IDSH1G-04A1F1C-16J [QIMONDA]

DDR DRAM, 64MX16, CMOS, PBGA96, 0.80 MM PITCH, GREEN, PLASTIC, TFBGA-96;
IDSH1G-04A1F1C-16J
型号: IDSH1G-04A1F1C-16J
厂家: QIMONDA AG    QIMONDA AG
描述:

DDR DRAM, 64MX16, CMOS, PBGA96, 0.80 MM PITCH, GREEN, PLASTIC, TFBGA-96

动态存储器 双倍数据速率 内存集成电路
文件: 总54页 (文件大小:1308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
December 2008  
IDSH1G–02A1F1C  
IDSH1G–03A1F1C  
IDSH1G–04A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
DDR3 SDRAM  
EU RoHS Compliant Products  
Advance  
Internet Data Sheet  
Rev. 0.65  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
Revision History: Rev. 0.65, 2008-12  
45-47 IDD Values added  
Previous Revision: Rev. 0.64, 2008-11  
Page 20  
Page 18  
Page 9  
Added the explanation for RTT_WR -00B - in Chapter 2.4, Mode Register 2 (MR2)  
Changed the explanation for RTT_NOM -000B - in Chapter 2.3, Mode Register 1 (MR1)  
Added explanation for ODT in Table 3 “Input / Output Signal Functional Description” on Page 9  
Previous Revision: Rev. 0.63, 2008-06  
Added more products  
Page 43  
Page 28  
Added new table Table 35 “DDR3-DLL_off Speed Bins and Operating Conditions” on Page 43  
Added values in Table 16 “DC and AC Input Levels for Single-Ended Command, Address and Control  
Signals” on Page 28  
Page 34  
Changed CIO for DDR3-1066 to 2.7 pF in chapter 3.8  
Previous Revision: Rev. 0.62, 2008-03  
Added errata data sheet  
Added output drive impedance of 40 Ohm  
Updated output slew rates  
Updated IDD tables  
Previous Revision: Rev. 0.61, 2008-02  
Editorial changes  
Previous Revision: Rev. 0.60, 2007-12  
Added new product IDSH1G-03A1F1C-16H, IDSH1G-03A1F1C-16J, IDSH1G-03A1F1C-16K, IDSH1G-  
03A1F1C-16G  
Previous Revision: Rev. 0.51, 2007-12  
Page 9  
Page 7  
Added “termination data strobe “ in table 3  
Corrected figure, Ballout for 1Gb × 8 Components  
Editorial changes  
Previous Revision: Rev. 0.50, 2007-11  
Inital document  
Added more products  
Page 43  
Page 28  
Added new table Table 35 “DDR3-DLL_off Speed Bins and Operating Conditions” on Page 43  
Added values in Table 16 “DC and AC Input Levels for Single-Ended Command, Address and Control  
Signals” on Page 28  
Page 34  
Changed CIO for DDR3-1066 to 2.7 pF in chapter 3.8  
We Listen to Your Comments  
Any information within this document that you feel is wrong, unclear or missing at all?  
Your feedback will help us to continuously improve the quality of this document.  
Please send your proposal (including a reference to this document) to:  
techdoc@qimonda.com  
qag_techdoc_A4, 4.22, 2008-07-22  
12192007-S9AR-ZT6N  
2
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
1
Overview  
This chapter gives an overview of the 1-Gbit Double-Data-Rate-Three (DDR3) SDRAM component product family and  
describes its main characteristics.  
1.1  
Features  
The 1-Gbit DDR3 SDRAM offers the following key features:  
1.5 V ± 0.075 V supply voltage for VDD and VDDQ  
SDRAM configurations with ×4, ×8 and ×16 data in/outputs  
Eight internal banks for concurrent operation  
8-Bit prefetch architecture  
Page Size:1 kByte page size for ×4 and ×8,  
2 kByte page size for ×16 components  
Programmable read burst ordering: interleaved or nibble  
sequential  
Multi-purpose register (MPR) for readout of non-memory  
related information  
System level timing calibration support via write leveling  
and MPR read pattern  
Asynchronous RESET  
Differential clock inputs (CK/CK)  
Auto-Precharge operation for read and write commands  
Refresh, Self-Refresh and power saving Power-down  
modes; Auto Self-refresh (ASR) and Partial array self  
refresh (PASR)  
Average Refresh Period 7.8 µs at a TOPER up to 85 °C,  
3.9 µs up to 95 °C  
Bi-directional, differential data strobe pair (DQS/DQS) is  
transmitted / received with data. Edge aligned with read  
data and center-aligned with write data  
DLL aligns transmitted read data and strobe pair transition  
with clock  
Push-pull output driver with nominal RON of 34 Ω and 40 Ω  
at VOUT = VDDQ/2  
Programmable on-die termination (ODT) for data, data  
Operating temperature range 0 - 85 °C and 85 - 95 °C  
Data mask function for write operation  
Commands can be entered on each positive clock edge  
Data and data mask are referenced to both edges of a  
differential data strobe pair (double data rate)  
CAS latency (CL): 5, 6, 7, 8, 9, 10 and 11  
Posted CAS with programmable additive latency (AL = 0,  
CL–1 and CL–2) for improved command, address and  
data bus efficiency  
Read Latency RL = AL + CL  
Programmable CAS Write Latency (CWL) per operating  
frequency  
mask and differential strobe pairs  
Dynamic ODT mode for improved signal integrity and pre-  
selectable termination impedances during writes  
Terminate DQS (TDQS) Feature for Mix of ×4 and ×8  
based Memory Modules within a Memory Channel  
ZQ Calibration for output driver and on-die termination  
using external reference resistor to ground  
Two reference voltage inputs VREFDQ, VREFCA  
Lead and halogen free packages: 78 ball (P(G)-TFBGA-  
60) for ×4 and ×8 components  
Write Latency WL = AL + CWL  
Burst length 8 (BL8) and burst chop 4(BC4) modes: fixed  
via mode register (MRS) or selectable On-The-Fly (OTF)  
Lead and halogen free packages: 96 ball (P(G)-TFBGA-  
84) for ×16 components, 0.8 × 0.8 mm ball pitch  
Rev. 0.65, 2008-12  
3
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
1.2  
Product List  
The product list shows all possible products within the 1-Gbit DDR3 SDRAM first component generation. Availability depends  
on application needs. For Qimonda product type nomenclature see Chapter 7.  
TABLE 1  
Ordering Information  
QAG Part Number  
Max. Clock  
frequency  
CAS-RCD-RP  
latencies  
Speed Sort Name Package  
DDR3 SDRAM Components in ×4 Organization (256M × 4)  
IDSH1G-02A1F1C-10F  
IDSH1G-02A1F1C-13G  
IDSH1G-02A1F1C-13H  
533  
667  
667  
7-7-7  
8-8-8  
9-9-9  
DDR3-1066F  
DDR3-1333G  
DDR3-1333H  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
DDR3 SDRAM Components in ×8 Organization (128M × 8)  
IDSH1G-03A1F1C-08D  
IDSH1G-03A1F1C-08E  
IDSH1G-03A1F1C-10F  
IDSH1G-03A1F1C-10G  
IDSH1G-03A1F1C-13G  
IDSH1G-03A1F1C-13H  
IDSH1G-03A1F1C-16G  
IDSH1G-03A1F1C-16H  
IDSH1G-03A1F1C-16J  
IDSH1G-03A1F1C-16K  
400  
400  
533  
533  
667  
667  
800  
800  
800  
800  
5-5-5  
DDR3-800D  
DDR3-800E  
DDR3-1066F  
DDR3-1066G  
DDR3-1333G  
DDR3-1333H  
DDR3-1600G  
DDR3-1600H  
DDR3-1600J  
DDR3-1600K  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
PG-TFBGA-78  
6-6-6  
7-7-7  
8-8-8  
8-8-8  
9-9-9  
8-8-8  
9-9-9  
10-10-10  
11-11-11  
DDR3 SDRAM Components in ×16 Organization (64M × 16)  
IDSH1G-04A1F1C-10F  
IDSH1G-04A1F1C-10G  
IDSH1G-04A1F1C-13G  
IDSH1G-04A1F1C-13H  
IDSH1G-04A1F1C-16G  
IDSH1G-04A1F1C-16H  
IDSH1G-04A1F1C-16J  
IDSH1G-04A1F1C-16K  
533  
533  
667  
667  
800  
800  
800  
800  
7-7-7  
DDR3-1066F  
DDR3-1066G  
DDR3-1333G  
DDR3-1333H  
DDR3-1600G  
DDR3-1600H  
DDR3-1600J  
DDR3-1600K  
PG-TFBGA-96  
PG-TFBGA-96  
PG-TFBGA-96  
PG-TFBGA-96  
PG-TFBGA-96  
PG-TFBGA-96  
PG-TFBGA-96  
PG-TFBGA-96  
8-8-8  
8-8-8  
9-9-9  
8-8-8  
9-9-9  
10-10-10  
11-11-11  
Rev. 0.65, 2008-12  
4
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
1.3  
DDR3 SDRAM Addressing  
TABLE 2  
1-Gbit DDR3 SDRAM Addressing  
Configuration  
256Mbit × 4  
128Mbit × 8  
64Mbit × 16  
Note  
Internal Organization  
Number of Banks  
Bank Address  
8 banks × 32 Mbits × 4  
8 banks × 16 Mbits × 8 8 banks × 8 Mbits × 16  
8
8
8
BA[2:0]  
A[13:0]  
8K  
BA[2:0]  
A[13:0]  
8K  
BA[2:0]  
A[12:0]  
4K  
Row Address  
Number of addressable Rows  
Column Address  
A[9:0], A11  
A[9:0]  
1024  
A[9:0]  
1024  
1)  
2)  
Number of addressable Columns 2048  
(page length)  
Page Size  
1 KB  
1 KB  
2 KB  
Auto-Precharge  
Burst length on-the-fly bit  
A10 / AP  
A12/BC  
A10 / AP  
A10 / AP  
A12/BC  
A12/BC  
1) Page length is the number of addressable columns and is defined as 2COLBITS, where COLBITS is the number of column address bits,  
excluding A10/AP and A12/BC  
2) Page size is the number of bytes of data delivered from the array to the internal sense amplifiers when an ACTIVE command is registered.  
Page size is per memory bank and calculated as follows: Page Size = 2COLBITS × ORG/8, where COLBITS is the number of column address  
bits and ORG is the number of DQ bits for a given SDRAM configuration (×4, ×8 or ×16).  
Rev. 0.65, 2008-12  
5
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
1.4  
Package Ballout  
Figure 1, Figure 2 and Figure 3 show the ballouts for DDR3 SDRAM components. See Chapter 6 for package outlines.  
FIGURE 1  
Ballout for 1Gb ×4 Components (PG-TFBGA-78)  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
G
H
J
K
L
M
N
VSS  
VSS  
VDDQ  
VSSQ  
VREFDQ  
NC  
ODT  
NC  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSSQ  
DQ2  
NF  
VDDQ  
VSS  
VDD  
CS  
BA0  
A3  
A5  
A7  
RESET  
NC  
DQ0  
DQS  
DQS  
NF  
RAS  
CAS  
WE  
BA2  
A0  
NF  
DM  
DQ1  
VDD  
NF  
VSS  
VSSQ  
DQ3  
VSS  
NF  
VSS  
VDD  
ZQ  
VDD  
VDDQ  
VSSQ  
VSSQ  
VDDQ  
NC  
CKE  
NC  
VSS  
VDD  
VSS  
VDD  
VSS  
A
B
C
D
E
F
G
H
J
K
L
M
N
CK  
CK  
A10/AP  
NC  
A12 / BC BA1  
V
REFCA  
A2  
A9  
A13  
A1  
A11  
NC  
A4  
A6  
A8  
Top View  
DRAM  
MPPH0260  
Rev. 0.65, 2008-12  
6
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
FIGURE 2  
Ballout for 1Gb × 8 Components (PG-TFBGA-78)  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
G
H
J
VSS  
VSS  
VDDQ  
VSSQ  
VREFDQ  
NC  
ODT  
NC  
VSS  
VDD  
VSSQ  
DQ2  
DQ6  
VDDQ  
VSS  
VDD  
CS  
NC  
DQ0  
DQS  
DQS  
DQ4  
RAS  
CAS  
WE  
NU/TDQS VSS  
DM/TDQS VSSQ  
VDD  
VDDQ  
VSSQ  
VSSQ  
VDDQ  
NC  
CKE  
NC  
VSS  
A
B
C
D
E
F
G
H
J
DQ1  
VDD  
DQ7  
CK  
CK  
A10/AP  
NC  
DQ3  
VSS  
DQ5  
VSS  
VDD  
ZQ  
REFCA  
BA1  
A4  
BA0  
A3  
A5  
BA2  
A0  
A2  
V
K
L
VDD  
VSS  
A12 / BC  
A1  
VDD  
VSS  
K
L
M
N
VDD  
VSS  
A7  
RESET  
A9  
A13  
A11  
NC  
A6  
A8  
VDD  
VSS  
M
N
Top View  
DRAM  
MPPH0270  
Rev. 0.65, 2008-12  
7
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
FIGURE 3  
Ballout for 1Gb × 16 Components (PG-TFBGA-96)  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
G
H
J
VDDQ  
VSSQ  
VDDQ  
VSSQ  
VSS  
VDDQ  
VSSQ  
VREFDQ  
NC  
ODT  
NC  
VSS  
VDD  
DQU5  
VDD  
DQU3  
VDDQ  
VSSQ  
DQL2  
DQL6  
VDDQ  
VSS  
VDD  
CS  
BA0  
A3  
A5  
DQU7  
VSS  
DQU1  
DMU  
DQL0  
DQSL  
DQSL  
DQL4  
RAS  
CAS  
WE  
BA2  
A0  
A2  
A9  
NC  
DQU4  
DQSU  
DQSU  
DQU0  
DML  
DQL1  
VDD  
DQL7  
CK  
VDDQ  
DQU6  
DQU2  
VSSQ  
VSSQ  
DQL3  
VSS  
DQL5  
VSS  
VDD  
VSS  
VSSQ  
VDDQ  
VDD  
VDDQ  
VSSQ  
VSSQ  
VDDQ  
NC  
CKE  
NC  
VSS  
VDD  
VSS  
A
B
C
D
E
F
G
H
J
K
L
CK  
A10/AP  
NC  
K
L
ZQ  
VREFCA  
M
N
P
R
T
M
N
P
R
T
A12 / BC BA1  
VSS  
VDD  
VSS  
A1  
A11  
NC  
A4  
A6  
A8  
A7  
RESET  
VDD  
VSS  
Top View  
DRAM  
MPPH0280  
Rev. 0.65, 2008-12  
8
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
1.5  
Input / Output Signal Functional Description  
TABLE 3  
Input / Output Signal Functional Description  
Symbol  
EDA Signal Name1) Type  
Function  
CK, CK  
ck_t, ck_c  
Input  
Clock: CK and CK are differential clock inputs. All address and control  
input signals are sampled on the crossing of the positive edge of CK and  
negative edge of CK.  
CKE  
cke  
Input  
Clock Enable: CKE High activates, and CKE Low deactivates internal  
clock signals and device input buffers and output drivers. Taking CKE  
Low provides Precharge Power-Down and Self-Refresh operation (all  
banks idle), or Active Power-Down ( active row in any bank). CKE is  
asynchronous for Self-Refresh exit. After VREFCA and VREFDQ have  
become stable during the power on and initialization sequence, they  
must be maintained during all operations (including Self-Refresh).  
CKE must be maintained High throughout read and write accesses.  
Input buffers, excluding CK, CK, ODT, CKE and RESET are disabled  
during Power-down. Input buffers, excluding CKE and RESET are  
disabled during self refresh.  
CS  
cs_n  
Input  
Chip Select: All command are masked when CS is registered High.  
CS provides for external Rank selection on systems with multiple ranks.  
CS is considered part of the command code.  
RAS, CAS, WE  
ODT  
ras_n, cas_n, we_n Input  
odt Input  
Command Inputs: RAS, CAS and WE (along with CS) define the  
command being entered.  
On-Die Termination: ODT (registered High) enables termination  
resistance internal to the DDR3 SDRAM. When enabled, ODT is only  
applied to each DQ, DQS, DQS and DM signal for ×4/×8 configurations.  
For ×16 configuration ODT is applied to each DQ, DQSU, DQSU,  
DQSL, DQSL, DMU and DML signal.  
The ODT signal will be ignored if Mode Registers MR1 and MR2 are  
programmed to disable ODT and during Self Refresh.  
DM (×4, ×8); DMU, dm (×4); dm_tdqs_t Input  
Input Data Mask: DM is an input mask signal for write data. Input data  
is masked when DM is sampled High coincident with that input data  
during a Write access. DM is sampled on both edges of DQS. DMU and  
DML are the input mask signals for ×16 components and control the  
lower or upper bytes.  
DML (×16)  
(×8); dmu, dml (×16)  
TDQS/TDQS  
dm_tdqs_t,  
nu_tdqs_c  
Termin Termination Data Strobe: TDQS/TDQS is applicable for ×8 DRAMs  
ation  
Input  
only. When enabled via Mode Register A11 = 1 in MR1, the DRAM will  
enable the same termination resistance function on TDQS/TDQS that is  
applied to DQS/DQS. When disabled via mode register A11 = 0 in MR1,  
DM/TDQS will provide the data mask function and TDQS is not used.  
×4/×16 DRAMs must disable the TDQS function via mode register A11  
= 0 in MR1.  
BA0 - BA2  
ba0 - ba2  
Bank Address Inputs: Define to which bank an Active, Read, Write or  
Precharge command is being applied. Bank address also determines  
which mode register is to be accessed during a mode register set cycle.  
Rev. 0.65, 2008-12  
9
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
Symbol  
EDA Signal Name1) Type  
Function  
A0 - A13(×4, ×8); a0 - a13(×4, ×8); a0- Input  
Address Inputs: Provides the row address for Active commands and  
the column address for Read/Write commands to select one location  
out of the memory array in the respective bank. (A10/AP and A12/BC  
have additional functions, see below). The address inputs also provide  
the op-code during Mode Register Set commands. For numbers of  
addresses used on this assembly see Table 2.  
A0-A12(×16)  
a12(×16)  
A10 / AP  
a10  
Input  
Input  
Auto-Precharge: A10/AP is sampled during Read/Write commands to  
determine whether Auto-Precharge should be performed to the  
accessed bank after the Read/Write operation. (High: Auto-Precharge,  
Low: no Auto-Precharge). A10/AP is sampled during Precharge  
command to determine whether the Precharge applies to one bank  
(A10 Low) or all banks (A10 High). If only one bank is to be precharged,  
the bank is selected by bank addresses.  
A12 / BC  
a12  
Burst Chop: A12/BC is sampled during Read and Write commands to  
determine if burst chop (on-the-fly) will be performed. (High: no burst  
chop, Low: burst chopped). See “Command Truth Table” on Page 11  
for details.  
DQ (×4, ×8);  
dq (×4, ×8)  
Input/  
Data Input/Output: Bi-directional data bus.  
DQL/DQU (×16)  
dql/dqu (×16)  
Output  
DQS / DQS (×4,  
×8);  
DQSL, DQSL,  
DQSU,  
DQSU(×16)  
dqs_t / dqs_c (×4,  
×8);  
dqsl_t, dqsl_c,  
Input/  
Data Strobe: output with read data, input with write data. Edge-aligned  
Output with read data, centered in write data. For the ×16, DQSL corresponds  
to the data on DQL0 - DQL7; DQSU corresponds to the data on DQU0-  
DQU7.The data strobes DQS, DQSL and DQSU are paired with  
differential signals DQS, DQSL and DQSU, respectively, to provide  
differential pair signaling to the system during both reads and writes.  
DDR3 SDRAM supports differential data strobe only and does not  
support single-ended.  
dqsu_t, dqsu_c (×16)  
RESET  
reset_n  
CMOS Active Low Asynchronous Reset: Reset is active when RESET is  
Input  
Low, and inactive when RESET is High. RESET must be High during  
normal operation. RESET is a CMOS rail to rail signal with DC High and  
Low are 80% and 20% of VDD, RESET active is destructive to data  
contents.  
NC  
No Connect: no internal electrical connection is present  
NF  
No Function  
VDDQ  
VSSQ  
VDD  
vddq  
vssq  
vdd  
vss  
Supply DQ Power Supply: 1.5 V ± 0.075 V  
Supply DQ Ground  
Supply Power Supply: 1.5 V ± 0.075 V  
Supply Ground  
VSS  
VREFDQ  
VREFCA  
ZQ  
vrefdq  
vrefca  
zq  
Supply Reference Voltage for DQ  
Supply Reference Voltage for Command and Address inputs  
Supply Reference ball for ZQ calibration  
1) The EDA Signal Name is used in Qimonda's Simulation Models such as IBIS, Verilog, etc.  
Note: Input only pins (BA0-BA2, A0-A15, RAS, CAS, WE, CS, CKE, ODT, and RESET) do not supply termination.  
Rev. 0.65, 2008-12  
10  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
2
Functional Description  
The DDR3 SDRAM is a high-speed dynamic random-access memory internally configured as an eight-bank SDRAM.  
2.1  
Truth Tables  
The truth tables list the input signal values at a given clock  
edge which represent a command or state transition expected  
to be executed by the DDR3 SDRAM . Table 4 lists all valid  
commands to the DDR3 SDRAM. For a detailed description  
of the various power mode entries and exits please refer to  
Table 5. In addition, the DM functionality is described in  
Table 6.  
TABLE 4  
Command Truth Table  
Function  
Abbr.  
CKE  
CS RAS CAS WE BA2 A15 A12/ A10/ A11, Note  
BC AP A9-A0  
-
-
Prev. Curr.  
Cycle Cycle  
BA0 A13  
1)2)3)4)5)  
Mode Register Set  
Refresh  
MRS  
REF  
SRE  
SRX  
H
H
H
L
H
H
L
L
L
L
H
L
L
L
L
L
L
L
L
V
H
L
L
L
H
L
L
BA OP Code  
1)2)3)4)5)  
L
H
H
V
H
L
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
1)2)3)4)5)6)7)8)  
1)2)3)4)5)6)7)8)9)  
Self-Refresh Entry  
Self-Refresh Exit  
L
H
V
H
H
H
H
L
1)2)3)4)5)  
1)2)3)4)5)  
1)2)3)4)5)  
1)2)3)4)5)10)  
Single Bank Precharge  
Precharge all Banks  
Active  
PRE  
PREA  
ACT  
WR  
H
H
H
H
H
H
H
H
BA  
V
V
V
V
V
L
V
V
L
H
H
L
BA RA (Row Address)  
Write (BL8MRS or  
BC4MRS)  
BA RFU V  
L
CA  
1)2)3)4)5)10)  
1)2)3)4)5)10)  
1)2)3)4)5)10)  
Write (BC4OTF)  
Write (BL8OTF)  
WRS4  
WRS8  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
L
L
L
BA RFU L  
BA RFU H  
BA RFU V  
L
L
CA  
CA  
CA  
Write w/AP (BL8MRS or WRA  
BC4MRS)  
H
1)2)3)4)5)10)  
1)2)3)4)5)10)  
1)2)3)4)5)10)  
Write w/AP (BC4OTF)  
Write w/AP (BL8OTF)  
WRAS4 H  
WRAS8 H  
H
H
H
L
L
L
H
H
H
L
L
L
L
L
BA RFU L  
BA RFU H  
BA RFU V  
H
H
L
CA  
CA  
CA  
Read (BL8MRS or  
BC4MRS)  
RD  
H
H
1)2)3)4)5)10)  
1)2)3)4)5)10)  
1)2)3)4)5)10)  
Read (BC4OTF)  
Read (BL8OTF)  
RDS4  
RDS8  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
H
H
H
BA RFU L  
BA RFU H  
BA RFU V  
L
L
H
CA  
CA  
CA  
Read w/AP (BL8MRS or RDA  
BC4MRS)  
1)2)3)4)5)10)  
1)2)3)4)5)10)  
1)2)3)4)5)11)  
Read w/AP (BC4OTF)  
Read w/AP (BL8OTF)  
No Operation  
RDAS4  
H
H
H
H
H
H
L
L
L
H
H
H
L
L
H
H
H
BA RFU L  
BA RFU H  
H
H
V
CA  
CA  
V
RDAS8  
NOP  
H
V
V
V
Rev. 0.65, 2008-12  
11  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
Function  
Abbr.  
CKE  
CS RAS CAS WE BA2 A15 A12/ A10/ A11, Note  
-
-
BC AP A9-A0  
Prev. Curr.  
Cycle Cycle  
BA0 A13  
1)2)3)4)5)12)  
Device Deselect  
DES  
PDE  
H
H
H
L
H
L
X
H
V
H
V
H
H
X
H
V
H
V
H
H
X
H
V
H
V
L
X
V
X
V
X
V
X
V
X
V
1)2)3)4)5)8)13)  
Power Down Entry  
H
1)2)3)4)5)8)13)  
Power Down Exit  
PDX  
L
H
L
V
V
V
V
V
H
1)2)3)4)5)  
1)2)3)4)5)  
ZQ Calibration Short  
ZQ Calibration Long  
ZQCS  
ZQCL  
H
H
H
H
L
L
X
X
X
X
X
X
L
X
X
L
H
1) BA = Bank Address, RA = Row Address, CA = Column Address, BC = Burst Chop, AP = Auto Precharge, X = Don’t care, V = valid  
2) All DDR3 SDRAM commands are defined by states of CS, RAS, CAS, WE and CKE at the rising edge of the clock. The higher order  
address bits of BA, RA and CA are device density and IO configuration (×4, ×8, ×16) dependent.  
3) RESET is a low active signal which will be used only for asynchronous reset. It must be maintained High during any function.  
4) Bank addresses (BA) determine which bank is to be operated upon. For MRS, BA selects a Mode Register.  
5) V means H or L (but a defined logic level) and X means either “defined or undefined (like floating) logic level”.  
6) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh  
7)  
VREF (both VREFCA and VREFDQ) must be maintained during Self Refresh operation.  
8) Refer to “Clock Enable (CKE) Truth Table for Synchronous Transitions” on Page 13 for more detail with CKE transition.  
9) Self refresh exit is asynchronous.  
10) Burst reads or writes cannot be terminated or interrupted and Fixed/on-the-Fly BL will be defined by MRS.  
11) The No Operation (NOP) command should be used in cases when the DDR3 SDRAM is in an idle or a wait state. The purpose of the NOP  
command is to prevent the DDR3 SDRAM from registering any unwanted commands between operations. A NOP command will not  
terminate a previous operation that is still executing, such as a read or write burst.  
12) The Deselect command (DES) performs the same function as a No Operation command.  
13) The Power Down Mode does not perform any refresh operation.  
Rev. 0.65, 2008-12  
12  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
TABLE 5  
Clock Enable (CKE) Truth Table for Synchronous Transitions  
Current State 1) CKE(N-1)2) CKE(N)2)  
Command (N)3)RAS, Action (N)3)  
CAS, WE, CS  
Note  
Previous  
Cycle  
Current  
Cycle  
4)5)6)7)8)9)  
Power Down  
Self Refresh  
L
L
H
L
H
L
L
L
L
L
L
L
X
Maintain Power Down  
4)5)6)7)8)10)  
L
DES or NOP  
X
Power Down Exit  
4)5)6)7)9)11)  
L
Maintain Self Refresh  
Self Refresh Exit  
4)5)6)7)11)12)13)  
4)5)6)7)8)10)14)  
4)5)6)7)8)10)14)15)  
4)5)6)7)8)10)14)15)  
4)5)6)7)8)10)14)15)  
4)5)6)7)10)  
L
DES or NOP  
DES or NOP  
DES or NOP  
DES or NOP  
DES or NOP  
DES or NOP  
DES or NOP  
REF  
Bank(s) Active  
Reading  
H
H
H
H
H
H
H
Active Power Down Entry  
Power Down Entry  
Writing  
Power Down Entry  
Precharging  
Refreshing  
All Banks Idle  
Power Down Entry  
Precharge Power Down Entry  
Precharge Power Down Entry  
Self Refresh Entry  
4)5)6)7)10)8)14)16)  
4)5)6)7)14)16)17)  
4)5)6)7)18)  
Any other state  
Refer to “Command Truth Table” on Page 11 for more detail with all command signals  
1) Current state is defined as the state of the DDR3 SDRAM immediately prior to clock edge N.  
2) CKE(N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge.  
3) COMMAND (N) is the command registered at clock edge N, and ACTION (N) is a result of COMMAND (N),ODT is not included here.  
4) All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.  
5) The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.  
6) CKE must be registered with the same value on tCKE.MIN consecutive positive clock edges. CKE must remain at the valid input level the  
entire time it takes to achieve the tCKE.MIN clocks of registeration. Thus, after any CKE transition, CKE may not transition from its valid level  
during the time period of tIS + tCKE.MIN + tIH.  
7) DES and NOP are defined in “Command Truth Table” on Page 11.  
8) The Power Down does not perform any refresh operations  
9) X means Don’t care (including floating around VREFCA) in Self Refresh and Power Down. It also applies to address pins.  
10) Valid commands for Power Down Entry and Exit are NOP and DES only  
11) VREF (both VREFCA and VREFDQ) must be maintained during Self Refresh operation.  
12) On Self Refresh Exit DES or NOP commands must be issued on every clock edge occurring during the tXS period. Read, or ODT  
commands may be issued only after tXSDLL is satisfied.  
13) Valid commands for Self Refresh Exit are NOP and DES only.  
14) Self Refresh can not be entered while Read or Write operations are in progress.  
15) If all banks are closed at the conclusion of a read, write or precharge command then Precharge Power-down is entered, otherwise Active  
Power-down is entered.  
16) ‘Idle state’ is defined as all banks are closed (tRP, tDAL, etc. satisfied), no data bursts are in progress, CKE is High, and all timings from  
previous operations are satisfied (tMRD, tMOD, tRFC, tZQ.INIT, tZQ.OPER, tZQCS, etc.) as well as all Self-Refresh exit and Power-Down Exit  
parameters are satisfied (tXS, tXP, tXPDLL, etc.).  
17) Self Refresh mode can only be entered from the All Banks Idle state.  
18) Must be a legal command as defined in “Command Truth Table” on Page 11.  
Rev. 0.65, 2008-12  
13  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
TABLE 6  
Data Mask (DM) Truth Table  
Name (Function)  
DM  
DQs  
Write Enable  
Write Inhibit  
L
Valid  
X
H
Rev. 0.65, 2008-12  
14  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
2.2  
Mode Register 0 (MR0)  
The mode register MR0 stores the data for controlling various  
operating modes of DDR3 SDRAM. It controls burst length,  
read burst type, CAS latency, test mode, DLL reset, WR  
(write recovery time for auto-precharge) and DLL control for  
precharge Power-Down, which includes various vendor  
specific options to make DDR3 SDRAM useful for various  
applications. The mode register is written by asserting Low on  
CS, RAS, CAS, WE, BA0, BA1, and BA2, while controlling the  
states of address pins according to Table 7.  
BA2 BA1 BA0 A13 A12 A11 A10  
A9  
A8  
A7  
A6  
A5  
CL  
A4  
A3  
A2  
CL  
A1  
A0  
DLL  
res  
0
0
0
01) PPD  
WR  
TM  
RBT  
BL  
MPBH0470  
TABLE 7  
MR0 Mode register Definition, BA[2:0]=000B  
Field  
Bits1)  
Description  
Burst Length (BL) and Control Method  
BL  
A[1:0]  
Number of sequential bits per DQ related to one Read/Write command.  
00B BL8MRS mode with fixed burst length of 8. A12/BC at Read or Write command time is Don’t care  
at read or write command time.  
01B BLOTF on-the-fly (OTF) enabled using A12/BC at Read or Write command time. When A12/BC is  
High during Read or Write command time a burst length of 8 is selected (BL8OTF mode). When  
A12/BC is Low, a burst chop of 4 is selected (BC4OTF mode). Auto-Precharge can be enabled or  
disabled.  
10B BC4MRS mode with fixed burst chop of 4 with tCCD = 4 × nCK. A12/BC is Don’t care at Read or  
Write command time.  
11B TBD Reserved  
RBT  
A3  
Read Burst Type  
0B  
1B  
Nibble Sequential  
Interleaved  
Rev. 0.65, 2008-12  
15  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
Field  
Bits1)  
Description  
CL  
A[6:4,2] CAS Latency (CL)  
CAS Latency is the delay, in clock cycles, between the internal Read command and the availability of the  
first bit of output data.  
Note: For more information on the supported CL and AL settings based on the operating clock frequency,  
refer to “Speed Bins” on Page 37.  
Notes  
1. All other bit combinations are reserved.  
2. The table only shows the encodings for a given CAS Latency. For actual supported CAS Latency,  
please refer to speed bin tables for each frequency  
0000B RESERVED  
0010B  
0100B  
0110B  
1000B  
1010B  
5
6
7
8
9
1100B 10  
1110B 11  
0001B 12  
0011B 13  
0101B 14  
0111B 15  
1001B 16  
1011B RESERVED  
1101B RESERVED  
1111B RESERVED  
TM  
A7  
Test Mode  
The normal operating mode is selected by MR0(bit A7 = 0) and all other bits set to the desired values  
shown in this table. Programming bit A7 to a 1 places the DDR3 SDRAM into a test mode that is only  
used by the SDRAM manufacturer and should NOT be used. No operations or functionality is guaranteed  
if A7 = 1.  
0B  
1B  
Normal Mode  
Vendor specific test mode  
DLLres A8  
DLL Reset  
The internal DLL Reset bit is self-clearing, meaning it returns back to the value of 0 after the DLL reset  
function has been issued. Once the DLL is enabled, a subsequent DLL Reset should be applied. Any  
time the DLL reset function is used, tDLLK must be met before any functions that require the DLL can be  
used (i.e. Read commands or synchronous ODT operations).  
0B  
1B  
No DLL Reset  
DLL Reset triggered  
Rev. 0.65, 2008-12  
16  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
Field  
Bits1)  
Description  
WR  
A[11:9] Write Recovery for Auto-Precharge  
Number of clock cycles for write recovery during Auto-Precharge. WRMIN in clock cycles is calculated by  
dividing tWR.MIN (in ns) by the actual tCK.AVG (in ns) and rounding up to the next integer: WR.MIN [nCK] =  
Roundup(tWR.MIN[ns] / tCK.AVG[ns]). The WR value in the mode register must be programmed to be equal  
or larger than WR.MIN. The resulting WR value is also used with tRP to determine tDAL. Since WR of 9  
and 11 is not implemented in DDR3 and the above formula results in these values, higher values have  
to be programmed.  
Note: The table only shows the encodings for Write Recovery. For actual Write recovery timing, please  
refer to AC timing table.  
000B 16  
001B  
010B  
011B  
100B  
5
6
7
8
101B 10  
110B 12  
111B 14  
PPD  
A12  
Precharge Power-Down DLL Control  
Active Power-Down will always be with DLL-on. Bit A12 will have no effect in this case. For Precharge  
Power-Down, bit A12 in MR0 is used to select the DLL usage as shown below.  
0B  
Slow Exit. DLL is frozen during precharge Power-down.Read and synchronous ODT commands  
are only allowed after tXPDLL  
.
1B  
Fast Exit. DLL remains on during precharge Power-down.Any command can be applied after tXP,  
provided that other timing parameters are satisfied.  
1) A13, A14 and A15 - even if not available on a specific device - must be programmed to 0B.  
Rev. 0.65, 2008-12  
17  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
2.3  
Mode Register 1 (MR1)  
The Mode Register MR1 stores the data for enabling or on CS, RAS, CAS, WE, High on BA0 and Low on BA1and  
disabling the DLL, output driver strength, RTT_NOM impedance, BA2, while controlling the states of address pins according to  
additive latency (AL), Write leveling enable and Qoff (output Table 8.  
disable). The Mode Register MR1 is written by asserting Low  
BA2 BA1 BA0 A13 A12 A11 A10 A9  
A8  
0
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
RTT_  
nom  
RTT_  
nom  
RTT_  
nom  
DLL  
dis  
0
0
0
01) Qoff TDQS  
0
Level  
DIC  
AL  
DIC  
MPBH0480  
TABLE 8  
MR1 Mode Register Definition, BA[2:0]=001B  
Field  
Bits1)  
Description  
DLL Disable  
DLLdis  
A0  
The DLL must be enabled for normal operation. DLL enable is required during power up initialization,  
after reset and upon returning to normal operation after having the DLL disabled. During normal  
operation (DLL-on) with MR1(A0 = 0), the DLL is automatically disabled when entering Self-Refresh  
operation and is automatically re-enabled and reset upon exit of Self-Refresh operation. Any time the  
DLL is enabled, a DLL reset must be issued afterwards. Any time the DLL is reset, tDLLK clock cycles  
must occur before a Read or synchronous ODT command can be issued to allow time for the internal  
clock to be synchronized with the external clock. Failing to wait for synchronization to occur may  
result in a violation of the tDQSCK, tAON, tAOF or tADC parameters. During tDLLK, CKE must continuously  
be registered high. DDR3 SDRAM does not require DLL for any Write operation.  
0B  
1B  
DLL is enabled  
DLL is disabled  
DIC  
A[5, 1]  
Output Driver Impedance Control  
Note: All other bit combinations are reserved.  
00B Nominal Drive Strength RON40 = RZQ/6 (nominal 40.0 Ω, with nominal RZQ = 240 Ω)  
01B Nominal Drive Strength RON34 = RZQ/7 (nominal 34.3 Ω, with nominal RZQ = 240 Ω)  
RTT_NOM  
A[9, 6, 2] Nominal Termination Resistance of ODT  
Notes  
1. If RTT_NOM is used during Writes, only the values RZQ/2, RZQ/4 and RZQ/6 are allowed.  
2. In Write leveling Mode (MR1[bit7] = 1) with MR1[bit12] = 1, all RTT_Nom settings are allowed; in  
Write Leveling Mode (MR1[bit7] = 1) with MR1[bit12] = 0, only RTT_NOM settings of RZQ/2, RZQ/4  
and RZQ/6 are allowed.  
3. All other bit combinations are reserved.  
000B  
RTT_NOM disabled, RTT_WR is controlled independently via MR2  
001B RTT60 = RZQ / 4 (nominal 60 Ω with nominal RZQ = 240 Ω)  
010B RTT120 = RZQ / 2 (nominal 120 Ω with nominal RZQ = 240 Ω  
011B RTT40 = RZQ / 6 (nominal 40 Ω with nominal RZQ = 240 Ω)  
100B RTT20 = RZQ / 12 (nominal 20 Ω with nominal RZQ = 240 Ω)  
101B RTT30 = RZQ / 8 (nominal 30 Ω with nominal RZQ = 240 Ω)  
Rev. 0.65, 2008-12  
18  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
Field  
Bits1)  
Description  
AL  
A[4, 3]  
Additive Latency (AL)  
Any read or write command is held for the time of Additive Latency (AL) before it is issued as internal  
read or write command.  
Notes  
1. AL has a value of CL - 1 or CL - 2 as per the CL value programmed in the MR0 register.  
00B  
01B  
10B  
11B  
AL = 0 (AL disabled)  
AL = CL - 1  
AL = CL - 2  
Reserved  
Level  
TDQS  
Qoff  
A7  
Write Leveling Mode  
0B  
1B  
Write Leveling Mode Disabled, Normal operation mode  
Write Leveling Mode Enabled  
A11  
A12  
TDQS enable  
0B  
1B  
Disable  
Enable  
Output Disable  
Under normal operation, the SDRAM outputs are enabled during read operation and write leveling  
for driving data (Qoff bit in the MR1 is set to 0B). When the Qoff bit is set to 1B, the SDRAM outputs  
(DQ, DQS, DQS, also on upper byte lane in case of ×16) will be disabled - also during write leveling.  
Disabling the SDRAM outputs allows users to run write leveling on multiple ranks and to measure IDD  
currents during Read operations, without including the output.  
0B  
1B  
Output buffer enabled  
Output buffer disabled  
1) A13, A14, A15 - even if not available on a specific device - must be programmed to 0B.  
Rev. 0.65, 2008-12  
19  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
2.4  
Mode Register 2 (MR2)  
The Mode Register MR2 stores the data for controlling  
refresh related features, RTT_WR impedance, and CAS write  
latency. The Mode Register MR2 is written by asserting Low  
on CS, RAS, CAS, WE, High on BA1 and Low on BA0 and  
BA2, while controlling the states of address signals according  
to Table 9.  
BA2 BA1 BA0  
A13 A12 A11 A10  
A9  
A8  
0
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
CWL  
0
1
0
0
0
0
RTT_WR  
SRT ASR  
PASR  
reg. addr  
MPBH0100  
TABLE 9  
MR2 Mode Register Definition, BA[2:0]=010B  
Field  
PASR  
Bits1)  
A[2:0]  
Description  
Partial Array Self Refresh (PASR)  
If PASR (Partial Array Self Refresh) is enabled, data located in areas of the array beyond the  
specified self refresh location may get lost if self refresh is entered. During non-self-refresh operation,  
data integrity will be maintained if tREFI conditions are met.  
000B Full array (Banks 000B - 111B)  
001B Half Array(Banks 000B - 011B)  
010B Quarter Array(Banks 000B - 001B)  
011B 1/8th array (Banks 000B )  
100B 3/4 array(Banks 010B - 111B)  
101B Half array(Banks 100B - 111B)  
110B Quarter array(Banks 110B - 111B)  
111B 1/8th array(Banks 111B )  
CWL  
A[5:3]  
CAS Write Latency (CWL)  
Number of clock cycles from internal write command to first write data in.  
000B 5 (3.3 ns tCK.AVG 2.5 ns)  
001B 6 (2.5 ns > tCK.AVG 1.875 ns)  
010B 7 (1.875 ns > tCK.AVG 1.5 ns)  
011B 8 (1.5 ns > tCK.AVG 1.25 ns)  
100B 9 (1.25 ns > tCK.AVG 1.07 ns)  
101B 10 (1.07 ns > tCK.AVG 0.935 ns)  
110B 11 (0.935 ns > tCK.AVG 0.833 ns)  
111B 12 (0.833 ns > tCK.AVG 0.75 ns)  
Note: Besides CWL limitations on tCK.AVG, there are also tAA.MIN/MAX restrictions that need to be  
observed. For details, please refer to “Speed Bins” on Page 37.  
ASR  
A6  
Auto Self Refresh (ASR)  
When enabled, DDR3 SDRAM will automatically provide appropriate self refresh entry all supported  
operating temperature values. If not enabled, the SRT bit must be programmed to indicate TOPER  
during subsequent self refresh operation.  
0B  
1B  
Disabled, manual Self-Refresh Reference (SRT)  
Auto Self Refresh enabled  
Rev. 0.65, 2008-12  
12192007-S9AR-ZT6N  
20  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
Field  
Bits1)  
Description  
SRT  
A7  
Self-Refresh Temperature Range (SRT)  
If ASR = 0, the SRT bit must be programmed to indicate TOPER during subsequent self refresh  
operation. If ASR = 1, SRT bit must be set to 0b.  
0B  
1B  
Normal operating temperature range  
Extended operating temperature range  
RTT_WR  
A[10:9]  
Dynamic ODT mode and RTT_WR Pre-selection  
Notes  
1. The RTT_WR value can be applied during writes even when RTT_NOM is disabled. During write  
leveling, Dynamic ODT is not available.  
00B  
01B  
10B  
Dynamic ODT mode disabled, write does not affect the RTT value  
Dynamic ODT mode enabled with RTT_WR = RZQ/4 = 60 Ω  
Dynamic ODT mode enabled with RTT_WR = RZQ/2 = 120Ω  
1) A13, A14, A15 - even if not available on a specific device - must be programmed to 0B.  
Rev. 0.65, 2008-12  
21  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
2.5  
Mode Register 3 (MR3)  
The Mode Register MR3 controls Multi purpose registers and  
optional On-die thermal sensor (ODTS) feature. The Mode  
Register MR3 is written by asserting Low on CS, RAS, CAS,  
WE, High on BA1 and BA0, and Low on BA2 while controlling  
the states of address signals according to Table 10.  
BA2 BA1 BA0 A13 A12 A11 A10  
A9  
0
A8  
0
A7  
0
A6  
0
A5  
0
A4  
0
A3  
0
A2  
A1  
A0  
0
1
1
0
0
0
0
MPR  
MPR loc  
MPBH0490  
TABLE 10  
MR3 Mode Register Definition, BA[2:0]=011B  
Field  
Bits1)  
Description  
Multi Purpose Register Location  
MPR loc  
A[1:0]  
00B  
01B  
10B  
11B  
Pre-defined data pattern for read synchronization  
RFU  
RFU  
RFU  
MPR  
A2  
Multi Purpose Register Enable  
0B  
1B  
MPR disabled, normal memory operation  
Dataflow from the Multi Purpose register MPR  
1) A13, A14 and A15 - even if not available on a specific device - must be programmed to 0B.  
Rev. 0.65, 2008-12  
22  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
2.6  
Read / Write Operations and Access Modes  
After a bank has been activated, a read or write access can  
be executed. This is accomplished by setting RAS High, CS  
and CAS Low at the clock’s rising edge. WE must also be  
defined at this time to determine whether the access cycle is  
a read operation (WE High) or a write operation (WE Low).  
The DDR3 SDRAM provides a burst column access  
operation. A single Read or Write Command will initiate a  
serial read or write operation on successive clock edges.  
2.6.1  
Burst Order  
Accesses within a given burst may be interleaved or nibble  
sequential depending on the programmed bit A3 in the mode  
register MR0.  
column address bits CA[2:0] are ignored during the write  
command. For writes with a burst being chopped to 4, the  
input on column address 2 (CA[2]) determines if the lower or  
upper four burst bits are selected. In this case, the inputs on  
the lower 2 column address bits CA[1:0] are ignored during  
the write command.The following table shows burst order  
versus burst start address for reads and writes of bursts of 8  
as well as of bursts of 4 operation (burst chop).  
Regarding read commands, the lower 3 column address bits  
CA[2:0] at read command time determine the start address  
for the read burst.  
Regarding write commands, the burst order is always fixed.  
For writes with a burst length of 8, the inputs on the lower 3  
TABLE 11  
Bit Order during Burst  
Burst Command Column Address Interleaved Burst Sequence  
Nibble Sequential Burst  
Sequence  
Note  
Length  
2:0  
Bit Order within Burst  
Bit Order within Burst  
CA2 CA1 CA0 1. 2. 3. 4. 5. 6. 7. 8. 1. 2. 3. 4. 5. 6. 7. 8.  
1)  
8
READ  
0
0
0
0
1
1
1
1
V
0
0
0
0
1
1
1
1
0
1
0
0
1
1
0
0
1
1
V
0
0
1
1
0
0
1
1
V
V
0
1
0
1
0
1
0
1
V
0
1
0
1
0
1
0
1
V
V
0
1
2
3
4
5
6
7
0
0
1
2
3
4
5
6
7
0
4
1
0
3
2
5
4
7
6
1
1
0
3
2
5
4
7
6
1
5
2
3
0
1
6
7
4
5
2
2
3
0
1
6
7
4
5
2
6
3
2
1
0
7
6
5
4
3
3
2
1
0
7
6
5
4
3
7
4
5
6
7
0
1
2
3
4
T
T
T
T
T
T
T
T
X
X
5
4
7
6
1
0
3
2
5
T
T
T
T
T
T
T
T
X
X
6
7
4
5
2
3
0
1
6
T
T
T
T
T
T
T
T
X
X
7
6
5
4
3
2
1
0
7
T
T
T
T
T
T
T
T
X
X
0
1
2
3
4
5
6
7
0
0
1
2
3
4
5
6
7
0
4
1
2
3
0
5
6
7
4
1
1
2
3
0
5
6
7
4
1
5
2
3
0
1
6
7
4
5
2
2
3
0
1
6
7
4
5
2
6
3
0
1
2
7
4
5
6
3
3
0
1
2
7
4
5
6
3
7
4
5
6
7
0
1
2
3
4
T
T
T
T
T
T
T
T
X
X
5
6
7
4
1
2
3
0
5
T
T
T
T
T
T
T
T
X
X
6
7
4
5
2
3
0
1
6
T
T
T
T
T
T
T
T
X
X
7
4
5
6
3
0
1
2
7
T
T
T
T
T
T
T
T
X
X
1)  
1)  
1)  
1)  
1)  
1)  
1)  
1)2)  
WRITE  
READ  
1)3)4)  
1)3)4)  
1)3)4)  
1)3)4)  
1)3)4)  
1)3)4)  
1)3)4)  
1)3)4)  
1)2)4)5)  
1)2)4)5)  
4
(Burst  
Chop  
Mode)  
WRITE  
Rev. 0.65, 2008-12  
12192007-S9AR-ZT6N  
23  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
1) 0...7 bit number is value of CA[2:0] that causes this bit to be the first read during a burst.  
2) V: a valid logic level (0 or 1), but respective buffer input ignores level on input pins.  
3) T: output drivers for data and strobe are in high impedance.  
4) In case of BC4MRS (burst length being fixed to 4 by MR0 setting), the internal write operation starts two clock cycles earlier than for the  
BL8 modes. This means that the starting point for tWR and tWTR will be pulled in by two clocks. In case of BC4OTF mode (burst length being  
selected on-the-fly via A12/BC), the internal write operation starts at the same point in time as a burst of 8 write operation. This means that  
during on-the-fly control, the starting point for tWR and tWTR will not be pulled in by two clocks.  
5) X: Don’t Care  
Rev. 0.65, 2008-12  
24  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
3
Operating Conditions and  
Interface Specification  
3.1  
Absolute Maximum Ratings  
TABLE 12  
Absolute Maximum Ratings  
Parameter  
Symbol  
Rating  
Min.  
Unit  
Note  
Max.  
1)2)  
1)2)  
1)  
Voltage on VDD ball relative to VSS  
Voltage on VDDQ ball relative to VSS  
Voltage on any ball relative to VSS  
Storage Temperature  
VDD  
–0.4  
–0.4  
–0.4  
–55  
+1.975  
+1.975  
+1.975  
+100  
V
VDDQ  
V
VIN, VOUT  
TSTG  
V
1)3)  
°C  
1) Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2)  
V
V
DD and VDDQ must be within 300mV of each other at all times. VREFDQ and VREFCA must not be greater than 0.6 × VDDQ. When VDD and  
DDQ are less than 500 mV, VREFDQ and VREFCA may be equal or less than 300 mV.  
3) Storage Temperature is the case surface temperature on the center/top side of the SDRAM. For the measurement conditions, please refer  
to JESD51-2 standard.  
Rev. 0.65, 2008-12  
25  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
3.2  
Operating Conditions  
TABLE 13  
SDRAM Component Operating Temperature Range  
Parameter  
Symbol  
Rating  
Unit  
Note  
Min.  
Max.  
1)2)3)  
1)3)4)  
Normal Operating Temperature Range  
Extended Temperature Range  
TOPER  
0
85  
95  
°C  
°C  
85  
1) Operating Temperature TOPER is the case surface temperature on the center / top side of the SDRAM. For measurement conditions, please  
refer to the JEDEC document JESD51-2.  
2) The Normal Temperature Range specifies the temperatures where all SDRAM specification will be supported.  
3) During operation, the SDRAM operating temperature must be maintained above 0 °C under all operating conditions. Either the device  
operating temperature rating may be used to set an appropriate refresh rate and/or to monitor the maximum operating temperature.  
4) Some application require operation of the DRAM in the Extended Temperature Range between 85 °C and 95 °C operating temperature.  
Full specifications are provided in this range, but the following additional conditions apply:  
a) Refresh commands have to be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs.  
b) If Self-Refresh operation is required in the Extended Temperature Range, than it is mandatory to either use the Manual Self-Refresh  
mode with Extended Temperature Range capability (MR2 A6 = 0B and MR2 A7 = 1B) or enable the Auto Self-Refresh mode (ASR) (MR2  
A6 = 1B and MR2 A7= 0B). For SDRAM operations on DIMM module refer to DIMM module data sheets and SPD bytes for Extended  
Temperature and Auto Self-Refresh option availability.  
TABLE 14  
DC Operating Conditions  
Supply Voltage  
Mode (SVM),  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit Note  
VDD.TYP / VDDQ.TYP  
1)2)  
1.5 V  
All  
Supply Voltage  
VDD  
1.425  
1.425  
1.5  
1.5  
1.575  
1.575  
V
1)2)  
Supply Voltage for Output  
VDDQ  
V
3)4)  
Reference Voltage for DQ, DM inputs VREFDQ.DC 0.49 × VDD 0.5 × VDD 0.51 × VDD  
V
3)4)  
Reference Voltage for ADD, CMD  
inputs  
VREFCA.DC 0.49 × VDD 0.5 × VDD 0.51 × VDD  
V
5)  
External Calibration Resistor  
RZQ 237.6 240.0 242.4  
Ω
connected from ZQ ball to ground  
1) VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.  
2) Under all conditions VDDQ must be less than or equal to VDD  
.
3) The AC peak noise on VREF may not allow VREF to deviate from VREF.DC by more than ±1% VDD (for reference: approx. ± 15 mV).  
4) For reference: approx. VDD/2 ± 15 mV.  
5) The external calibration resistor RZQ can be time-shared among DRAMs in multi-rank DIMMs.  
Rev. 0.65, 2008-12  
26  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
TABLE 15  
Input and Output Leakage Currents  
Parameter  
Symbol  
Condition  
Rating  
Unit  
Note  
Min.  
Max.  
1)2)  
2)3)  
Input Leakage Current  
Output Leakage Current  
IIL  
Any input 0 V < VIN < VDD  
0V < VOUT < VDDQ  
–2  
–5  
+2  
+5  
µA  
µA  
IOL  
1) All other balls not under test = 0 V.  
2) Values are shown per ball.  
3) DQ’s, DQS, DQS and ODT are disabled.  
3.3  
Interface Test Conditions  
Figure 4 represents the effective reference load of 25 Ω used  
in defining the relevant timing parameters of the device as  
well as for output slew rate measurements. It is not intended  
as either a precise representation of the typical system  
environment nor a depiction of the actual load presented by a  
production tester. System designers should use IBIS or other  
simulation tools to correlate the timing reference load to a  
system environment. Qimonda correlates to its production  
test conditions, generally one or more coaxial transmission  
lines terminated at the tester electronics.  
FIGURE 4  
Reference Load for AC Timings and Output Slew Rates  
VDDQ  
DQ  
CK, CK  
DQS  
V
TT = VDDQ / 2  
DUT  
DQS  
25 ohm  
Timing Reference Points  
MPBH0370  
The Timing Reference Points are the idealized input and  
output nodes / terminals on the outside of the packaged  
SDRAM device as they would appear in a schematic or an  
IBIS model. The output timing reference voltage level for  
single ended signals is the cross point with VTT. The output  
timing reference voltage level for differential signals is the  
cross point of the true (e.g. DQS) and the complement (e.g.  
DQS) signal.  
Rev. 0.65, 2008-12  
27  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
3.4  
Voltage Levels  
3.4.1  
DC and AC Logic Input Levels  
Table 16 shows the input levels for single-ended input signals for Address and Control Signals.  
Table 17 shows the input levels for single-ended input signals for DQ and DM Signals.  
TABLE 16  
DC and AC Input Levels for Single-Ended Command, Address and Control Signals  
SVM Parameter  
Symbol  
DDR3-800, DDR3-1066  
DDR3-1333, DDR3-1600  
Unit Note  
Min.  
REF + 0.100 VDD  
VSS REF - 0.100 VSS  
REF + 0.175 See 2) REF + 0.175 See 2)  
REF - 0.175 See 2)  
REF - 0.175  
REF + 0.150 See 2) REF + 0.150 See 2)  
Reduced AC input logic low VIL.CA.AC150 See 2) REF - 0.150 See 2)  
REF - 0.150  
Max.  
Min.  
REF + 0.100 VDD  
REF - 0.100  
Max.  
1)  
1.5V DC input logic high  
DC input logic low  
VIH.CA.DC  
VIL.CA.DC  
V
V
V
1)  
V
V
V
1)  
AC input logic high  
AC input logic low  
VIH.CA.AC175  
VIL.CA.AC175 See 2)  
V
V
V
1)  
V
V
V
1)  
Reduced AC input logic high VIH.CA.AC150  
V
V
V
1)  
V
V
V
1) For input only pins except RESET: VREF = VREF.CA  
.
2) See Chapter 3.9, Overshoot and Undershoot Specification.  
TABLE 17  
DC and AC Input Levels for Single-Ended DQ and DM Signals  
SVM  
Parameter  
Symbol  
DDR3-800, DDR3-1066  
DDR3-1333, DDR3-1600  
Unit  
Note  
Min.  
REF + 0.100 VDD  
VSS REF - 0.100 VSS  
Max.  
Min.  
REF + 0.100 VDD  
REF - 0.100  
Max.  
1)  
1.5V  
DC input logic high  
DC input logic low  
AC input logic high  
VIH.DQ.DC  
V
V
V
V
V
1)  
VIL.DQ.DC  
V
V
1)3)  
VIH.DQ.AC175  
VIH.DQ.AC150  
VIL.DQ.AC175  
VIL.DQ.AC150  
V
V
REF + 0.175 See 2)  
REF + 0.150 See 2)  
V
REF + 0.150 See 2)  
1)3)  
AC input logic low  
See 2)  
See 2)  
V
V
REF - 0.175  
REF - 0.150 See 2)  
V
V
REF - 0.150  
1) For DQ and DM: VREF = VREFDQ, for input only signals except RESET: VREF = VREFCA  
2) See Chapter 3.9, Overshoot and Undershoot Specification.  
.
3) Single ended swing requirement for DQS, DQS is 350 mV (peak to peak). Differential swing requirement for DQS, DQS is 700 mV (peak  
to peak).  
Rev. 0.65, 2008-12  
28  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
Differential Swing Requirement for Differential Signals  
Table 18 shows the input levels for differential input signals.  
TABLE 18  
Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS)  
SVM  
Parameter  
Symbol  
DDR3–800, DDR3–1066, DDR3–1333, DDR3–1600 Unit  
Note  
Min.  
Max.  
2)  
2)  
4)  
4)  
1.5 V  
Differential input high  
Differential input low  
VIH.DIFF  
VIL.DIFF  
+0.200  
See 1)  
See 1)  
V
V
V
V
–0.200  
See 1)  
3)  
Differential input high AC VIH.DIFF.AC  
Differential input low AC VIL.DIFF.AC  
2 × (VIH.AC - VREF  
See 1)  
)
5)  
2 × (VREF - VIL.AC  
)
1) These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the  
respective limits ( VIH.DC.MAX , VIL.DC.MIN ) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to  
Chapter 3.9.  
2) Used to define a differential signal slew-rate.  
3) Clock: use VIH.CA.AC for VIH.AC. Strobe: use VIH.DQ.AC for VIH.AC  
.
4) For CK - CK use VIH /VIL.CA.AC of ADD/CMD and VREFCA ; for DQS - DQS (×4, ×8); or DQSL - DQSL, DQSU - DQSU (×16) use VIH /VIL.DQ.AC  
of DQs and VREFDQ; if a reduced AC-high or AC-low level is used for a signal group, then the reduced level applies also here.  
5) Clock: use VIL.CA.AC for VIL.AC. Strobe: use VIL.DQ.AC for VIL.AC  
.
TABLE 19  
Allowed Time Before Ringback (tDVAC) for CLK - CLK and DQS - DQS  
Slew Rate [V/ns]  
SVM: 1.5 V  
DVAC [ps]  
t
tDVAC [ps]  
@ |VIH/IL.DIFF.AC| = 350mV  
@ |VIH/IL.DIFF.AC| = 300mV  
Min.  
Max.  
Min.  
Max.  
> 4.0  
4.0  
75  
57  
50  
38  
34  
29  
22  
13  
0
175  
170  
167  
163  
162  
161  
159  
155  
150  
150  
3.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
<1.0  
0
Single-Ended Requirements for Differential Signals  
Each individual component of a differential signal (for ×4, ×8:  
CK, DQS, CK, DQS, for ×16: CK, DQSL, DQSU, CK, DQSL,  
DQSU) has also to comply with certain requirements for  
single-ended signals. CK and CK have to approximately  
reach VSEH.MIN / VSEL.MAX (approximately equal to the AC-  
levels (VIH.CA.AC / VIL.CA.AC) for ADD/CMD signals) in every  
half-cycle. DQS, DQS (×4, ×8) and DQSL, DQSL, DQSU,  
DQSU (×16), respectively, have to reach VSEH.MIN / VSEL.MAX  
(approximately the AC-levels (VIH.DQ.AC / VIL.DQ.AC) for DQ  
signals) in every half-cycle preceeding and following a valid  
Rev. 0.65, 2008-12  
29  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
transition. Note that the applicable AC-levels for ADD/CMD  
and DQs might be different per speed-bin etc. E.g. if  
differential signals have a requirement with respect to VDD/2;  
this is nominally the same. The transition of single-ended  
signals through the AC-levels is used to measure setup time.  
For single-ended components of differential signals the  
requirement to reach VSEL.MAX, VSEH.MIN has no bearing on  
timing, but adds a restriction on the common mode  
charateristics of these signals.  
V
IH.CA.AC150 / VIL.CA.AC150 is used for ADD/CMD signals, then  
these AC-levels apply also for the single-ended signals CK  
and CK.  
Note that while ADD/CMD and DQ signal requirements are  
with respect to VREF, the single-ended components of  
TABLE 20  
Each Single-Ended Levels for CK, CK, DQS, DQS, DQSL, DQSL, DQSU or DQSU  
SVM  
Parameter  
Symbol  
DDR3–800, DDR3–1066, DDR3–1333, DDR3–1600 Unit Note  
Min.  
Max.  
2)3)  
Single-ended high-level for strobes VSEH  
Single-ended high-level for CK, CK VSEH  
Single-ended low-level for strobes VSEL  
Single-ended low-level for CK, CK VSEL  
(VDD/2) + 0.175  
(VDD/2) + 0.175  
See 1)  
See 1)  
See 1)  
V
V
V
V
1.5 V  
(VDD/2) - 0.175  
(VDD/2) - 0.175  
See 1)  
1) These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the  
respective limits ( VIH.DC.MAX , VIL.DC.MIN ) for single-ended signals as well as the limitations for overshoot and undershoot.  
2) For CK, CK use VIH.CA.AC /VIL.CA.AC of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH.DQ.AC/VIL.DQ.AC of DQs.  
3) VIH.DQ.AC/VIL.DQ.AC for DQs is based on VREFDQ; VIH.CA.AC/VIL.CA.AC for ADD/CMD is based on VREFCA; if a reduced AC-high or ac-low level  
is used for a signal group, then the reduced level applies also here.  
TABLE 21  
Cross Point Voltage for Differential Input Signals (CK, DQS)  
SVM  
Symbol Parameter  
DDR3–800, DDR3–1066, DDR3–1333, Unit Note  
DDR3–1600  
Min.  
Max.  
1.5 V  
VIX  
VIX  
Differential Input Cross Point Voltage relative –150  
150  
175  
mV  
mV  
1)  
to VDD/2 for CK - CK  
–175  
Differential Input Cross Point Voltage relative –150  
150  
mV  
to VDD/2 for DQS -DQS  
1) Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended  
swing VSEL/VSEH (see Single-Ended Requirements for Differential Signals) of at least VDD/2 +/-250 mV and if the differential slew rate  
of CK - CK is larger than 3 V/ns.  
Rev. 0.65, 2008-12  
30  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
3.4.2  
DC and AC Output Measurements Levels  
TABLE 22  
DC and AC Output Levels for Single-Ended Signals  
Parameter  
Symbol Value  
Unit Note  
DC output high measurement level (for output impedance measurement)  
DC output mid measurement level (for output impedance measurement)  
DC output low measurement level (for output impedance measurement)  
AC output high measurement level (for output slew rate)  
VOH.DC  
VOM.DC  
VOL.DC  
VOH.AC  
VOL.AC  
0.8 × VDDQ  
V
V
V
0.5 × VDDQ  
0.2 × VDDQ  
1)  
V
TT + 0.1 × VDDQ  
TT - 0.1 × VDDQ  
V
1)  
AC output low measurement level (for output slew rate)  
V
V
1) Background: the swing of ± 0.1 × VDDQ is based on approximately 50% of the static differential output high or low swing with a driver  
impedance of 40 Ω and an effective test load of 25 Ω to VTT = VDDQ / 2.  
TABLE 23  
AC Output Levels for Differential Signals  
SVM  
Parameter  
Symbol  
Value  
Unit Note  
Min.  
Max.  
1)  
All  
AC differential output high measurement level (for output VOH.DIFF.AC +0.2 × VDDQ  
V
slew rate)  
AC differential output low measurement level (for output VOL.DIFF.AC –0.2 × VDDQ  
V
slew rate)  
2)  
1.5 V  
Deviation of the output cross pointvoltage from the  
termination voltage  
VOX  
-100  
100  
mV  
1) Background: the swing of ± 0.2 × VDDQ is based on approximately 50% of the static differential output high or low swing with a driver  
impedance of 40 Ω and an effective test load of 25 Ω to VTT =VDDQ / 2 at each of the differential outputs.  
2) With an effective test load of 25 Ω to VTT = VDDQ/2 at each of the differential outputs (see chapter Chapter 3.3, Interface Test Conditions).  
Rev. 0.65, 2008-12  
31  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
3.5  
ODT DC Impedance and Mid-Level Characteristics  
Table 24 provides the ODT DC impedance and mid-level characteristics.  
TABLE 24  
ODT DC Impedance and Mid-Level Characteristics  
Symbol  
Description  
VOUT Condition  
Min. Nom. Max. Unit  
Note  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)  
1)2)3)4)5)  
RTT120  
RTT60  
RTT40  
RTT30  
RTT20  
ΔVM  
R
R
R
R
R
TT effective = 120 Ω  
TT effective = 60 Ω  
TT effective = 40 Ω  
TT effective = 30 Ω  
TT effective = 20 Ω  
V
IL.AC and VIH.AC  
0.9  
0.9  
0.9  
0.9  
0.9  
–5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.6  
1.6  
1.6  
1.6  
1.6  
+5  
R
R
R
R
R
ZQ/2  
ZQ/4  
ZQ/6  
ZQ/8  
ZQ/12  
Deviation of VM with respect to VDDQ / 2  
floating  
%
1) With RZQ = 240 Ω.  
2) Measurement definition for RTT : Apply VIH.AC and VIL.AC to test ball separately, then measure current I (VIH.AC) and I (VIL.AC) respectively.  
TT = [VIH.AC - VIL.AC] / [I (VIH.AC) - I (VIL.AC)]  
R
3) The tolerance limits are specified after calibration with stable voltage and temperature. For the behaviour of the tolerance limits if  
temperature or voltage changes after calibration, see the ODT DC Impedance Sensitivity on Temperature and Voltage Drifts.  
4) The tolerance limits are specified under the condition that VDDQ = VDD and that VSSQ = VSS  
.
5) Measurement Definition for ΔVM: Measure voltage (VM) at test ball (midpoint) with no load: ΔVM = (2 × VM / VDDQ - 1) × 100%  
3.6  
ODT DC Impedance Sensitivity on Temperature and  
Voltage Drifts  
If temperature and/or voltage change after calibration, the tolerance limits widen for RTT according to the following tables. The  
following definitions are used:  
ΔT = T - T (at calibration)  
ΔV = VDDQ- VDDQ (at calibration)  
V
DD = VDDQ  
TABLE 25  
ODT DC Impedance after proper IO Calibration and Voltage/Temperature Drift  
Symbol Value  
Min.  
Unit  
Note  
Max.  
1)  
RTT  
0.9 - dRTTdT × |ΔT| - dRTTdV × |ΔV|  
1.6 + dRTTdT × |ΔT| + dRTTdV × |ΔV|  
RZQ / TISFRTT  
1) TISFRTT: Termination Impedance Scaling Factor for RTT  
TISFRTT = 12 for RTT020  
:
TISFRTT = 8 for RTT030  
TISFRTT = 6 for RTT040  
TISFRTT = 4 for RTT060  
TISFRTT = 2 for RTT120  
Rev. 0.65, 2008-12  
32  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
TABLE 26  
OTD DC Impedance Sensitivity Parameters  
Symbol  
Value  
Min.  
Unit  
Note  
Max.  
1)  
dRTTdT  
dRTTdV  
0
0
1.5  
%/°C  
0.15  
%/mV  
1) These parameters may not be subject to production test. They are verified by design and characterization.  
3.7  
Output Slew Rate Definition and Requirements  
The slew rate definition depends if the signal is single-ended or differential. For the relevant AC output reference levels see  
Chapter 3.4.2.  
3.7.1  
Output Slew Rates  
TABLE 27  
Output Slew Rates  
SVM  
Parameter  
Symbol  
DDR3–800, DDR3–1066, DDR3–1333,  
DDR3–1600  
Unit  
Note  
Min.  
Max.  
2)3)  
1.5 V  
Single-ended Output Slew SRQse  
Rate  
2.5  
5 1)  
V / ns  
V / ns  
Differential Output Slew  
Rate  
SRQdiff  
5
12  
1) In two cases, a maximum slew rate of 6 V/ns applies for a single DQ signal within a byte lane.  
- Case 1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to  
high) while all remaining DQ signals in the same byte lane are static (i.e they stay at either high or low).  
- Case 2 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to  
high) while all remaining DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low  
respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies.  
2) For RON = RZQ/7 settings only.  
3) Background for Symbol Nomenclature: SR: Slew Rate; Q: Query Output; se: single-ended; diff: differential  
Rev. 0.65, 2008-12  
33  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
3.8  
Interface Capacitance  
Definition and values for interface capacitances are provided in the following table.  
TABLE 28  
Interface Capacitance Values  
Parameter  
Signals  
Symbol  
DDR3–800 DDR3–1066 DDR3–1333 DDR3–1600 Unit Note  
Min. Max. Min. Max. Min. Max. Min. Max.  
1)2)3)  
Input/Output  
Capacitance  
DQ, DM, DQS,  
DQS, NF  
CIO  
1.5 3.0  
1.5  
2.7  
1.5  
2.5  
1.5  
2.3  
pF  
pF  
2)3)  
Input Capacitance CK, CK  
CCK  
0.8 1.6  
0.8  
0
1.6  
0.8  
0
1.4  
0.8  
0
1.4  
2)3)4)  
Delta of Input  
Capacitance  
CK, CK  
CDCK  
0
0
0.15  
0.2  
0.15  
0.15  
0.15 pF  
2)3)5)  
Delta of  
DQS, DQS  
CDDQS  
0
0.2  
0
0.15  
0
0.15 pF  
Input/Output  
Capacitance of  
DQS balls  
2)3)6)  
Input Capacitance All other input-only CI  
0.75 1.4  
–0.5 0.3  
0.75 1.35 0.75 1.3  
0.75 1.3  
–0.4 0.2  
–0.4 0.4  
–0.5 0.3  
pF  
pF  
pF  
pF  
pins  
2)3)7)8)  
Delta of Input  
Capacitance  
All CTRL input-only CDI.CTRL  
pins  
–0.5 0.3  
–0.5 0.5  
–0.5 0.3  
–0.4 0.2  
–0.4 0.4  
–0.5 0.3  
2)3)9)  
10)  
Delta of Input  
Capacitance  
All ADD and CMD CDI.ADD_CMD –0.5 0.5  
input-only pins  
2)3)11)  
Delta of  
Input/Output  
Capacitance  
DQ, DM, DQS,  
DQS  
CDIO  
–0.5 0.3  
12)  
ZQ Capacitance  
ZQ  
CZQ  
3
3
3
3
pF  
1) Although the DM signal has different function, the loading matches DQ and DQS  
2) This parameter is not subject to production test. It is verified by design and characterization. Capacitance is measured according to JEP147  
(Procedure for measuring input capacitance using a vector network analyzer (VNA) with VDD, VDDQ, VSS, VSSQ applied and all other balls  
floating (except the ball under test, CKE, RESET and ODT as necessary). VDD = VDDQ = 1.5 V, VBIAS = VDD/2 and on-die termination off  
3) This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here  
4) Absolute value of CCK - CCK#  
5) Absolute value of CIO.DQS - CIO.DQS#  
6) CI applies to ODT, CS, CKE, A[A13:0] (×4, ×8) or A[A12:0] (×16), BA[2:0], RAS, CAS, WE  
7)  
8)  
9)  
C
C
C
DI_CTRL applies to ODT, CS and CKE  
DI_CTRL = CI.CTRL - 0.5 × (CCK + CCK#  
DI_ADD_CMD applies to A[A13:0] (×4, ×8) or A[A12:0] (×16), BA[2:0], BA[2:0], RAS, CAS and WE  
)
10) CDI_ADD_CMD = CI.ADD,CMD - 0.5 × (CI.CK + CI.CK#  
)
11) CDIO = CIO.DQ,DM - 0.5 × (CIO.DQS + CIO.DQS#  
)
12) Maximum external load capacitance on ZQ signal: 5 pF  
Rev. 0.65, 2008-12  
34  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
3.9  
Overshoot and Undershoot Specification  
TABLE 29  
AC Overshoot / Undershoot Specification for Address and Control Signals  
Parameter  
DDR3–800 DDR3–1066 DDR3–1333 DDR3–1600 Unit  
Note  
1)  
Maximum peak amplitude allowed for overshoot area 0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
V
V
1)  
Maximum peak amplitude allowed for undershoot  
area  
0.4  
1)  
1)  
Maximum overshoot area above VDD  
Maximum undershoot area below VSS  
0.67  
0.67  
0.5  
0.5  
0.4  
0.4  
0.33  
0.33  
V × ns  
V × ns  
1) Applies for the following signals: A[15:0], BA[3:0], CS, RAS, CAS, WE, CKE and ODT  
FIGURE 5  
AC Overshoot / Undershoot Definitions for Address and Control Signals  
Maximum Amplitude  
Volts (V)  
Overshoot Area  
VDD  
VSS  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
MPEH0090  
TABLE 30  
AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Signals  
Parameter  
DDR3–80 DDR3–106 DDR3–133 DDR3–160 Unit  
Note  
0
6
3
0
1)  
1)  
Maximum peak amplitude allowed for overshoot area 0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
V
V
Maximum peak amplitude allowed for undershoot  
area  
0.4  
1)  
1)  
Maximum overshoot area above VDDQ  
0.25  
0.25  
0.19  
0.19  
0.15  
0.15  
0.13  
0.13  
V × ns  
V × ns  
Maximum undershoot area below VSSQ  
1) Applies for CK, CK, DQ, DQS, DQS & DM  
Rev. 0.65, 2008-12  
35  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
FIGURE 6  
AC Overshoot / Undershoot Definitions for Clock, Data, Strobe and Mask Signals  
Maximum Amplitude  
Volts (V)  
Overshoot Area  
VDDQ  
VSSQ  
Undershoot Area  
Maximum Amplitude  
Time (ns)  
MPEH0100  
Rev. 0.65, 2008-12  
36  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
4
Speed Bins and Timing Parameters  
AC timings are provided with CK/CK and DQS/DQS  
differential slew rate of 2.0 V/ns. Timings are further provided  
for calibrated OCD drive strength. The CK/CK input reference  
level (for timing referenced to CK / CK) is the point at which  
CK and CK cross. The DQS/DQS reference level (for timing  
referenced to DQS/DQS) is the point at which DQS and DQS  
cross. Inputs are not recognized as valid until VREF stabilizes.  
During the period before VREF.CA and VREFDQ stabilizes, CKE  
= 0.2 x VDDQ is recognized as low. The output timing reference  
voltage level is VTT.  
4.1  
Speed Bins  
The following tables show DDR3 speed bins and relevant  
timing parameters. Other timing parameters are provided in  
the following chapter.  
The absolute specification for all speed bins is TOPER and  
VDD = VDDQ = 1.5 V +/-0.075 V. In addition the following  
general notes apply.  
General Notes for Speed Bins:  
The CL setting and CWL setting result in tCK.AVG.MIN and  
in module application, tAA/tRCD/tRP should be programmed  
with minimum supported values. For example, DDR3-  
1333H supporting down-shift to DDR3-1066F should  
program SPD as 13.125 ns for tAA.MIN (Byte16) / tRCD. MIN  
(Byte18) / tRP (Byte20). DDR3-1600K supporting down-  
shift to DDR3-1333H and to DDR3-1066F should program  
SPD as 13.125 ns for tAA.MIN (Byte16) / tRCD. MIN (Byte18) /  
t
t
CK.AVG.MAX requirements. When making a selection of  
CK.AVG, both need to be fulfiled: Requirements from CL  
setting as well as requirements from CWL setting  
t
CK.AVG.MIN limits: Since CAS Latency is not purely analog -  
data and strobe output are synchronized by the DLL - all  
possible intermediate frequencies may not be provided. An  
application should use the next smaller standard tCK.AVG  
value (2.5, 1.875, 1.5, 1.25, 1.07, or 0.935 ns) when  
calculating CL [nCK] = tAA [ns] / tCK.AVG [ns], rounding up to  
the next ‘Supported CL’  
t
RP (Byte20).  
Any DDR3-1066 speed bin also supports functional  
operation at lower frequencies as shown in the tables  
which are not subject to Production Tests but verified by  
Design/Characterization  
Any DDR3-1333 speed bin also supports functional  
operation at lower frequencies as shown in the tables  
which are not subject to Production Tests but verified by  
Design/Characterization  
Any DDR3-1600 speed bin also supports functional  
operation at lower frequencies as shown in the tables  
which are not subject to Production Tests but verified by  
Design/Characterization  
tCK.AVG.MAX limits: Calculate tCK.AVG = tAA.MAX /  
CLSELECTED and round the resulting tCK.AVG down to the  
next valid speed bin limit (i.e. 3.3 ns or 2.5 ns or 1.875 ns  
or 1.5 ns or 1.25 ns or 1.07 ns or 0.935 ns). This result is  
t
CK.AVG.MAX corresponding to CLSELECTED  
‘Reserved’ settings are not allowed. User must program a  
different value  
Downbinning support for DDR3-1333H and DDR3-1600K  
parts: The minimum tAA/tRCD/tRP supported by DDR3-  
1333H and DDR3-1600K devices is 13.125 ns. Therefore,  
Rev. 0.65, 2008-12  
37  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
TABLE 31  
DDR3-800 Speed Bins and Operating Conditions  
Speed Bin  
DDR3-800D  
DDR3-800E  
Unit Note  
CL-nRCD-nRP  
QAG Partnumber Extension  
Parameter  
5-5-5  
6-6-6  
-08D  
-08E  
Symbol  
Min.  
Max.  
Min.  
Max.  
1)  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
tAA  
12.5  
12.5  
12.5  
50.0  
5, 6  
5
20.0  
15.0  
15.0  
15.0  
52.5  
6
20.0  
ns  
1)  
tRCD  
ns  
1)  
tRP  
ns  
1)  
ACT to ACT or REF command period  
Supported CL Settings  
tRC  
ns  
1)  
Sup_CL  
Sup_CWL  
tCK.AVG.CL05.CWL05  
tCK.AVG.CL06.CWL05  
nCK  
1)  
Supported CWL Settings  
5
nCK  
1)2)  
Average Clock Period with CL = 5; CWL = 5  
Average Clock Period with CL = 6; CWL = 5  
2.5  
3.3  
3.3  
RESERVED  
2.5 3.3  
ns  
1)2)  
2.5  
ns  
1) Please refer to "General Notes for Speed Bins" at beginning of this chapter.  
2) Max. limits are exclusive. E.g. if tCK.AVG.MAX value is 2.5 ns, tCK.AVG needs to be < 2.5 ns.  
Rev. 0.65, 2008-12  
38  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
TABLE 32  
DDR3-1066 Speed Bins and Operating Conditions  
Speed Bin  
DDR3-1066E  
DDR3-1066F  
DDR3-1066G  
Unit Note  
CL-nRCD-nRP  
QAG Partnumber Extension  
Parameter  
6-6-6  
7-7-7  
8-8-8  
-10E  
-10F  
-10G  
Symbol  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
1)  
Internal read command to first data tAA  
11.25 20.0  
13.125 20.0  
15.0  
15.0  
20.0  
ns  
1)  
ACT to internal read or write delay  
time  
tRCD  
11.25  
13.125  
ns  
1)  
PRE command period  
tRP  
tRC  
11.25  
48.75  
13.125  
50.625  
15.0  
52.5  
ns  
1)  
ACT to ACT or REF command  
period  
ns  
1)  
Supported CL Settings  
Supported CWL Settings  
Sup_CL  
5, 6, 7, 8  
5, 6  
6, 7, 8  
5, 6  
6, 8  
5, 6  
nCK  
1)  
Sup_CWL  
nCK  
1)2)  
Average Clock Period with CL = 5; tCK.AVG.CL05.CWL05 2.5  
3.3  
RESERVED  
RESERVED  
ns  
CWL = 5  
1)2)  
Average Clock Period with CL = 5; tCK.AVG.CL05.CWL06 RESERVED  
RESERVED  
RESERVED  
ns  
CWL = 6  
1)2)  
Average Clock Period with CL = 6; tCK.AVG.CL06.CWL05 2.5  
3.3  
2.5  
3.3  
2.5  
3.3  
ns  
CWL = 5  
1)2)  
Average Clock Period with CL = 6; tCK.AVG.CL06.CWL06 1.875 2.5  
CWL = 6  
RESERVED  
RESERVED  
1.875 2.5  
RESERVED  
1.875 2.5  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
1.875 2.5  
ns  
1)2)  
Average Clock Period with CL = 7; tCK.AVG.CL07.CWL05 RESERVED  
CWL = 5  
ns  
1)2)  
Average Clock Period with CL = 7; tCK.AVG.CL07.CWL06 1.875 2.5  
CWL = 6  
ns  
1)2)  
Average Clock Period with CL = 8; tCK.AVG.CL08.CWL05 RESERVED  
CWL = 5  
ns  
1)2)  
Average Clock Period with CL = 8; tCK.AVG.CL08.CWL06 1.875 2.5  
ns  
CWL = 6  
1) Please refer to "General Notes for Speed Bins" at beginning of this chapter.  
2) Max. limits are exclusive. E.g. if tCK.AVG.MAX value is 2.5 ns, tCK.AVG needs to be < 2.5 ns.  
Rev. 0.65, 2008-12  
39  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
TABLE 33  
DDR3-1333 Speed Bins and Operating Conditions  
Speed Bin  
DDR3-1333G  
DDR3-1333H  
Unit Note  
CL-nRCD-nRP  
QAG Partnumber Extension  
Parameter  
8-8-8  
9-9-9  
-13G  
-13H  
Symbol  
Min.  
Max.  
Min.  
Max.  
1)  
Internal read command to first data  
tAA  
12.0  
12.0  
12.0  
48.0  
20.0  
13.125 20.0  
13.125 —  
13.125 —  
49.125 —  
ns  
1)  
ACT to internal read or write delay time  
PRE command period  
tRCD  
ns  
1)  
tRP  
ns  
1)  
ACT to ACT or REF command period  
Supported CL Settings  
tRC  
ns  
1)  
Sup_CL  
5, 6, 7, 8, 9, 10 6,7,8, 9, 10  
nCK  
1)  
Supported CWL Settings  
Sup_CWL  
5, 6, 7  
2.5  
5, 6, 7  
nCK  
1)2)  
Average Clock Period with CL = 5; CWL = 5  
Average Clock Period with CL = 5; CWL = 6  
Average Clock Period with CL = 5; CWL = 7  
Average Clock Period with CL = 6; CWL = 5  
Average Clock Period with CL = 6; CWL = 6  
Average Clock Period with CL = 6; CWL = 7  
Average Clock Period with CL = 7; CWL = 5  
Average Clock Period with CL = 7; CWL = 6  
Average Clock Period with CL = 7; CWL = 7  
Average Clock Period with CL = 8; CWL = 5  
Average Clock Period with CL = 8; CWL = 6  
Average Clock Period with CL = 8; CWL = 7  
Average Clock Period with CL = 9; CWL = 5  
Average Clock Period with CL = 9; CWL = 6  
Average Clock Period with CL = 9; CWL = 7  
Average Clock Period with CL = 10; CWL = 5  
Average Clock Period with CL = 10; CWL = 6  
Average Clock Period with CL = 10; CWL = 7  
tCK.AVG.CL05.CWL05  
tCK.AVG.CL05.CWL06  
tCK.AVG.CL05.CWL07  
tCK.AVG.CL06.CWL05  
tCK.AVG.CL06.CWL06  
tCK.AVG.CL06.CWL07  
tCK.AVG.CL07.CWL05  
tCK.AVG.CL07.CWL06  
tCK.AVG.CL07.CWL07  
tCK.AVG.CL08.CWL05  
tCK.AVG.CL08.CWL06  
tCK.AVG.CL08.CWL07  
tCK.AVG.CL09.CWL05  
tCK.AVG.CL09.CWL06  
tCK.AVG.CL09.CWL07  
tCK.AVG.CL10.CWL05  
tCK.AVG.CL10.CWL06  
tCK.AVG.CL10.CWL07  
3.3  
RESERVED  
RESERVED  
RESERVED  
ns  
1)2)  
RESERVED  
RESERVED  
ns  
1)2)  
ns  
1)2)  
2.5  
3.3  
2.5  
3.3  
ns  
1)2)  
RESERVED  
RESERVED  
RESERVED  
1.875 2.5  
RESERVED  
RESERVED  
1.875 2.5  
RESERVED  
RESERVED  
RESERVED  
1.875 2.5  
RESERVED  
RESERVED  
1.875 2.5  
ns  
1)2)  
ns  
1)2)  
ns  
1)2)  
ns  
1)2)  
ns  
1)2)  
ns  
1)2)  
ns  
1)2)  
1.5  
1.875 RESERVED  
ns  
1)2)  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
ns  
1)2)  
ns  
1)2)  
1.5  
1.875 1.5  
1.875 ns  
1)2)  
1)2)  
1)2)  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
ns  
ns  
1.5  
1.875 1.5  
1.875 ns  
1) Please refer to "General Notes for Speed Bins" at beginning of this chapter.  
2) Max. limits are exclusive. E.g. if tCK.AVG.MAX value is 2.5 ns, tCK.AVG needs to be < 2.5 ns.  
Rev. 0.65, 2008-12  
40  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
TABLE 34  
DDR3-1600 Speed Bins and Operating Conditions  
Speed Bin  
DDR3-1600G  
8-8-8  
DDR3-1600H  
DDR3-1600J  
10-10-10  
-16J  
DDR3-1600K Unit Note  
CL-nRCD-nRP  
9-9-9  
11-11-11  
-16K  
QAG Partnumber Extension  
-16G  
-16H  
Parameter  
Symbol  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
1)  
Internal read command tAA  
to first data  
10.0  
20.0  
11.25 20.0  
12.5  
20.0  
13.12 20.0  
5
ns  
ns  
ns  
ns  
1)  
ACT to internal read or tRCD  
write delay time  
10.0  
10.0  
45.0  
11.25  
11.25  
46.25  
12.5  
12.5  
47.5  
13.12  
5
1)  
PRE command period tRP  
13.12  
5
1)  
ACT to ACT or REF  
command period  
tRC  
48.12  
5
1)  
Supported CL Settings Sup_CL  
5, 6, 7, 8, 9, 10, 5, 6, 7, 8, 9, 10, 5, 6, 7, 8, 9, 10, 6, 7, 8, 9, 10, nCK  
11  
11  
11  
11  
1)  
Supported CWL  
Settings  
Sup_CWL  
5, 6, 7, 8  
5, 6, 7, 8  
5, 6, 7, 8  
5, 6, 7, 8  
nCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
Average Clock Period tCK.AVG.CL05.CWL05 2.5  
with CL = 5; CWL = 5  
3.3  
2.5  
3.3  
2.5  
3.3  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Average Clock Period tCK.AVG.CL05.CWL06 RESERVED  
with CL = 5; CWL = 6  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Average Clock Period tCK.AVG.CL05.CWL07 RESERVED  
with CL = 5; CWL = 7  
Average Clock Period tCK.AVG.CL05.CWL08 RESERVED  
with CL = 5; CWL = 8  
Average Clock Period tCK.AVG.CL06.CWL05 2.5  
with CL = 6; CWL = 5  
3.3  
2.5  
3.3  
2.5  
3.3  
2.5  
3.3  
Average Clock Period tCK.AVG.CL06.CWL06 1.875 2.5  
with CL = 6; CWL = 6  
1.875 2.5  
RESERVED  
RESERVED  
RESERVED  
1.875 2.5  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
1.875 2.5  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
1.875 2.5  
RESERVED  
RESERVED  
RESERVED  
Average Clock Period tCK.AVG.CL06.CWL07 RESERVED  
with CL = 6; CWL = 7  
Average Clock Period tCK.AVG.CL06.CWL08 RESERVED  
with CL = 6; CWL = 8  
Average Clock Period tCK.AVG.CL07.CWL05 RESERVED  
with CL = 7; CWL = 5  
Average Clock Period tCK.AVG.CL07.CWL06 1.875 2.5  
with CL = 7; CWL = 6  
Average Clock Period tCK.AVG.CL07.CWL07 1.5  
with CL = 7; CWL = 7  
1.875 RESERVED  
Average Clock Period tCK.AVG.CL07.CWL08 RESERVED  
with CL = 7; CWL = 8  
RESERVED  
RESERVED  
Average Clock Period tCK.AVG.CL08.CWL05 RESERVED  
with CL = 8; CWL = 5  
Rev. 0.65, 2008-12  
41  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
Speed Bin  
DDR3-1600G  
8-8-8  
DDR3-1600H  
9-9-9  
DDR3-1600J  
10-10-10  
-16J  
DDR3-1600K Unit Note  
CL-nRCD-nRP  
11-11-11  
-16K  
QAG Partnumber Extension  
-16G  
-16H  
Parameter  
Symbol  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
1)2)  
Average Clock Period tCK.AVG.CL08.CWL06 1.875 2.5  
with CL = 8; CWL = 6  
1.875 2.5  
1.875 2.5  
1.875 2.5  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
ns  
ns  
ns  
ns  
ns  
Average Clock Period tCK.AVG.CL08.CWL07 1.5  
1.875 1.5  
1.875 RESERVED  
with CL = 8; CWL = 7  
Average Clock Period tCK.AVG.CL08.CWL08 1.25  
1.5 RESERVED  
RESERVED  
RESERVED  
RESERVED  
with CL = 8; CWL = 8  
Average Clock Period tCK.AVG.CL09.CWL05 RESERVED  
with CL = 9; CWL = 5  
RESERVED  
RESERVED  
Average Clock Period tCK.AVG.CL09.CWL06 RESERVED  
with CL = 9; CWL = 6  
Average Clock Period tCK.AVG.CL09.CWL07 1.5  
with CL = 9; CWL = 7  
1.875 1.5  
1.5 1.25  
1.875 1.5  
1.5  
1.875 1.5  
1.875 ns  
Average Clock Period tCK.AVG.CL09.CWL08 1.25  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
ns  
ns  
ns  
with CL = 9; CWL = 8  
Average Clock Period tCK.AVG.CL10.CWL05 RESERVED  
with CL = 10; CWL = 5  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Average Clock Period tCK.AVG.CL10.CWL06 RESERVED  
with CL = 10; CWL = 6  
Average Clock Period tCK.AVG.CL10.CWL07 1.5  
with CL = 10; CWL = 7  
1.875 1.5  
1.5 1.25  
1.875 1.5  
1.5 1.25  
1.875 1.5  
1.875 ns  
Average Clock Period tCK.AVG.CL10.CWL08 1.25  
1.5 RESERVED  
ns  
ns  
ns  
ns  
ns  
with CL = 10; CWL = 8  
Average Clock Period tCK.AVG.CL11.CWL05 RESERVED  
with CL = 11; CWL = 5  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Average Clock Period tCK.AVG.CL11.CWL06 RESERVED  
with CL = 11; CWL = 6  
Average Clock Period tCK.AVG.CL11.CWL07 RESERVED  
with CL = 11; CWL = 7  
Average Clock Period tCK.AVG.CL11.CWL08 1.25  
1.5  
1.25  
1.5  
1.25  
1.5  
1.25  
1.5  
with CL = 11; CWL = 8  
1) Please refer to "General Notes for Speed Bins" at beginning of this chapter.  
2) Max. limits are exclusive. E.g. if tCK.AVG.MAX value is 2.5 ns, tCK.AVG needs to be < 2.5 ns.  
Rev. 0.65, 2008-12  
42  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
TABLE 35  
DDR3-DLL_off Speed Bins and Operating Conditions  
Speed Bin  
DDR3-DLL_off  
Unit  
Note  
CL-nRCD-nRP  
6-x-x  
QAG Partnumber Extension  
Parameter  
DLL_off  
Min.  
Symbol  
Max.  
1)  
Internal read command to first data  
ACT to internal read or write delay time  
PRE command period  
tAA  
48.0  
15.0  
15.0  
52.5  
6
ns  
1)  
tRCD  
ns  
1)  
tRP  
ns  
1)  
ACT to ACT or REF command period  
Supported CL Settings  
tRC  
ns  
1)  
Sup_CL  
Sup_CWL  
nCK  
nCK  
ns  
1)  
Supported CWL Settings  
6
1)2)  
Average Clock Period with CL = 6; CWL = 6 tCK.AVG.CL06.CWL06  
8.0  
1) Please refer to "General Notes for Speed Bins" at beginning of this chapter.  
2) Max. limits are exclusive. E.g. if tCK.AVG.MAX value is 2.5 ns, tCK.AVG needs to be < 2.5 ns.  
Rev. 0.65, 2008-12  
43  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
5
IDD Current Specifications  
5.1  
According to DDR3 Industry Standard defined 2008  
TABLE 36  
DD Specification for 1G  
I
Speed Bin  
Config. DDR3–800 DDR3–1066 DDR3–1333 DDR3–1600 Unit  
Symbol Definition  
Max.  
Max.  
Max.  
Max.  
IDD0  
Operating Current -  
Active - Precharge  
×4  
62  
62  
80  
82  
84  
109  
15  
68  
73  
73  
92  
91  
93  
120  
16  
81  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
×8  
68  
81  
×16  
×4  
86  
101  
100  
102  
128  
16.5  
IDD1  
Operating Current -  
Active - Read - Precharge  
86  
×8  
88  
×16  
All  
116  
15.5  
IDD2P0  
IDD2P1  
IDD2N  
Precharge Power-down Current (slow  
exit)  
Precharge Power-down Current (fast  
exit)  
All  
27  
31  
34  
37  
mA  
Precharge Standby current  
×4  
43  
43  
43  
48  
49  
52  
57  
77  
152  
43  
43  
43  
31  
47  
47  
47  
50  
50  
50  
54  
56  
60  
57  
77  
152  
49  
49  
49  
35  
54  
54  
54  
56  
56  
56  
61  
62  
67  
57  
77  
152  
54  
54  
54  
38  
60  
60  
60  
63  
63  
63  
67  
69  
75  
57  
77  
152  
60  
60  
60  
42  
67  
67  
67  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
×8  
×16  
×4  
IDD2NT  
Precharge Standby ODT current  
×8  
×16  
×4  
IDDQ2NT Precharge Standby ODT IDDQ current  
×8  
×16  
×4  
IDD2Q  
Precharge Quiet Standby current  
×8  
×16  
All  
IDD3P  
IDD3N  
Active Power-down current  
Active Standby current  
×4  
×8  
×16  
Rev. 0.65, 2008-12  
44  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
Speed Bin  
Config. DDR3–800 DDR3–1066 DDR3–1333 DDR3–1600 Unit  
Symbol Definition  
Max.  
Max.  
Max.  
Max.  
IDD4R  
Operating Current -  
Read burst  
×4  
116  
140  
205  
56  
142  
170  
248  
57  
168  
197  
287  
59  
190  
225  
330  
63  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
×8  
×16  
×4  
IDDQ4R  
Precharge IDDQ current  
Read burst  
×8  
74  
77  
81  
85  
×16  
×4  
128  
106  
125  
165  
177  
12  
131  
130  
149  
198  
185  
12  
135  
152  
173  
230  
190  
12  
139  
180  
200  
265  
197  
12  
IDD4W  
Operating Current -  
Write Burst  
×8  
×16  
All  
IDD5B  
IDD6  
IDD6ET  
IDD7  
Burst Refresh Current  
Self-Refresh Current, TOPER = 0 - 85°C All  
Self-Refresh Current, TOPER = 0 - 95 °C All  
14  
14  
14  
14  
Operating Bank Interleave Current  
×4  
186  
204  
285  
15.5  
202  
221  
303  
15.5  
240  
261  
330  
15.5  
252  
274  
366  
15.5  
×8  
×16  
All  
IDD8  
Reset-Low Current  
Notes  
1. Max. value for IDD currents consider worst case conditions of process, temperature and voltage.  
Rev. 0.65, 2008-12  
45  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
5.2  
According to DDR3 Industry Standard defined 2004  
TABLE 37  
DD Specification for 1G  
I
Speed Bin  
Config. DDR3–800 DDR3–1066 DDR3–1333 DDR3–1600 Unit  
Symbol Definition  
Max.  
Max.  
Max.  
Max.  
IDD0  
Operating Current -  
Active - Precharge  
×4  
66  
66  
84  
85  
85  
110  
14  
72  
72  
90  
89  
89  
114  
15  
75  
75  
95  
90  
90  
115  
16  
85  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
×8  
85  
×16  
×4  
104  
103  
104  
129  
16  
IDD1  
Operating Current -  
Active - Read - Precharge  
×8  
×16  
All  
IDD2P(0) Precharge Power-down Current (slow  
exit)  
IDD2P(1) Precharge Power-down Current (fast exit) All  
26  
30  
33  
37  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDD2N  
Precharge Standby current  
×4  
43  
50  
56  
63  
×8  
43  
50  
56  
63  
×16  
×4  
43  
50  
56  
63  
IDD2Q  
Precharge Quiet Standby current  
43  
49  
54  
60  
×8  
43  
49  
54  
60  
×16  
All  
43  
49  
54  
60  
IDD3P  
IDD3N  
Active Power-down current  
Active Standby current  
31  
35  
38  
42  
×4  
47  
54  
60  
67  
×8  
47  
54  
60  
67  
×16  
×4  
47  
54  
60  
67  
IDD4R  
Operating Current -  
Read burst  
114  
129  
179  
110  
123  
159  
177  
12  
140  
158  
220  
135  
150  
195  
185  
12  
165  
186  
259  
159  
177  
230  
190  
12  
190  
214  
299  
184  
204  
266  
197  
12  
×8  
×16  
×4  
IDD4W  
Operating Current -  
Write Burst  
×8  
×16  
All  
IDD5B  
IDD6  
IDD6ET  
IDD7  
Burst Refresh Current  
Self-Refresh Current, TOPER = 0 - 85°C  
Self-Refresh Current, TOPER = 0 - 95 °C  
Operating Bank Interleave Current  
All  
All  
14  
14  
14  
14  
×4  
164  
178  
251  
180  
195  
270  
216  
234  
313  
228  
247  
327  
×8  
×16  
Notes  
1. Max. value for IDD currents consider worst case conditions of process, temperature and voltage.  
Rev. 0.65, 2008-12  
46  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
6
Package Outline  
This chapter contains the package dimension figures.  
Notes  
1. Drawing according to ISO 8015  
2. Dimensions in mm  
FIGURE 7  
Package Outline PG-TFBGA-78  
12.5  
12 x 0.8 = 9.6  
0.8  
0.18 MAX.  
0.2  
4)  
B
4)  
3)  
1)  
2)  
A
0.1  
C
0.1  
C
78x  
ø0.15  
ø0.08  
0.05  
ø0.45  
M
M
A B  
SEATING PLANE  
C
C
C
Lead free solder balls (green solder balls)  
1) Bad unit marking (light = good)  
2) Package orientation mark A1  
3) Solder ball attach fiducial  
4) Middle of packages edges  
FPO_PG-TFBGA__-078-051  
Rev. 0.65, 2008-12  
47  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
FIGURE 8  
Package Outline PG-TFBGA-96  
13.5  
15 x 0.8 = 12  
0.8  
0.18 MAX.  
0.2  
4)  
B
4)  
3)  
1)  
2)  
A
0.1  
C
0.1  
C
96x  
ø0.15  
ø0.08  
5)  
0.05  
ø0.45  
M
M
A B  
SEATING PLANE  
C
C
C
Lead free solder balls (green solder balls)  
1) Bad unit mark (light = good)  
2) Package orientation mark A1  
3) Solder ball attach fiducial  
4) Middle of packages edges  
5) Solder ball diameter refers to post reflow conduction  
pre-flow diameter 0.45 mm  
FPO_PG-TFBGA__-096-051  
Rev. 0.65, 2008-12  
12192007-S9AR-ZT6N  
48  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
7
Product Type Nomenclature  
For reference the applicable Qimonda DDR3 component nomenclature is listed in this chapter.  
TABLE 38  
Example for Nomenclature Fields  
Example for  
Field Number  
1
2
3
4
5
6
7
8
9
10  
11  
12  
DDR3 SDRAM Component  
ID  
SH  
1G  
0
2
A1  
F1  
C
08  
E
TABLE 39  
DDR3 SDRAM Nomenclature  
Field Description  
Value  
Coding  
1
Qimonda SDRAM Component Prefix ID  
Qimonda Device  
IS  
SH  
512  
1G  
2G  
4G  
0
Qimonda Dual-Die Device  
Standard DDR3  
512 Mbit  
2
3
SDRAM Technology  
Component Density  
1 GBit  
2 GBit  
4 GBit  
4
5
Module Type / ECC Support  
Number of Chip Select  
No ECC support on SDRAM level  
1 Chip Select (20)  
2 Chip Select (21)  
4 DQ lines (22)  
1
6
Number of DQs  
2
3
8 DQ lines (23)  
4
16 DQ lines (24)  
32 DQ lines (25)  
First Die  
5
7
8
Die Revision  
Package  
A1  
F1  
F2  
C
Planar FBGA, lead- and halogen-free  
Dual-Die FBGA, lead- and halogen-free  
Commercial (0 °C - 95 °C)  
9
Temperature Range  
Supply Voltage  
10  
L
Standard DDR3 supply voltage support, 1.5V  
Low voltage and standard DDR3 supply voltage support,  
1.35 and 1.5V  
11  
Band Width Per DQ  
08  
10  
13  
16  
DDR3–800 = 800 Mbit per ball per second, tCK = 2.5 ns  
DDR3–1066 = 1066 Mbit per ball per second, tCK = 1.875 ns  
DDR3–1333 = 1333 Mbit per ball per second, tCK = 1.5 ns  
DDR3–1600 = 1600 Mbit per ball per second, tCK = 1.25 ns  
Rev. 0.65, 2008-12  
49  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
Field Description  
12 Latencies  
Value  
Coding  
D
E
F
G
H
J
CL–RCD–RP = 5–5–5  
CL–RCD–RP = 6–6–6  
CL–RCD–RP = 7–7–7  
CL–RCD–RP = 8–8–8  
CL–RCD–RP = 9–9–9  
CL–RCD–RP = 10–10–10  
CL–RCD–RP = 11–11–11  
K
Rev. 0.65, 2008-12  
50  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
List of Illustrations  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Ballout for 1Gb ×4 Components (PG-TFBGA-78). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Ballout for 1Gb × 8 Components (PG-TFBGA-78) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Ballout for 1Gb × 16 Components (PG-TFBGA-96) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Reference Load for AC Timings and Output Slew Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
AC Overshoot / Undershoot Definitions for Address and Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
AC Overshoot / Undershoot Definitions for Clock, Data, Strobe and Mask Signals . . . . . . . . . . . . . . . . . . . . . 36  
Package Outline PG-TFBGA-78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Package Outline PG-TFBGA-96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Rev. 0.65, 2008-12  
51  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1-Gbit DDR3 SDRAM Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Input / Output Signal Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Command Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Clock Enable (CKE) Truth Table for Synchronous Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data Mask (DM) Truth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
MR0 Mode register Definition, BA[2:0]=000B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
MR1 Mode Register Definition, BA[2:0]=001B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
MR2 Mode Register Definition, BA[2:0]=010B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
MR3 Mode Register Definition, BA[2:0]=011B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Bit Order during Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SDRAM Component Operating Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Input and Output Leakage Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DC and AC Input Levels for Single-Ended Command, Address and Control Signals . . . . . . . . . . . . . . . . . . . 28  
DC and AC Input Levels for Single-Ended DQ and DM Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS) . . . . . . . . . . . . . . . . . . . . . . . . 29  
Allowed Time Before Ringback (tDVAC) for CLK - CLK and DQS - DQS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Each Single-Ended Levels for CK, CK, DQS, DQS, DQSL, DQSL, DQSU or DQSU . . . . . . . . . . . . . . . . . . . 30  
Cross Point Voltage for Differential Input Signals (CK, DQS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
DC and AC Output Levels for Single-Ended Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
AC Output Levels for Differential Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
ODT DC Impedance and Mid-Level Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
ODT DC Impedance after proper IO Calibration and Voltage/Temperature Drift . . . . . . . . . . . . . . . . . . . . . . . 32  
OTD DC Impedance Sensitivity Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Output Slew Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Interface Capacitance Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
AC Overshoot / Undershoot Specification for Address and Control Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
AC Overshoot / Undershoot Specification for Clock, Data, Strobe and Mask Signals . . . . . . . . . . . . . . . . . . . 35  
DDR3-800 Speed Bins and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
DDR3-1066 Speed Bins and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
DDR3-1333 Speed Bins and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
DDR3-1600 Speed Bins and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
DDR3-DLL_off Speed Bins and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
IDD Specification for 1G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
IDD Specification for 1G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Example for Nomenclature Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
DDR3 SDRAM Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
Table 17  
Table 18  
Table 19  
Table 20  
Table 21  
Table 22  
Table 23  
Table 24  
Table 25  
Table 26  
Table 27  
Table 28  
Table 29  
Table 30  
Table 31  
Table 32  
Table 33  
Table 34  
Table 35  
Table 36  
Table 37  
Table 38  
Table 39  
Rev. 0.65, 2008-12  
52  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
IDSH1G–0[2/3/4]A1F1C  
1-Gbit Double-Data-Rate-Three SDRAM  
Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Product List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
DDR3 SDRAM Addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Package Ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Input / Output Signal Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.1  
1.2  
1.3  
1.4  
1.5  
2
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Truth Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Mode Register 0 (MR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Mode Register 1 (MR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Mode Register 2 (MR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Mode Register 3 (MR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Read / Write Operations and Access Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Burst Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.6.1  
3
Operating Conditions and Interface Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Interface Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Voltage Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
DC and AC Logic Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
DC and AC Output Measurements Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
ODT DC Impedance and Mid-Level Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
ODT DC Impedance Sensitivity on Temperature and Voltage Drifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Output Slew Rate Definition and Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Output Slew Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Interface Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Overshoot and Undershoot Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.1  
3.2  
3.3  
3.4  
3.4.1  
3.4.2  
3.5  
3.6  
3.7  
3.7.1  
3.8  
3.9  
4
Speed Bins and Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
4.1  
Speed Bins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
5
5.1  
5.2  
IDD Current Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
According to DDR3 Industry Standard defined 2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
According to DDR3 Industry Standard defined 2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
6
7
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Product Type Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Rev. 0.65, 2008-12  
53  
12192007-S9AR-ZT6N  
Advance Internet Data Sheet  
Edition 2008-12  
Published by Qimonda AG  
Gustav-Heinemann-Ring 212  
D-81739 München, Germany  
© Qimonda AG 2008.  
All Rights Reserved.  
Legal Disclaimer  
THE INFORMATION GIVEN IN THIS INTERNET DATA SHEET SHALL IN NO EVENT BE REGARDED AS A GUARANTEE  
OF CONDITIONS OR CHARACTERISTICS. WITH RESPECT TO ANY EXAMPLES OR HINTS GIVEN HEREIN, ANY  
TYPICAL VALUES STATED HEREIN AND/OR ANY INFORMATION REGARDING THE APPLICATION OF THE DEVICE,  
QIMONDA HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND, INCLUDING WITHOUT  
LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY.  
Information  
For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office.  
Warnings  
Due to technical requirements components may contain dangerous substances. For information on the types in question please  
contact your nearest Qimonda Office.  
Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a  
failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect  
the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human  
body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health  
of the user or other persons may be endangered.  
www.qimonda.com  

相关型号:

IDSH51-02A1F1C-10E

DDR DRAM, 128MX4, 20ns, CMOS, PBGA78, 0.80 MM PITCH, GREEN, PLASTIC, TFBGA-78
QIMONDA

IDSH51-02A1F1C-10F

DDR DRAM, 128MX4, 20ns, CMOS, PBGA78, 0.80 MM PITCH, GREEN, PLASTIC, TFBGA-78
QIMONDA

IDSH51-02A1F1C-10G

DDR DRAM, 128MX4, 20ns, CMOS, PBGA78, 0.80 MM PITCH, GREEN, PLASTIC, TFBGA-78
QIMONDA

IDSH51-02A1F1C-13J

DDR DRAM, 128MX4, 20ns, CMOS, PBGA78, 0.80 MM PITCH, GREEN, PLASTIC, TFBGA-78
QIMONDA

IDSH51-02A1F1C-16H

DDR DRAM, 128MX4, 20ns, CMOS, PBGA78, 0.80 MM PITCH, GREEN, PLASTIC, TFBGA-78
QIMONDA
QIMONDA

IDSH51-03A1F1C-10F

DDR DRAM, 64MX8, 20ns, CMOS, PBGA78, 0.80 MM PITCH, GREEN, PLASTIC, TFBGA-78
QIMONDA

IDSH51-03A1F1C-16J

DDR DRAM, 64MX8, 20ns, CMOS, PBGA78, 0.80 MM PITCH, GREEN, PLASTIC, TFBGA-78
QIMONDA

IDSH51-04A1F1C-10G

DDR DRAM, 32MX16, 20ns, CMOS, PBGA96, 0.80 MM PITCH, GREEN, PLASTIC, TFBGA-96
QIMONDA

IDSH51-04A1F1C-13G

DDR DRAM, 32MX16, 20ns, CMOS, PBGA96, 0.80 MM PITCH, GREEN, PLASTIC, TFBGA-96
QIMONDA

IDSH51-04A1F1C-13H

DDR DRAM, 32MX16, 20ns, CMOS, PBGA96, 0.80 MM PITCH, GREEN, PLASTIC, TFBGA-96
QIMONDA

IDSH51-04A1F1C-16J

DDR DRAM, 32MX16, 20ns, CMOS, PBGA96, 0.80 MM PITCH, GREEN, PLASTIC, TFBGA-96
QIMONDA