PE9704 [PSEMI]

3000 MHz UltraCMOS™ Integer-N PLL Rad Hard for Space Applications; 3000兆赫的UltraCMOS ?整数N分频PLL抗辐射的空间应用
PE9704
型号: PE9704
厂家: Peregrine Semiconductor    Peregrine Semiconductor
描述:

3000 MHz UltraCMOS™ Integer-N PLL Rad Hard for Space Applications
3000兆赫的UltraCMOS ?整数N分频PLL抗辐射的空间应用

文件: 总10页 (文件大小:246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Product Specification  
PE9704  
3000 MHz UltraCMOS™ Integer-N PLL  
Rad Hard for Space Applications  
Product Description  
Peregrine’s PE9704 is a high-performance integer-N PLL  
capable of frequency synthesis up to 3000 MHz. The  
device is designed for superior phase noise performance  
while providing an order of magnitude reduction in current  
consumption, when compared with existing commercial  
space PLLs.  
Features  
3000 MHz operation  
÷10/11 dual modulus prescaler  
Phase detector output  
Serial interface or hardwired  
The PE9704 features a ÷10/11 dual modulus prescaler,  
counters, and a phase comparator as shown in Figure 1.  
Counter values are programmable through a serial  
interface, and can also be directly hard wired.  
programmable  
Ultra-low phase noise  
SEU < 10-9 errors / bit-day  
100 Krad (Si) total dose  
44-lead CQFJ  
The PE9704 is optimized for commercial space  
applications. Single Event Latch up (SEL) is physically  
impossible and Single Event Upset (SEU) is better than  
10-9 errors per bit / day. It is manufactured on Peregrine’s  
UltraCMOS™ process, a patented variation of silicon-on-  
insulator (SOI) technology on a sapphire substrate, offering  
excellent RF performance and intrinsic radiation tolerance.  
Figure 1. Block Diagram  
Prescaler  
10 / 11  
Main  
Counter  
FIN  
13  
MSEL  
20-Bit  
Frequency  
Register  
fp  
Serial  
PD_U  
PD_D  
Phase  
Control  
3
Detector  
20  
19*  
fc  
M(8:0)  
A(3:0)  
R(5:0)  
Direct  
Control  
LD  
6
6
C ext  
FR  
R Counter  
* prescaler bypass not available in Direct mode  
Document No. 70-0083-03 www.psemi.com  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 1 of 10  
PE9704  
Product Specification  
Figure 2. Pin Configurations (Top View)  
Figure 3. Package Type  
44-lead CQFJ  
6
5
4
3
2
1
44 43 42 41 40  
R4  
R5  
7
8
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
CEXT  
VDD  
M0  
PD_U  
PD_D  
GND  
N/C  
9
M1  
10  
11  
12  
13  
14  
15  
16  
17  
VDD  
VDD  
M2  
VDD  
M3  
DOUT  
VDD  
S_WR, M4  
DATA, M5  
GND  
N/C  
GND  
18 19 20 21 22 23 24 25 26 27 28  
Table 1. Pin Descriptions  
Pin No.  
Pin Name  
Interface Mode  
Type  
Description  
Power supply input. Input may range from 2.85 V to 3.15 V. Bypassing  
recommended.  
1
VDD  
Both  
(Note 1)  
2
R0  
Direct  
Direct  
Direct  
Direct  
Both  
Input  
R Counter bit0  
R Counter bit1  
R Counter bit2  
R Counter bit3  
Ground  
3
R1  
Input  
4
R2  
Input  
5
R3  
Input  
6
GND  
R4  
(Note 1)  
Input  
7
Direct  
Direct  
Direct  
Direct  
Both  
R Counter bit4  
R Counter bit5 (MSB)  
M Counter bit0  
M Counter bit1  
Same as pin 1  
8
R5  
Input  
9
M0  
M1  
VDD  
Input  
10  
11  
Input  
(Note 1)  
12  
13  
14  
VDD  
M2  
Both  
(Note 1)  
Input  
Same as pin 1  
M Counter bit2  
M Counter bit3  
Direct  
Direct  
M3  
Input  
Frequency register load enable input. Buffered data is transferred to the frequency  
register on S_WR rising edge.  
S_WR  
M4  
Serial  
Direct  
Input  
Input  
15  
16  
M Counter bit4  
Binary serial data input. Data is entered LSB first, and is clocked serially into the  
20-bit frequency control register (E_WR “low”) or the 8-bit enhancement register  
(E_WR “high”) on the rising edge of CLOCK.  
DATA  
M5  
Serial  
Direct  
Input  
Input  
M Counter bit5  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0083-03 UltraCMOS™ RFIC Solutions  
Page 2 of 10  
PE9704  
Product Specification  
Table 1. Pin Descriptions (continued)  
Pin No.  
Pin Name  
Interface Mode  
Type  
Description  
17  
GND  
Both  
Ground  
Clock input. Data is clocked serially into either the 20-bit primary register (E_WR  
“low”) or the 8-bit enhancement register (E_WR “high”) on the rising edge of  
CLOCK.  
CLOCK  
Serial  
Input  
18  
M6  
Direct  
Direct  
Direct  
Direct  
Both  
Input  
M Counter bit6  
19  
20  
21  
22  
23  
M7  
Input  
M Counter bit7  
M8  
Input  
M Counter bit8 (MSB)  
A0  
Input  
A Counter bit0  
DMODE  
VDD  
Input  
Selects direct interface mode (DMODE=1) or serial interface mode (DMODE=0)  
Same as pin 1  
Both  
(Note 1)  
Enhancement register write enable. While E_WR is “high”, DATA can be serially  
clocked into the enhancement register on the rising edge of CLOCK.  
E_WR  
Serial  
Input  
24  
A1  
Direct  
Direct  
Direct  
Both  
Input  
Input  
Input  
Input  
A Counter bit1.  
25  
26  
27  
28  
29  
30  
31  
A2  
A Counter bit2  
A3  
A Counter bit3 (MSB)  
FIN  
RF prescaler input from the VCO. 3.0 GHz maximum frequency.  
GND  
GND  
N/C  
VDD  
Both  
Ground.  
Both  
Ground.  
No connect.  
Same as pin 1  
Both  
Serial  
Both  
(Note 1)  
Output  
Data Out. The Main Counter output, R Counter output, or dual modulus prescaler  
select (MSEL) can be routed to DOUT through enhancement register programming.  
32  
DOUT  
33  
34  
35  
36  
37  
38  
VDD  
(Note 1)  
Same as pin 1  
N/C  
No connect.  
GND  
PD_D  
PD_U  
VDD  
Both  
Both  
Both  
Both  
Ground.  
PD_D pulses down when fp leads fc.  
PD_U pulses down when fc leads fp.  
Same as pin 1  
Output  
(Note 1)  
Output  
Logical “NAND” of PD_U and PD_D, passed through an on-chip, 2 kseries  
resistor. Connecting CEXT to an external capacitor will low pass filter the input to the  
inverting amplifier used for driving LD.  
39  
CEXT  
Both  
40  
41  
42  
GND  
GND  
FR  
Both  
Both  
Both  
Ground  
Ground  
Input  
Reference frequency input  
Enhancement mode. When asserted low (“0”), enhancement register bits are  
functional.  
ENH  
43  
44  
Both  
Output, OD  
Lock detect output, the open-drain logical inversion of CEXT. When the loop is  
locked, LD is high impedance; otherwise LD is a logic low (“0”).  
LD  
Serial  
Output  
Note 1: VDD pins 1, 11, 12, 23, 31, 33, 35, and 38 are connected by diodes and must be supplied with the same positive voltage level.  
Note 2: All digital input pins have 70 kpull-down resistors to ground.  
Document No. 70-0083-03 www.psemi.com  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 3 of 10  
PE9704  
Product Specification  
Table 2. Absolute Maximum Ratings  
Table 4. ESD Ratings  
Symbol  
Parameter/Conditions  
Level Units  
Symbol  
Parameter/Conditions Min Max Units  
ESD voltage (Human Body  
Model) – Note 1  
VDD  
VI  
II  
Supply voltage  
-0.3  
-0.3  
-10  
-10  
4.0  
V
V
VESD  
1000  
V
VDD  
+ 0.3  
Voltage on any input  
DC into any input  
DC into any output  
Note 1: Periodically sampled, not 100% tested. Tested per MIL-  
STD-883, M3015 C2  
+10  
+10  
mA  
mA  
Electrostatic Discharge (ESD) Precautions  
IO  
Storage temperature  
range  
When handling this UltraCMOS™ device, observe  
the same precautions that you would use with  
other ESD-sensitive devices. Although this device  
contains circuitry to protect it from damage due to  
ESD, precautions should be taken to avoid  
exceeding the specified rating in Table 4.  
Tstg  
-65  
150  
°C  
Table 3. Operating Ratings  
Symbol  
Parameter/Conditions Min Max Units  
VDD  
Supply voltage  
2.85  
-40  
3.15  
85  
V
Latch-Up Avoidance  
Operating ambient  
temperature range  
TA  
°C  
Unlike conventional CMOS devices, UltraCMOS™  
devices are immune to latch-up.  
Table 5. DC Characteristics: VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Operational supply current;  
Prescaler disabled  
Prescaler enabled  
IDD  
VDD = 2.85 to 3.15 V  
10  
24  
mA  
mA  
31  
Digital Inputs: All except FR, FIN (all digital inputs have 70 kpull-up resistors)  
VIH  
VIL  
IIH  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
VDD = 2.85 to 3.15 V  
VDD = 2.85 to 3.15 V  
VIH = VDD = 3.15 V  
0.7 x VDD  
V
V
0.3 x VDD  
+70  
µA  
µA  
IIL  
VIL = 0, VDD = 3.15 V  
-1  
Reference Divider input: FR  
IIHR High level input current  
IILR Low level input current  
Counter and phase detector outputs: fc, fp.  
VIH = VDD = 3.15 V  
+100  
0.4  
µA  
µA  
VIL = 0, VDD = 3.15 V  
-100  
VOLD  
VOHD  
Output voltage LOW  
Output voltage HIGH  
Iout = 6 mA  
Iout = -3 mA  
V
V
VDD - 0.4  
Lock detect outputs: CEXT, LD  
VOLC  
VOHC  
VOLLD  
Output voltage LOW, CEXT  
Iout = 100 µA  
Iout = -100 µA  
Iout = 6 mA  
0.4  
0.4  
V
V
V
Output voltage HIGH, CEXT  
Output voltage LOW, LD  
VDD - 0.4  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0083-03 UltraCMOS™ RFIC Solutions  
Page 4 of 10  
PE9704  
Product Specification  
Table 6. AC Characteristics: VDD = 3.0 V, -40° C < TA < 85° C, unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Max  
Units  
Control Interface and Latches (see Figures 1and 3)  
fClk  
tClkH  
tClkL  
tDSU  
tDHLD  
tPW  
CLOCK Serial data clock frequency  
CLOCK Serial clock HIGH time  
(Note 1)  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
30  
30  
10  
10  
30  
30  
30  
30  
30  
CLOCK Serial clock LOW time  
DATA set-up time after CLOCK rising edge  
DATA hold time after CLOCK rising edge  
S_WR pulse width  
tCWR  
tCE  
tWRC  
tEC  
CLOCK rising edge to S_WR rising edge.  
CLOCK falling edge to E_WR transition  
S_WR falling edge to CLOCK rising edge.  
E_WR transition to CLOCK rising edge  
MSEL data out delay after FIN rising edge  
tMDO  
CL = 12 pf  
8
Main Divider (Including Prescaler)  
FIN  
Operating frequency  
Input level range  
500  
-5  
3000  
5
MHz  
dBm  
PFin  
External AC coupling  
External AC coupling  
Main Divider (Prescaler Bypassed)  
FIN  
Operating frequency  
Input level range  
50  
-5  
300  
5
MHz  
dBm  
PFin  
Reference Divider  
FR  
Operating frequency  
(Note 3)  
100  
20  
MHz  
dBm  
PFr  
Reference input power (Note 2)  
Single-ended input  
-2  
Phase Detector  
fc  
Comparison frequency  
(Note 3)  
MHz  
Note 1: Fclk is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10 MHz to verify Fclk  
specification.  
Note 2: CMOS logic levels can be used to drive reference input if DC coupled. Voltage input needs to be a minimum of 0.5Vp-p  
.
Note 3: Parameter is guaranteed through characterization only and is not tested.  
Document No. 70-0083-03 www.psemi.com  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 5 of 10  
PE9704  
Product Specification  
Prescaler Bypass Mode  
Functional Description  
The PE9704 consists of a prescaler, counters, a  
phase detector, and control logic. The dual  
modulus prescaler divides the VCO frequency by  
either 10 or 11, depending on the value of the  
modulus select. Counters “R” and “M” divide the  
reference and prescaler output, respectively, by  
integer values stored in a 20-bit register. An  
additional counter (“A”) is used in the modulus  
select logic. The phase-frequency detector  
generates up and down frequency control signals.  
The control logic includes a selectable chip  
interface. Data can be written via a serial bus or  
hardwired directly to the pins. There are also  
various operational and test modes and a lock  
detect output.  
Setting the enhancement register bit PB “high”  
allows FIN to bypass the ÷10/11 prescaler. In  
this mode, the prescaler and A counter are  
powered down, and the input VCO frequency is  
divided by the M counter directly. This mode is  
only available when using the serial port to set  
the frequency control bits. The following  
equation relates FIN to the reference frequency  
FR:  
FIN = (M + 1) x (FR / (R+1)) )  
(3)  
where 1 M 511  
Reference Counter  
The reference counter chain divides the  
reference frequency FR down to the phase  
detector comparison frequency fc.  
Main Counter Chain  
Normal Operating Mode  
The output frequency of the 6-bit R Counter is  
related to the reference frequency by the  
following equation:  
Setting the PB control bit “low” enables the ÷10/11  
prescaler. The main counter chain then divides  
the RF input frequency (FIN) by an integer derived  
from the values in the “M” and “A” counters.  
fc = FR / (R + 1)  
(4)  
where 0 R 63  
In this mode, the output from the main counter  
chain (fp) is related to the VCO frequency (FIN) by  
the following equation:  
Note that programming R with “0” will pass the  
reference frequency (FR) directly to the phase  
detector.  
fp = FIN / [10 x (M + 1) + A]  
(1)  
where A M + 1, 1 M 511  
When the loop is locked, FIN is related to the  
reference frequency (FR) by the following  
equation:  
FIN = [10 x (M + 1) + A] x (FR / (R+1))  
(2)  
where A M + 1, 1 M 511  
A consequence of the upper limit on A is that FIN  
must be greater than or equal to 90 x (FR / (R+1))  
to obtain contiguous channels. The A counter can  
accept values as high as 15, but in typical  
operation it will cycle from 0 to 9 between  
increments in M.  
Programming the M counter with the minimum  
allowed value of “1” will result in a minimum M  
counter divide ratio of “2”.  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0083-03 UltraCMOS™ RFIC Solutions  
Page 6 of 10  
PE9704  
Product Specification  
Register Programming  
in Figure 4. After the falling edge of E_WR, the  
data provides control bits as shown in Table 8.  
These bits are active when the Enh input is “low”.  
Serial Interface Mode  
Serial Interface Mode is selected by setting the  
DMODE input “low”.  
Direct Interface Mode  
While the E_WR input is “low”, serial data (DATA  
input), B0 to B19, is clocked into a buffer register on  
the rising edge of CLOCK, LSB (B0) first. The  
contents from this buffer register are transferred  
into the frequency control register on the rising  
edge of S_WR according to the timing diagram  
shown in Figure 4. This data controls the  
counters as shown in Table 7.  
Direct Interface Mode is selected by setting  
the DMODE input “high”. In this mode, the counter  
values are set directly at external pins as shown in  
Table 7 and Figure 2. All frequency control  
register bits are addressable except PB (it is not  
possible to bypass the ÷10/11 dual modulus  
prescaler in Direct Mode).  
While the E_WR input is “high”, serial data (DATA  
input), B0 to B7, is clocked into a buffer register on  
the rising edge of CLOCK, LSB (B0) first. The  
contents from this buffer register are transferred  
into the enhancement register on the falling edge  
of E_WR according to the timing diagram shown  
Table 7. Frequency Register Programming  
Interface  
Mode  
DMODE  
R5  
R4  
M8  
M7  
X
M6  
M5  
M4  
M3  
M2  
M1  
M0  
R3  
R2  
R1  
R0  
A3  
A2  
A1  
A0  
Enh  
Serial*  
1
0
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
0
Direct  
1
1
R5  
R4  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
M0  
R3  
R2  
R1  
R0  
A3  
A2  
A1  
A0  
* Data is clocked serially on CLOCK rising edge while E_WR is “low” and transferred to frequency register on S_WR rising edge.  
MSB (first in)  
(last in) LSB  
Table 8. Enhancement Register Programming  
Interface  
Mode  
Power  
down  
Counter  
load  
MSEL  
output  
fc output  
DMODE  
Reserved*  
Reserved*  
fp output  
PB  
Enh  
Serial**  
0
X
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
* Program to 0  
* Data is clocked serially on CLOCK rising edge while E_WR is “low” and transferred to frequency register on S_WR rising edge.  
MSB (first in)  
(last in) LSB  
Document No. 70-0083-03 www.psemi.com  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 7 of 10  
PE9704  
Product Specification  
Figure 4. Serial Interface Mode Timing Diagram  
DATA  
E_WR  
tEC  
tCE  
CLOCK  
S_WR  
tDSU  
tDHLD  
tClkH  
tClkL  
tCWR  
tPW  
tWRC  
Enhancement Register  
The functions of the enhancement register bits are shown below. All bits are active high. Operation is  
undefined if more than one output is sent to DOUT  
Table 9. Enhancement Register Bit Functionality  
.
Bit Function  
Description  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Reserved**  
Reserved**  
fp output  
Drives the M counter output onto the DOUT output.  
Power down  
Counter load  
MSEL output  
fc output  
Power down of all functions except programming interface.  
Immediate and continuous load of counter programming.  
Drives the internal dual modulus prescaler modulus select (MSEL) onto the DOUT output.  
Drives the R counter output onto the DOUT output  
PB  
Allows Fin to bypass the 10/11 prescaler  
** Program to 0  
Phase Detector Outputs  
PD_U pulses result in an increase in VCO  
frequency and PD_D results in a decrease in VCO  
frequency.  
The phase detector is triggered by rising edges  
from the main counter (fp) and the reference  
counter (fc). It has two outputs, PD_U, and PD_D.  
If the divided VCO leads the divided reference in  
phase or frequency (fp leads fc), PD_D pulses  
“low”. If the divided reference leads the divided  
VCO in phase or frequency (fc leads fp), PD_U  
pulses “low”. The width of either pulse is directly  
proportional to phase offset between the two input  
signals, fp and fc. The phase detector gain is  
430 mV / radian.  
Software tools for designing the active loop filter  
can be found at Peregrine’s web site:  
www.psemi.com  
Lock Detect Output  
A lock detect signal is provided at pin LD, via the  
pin CEXT (see Figure 1). CEXT is the logical “NAND”  
of PD_U and PD_D waveforms, driven through a  
series 2 kresistor. Connecting CEXT to an  
external shunt capacitor provides integration of  
this signal.  
PD_U and PD_D are designed to drive an active  
loop filter which controls the VCO tune voltage.  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0083-03 UltraCMOS™ RFIC Solutions  
Page 8 of 10  
PE9704  
Product Specification  
Figure 5. Package Drawing  
44-lead CQFJ  
All dimensions are in mils  
Table 10. Ordering Information  
Order Code  
9704-01  
Part Marking  
PE9704 ES  
PE9704  
Description  
Package  
Shipping Method  
40 units / Tray  
40 units / Tray  
1 / Box  
Engineering Samples  
44-pin CQFJ  
44-pin CQFJ  
9704-11  
Flight Units  
9704-00  
PE9704 EK  
Evaluation Kit  
Document No. 70-0083-03 www.psemi.com  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Page 9 of 10  
PE9704  
Product Specification  
Sales Offices  
The Americas  
Peregrine Semiconductor Corporation  
Peregrine Semiconductor, Asia Pacific (APAC)  
Shanghai, 200040, P.R. China  
Tel: +86-21-5836-8276  
Fax: +86-21-5836-7652  
9450 Carroll Park Drive  
San Diego, CA 92121  
Tel: 858-731-9400  
Fax: 858-731-9499  
Peregrine Semiconductor, Korea  
#B-2607, Kolon Tripolis, #210  
Geumgok-dong, Bundang-gu, Seongnam-si  
Gyeonggi-do, 463-480 S. Korea  
Tel: +82-31-728-4300  
Europe  
Peregrine Semiconductor Europe  
Bâtiment Maine  
Fax: +82-31-728-4305  
13-15 rue des Quatre Vents  
F-92380 Garches, France  
Tel: +33-1-4741-9173  
Fax : +33-1-4741-9173  
Peregrine Semiconductor K.K., Japan  
Teikoku Hotel Tower 10B-6  
1-1-1 Uchisaiwai-cho, Chiyoda-ku  
Tokyo 100-0011 Japan  
Tel: +81-3-3502-5211  
Fax: +81-3-3502-5213  
Space and Defense Products  
Americas:  
Tel: 858-731-9453  
Europe, Asia Pacific:  
180 Rue Jean de Guiramand  
13852 Aix-En-Provence Cedex 3, France  
Tel: +33-4-4239-3361  
Fax: +33-4-4239-7227  
For a list of representatives in your area, please refer to our Web site at: www.psemi.com  
Data Sheet Identification  
Advance Information  
The information in this data sheet is believed to be reliable.  
However, Peregrine assumes no liability for the use of this  
information. Use shall be entirely at the user’s own risk.  
The product is in a formative or design stage. The data  
sheet contains design target specifications for product  
development. Specifications and features may change in  
any manner without notice.  
No patent rights or licenses to any circuits described in this  
data sheet are implied or granted to any third party.  
Preliminary Specification  
Peregrine’s products are not designed or intended for use in  
devices or systems intended for surgical implant, or in other  
applications intended to support or sustain life, or in any  
application in which the failure of the Peregrine product could  
create a situation in which personal injury or death might occur.  
Peregrine assumes no liability for damages, including  
consequential or incidental damages, arising out of the use of  
its products in such applications.  
The data sheet contains preliminary data. Additional data  
may be added at a later date. Peregrine reserves the right  
to change specifications at any time without notice in order  
to supply the best possible product.  
Product Specification  
The data sheet contains final data. In the event Peregrine  
decides to change the specifications, Peregrine will notify  
customers of the intended changes by issuing a DCN  
(Document Change Notice).  
The Peregrine name, logo, and UTSi are registered trademarks  
and UltraCMOS and HaRP are trademarks of Peregrine  
Semiconductor Corp.  
©2003-2006 Peregrine Semiconductor Corp. All rights reserved.  
Document No. 70-0083-03 UltraCMOS™ RFIC Solutions  
Page 10 of 10  

相关型号:

PE9704EK

3.0 GHz Integer-N PLL for Rad Hard Apllications
PSEMI

PE9704ES

3.0 GHz Integer-N PLL for Rad Hard Apllications
PSEMI

PE9704_06

3000 MHz UltraCMOS™ Integer-N PLL Rad Hard for Space Applications
PSEMI

PE9705

Mini UHF Male to FME Plug Adapter
PASTERNACK

PE9706

FME PLUG TO MINI UHF MALE RITGT ANGLE
PASTERNACK

PE9707

SMA Male to FME Jack Adapter
PASTERNACK

PE9708

SMA Female to FME Jack Adapter
PASTERNACK

PE9709

FME JACK TO MINI UHF MALE
PASTERNACK

PE9710

Mini UHF Female to FME Jack Adapter
PASTERNACK

PE9711

FME Jack to BNC Male Adapter
PASTERNACK

PE9712

FME Jack to BNC Female Adapter
PASTERNACK

PE9713

TNC Male to FME Jack Adapter
PASTERNACK