Rue Jean de Guiramand  
13852 Aix-En-Provence cedex 3, France  
Tel: +33(0) 4 4239 3361  
Fax: +33(0) 4 4239 7227  
For a list of representatives in your area, please refer to our Web site at: www.psemi.com  
Data Sheet Identification  
Advance Information  
The information in this data sheet is believed to be reliable.  
However, Peregrine assumes no liability for the use of this  
information. Use shall be entirely at the user’s own risk.  
The product is in a formative or design stage. The data  
sheet contains design target specifications for product  
development. Specifications and features may change in  
any manner without notice.  
No patent rights or licenses to any circuits described in this  
data sheet are implied or granted to any third party.  
Preliminary Specification  
Peregrine’s products are not designed or intended for use in  
devices or systems intended for surgical implant, or in other  
applications intended to support or sustain life, or in any  
application in which the failure of the Peregrine product could  
create a situation in which personal injury or death might occur.  
Peregrine assumes no liability for damages, including  
consequential or incidental damages, arising out of the use of  
its products in such applications.  
The data sheet contains preliminary data. Additional data  
may be added at a later date. Peregrine reserves the right  
to change specifications at any time without notice in order  
to supply the best possible product.  
Product Specification  
The data sheet contains final data. In the event Peregrine  
decides to change the specifications, Peregrine will notify  
customers of the intended changes by issuing a DCN  
(Document Change Notice).  
The Peregrine name, logo, and UTSi are registered trademarks  
and UltraCMOS and HaRP are trademarks of Peregrine  
Semiconductor Corp.  
Document No. 70-0009-04 www.psemi.com  
©2005 Peregrine Semiconductor Corp. All rights reserved.  
Page 15 of 15  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY