PE97022-00 [PSEMI]

3500 MHz UltraCMOS Integer-N PLL Rad Hard for Space Applications; 3500兆赫的UltraCMOS整数N分频PLL抗辐射的空间应用
PE97022-00
型号: PE97022-00
厂家: Peregrine Semiconductor    Peregrine Semiconductor
描述:

3500 MHz UltraCMOS Integer-N PLL Rad Hard for Space Applications
3500兆赫的UltraCMOS整数N分频PLL抗辐射的空间应用

文件: 总14页 (文件大小:356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Product Specification  
PE97022  
3500 MHz UltraCMOS™ Integer-N PLL  
Rad Hard for Space Applications  
Product Description  
Peregrine’s PE97022 is a high-performance integer-N PLL  
capable of frequency synthesis up to 3500 MHz. The  
device is designed for superior phase noise performance  
while providing an order of magnitude reduction in current  
consumption, when compared with existing commercial  
space PLLs.  
Features  
Low Power - 45 mA at 3.3V  
3500 MHz operation  
÷10/11 dual modulus prescaler  
Internal phase detector  
The PE97022 features a 10/11 dual modulus prescaler,  
counters and a phase comparator as shown in Figure 1.  
Counter values are programmable through either a serial or  
parallel interface and can also be directly hard wired.  
Serial, parallel or hardwired  
programmable  
Ultra-Low Phase Noise: -216 dBc/Hz  
SEU < 10-9 errors / bit-day  
The PE97022 is optimized for commercial space  
applications. Single Event Latch up (SEL) is physically  
impossible and Single Event Upset (SEU) is better than  
10-9 errors per bit / day. It is manufactured on Peregrine’s  
UltraCMOS™ process, a patented variation of silicon-on-  
insulator (SOI) technology on a sapphire substrate, offering  
excellent RF performance and intrinsic radiation tolerance.  
100 Krad (Si) total dose  
Pin compatible with the PE9702,  
packaged in a 44-lead CQFJ  
(reference application note AN22 at  
www.psemi.com)  
Figure 1. Block Diagram  
Fin  
Fin  
Prescaler  
10 / 11  
Main  
Counter  
fp  
13  
D(7:0)  
Primary  
20-bit  
Secon-  
dary  
20-bit  
Latch  
8
PD_U  
Phase  
20  
20  
20  
Sdata  
Latch  
Detector  
PD_D  
20  
16  
Pre_en  
M(6:0)  
A(3:0)  
R(3:0)  
6
6
fr  
R Counter  
fc  
©2007-2008 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0235-04 www.psemi.com  
Page 1 of 14  
PE97022  
Product Specification  
Figure 2. Pin Configurations (Top View)  
Figure 3. Package Type  
44-lead CQFJ  
6
5
4
3
2
1
44 43 42 41 40  
D0, M0  
D1, M1  
fc  
V
7
8
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
DD_fc  
D2, M2  
PD_U  
PD_D  
VDD  
9
D3, M3  
10  
11  
12  
13  
14  
15  
16  
17  
VDD  
VDD  
Cext  
S_WR, D4, M4  
Sdata, D5, M5  
Sclk, D6, M6  
FSELS, D7, Pre_en  
GND  
VDD  
Dout  
VDD_fp  
fp  
GND  
18 19 20 21 22 23 24 25 26 27 28  
Table 1. Pin Descriptions  
Pin No. Pin Name  
Interface Mode  
Type  
Description  
Power supply input. Input may range from 2.85 V to 3.45 V. Bypassing  
recommended.  
1
VDD  
ALL  
(Note 1)  
2
3
4
5
6
R0  
Direct  
Direct  
Direct  
Direct  
ALL  
Input  
Input  
Input  
Input  
(Note 1)  
Input  
Input  
Input  
Input  
Input  
R Counter bit0 (LSB).  
R Counter bit1.  
R1  
R2  
R Counter bit2.  
R3  
R Counter bit3.  
GND  
D0  
Ground.  
Parallel  
Direct  
Parallel  
Direct  
Parallel  
Parallel data bus bit0 (LSB).  
M Counter bit0 (LSB).  
Parallel data bus bit1.  
M Counter bit1.  
7
8
M0  
D1  
M1  
D2  
9
Parallel data bus bit2.  
M2  
Direct  
Input  
M Counter bit2.  
10  
D3  
Parallel  
Direct  
ALL  
Input  
Parallel data bus bit3.  
M Counter bit3.  
Same as pin 1.  
M3  
Input  
11  
12  
VDD  
VDD  
(Note 1)  
(Note 1)  
ALL  
Same as pin 1.  
Serial load enable input. While S_WR is “low”, Sdata can be serially clocked.  
S_WR  
Serial  
Input  
Primary register data is transferred to the secondary register on S_WR or Hop_WR  
rising edge.  
13  
D4  
M4  
Parallel  
Direct  
Input  
Input  
Parallel data bus bit4  
M Counter bit4  
©2007-2008 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0235-04 UltraCMOS™ RFIC Solutions  
Page 2 of 14  
PE97022  
Product Specification  
Table 1. Pin Descriptions (continued)  
Pin No. Pin Name  
Interface Mode  
Type  
Description  
Sdata  
Serial  
Input  
Binary serial data input. Input data entered MSB first.  
D5  
Parallel  
Direct  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Parallel data bus bit5.  
M Counter bit5.  
14  
15  
16  
M5  
Serial clock input. Sdata is clocked serially into the 20-bit primary register (E_WR  
“low”) or the 8-bit enhancement register (E_WR “high”) on the rising edge of Sclk.  
Sclk  
D6  
Serial  
Parallel  
Direct  
Parallel data bus bit6.  
M Counter bit6.  
M6  
Selects contents of primary register (FSELS=1) or secondary register (FSELS=0) for  
programming of internal counters while in Serial Interface Mode.  
FSELS  
D7  
Serial  
Parallel  
Direct  
Parallel data bus bit7 (MSB).  
Pre_en  
GND  
FSELP  
A0  
Prescaler enable, active “low”. When “high”, Fin bypasses the prescaler.  
Ground.  
17  
18  
ALL  
Selects contents of primary register (FSELP=1) or secondary register (FSELP=0) for  
programming of internal counters while in Parallel Interface Mode.  
Parallel  
Direct  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
(Note 1)  
Input  
Input  
Input  
Input  
A Counter bit0 (LSB).  
Enhancement register write enable. While E_WR is “high”, Sdata can be serially  
clocked into the enhancement register on the rising edge of Sclk.  
Enhancement register write. D[7:0] are latched into the enhancement register on the  
rising edge of E_WR.  
Serial  
E_WR  
Parallel  
Direct  
19  
A1  
A Counter bit1.  
M2 write. D[3:0] are latched into the primary register (R[5:4], M[8:7]) on the rising  
edge of M2_WR.  
M2_WR  
A2  
Parallel  
Direct  
20  
21  
A Counter bit2.  
Selects serial bus interface mode (Bmode=0, Smode=1) or Parallel Interface Mode  
(Bmode=0, Smode=0).  
Smode  
A3  
Serial, Parallel  
Direct  
A Counter bit3 (MSB).  
Bmode  
VDD  
Selects direct interface mode (Bmode=1).  
Same as pin 1.  
22  
23  
24  
25  
26  
27  
ALL  
ALL  
M1 write. D[7:0] are latched into the primary register (Pre_en, M[6:0]) on the rising  
edge of M1_WR.  
A write. D[7:0] are latched into the primary register (R[3:0], A[3:0]) on the rising edge  
of A_WR.  
Hop write. The contents of the primary register are latched into the secondary  
register on the rising edge of Hop_WR.  
M1_WR  
A_WR  
Hop_WR  
Fin  
Parallel  
Parallel  
Serial, Parallel  
ALL  
Prescaler input from the VCO. 3.5 GHz max frequency.  
Prescaler complementary input. A bypass capacitor in series with a 51 resistor  
should be placed as close as possible to this pin and be connected directly to the  
ground plane.  
Fin  
28  
ALL  
Input  
29  
30  
GND  
fp  
ALL  
ALL  
Ground.  
Monitor pin for main divider output. Switching activity can be disabled through  
enhancement register programming or by floating or grounding VDD pin 31.  
Output  
©2007-2008 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0235-04 www.psemi.com  
Page 3 of 14  
PE97022  
Product Specification  
Table 1. Pin Descriptions (continued)  
Pin No. Pin Name  
Interface Mode  
Type  
Description  
31  
32  
33  
VDD-fp  
Dout  
VDD  
ALL  
(Note 1)  
VDD for fp. Can be left floating or connected to GND to disable the fp output.  
Data Out. The MSEL signal and the raw prescaler output are available on Dout  
through enhancement register programming.  
Serial, Parallel  
ALL  
Output  
(Note 1)  
Same as pin 1.  
Logical “NAND” of PD_Ū and PD_D¯ terminated through an on chip, 2 kseries  
resistor. Connecting Cext to an external capacitor will low pass filter the input to the  
inverting amplifier used for driving LD.  
34  
Cext  
ALL  
Output  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
VDD  
ALL  
(Note 1)  
Output  
Same as pin 1.  
PD_D¯  
PD_Ū  
VDD-fc  
fc  
PD_D¯ is pulse down when fp leads fc.  
ALL  
ALL  
PD_Ū is pulse down when fc leads fp.  
ALL  
(Note 1)  
Output  
VDD for fc. Can be left floating or connected to GND to disable the fc output.  
Monitor pin for reference divider output. Switching activity can be disabled through  
enhancement register programming or by floating or grounding VDD pin 38.  
ALL  
GND  
GND  
fr  
ALL  
Ground.  
ALL  
Ground.  
ALL  
Input  
Reference frequency input.  
Output,  
OD  
Lock detect and open drain logical inversion of CEXT. When the loop is in lock, LD  
is high impedance, otherwise LD is a logic low (“0”).  
LD  
ALL  
Enhancement mode. When asserted low (“0”), enhancement register bits are  
functional.  
Serial, Parallel  
Input  
E¯n¯h¯  
Note 1: VDD pins 1, 11, 12, 23, 31, 33, 35, and 38 are connected by diodes and must be supplied with the same positive voltage level.  
DD pins 31 and 38 are used to enable test modes and should be left floating.  
V
Note 2: All digital input pins have 70 kpull-down resistors to ground.  
©2007-2008 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0235-04 UltraCMOS™ RFIC Solutions  
Page 4 of 14  
PE97022  
Product Specification  
Table 2. Absolute Maximum Ratings  
Table 4. ESD Ratings  
Symbol  
Parameter/Conditions Min Max Units  
Symbol  
Parameter/Conditions  
Level Units  
VDD  
Supply voltage  
-0.3  
-0.3  
4.0  
V
V
ESD voltage (Human Body Model)  
– Note 1  
VESD  
1000  
V
VDD  
+ 0.3  
VI  
Voltage on any input  
Note 1: Periodically sampled, not 100% tested. Tested per MIL-  
STD-883, M3015 C2  
II  
DC into any input  
DC into any output  
-10  
-10  
+10  
+10  
mA  
mA  
IO  
Electrostatic Discharge (ESD) Precautions  
Storage temperature  
range  
Tstg  
-65  
150  
°C  
When handling this UltraCMOS™ device, observe  
the same precautions that you would use with  
other ESD-sensitive devices. Although this device  
contains circuitry to protect it from damage due to  
ESD, precautions should be taken to avoid  
exceeding the specified rating in Table 4.  
Table 3. Operating Ratings  
Symbol Parameter/Conditions Min  
Max  
Units  
VDD  
Supply voltage  
2.85  
3.45  
V
Operating ambient  
temperature range  
Latch-Up Avoidance  
TA  
-40  
85  
°C  
Unlike conventional CMOS devices, UltraCMOS™  
devices are immune to latch-up.  
Table 5. DC Characteristics: VDD = 3.3 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Operational supply current;  
Prescaler disabled  
Conditions  
Min  
Typ  
Max  
Units  
15  
45  
mA  
mA  
IDD  
VDD = 2.85 to 3.45 V  
Prescaler enabled  
50  
Digital Inputs: All except fr, Fin, Fin  
VIH  
High level input voltage  
VDD = 2.85 to 3.45 V  
VDD = 2.85 to 3.45 V  
VIH = VDD = 3.45 V  
0.7 x VDD  
V
V
VIL  
Low level input voltage  
High level input current  
Low level input current  
0.3 x VDD  
70  
IIH  
µA  
µA  
IIL  
VIL = 0, VDD = 3.45 V  
-1  
Reference Divider input: fr  
IIHR  
IILR  
High level input current  
Low level input current  
VIH = VDD = 3.45 V  
100  
0.4  
µA  
µA  
VIL = 0, VDD = 3.45 V  
-100  
Counter and phase detector outputs: fc, fp.  
VOLD  
VOHD  
Output voltage LOW  
Output voltage HIGH  
Iout = 6 mA  
Iout = -3 mA  
V
V
VDD - 0.4  
Lock detect outputs: Cext, LD  
VOLC  
VOHC  
VOLLD  
Output voltage LOW, Cext  
0.4  
0.4  
V
V
V
Iout = 100 µA  
Iout = -100 µA  
Iout = 1 mA  
Output voltage HIGH, Cext  
Output voltage LOW, LD  
VDD - 0.4  
©2007-2008 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0235-04 www.psemi.com  
Page 5 of 14  
PE97022  
Product Specification  
Table 6. AC Characteristics: VDD = 3.3 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typical  
Max  
Units  
Control Interface and Latches (see Figures 4, 5, 6)  
fClk  
tClkH  
tClkL  
Serial data clock frequency  
Serial clock HIGH time  
Serial clock LOW time  
(Note 1)  
10  
MHz  
ns  
30  
30  
ns  
Sdata set-up time after Sclk rising edge, D[7:0] set-up  
time to M1_WR, M2_WR, A_WR, E_WR rising edge  
tDSU  
10  
ns  
Sdata hold time after Sclk rising edge, D[7:0] hold  
time to M1_WR, M2_WR, A_WR, E_WR rising edge  
tDHLD  
tPW  
tCWR  
tCE  
10  
30  
ns  
ns  
S_WR, M1_WR, M2_WR, A_WR, E_WR pulse width  
Sclk rising edge to S_WR rising edge. S_WR,  
M1_WR, M2_WR, A_WR falling edge to Hop_WR  
rising edge  
30  
30  
ns  
ns  
Sclk falling edge to E_WR transition  
S_WR falling edge to Sclk rising edge. Hop_WR  
falling edge to S_WR, M1_WR, M2_WR, A_WR rising  
edge  
tWRC  
30  
30  
ns  
tEC  
E_WR transition to Sclk rising edge  
ns  
ns  
tMDO  
MSEL data out delay after Fin rising edge  
CL = 12 pf  
8
Main Divider (Including Prescaler) (Note 4)  
External AC coupling  
275 MHz Freq 3200MHz  
-5  
0
5
5
dBm  
dBm  
PFin  
Input level range  
External AC coupling  
3.2 GHz < Freq 3.5 GHz  
3.15 V VDD 3.45 V  
Main Divider (Prescaler Bypassed) (Note 4)  
Fin  
Operating frequency  
50  
-5  
300  
5
MHz  
dBm  
PFin  
Input level range  
External AC coupling  
Reference Divider  
fr  
Operating frequency  
(Note 3)  
100  
10  
MHz  
dBm  
Pfr  
Reference input power (Note 2)  
Single-ended input  
-2  
Phase Detector  
fc  
Comparison frequency  
(Note 3)  
50  
MHz  
SSB Phase Noise (Fin = 1.9 GHz, fr = 20 MHz, fc = 20 MHz, LBW = 50 kHz, VDD = 3.3 V, Temp = 25° C) (Note 4)  
Phase Noise  
Phase Noise  
Phase Noise  
100 Hz Offset  
1 kHz Offset  
10 kHz Offset  
-89  
-95  
dBc/Hz  
dBc/Hz  
dBc/Hz  
ΦN  
ΦN  
ΦN  
-102  
SSB Phase Noise (Fin = 1.9 GHz, fr = 20 MHz, fc = 20 MHz, LBW = 50 kHz, VDD = 3.0 V, Temp = 25° C) (Note 4)  
Phase Noise  
Phase Noise  
Phase Noise  
100 Hz Offset  
1 kHz Offset  
10 kHz Offset  
-87  
-94  
dBc/Hz  
dBc/Hz  
dBc/Hz  
ΦN  
ΦN  
ΦN  
-101  
Note 1: Fclk is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10 MHz to verify Fclk  
specification.  
Note 2: CMOS logic levels can be used to drive reference input if DC coupled. Voltage input needs to be a minimum of 0.5Vp-p.  
Note 3: Parameter is guaranteed through characterization only and is not tested.  
Note 4: Parameters below are not tested for die sales. These parameters are verified during the element evaluation.  
©2007-2008 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0235-04 UltraCMOS™ RFIC Solutions  
Page 6 of 14  
PE97022  
Product Specification  
Figure 4. RF Sensitivity versus Frequency (typical device at temperature = 25° C)  
2.85V  
3.15V  
3.30V  
5
0
-5  
-10  
-15  
-20  
-25  
-30  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Frequency (MHz)  
Figure 5. Typical Phase Noise for PE97022, VDD = 3.3 V, Temp = 25 C, Fvco = 1.92 GHz,  
Fcomp = 20 MHz, Loop Bandwidth = 50 kHz  
©2007-2008 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0235-04 www.psemi.com  
Page 7 of 14  
PE97022  
Product Specification  
Functional Description  
The PE97022 consists of a prescaler, counters, a  
phase detector, and control logic. The dual  
modulus prescaler divides the VCO frequency by  
either 10 or 11, depending on the value of the  
modulus select. Counters “R” and “M” divide the  
reference and prescaler output, respectively, by  
integer values stored in a 20-bit register. An  
additional counter (“A”) is used in the modulus  
select logic. The phase-frequency detector  
generates up and down frequency control signals.  
The control logic includes a selectable chip  
interface. Data can be written via serial bus,  
parallel bus, or hardwired directly to the pins.  
There are also various operational and test modes  
and a lock detect output.  
Figure 6. Functional Block Diagram  
R Counter  
(6-bit)  
fr  
fc  
D(7:0)  
R(5:0)  
M(8:0)  
A(3:0)  
PD_U  
PD_D  
Phase  
Detector  
Control  
Logic  
Sdata  
Control  
Pins  
LD  
Cext  
Modulus  
Select  
Fin  
Fin  
10/11  
Prescaler  
M Counter  
(9-bit)  
fp  
©2007-2008 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0235-04 UltraCMOS™ RFIC Solutions  
Page 8 of 14  
PE97022  
Product Specification  
Main Counter Chain  
Reference Counter  
Normal Operating Mode  
The reference counter chain divides the  
reference frequency, fr, down to the phase  
detector comparison frequency, fc.  
The main counter chain divides the RF input  
frequency, Fin, by an integer derived from the  
user-defined values in the “M” and “A” counters. It  
is composed of the 10/11 dual modulus prescaler,  
modulus select logic, and 9-bit M counter. Setting  
Pre_en “low” enables the 10/11 prescaler. Setting  
Pre_en “high” allows Fin to bypass the prescaler  
and powers down the prescaler.  
The output frequency of the 6-bit R Counter is  
related to the reference frequency by the  
following equation:  
fc = fr / (R + 1)  
(4)  
where 0 R 63  
The output from the main counter chain, fp, is  
related to the VCO frequency, Fin, by the following  
equation:  
Note that programming R with “0” will pass the  
reference frequency, fr, directly to the phase  
detector.  
fp = Fin / [10 x (M + 1) + A]  
(1)  
In Direct Interface Mode, R Counter inputs R4  
and R5 are internally forced low (“0”). In this  
mode, the R value is limited to 0 R 15.  
where A M + 1, 1 M 511  
When the loop is locked, Fin is related to the  
reference frequency, fr, by the following equation:  
Fin = [10 x (M + 1) + A] x (fr / (R+1))  
(2)  
Register Programming  
where A M + 1, 1 M 511  
Parallel Interface Mode  
A consequence of the upper limit on A is that Fin  
must be greater than or equal to 90 x (fr / (R+1)) to  
obtain contiguous channels. Programming the M  
Counter with the minimum value of “1” will result in  
a minimum M Counter divide ratio of “2”.  
Parallel Interface Mode is selected by setting the  
Bmode input “low” and the Smode input “low”.  
Parallel input data, D[7:0], are latched in a  
parallel fashion into one of three 8-bit primary  
register sections on the rising edge of M1_WR,  
M2_WR, or A_WR per the mapping shown in  
Table 7 on page 10. The contents of the  
primary register are transferred into a secondary  
register on the rising edge of Hop_WR  
according to the timing diagram shown in Figure  
7. Data is transferred to the counters as shown  
in Table 7 on page 10.  
In Direct Interface Mode, main counter inputs M7  
and M8 are internally forced low. In this mode, the  
M value is limited to 1 M 127.  
Prescaler Bypass Mode  
Setting Pre_en “high” allows Fin to bypass and  
power down the prescaler. In this mode, the  
10/11 prescaler and A register are not active, and  
the input VCO frequency is divided by the M  
counter directly. The following equation relates Fin  
to the reference frequency, fr:  
The secondary register acts as a buffer to allow  
rapid changes to the VCO frequency. This  
double buffering for “ping-pong” counter control  
is programmed via the FSELP input. When  
FSELP is “high”, the primary register contents  
set the counter inputs. When FSELP is “low”,  
the secondary register contents are utilized.  
Fin = (M + 1) x (fr / (R+1)) )  
(3)  
where 1 M 511  
Parallel input data, D[7:0], are latched into the  
enhancement register on the rising edge of  
E_WR according to the timing diagram shown in  
Figure 6. This data provides control bits as  
shown in Table 8 on page 10 with bit  
functionality enabled by asserting the Enh input  
“low”.  
In Direct Interface Mode, main counter inputs M7  
and M8 are internally forced low. In this mode, the  
M value is limited to 1 M 127.  
©2007-2008 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0235-04 www.psemi.com  
Page 9 of 14  
PE97022  
Product Specification  
Serial Interface Mode  
B7, is clocked serially into the enhancement  
register on the rising edge of Sclk, MSB (B0) first.  
The enhancement register is double buffered to  
prevent inadvertent control changes during serial  
loading, with buffer capture of the serially-entered  
data performed on the falling edge of E_WR  
according to the timing diagram shown in  
Figure 6. After the falling edge of E_WR, the data  
provides control bits as shown in Table 8 with bit  
functionality enabled by asserting the Enh input  
“low”.  
Serial Interface Mode is selected by setting the  
Bmode input “low” and the Smode input “high”.  
While the E_WR input is “low” and the S_WR  
input is “low”, serial input data (Sdata input), B0 to  
B19, is clocked serially into the primary register on  
the rising edge of Sclk, MSB (B0) first. The  
contents from the primary register are transferred  
into the secondary register on the rising edge of  
either S_WR or Hop_WR according to the timing  
diagram shown in Figure 7. Data is transferred to  
the counters as shown in Table 7.  
The double buffering provided by the primary and  
secondary registers allows for “ping-pong” counter  
control using the FSELS input. When FSELS is  
“high”, the primary register contents set the  
counter inputs. When FSELS is “low”, the  
secondary register contents are utilized.  
Direct Interface Mode  
Direct Interface Mode is selected by setting the  
Bmode input “high”.  
Counter control bits are set directly at the pins as  
shown in Table 7. In Direct Interface Mode, main  
counter inputs M7 and M8, and R Counter inputs  
R4 and R5 are internally forced low (“0”).  
While the E_WR input is “high” and the S_WR  
input is “low”, serial input data (Sdata input), B0 to  
Table 7. Primary Register Programming  
Interface  
Mode  
Smode  
R5  
R4  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
M0  
R3  
R2  
R1  
R0  
A3  
A2  
A1  
A0  
Enh  
Bmode  
Pre_en  
M2_WR rising edge load  
M1_WR rising edge load  
A_WR rising edge load  
Parallel  
1
0
0
1
0
1
D3  
B0  
D2  
B1  
D1  
B2  
D0  
B3  
D7  
B4  
D6  
B5  
D5  
B6  
D4  
B7  
D3  
B8  
D2  
B9  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Serial*  
Direct  
1
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18 B19  
1
X
0
0
0
0
Pre_en M6  
M5  
M4  
M3  
M2  
M1  
M0  
R3  
R2  
R1  
R0  
A3  
A2  
A1  
A0  
*Serial data clocked serially on Sclk rising edge while E_WR “low” and captured in secondary register on S_WR rising edge.  
MSB (first in)  
(last in) LSB  
Table 8. Enhancement Register Programming  
Interface  
Mode  
Power  
down  
Counter  
load  
MSEL  
output  
Prescaler  
output  
Smode  
Reserved  
Reserved  
Reserved  
fc, fp OE  
Enh  
Bmode  
E_WR rising edge load  
Parallel  
Serial*  
0
0
0
0
1
D7  
B0  
D6  
B1  
D5  
B2  
D4  
D3  
D2  
B5  
D1  
B6  
D0  
B7  
0
B3  
B4  
*Serial data clocked serially on Sclk rising edge while E_WR “high” and captured in the double buffer on E_WR falling edge.  
MSB (first in)  
(last in) LSB  
©2007-2008 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0235-04 UltraCMOS™ RFIC Solutions  
Page 10 of 14  
PE97022  
Product Specification  
Figure 7. Parallel Interface Mode Timing Diagram  
tDSU  
tDHLD  
[7: 0]  
D
tPW  
tCWR  
tWRC  
M1_WR  
M2_WR  
A_WR  
tPW  
E_WR  
Hop_WR  
Figure 8. Serial Interface Mode Timing Diagram  
Sdata  
E_WR  
tEC  
tCE  
Sclk  
S_WR  
tDSU  
tDHLD  
tClkH  
tClkL  
tCWR  
tPW  
tWRC  
©2007-2008 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0235-04 www.psemi.com  
Page 11 of 14  
PE97022  
Product Specification  
Enhancement Register  
The functions of the enhancement register bits are shown below with all bits active “high”.  
Table 9. Enhancement Register Bit Functionality  
Bit Function  
Description  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Reserved**  
Reserved**  
Reserved**  
Power down  
Power down of all functions except programming interface.  
Immediate and continuous load of counter programming as directed by the Bmode and  
Bit 4  
Counter load  
Smode inputs.  
Bit 5  
Bit 6  
Bit 7  
MSEL output  
Prescaler output  
fp, fc OE  
Drives the internal dual modulus prescaler modulus select (MSEL) onto the Dout output.  
Drives the raw internal prescaler output (fmain) onto the Dout output.  
fp, fc outputs disabled.  
** Program to 0  
Phase Detector  
The phase detector is triggered by rising edges  
from the main Counter (fp) and the reference  
counter (fc). It has two outputs, namely PD_Ū,  
and PD_D¯ . If the divided VCO leads the divided  
reference in phase or frequency (fp leads fc), PD_D¯  
pulses “low”. If the divided reference leads the  
divided VCO in phase or frequency (fr leads fp),  
PD_Ū pulses “low”. The width of either pulse is  
directly proportional to phase offset between the  
two input signals, fp and fc. The phase detector  
gain is 430 mV / radian.  
PD_Ū pulses result in an increase in VCO  
frequency and PD_D¯ results in a decrease in VCO  
frequency.  
A lock detect output, LD is also provided, via the  
pin Cext. Cext is the logical “NAND” of PD_Ū and  
PD_D¯ waveforms, which is driven through a series  
2k ohm resistor. Connecting Cext to an external  
shunt capacitor provides integration. Cext also  
drives the input of an internal inverting comparator  
with an open drain output. Thus LD is an “AND”  
function of PD_Ū and PD_D¯ . See Figure 4 for a  
schematic of this circuit.  
PD_Ū and PD_D¯ are designed to drive an active  
loop filter which controls the VCO tune voltage.  
©2007-2008 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0235-04 UltraCMOS™ RFIC Solutions  
Page 12 of 14  
PE97022  
Product Specification  
Figure 9. Package Drawing  
44-lead CQFJ  
All dimensions are in inches  
Table 10. Ordering Information  
Order Code  
Part Marking  
Description  
Package  
Shipping Method  
97022-01  
PE97022 ES  
Engineering Samples  
44-pin CQFJ  
40 units / Tray  
97022-11  
97022-99  
97022-00  
PE97022  
Flight Units  
44-pin CQFJ  
Die  
40 units / Tray  
100 units / waffle pack  
1 / Box  
FA97022  
Die Production Units  
Evaluation Kit  
PE97022 EK  
©2007-2008 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0235-04 www.psemi.com  
Page 13 of 14  
PE97022  
Product Specification  
Sales Offices  
The Americas  
Peregrine Semiconductor Corporation  
Peregrine Semiconductor, Asia Pacific (APAC)  
Shanghai, 200040, P.R. China  
Tel: +86-21-5836-8276  
Fax: +86-21-5836-7652  
9380 Carroll Park Drive  
San Diego, CA 92121  
Tel: 858-731-9400  
Fax: 858-731-9499  
Peregrine Semiconductor, Korea  
#B-2607, Kolon Tripolis, 210  
Geumgok-dong, Bundang-gu, Seongnam-si  
Gyeonggi-do, 463-943 South Korea  
Tel: +82-31-728-3939  
Europe  
Peregrine Semiconductor Europe  
Bâtiment Maine  
Fax: +82-31-728-3940  
13-15 rue des Quatre Vents  
F-92380 Garches, France  
Tel: +33-1-4741-9173  
Fax : +33-1-4741-9173  
Peregrine Semiconductor K.K., Japan  
Teikoku Hotel Tower 10B-6  
1-1-1 Uchisaiwai-cho, Chiyoda-ku  
Tokyo 100-0011 Japan  
Tel: +81-3-3502-5211  
Fax: +81-3-3502-5213  
Space and Defense Products  
Americas:  
Tel: 858-731-9453  
Europe, Asia Pacific:  
180 Rue Jean de Guiramand  
13852 Aix-En-Provence Cedex 3, France  
Tel: +33-4-4239-3361  
Fax: +33-4-4239-7227  
For a list of representatives in your area, please refer to our Web site at: www.psemi.com  
Data Sheet Identification  
Advance Information  
The information in this data sheet is believed to be reliable.  
However, Peregrine assumes no liability for the use of this  
information. Use shall be entirely at the user’s own risk.  
The product is in a formative or design stage. The data  
sheet contains design target specifications for product  
development. Specifications and features may change in  
any manner without notice.  
No patent rights or licenses to any circuits described in this  
data sheet are implied or granted to any third party.  
Preliminary Specification  
Peregrine’s products are not designed or intended for use in  
devices or systems intended for surgical implant, or in other  
applications intended to support or sustain life, or in any  
application in which the failure of the Peregrine product could  
create a situation in which personal injury or death might occur.  
Peregrine assumes no liability for damages, including  
consequential or incidental damages, arising out of the use of  
its products in such applications.  
The data sheet contains preliminary data. Additional data  
may be added at a later date. Peregrine reserves the right  
to change specifications at any time without notice in order  
to supply the best possible product.  
Product Specification  
The data sheet contains final data. In the event Peregrine  
decides to change the specifications, Peregrine will notify  
customers of the intended changes by issuing a DCN  
(Document Change Notice).  
The Peregrine name, logo, and UTSi are registered trademarks  
and UltraCMOS, HaRP and MultiSwitch are trademarks of  
Peregrine Semiconductor Corp.  
©2007-2008 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0235-04 UltraCMOS™ RFIC Solutions  
Page 14 of 14  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY