PE4312MLBA-Z [PSEMI]

UltraCMOS® RF Digital Step Attenuator 6-bit, 31.5 dB, 1 MHz–4 GHz;
PE4312MLBA-Z
型号: PE4312MLBA-Z
厂家: Peregrine Semiconductor    Peregrine Semiconductor
描述:

UltraCMOS® RF Digital Step Attenuator 6-bit, 31.5 dB, 1 MHz–4 GHz

电信 电信集成电路
文件: 总13页 (文件大小:730K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Product Specification  
PE4312  
UltraCMOS® RF Digital Step Attenuator  
6-bit, 31.5 dB, 1 MHz–4 GHz  
Product Description  
The PE4312 is a 50, HaRP™ technology-enhanced 6-bit  
RF Digital Step Attenuator (DSA) designed for use in 3G/4G  
wireless infrastructure and other high performance RF  
applications.  
Features  
 Attenuation: 0.5 dB steps to 31.5 dB  
 Safe attenuation state transitions  
 Monotonicity: 0.5 dB up to 4 GHz  
This DSA is a pin-compatible upgraded version of the  
PE4302 with higher linearity, improved attenuation accuracy  
and faster switching speed. An integrated digital control  
interface supports both serial and parallel programming of  
the attenuation, including the capability to program an initial  
attenuation state at power-up.  
 High attenuation accuracy  
 ±(0.10 + 1% x Atten) @ 1 GHz  
 ±(0.15 + 2% x Atten) @ 2.2 GHz  
 ±(0.15 + 8% x Atten) @ 4 GHz  
 High linearity: +59 dBm IIP3  
Covering a 31.5 dB attenuation range in 0.5 dB steps, it  
maintains high linearity and low power consumption from  
1 MHz through 4 GHz. PE4312 also features an external  
negative supply option, and is offered in a 20-lead 4 × 4 mm  
QFN package. In addition, no external blocking capacitors  
are required if 0 VDC is present on the RF ports.  
 Wide power supply range of 2.3–5.5V  
 1.8V control logic compatible  
 105 °C operating temperature  
 Programming modes  
 Direct parallel  
 Latched parallel  
 Serial  
The PE4312 is manufactured on Peregrine’s UltraCMOS®  
process, a patented variation of silicon-on-insulator (SOI)  
technology on a sapphire substrate.  
 Unique power-up state selection  
 Pin compatible to PE4302, PE4305  
Peregrine’s HaRP™ technology enhancements deliver high  
linearity and excellent harmonics performance. It is an  
innovative feature of the UltraCMOS® process, offering the  
performance of GaAs with the economy and integration of  
conventional CMOS.  
and PE4306  
Figure 2. Package Type  
20-lead 4 × 4 mm QFN  
Figure 1. Functional Schematic Diagram  
Switched Attenuator Array  
RF Input  
RF Output  
6
3
2
Parallel Control  
Serial Control  
Control Logic Interface  
Power-Up Control  
DOC-02132  
Document No. DOC-81482-1 www.psemi.com  
©2017 Peregrine Semiconductor Corp. All rights reserved.  
Page 1 of 13  
PE4312  
Product Specification  
Table 1. Electrical Specifications @ 25 °C (ZS= ZL = 50), unless otherwise noted  
Normal Mode1: VDD = 3.3V, VSS_EXT = 0V or Bypass Mode2: VDD = 3.3V, VSS_EXT = –3.3V  
Frequency  
Parameter  
Operation frequency  
Attenuation range  
Condition  
Min  
Typ  
Max  
Unit  
MHz  
dB  
1
4000  
0.5 dB step  
0–31.5  
1 MHz–<1 GHz  
1–2.2 GHz  
2.2–4 GHz  
1.3  
1.5  
2.1  
1.5  
1.8  
2.3  
dB  
dB  
dB  
Insertion loss  
1 MHz–1 GHz  
1–<2.2 GHz  
2.2–4 GHz  
±(0.10 + 1% of atten setting)  
±(0.15 + 2% of atten setting)  
±(0.15 + 8% of atten setting)  
dB  
dB  
dB  
Attenuation error  
Any bit or bit combination  
Return loss  
(input or output port)  
1–2.2 GHz  
2.2–4 GHz  
14  
10  
18  
17  
dB  
Input 0.1dB compression point3  
1 MHz–4 GHz  
1950 MHz  
30  
59  
dBm  
dBm  
ns  
Input IP3  
Two tones at +18 dBm, 10 kHz spacing  
50% CTRL to 90% or 10% RF  
Switching time  
500  
800  
Notes: 1. Normal mode: single external positive supply used.  
2. Bypass mode: both external positive supply and external negative supply used.  
3. The input 0.1dB compression point is a linearity figure of merit. Refer to Table 5 for the operating RF input power (50).  
©2017 Peregrine Semiconductor Corp. All rights reserved.  
Document No. DOC-81482-1 UltraCMOS® RFIC Solutions  
Page 2 of 13  
PE4312  
Product Specification  
Figure 3. Pin Configuration (Top View)  
Table 3. Operating Ranges  
Pin 1 dot  
marking  
Parameter  
Normal mode1  
Symbol  
Min  
Typ  
Max  
Unit  
Supply voltage  
Supply current  
VDD  
IDD  
2.3  
5.5  
V
130  
200  
μA  
1
2
3
4
5
15  
14  
13  
12  
11  
C16  
RF1  
C8  
Bypass mode2  
RF2  
Supply voltage  
VDD  
IDD  
VSS_EXT  
ISS  
2.7  
5.5  
80  
V
μA  
V
Exposed  
Ground Pad  
Data  
Clock  
LE  
P/S  
Supply current  
50  
VSS_EXT/GND  
GND  
Negative supply voltage  
Negative supply current  
Normal or Bypass mode  
-3.6  
-40  
-3.2  
-16  
μA  
Digital input high  
Digital input low  
1.17  
-0.3  
3.6  
0.6  
20  
V
V
Table 2. Pin Descriptions  
Digital input leakage3  
μA  
Pin #  
Pin Name  
C163,5  
RF11  
Data3  
Clock  
LE4  
Description  
Attenuation control bit, 16 dB  
RF1 port (RF input)  
RF input power, CW  
1–50 MHz  
PMAX_CW  
Fig. 4 dBm  
+24 dBm  
1
>50 MHz–4 GHz  
2
RF input power, pulsed4  
1–50 MHz  
PMAX_PULSED  
Fig. 4 dBm  
3
Serial interface data input  
Serial interface clock input  
Latch Enable input  
>50 MHz–4 GHz  
+27  
dBm  
4
Operating temperature  
range  
TOP  
-55  
+105  
°C  
5
6
VDD  
Supply voltage (nominal 3.3V)  
Power-up selection bit 1  
Power-up selection bit 2  
Supply voltage (nominal 3.3V)  
Ground  
Notes: 1. Normal mode: connect pin 12 to GND to enable internal negative  
voltage generator.  
7
PUP15  
PUP2  
VDD  
2. Bypass mode: apply a negative voltage to VSS_EXT (pin 12) to bypass  
and disable internal negative voltage generator.  
3. Applies to all pins except pins 1, 5, 7 and 20. Pins 1, 7 and 20 have  
an internal pull-down resistor and pin 5 has an internal pull-up resistor.  
4. Pulsed, 5% duty cycle of 4620 µs period, 50.  
8
9
10, 11, 18  
GND  
VSS_EXT  
/
External VSS negative voltage control or  
ground  
Table 4. Absolute Maximum Ratings  
12  
GND2  
Parameter  
Supply voltage  
Symbol  
VDD  
Min  
-0.3  
-0.3  
Max  
5.5  
Unit  
V
13  
14  
P/S  
RF21  
C8  
Parallel/Serial mode select  
RF2 port (RF output)  
Digital input voltage  
VCTRL  
PMAX_ABS  
TST  
3.6  
V
15  
Attenuation control bit, 8 dB  
Attenuation control bit, 4 dB  
Attenuation control bit, 2 dB  
Attenuation control bit, 1 dB  
Attenuation control bit, 0.5 dB  
Exposed pad: ground for proper operation  
Maximum input power  
Storage temperature range  
ESD voltage HBM*, all pins  
+30  
+150  
1500  
dBm  
°C  
V
16  
C4  
-65  
17  
C2  
VESD  
19  
C1  
20  
C0.55  
Note: * Human Body Model (MIL-STD-883 Method 3015)  
Pad  
GND  
Exceeding absolute maximum ratings may cause  
permanent damage. Operation should be  
restricted to the limits in the Operating Ranges  
table. Operation between operating range  
maximum and absolute maximum for extended  
periods may reduce reliability.  
Notes: 1. RF pins 2 and 14 must be at 0 VDC. The RF pins do not require DC  
blocking capacitors for proper operation if the 0 VDC requirement is met.  
2. Use VSS_EXT (pin 12, refer to Table 3) to bypass and disable internal  
negative voltage generator. Connect VSS_EXT (pin 12, VSS_EXT = GND) to  
enable internal negative voltage generator.  
3. Place a 10 kresistor in series, as close to pin as possible to avoid  
frequency resonance.  
4. This pin has an internal 2 Mresistor to internal positive digital supply.  
5. This pin has an internal 200 kresistor to GND.  
Document No. DOC-81482-1 www.psemi.com  
©2017 Peregrine Semiconductor Corp. All rights reserved.  
Page 3 of 13  
PE4312  
Product Specification  
Safe Attenuation State Transitions  
Electrostatic Discharge (ESD) Precautions  
The PE4312 features a novel architecture to  
provide safe transition behavior when changing  
attenuation states. When RF input power is  
applied, positive output power spikes are  
prevented during attenuation state changes by  
optimized internal timing control.  
When handling this UltraCMOS device, observe  
the same precautions that you would use with  
other ESD-sensitive devices. Although this device  
contains circuitry to protect it from damage due to  
ESD, precautions should be taken to avoid  
exceeding the rate specified.  
Latch-Up Avoidance  
Resistor on Pin 1 & 3  
Unlike conventional CMOS devices, UltraCMOS  
devices are immune to latch-up.  
A 10 kresistor on the inputs to pin 1 and 3 (see  
Figure 26) will eliminate package resonance  
between the RF input pin and the two digital  
inputs. Specified attenuation error versus  
frequency performance is dependent upon this  
condition.  
Switching Frequency  
The PE4312 has a maximum 25 kHz switching  
rate in normal mode (pin 12 = GND). A faster  
switching rate is available in bypass mode (pin 12  
= VSS_EXT). The rate at which the PE4312 can be  
switched is then limited to the switching time as  
specified in Table 1.  
Moisture Sensitivity Level  
The moisture sensitivity level rating for the  
PE4312 in the 4 × 4 mm QFN package is MSL1.  
Switching frequency describes the time duration  
between switching events. Switching time is the  
time duration between the point the control signal  
reaches 50% of the final value and the point the  
output signal reaches within 10% or 90% of its  
target value.  
Spurious Performance  
The typical low-frequency spurious performance  
of the PE4312 in normal mode is –140 dBm  
(pin 12 = GND). If spur-free performance is  
desired, the internal negative voltage generator  
can be disabled by applying a negative voltage to  
VSS_EXT (pin 12).  
Figure 4. Power Derating Curve for 1–50 MHz  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
6
RF Input Power, CW or Pulsed (40C to 105C)  
4
2
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Frequency (MHz)  
©2017 Peregrine Semiconductor Corp. All rights reserved.  
Document No. DOC-81482-1 UltraCMOS® RFIC Solutions  
Page 4 of 13  
PE4312  
Product Specification  
Programming Options  
Clock, and Latch Enable (LE). The Data and Clock  
inputs allow data to be serially entered into the shift  
register, a process that is independent of the state of  
the LE input.  
Parallel/Serial Selection  
Either a parallel or serial interface can be used to  
control the PE4312. The P/S bit provides this  
selection, with P/S = LOW selecting the parallel  
interface and P/S = HIGH selecting the serial  
interface.  
The LE input controls the latch. When LE is HIGH,  
the latch is transparent and the contents of the serial  
shift register control the attenuator. When LE is  
brought LOW, data in the shift register is latched.  
Parallel Mode Interface  
The parallel interface consists of six CMOS-  
compatible control lines that select the desired  
attenuation state, as shown in Table 5.  
The shift register should be loaded while LE is held  
LOW to prevent the attenuator value from changing  
as data is entered. The LE input should then be  
toggled HIGH and brought LOW again, latching the  
new data. The timing for this operation is defined by  
Figure 5 (Serial Interface Timing Diagram) and  
Table 8 (Serial Interface AC Characteristics).  
The parallel interface timing requirements are  
defined by Figure 5 (Parallel Interface Timing  
Diagram), Table 9 (Parallel Interface AC  
Characteristics), and switching speed (Table 1).  
Power-up Control Settings  
For latched parallel programming the Latch Enable  
(LE) should be held LOW while changing attenuation  
state control values, then pulse LE HIGH to LOW  
(per Figure 5) to latch the new attenuation state into  
the device.  
The PE4312 always assumes a specifiable  
attenuation setting on power-up. This feature exists  
for both the Serial and Parallel modes of operation,  
and allows a known attenuation state to be  
established before an initial serial or parallel control  
word is provided.  
For direct parallel programming, the Latch Enable  
(LE) line should be pulled HIGH. Changing  
attenuation state control values will change device  
state to new attenuation. Direct Mode is ideal for  
manual control of the device (using hardwire,  
switches, or jumpers).  
When the attenuator powers up in Serial mode  
(P/S = 1), the six control bits are set to whatever  
data is present on the six parallel data inputs (C0.5  
to C16). This allows any one of the 64 attenuation  
settings to be specified as the power-up state.  
Table 5. Truth Table*  
When the attenuator powers up in Parallel mode  
(P/S = 0) with LE = 0, the control bits are  
automatically set to one of four possible values.  
These four values are selected by the two power-up  
control bits, PUP1 and PUP2, as shown in Table 6  
(Power-Up Truth Table, Parallel Mode).  
P/S C16  
C8  
C4  
C2  
C1 C0.5 Attenuation State  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
1
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
0
1
0
0
0
0
1
0
1
0
0
0
0
0
1
Reference Loss  
0.5 dB  
1 dB  
2 dB  
Table 6. Parallel PUP Truth Table*  
4 dB  
8 dB  
P/S  
LE  
PUP2  
PUP1  
Attenuation State  
16 dB  
0
0
0
0
0
0
0
0
0
1
0
1
0
1
X
0
0
1
1
X
Reference Loss  
8 dB  
31.5 dB  
16 dB  
Note: * Not all 64 possible combinations of C0.5–C16 are shown in table.  
31.5 dB  
Serial Interface  
Defined by C0.5-C16  
The serial interface is a 6-bit serial-in, parallel-out  
shift register buffered by a transparent latch. It is  
controlled by three CMOS-compatible signals: Data,  
Note: * Power up with LE = 1 provides normal parallel operation with C0.5-C16,  
and PUP1 and PUP2 are not active.  
Document No. DOC-81482-1 www.psemi.com  
©2017 Peregrine Semiconductor Corp. All rights reserved.  
Page 5 of 13  
PE4312  
Product Specification  
Figure 5. Serial Interface Timing Diagram  
Table 7. 6-Bit Attenuator Serial Programming  
Register Map  
LE  
B5  
B4  
C8  
B3  
C4  
B3  
C2  
B1  
C1  
B0  
C16  
C0.5  
Clock  
MSB (first in)  
LSB (last in)  
Data  
MSB  
LSB  
tLESUP  
tSDSUP  
tSDHLD  
tLEPW  
Figure 6. Parallel Interface Timing Diagram  
LE  
Parallel Data  
C16:C0.5  
tPDSUP  
tLEPW  
tPDHLD  
Table 8. Serial Interface AC Characteristics  
VDD = 3.3V, –55 °C < TA < 105 °C, unless otherwise specified  
Table 9. Parallel Interface AC Characteristics  
VDD = 3.3V, –55 °C < TA < 105 °C, unless otherwise specified  
Symbol  
Parameter  
Min  
Max  
Unit  
Symbol  
Parameter  
Min  
Max  
Unit  
tLEPW  
LE minimum pulse width  
10  
ns  
fClk  
Serial data clock frequency*  
10  
MHz  
Data set-up time before  
rising edge of LE  
tClkH  
tClkL  
Serial clock HIGH time  
Serial clock LOW time  
30  
30  
ns  
ns  
tPDSUP  
tPDHLD  
10  
10  
ns  
ns  
Data hold time after falling  
edge of LE  
LE set-up time after last  
clock rising edge  
tLESUP  
tLEPW  
10  
30  
10  
ns  
ns  
ns  
LE minimum pulse width  
Serial data set-up time  
before clock rising edge  
tSDSUP  
Serial data hold time after  
clock rising edge  
tSDHLD  
10  
ns  
Note: * fClk is verified during the functional pattern test. Serial programming  
sections of the functional pattern are clocked at 10 MHz to verify fclk  
specification  
©2017 Peregrine Semiconductor Corp. All rights reserved.  
Document No. DOC-81482-1 UltraCMOS® RFIC Solutions  
Page 6 of 13  
PE4312  
Product Specification  
Typical Performance Data @ 25 °C and VDD = 3.3V, unless otherwise noted  
Figure 7. Insertion Loss vs Frequency  
@ Major Attenuation Steps  
Figure 8. Insertion Loss vs Temperature  
0 dB  
0.5 dB  
1 dB  
2 dB  
4 dB  
8 dB  
16 dB  
31.5 dB  
-55C  
-40C  
25C  
85C  
105C  
0
-5  
0
-0.5  
-1  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-1.5  
-2  
-2.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Frequency (GHz)  
Frequency (GHz)  
Figure 9. Input Return Loss vs Frequency  
@ Major Attenuation Steps  
Figure 10. Input Return Loss vs Temperature  
0 dB  
0.5 dB  
1 dB  
2 dB  
4 dB  
8 dB  
16 dB  
31.5 dB  
55C  
40C  
25C  
85C  
105C  
0
5  
0
5  
10  
15  
20  
25  
30  
35  
40  
45  
10  
15  
20  
25  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Frequency (GHz)  
Frequency (GHz)  
Figure 12. Output Return Loss vs Temperature  
Figure 11. Output Return Loss vs Frequency  
@ Major Attenuation Steps  
0 dB  
0.5 dB  
1 dB  
2 dB  
4 dB  
8 dB  
16 dB  
31.5 dB  
55C  
40C  
25C  
85C  
105C  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
5  
10  
15  
20  
25  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
Frequency (GHz)  
Frequency (GHz)  
Document No. DOC-81482-1 www.psemi.com  
©2017 Peregrine Semiconductor Corp. All rights reserved.  
Page 7 of 13  
PE4312  
Product Specification  
Typical Performance Data @ 25 °C and VDD = 3.3V, unless otherwise noted  
Figure 13. Attenuation Error vs Frequency  
@ Major Attenuation Steps  
Figure 14. Attenuation Error vs Attenuation  
Setting  
10 MHz  
100 MHz  
1 GHz  
2 GHz  
2.2 GHz  
3 GHz  
4 GHz  
0.5 dB  
1 dB  
2 dB  
4 dB  
8 dB  
16 dB  
31.5 dB  
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0.5  
1  
-0.5  
-1  
0
0.5  
1
1.5  
2
Frequency (GHz)  
2.5  
3
3.5  
4
0
5
10  
15  
20  
25  
30  
35  
Attenuation Setting (dB)  
Figure 16. 0.5 dB Step Attenuation vs  
Attenuation Setting*  
Figure 15. Actual Attenuation vs Ideal  
Attenuation  
10 MHz  
100 MHz  
1 GHz  
2 GHz  
2.2 GHz  
3 GHz  
4 GHz  
10 MHz  
100 MHz  
1 GHz  
2 GHz  
2.2 GHz  
3 GHz  
4 GHz  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
35  
30  
25  
20  
15  
10  
5
-0.1  
-0.2  
-0.3  
0
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
Ideal Attenuation (dB)  
Attenuation Setting (dB)  
Note: * Monotonicity is held as long as step attenuation does not cross below –  
0.5 dB.  
Figure 17. Relative Phase Error vs Frequency  
@ Major Attenuation Steps  
Figure 18. IIP3 vs Frequency  
0 dB  
0.5 dB  
1 dB  
2 dB  
4 dB  
8 dB  
16 dB  
31.5 dB  
65  
64  
63  
62  
61  
60  
59  
58  
50  
40  
30  
20  
10  
0
57  
56  
55  
0 dB  
16 dB  
31.5 dB  
-10  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
500  
1000  
1500  
2000  
2500  
3000  
Frequency (MHz)  
Frequency (GHz)  
©2017 Peregrine Semiconductor Corp. All rights reserved.  
Document No. DOC-81482-1 UltraCMOS® RFIC Solutions  
Page 8 of 13  
PE4312  
Product Specification  
Typical Performance Data @ 25 °C and VDD = 3.3V, unless otherwise noted  
Figure 20. Attenuation Error @ 100 MHz vs  
Temperature  
Figure 19. Attenuation Error @ 10 MHz vs  
Temperature  
-55C  
-40C  
25C  
85C  
105C  
-55C  
-40C  
25C  
85C  
105C  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
30  
30  
35  
35  
35  
Attenuation Setting (dB)  
Attenuation Setting (dB)  
Figure 21. Attenuation Error @ 1 GHz vs  
Temperature  
Figure 22. Attenuation Error @ 2.2 GHz vs  
Temperature  
-55C  
-40C  
25C  
85C  
105C  
-55C  
-40C  
25C  
85C  
105C  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
30  
35  
Attenuation Setting (dB)  
Attenuation Setting (dB)  
Figure 23. Attenuation Error @ 4 GHz vs  
Temperature  
-55C  
-40C  
25C  
85C  
105C  
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
5
10  
15  
20  
25  
Attenuation Setting (dB)  
Document No. DOC-81482-1 www.psemi.com  
©2017 Peregrine Semiconductor Corp. All rights reserved.  
Page 9 of 13  
PE4312  
Product Specification  
Evaluation Kit  
Figure 25. Evaluation Board Layout  
The Digital Step Attenuator Evaluation Board  
(EVB) was designed to ease customer evaluation  
of the PE4312 Digital Step Attenuator. PE4312  
EVB supports Direct Parallel, Latched Parallel, and  
Serial programming modes.  
Evaluation Kit Setup  
Connect the EVB with the USB dongle board and  
USB cable as shown in Figure 24.  
Figure 24. Evaluation Kit  
PRT-10505  
Latched Parallel Programming Procedure  
For automated Latched Parallel programming,  
connect the USB dongle board and cable that is  
provided with the Evaluation Kit (EVK) from the  
USB port of the PC to the J1 header of the  
PE4312 EVB, and set the D1–D6 SP3T switches  
to the EXTERNAL position. Position the Parallel/  
Serial (P/S) select switch to the Parallel (or left)  
position. The evaluation software is written to  
operate the DSA in Parallel mode. Ensure that the  
software GUI is set to Latched Parallel mode. Use  
the software GUI to enable the desired attenuation  
state. The software GUI automatically programs  
the DSA each time an attenuation state is  
enabled.  
Direct Parallel Programming Procedure  
Direct Parallel programming is suitable for manual  
operation without software programming. For  
manual Direct Parallel programming, position the  
Parallel/Serial (P/S) select switch to the Parallel (or  
left) position. The LE mechanical programming  
switch must be set to the HIGH position. Switches  
D1–D6 are SP3T switches that enable the user to  
manually program the parallel bits. When D1–D6  
are toggled to the HIGH position, logic high is  
presented to the parallel input. When toggled to the  
LOW position, logic low is presented to the parallel  
input. Setting D1–D6 to the EXTERNAL position  
presents as OPEN, which is set for software  
programming of Latched Parallel and Serial mode.  
Table 5 depicts the parallel programming truth  
table.  
Serial Programming Procedure  
For automated Serial programming, connect the  
USB dongle board and cable that is provided with  
the Evaluation Kit (EVK) from the USB port of the  
PC to the J1 header of the PE4312 EVB, and set  
the D1–D6 SP3T switches to the EXTERNAL  
position. Position the Parallel/Serial (P/S) select  
switch to the Serial (or right) position. The  
evaluation software is written to operate the DSA  
in Serial mode. Ensure that the software GUI is  
set to Serial mode. Use the software GUI to  
enable the desired attenuation state. The software  
GUI automatically programs the DSA each time  
an attenuation state is enabled.  
©2017 Peregrine Semiconductor Corp. All rights reserved.  
Document No. DOC-81482-1 UltraCMOS® RFIC Solutions  
Page 10 of 13  
PE4312  
Product Specification  
Figure 26. Evaluation Board Schematic  
DOC-13527  
Notes: 1. CAUTION: Contains parts and assemblies susceptible to damage by electrostatic discharge (ESD).  
2. Install shunt connector on JP2, JP3 and JP4.  
Document No. DOC-81482-1 www.psemi.com  
©2017 Peregrine Semiconductor Corp. All rights reserved.  
Page 11 of 13  
PE4312  
Product Specification  
Figure 27. Package Drawing  
20-lead 4 × 4 mm QFN  
DOC-01880  
Figure 28. Top Marking Specifications  
4312  
YYWW  
= Pin 1 designator  
ZZZZZ  
YYWW = Date code, last two digits of the year and work week  
ZZZZZ = Last five digits of the lot number  
DOC-51207  
©2017 Peregrine Semiconductor Corp. All rights reserved.  
Document No. DOC-81482-1 UltraCMOS® RFIC Solutions  
Page 12 of 13  
PE4312  
Product Specification  
Figure 29. Tape and Reel Drawing  
Tape Feed Direction  
Table 10. Ordering Information  
Order Code  
Description  
Package  
Shipping Method  
3000 units / T&R  
1 / Box  
PE4312C-Z  
EK4312-13  
PE4312 Digital step attenuator  
PE4312 Evaluation kit  
Green 20-lead 4 × 4 mm QFN  
Evaluation kit  
Sales Contact and Information  
For sales and contact information please visit www.psemi.com.  
Advance Information: The product is in a formative or design stage. The datasheet contains design target No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party.  
specifications for product development. Specifications and features may change in any manner without notice. Peregrine’s products are not designed or intended for use in devices or systems intended for surgical implant,  
or in other applications intended to support or sustain life, or in any application in which the failure of the  
Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no  
liability for damages, including consequential or incidental damages, arising out of the use of its products in  
such applications.  
The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE  
are trademarks of Peregrine Semiconductor Corp. Peregrine products are protected under one or more of  
the following U.S. Patents: http://patents.psemi.com.  
Preliminary Specification: The datasheet contains preliminary data. Additional data may be added at a later  
date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best  
possible product. Product Specification: The datasheet contains final data. In the event Peregrine decides to  
change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer  
Notification Form).  
The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use  
of this information. Use shall be entirely at the user’s own risk.  
Document No. DOC-81482-1 www.psemi.com  
©2017 Peregrine Semiconductor Corp. All rights reserved.  
Page 13 of 13  

相关型号:

PE4312_16

MHV Female Bulkhead Mount Connector Solder Attachment
PASTERNACK

PE4313

MHV Female Connector Clamp/Solder Attachment 4 Hole Flange For RG55, RG58, RG141, RG142 RG223, RG400, .500 inch Threaded Hole Spacing
PASTERNACK

PE4314

MHV Female Connector Clamp/Solder Attachment 4 Hole Flange Mount
PASTERNACK

PE4314

UltraCMOS® RF Digital Step Attenuator, 1 MHz–2.5 GHz
PSEMI

PE4314A-Z

IC DGTL ATTEN 31.5DB 6BIT 20QFN
ETC

PE4314B-Z

UltraCMOS® RF Digital Step Attenuator, 1 MHz–2.5 GHz
PSEMI

PE4314_16

MHV Female Connector Clamp/Solder Attachment 4 Hole Flange Mount
PASTERNACK

PE4314_V01

UltraCMOS® RF Digital Step Attenuator, 1 MHz–2.5 GHz
PSEMI

PE4315

SHV Jack Bulkhead Connector Clamp/Solder Attachment For RG59, RG62, .480 inch D Hole
PASTERNACK

PE4316

SHV Plug Connector Clamp/Solder Attachment
PASTERNACK

PE4316_16

SHV Plug Connector Clamp/Solder Attachment
PASTERNACK

PE4317

BNC Female Right Angle Connector Solder Attachment
PASTERNACK