RTL8208B [REALTEK]

SINGLE-CHIP OCTAL 10/100BASE-TX/FX PHY TRANSCEIVER;
RTL8208B
型号: RTL8208B
厂家: Realtek Semiconductor Corp.    Realtek Semiconductor Corp.
描述:

SINGLE-CHIP OCTAL 10/100BASE-TX/FX PHY TRANSCEIVER

局域网(LAN)标准
文件: 总65页 (文件大小:1053K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RTL8208B-LF  
RTL8208BF-LF  
SINGLE-CHIP OCTAL 10/100BASE-TX/FX  
PHY TRANSCEIVER  
DATASHEET  
Rev. 1.3  
22 September 2006  
Track ID: JATR-1076-21  
Realtek Semiconductor Corp.  
No. 2, Innovation Road II, Hsinchu Science Park, Hsinchu 300, Taiwan  
Tel.: +886-3-578-0211. Fax: +886-3-577-6047  
www.realtek.com.tw  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
COPYRIGHT  
©2006 Realtek Semiconductor Corp. All rights reserved. No part of this document may be reproduced,  
transmitted, transcribed, stored in a retrieval system, or translated into any language in any form or by any  
means without the written permission of Realtek Semiconductor Corp.  
DISCLAIMER  
Realtek provides this document “as is”, without warranty of any kind, neither expressed nor implied,  
including, but not limited to, the particular purpose. Realtek may make improvements and/or changes in  
this document or in the product described in this document at any time. This document could include  
technical inaccuracies or typographical errors.  
TRADEMARKS  
Realtek is a trademark of Realtek Semiconductor Corporation. Other names mentioned in this document  
are trademarks/registered trademarks of their respective owners.  
USING THIS DOCUMENT  
This document is intended for the engineer’s reference and provides detailed programming information.  
Though every effort has been made to ensure that this document is current and accurate, more  
information may have become available subsequent to the production of this guide. In that event, please  
contact your Realtek representative for additional information that may help in the development process.  
REVISION HISTORY  
Revision  
1.0  
Release Date  
2003/12/16  
Summary  
Draft release.  
1.1  
1.2  
1.3  
2004/08/30  
2004/08/31  
2006/09/22  
First approved release.  
Change bias resistor value to 2K ohm in Figure 22 on page 49.  
1. Add Fiber Application information for RTL8208BF-LF.  
2. Modify Figure 1, page 3, and Figure 2, page 4.  
3. Modify Table 1. Pin Assignments, on page 5.  
4. Modify Table 5. RMII/SMII/SS-SMII Pins, page 7.  
5. Corrected SMI Clock frequency from 25MHz to 2.5MHz (Table 6,  
page 9, section 7.1.1, page 26, and Table 40, page 52).  
6. Recommend LEDMODE Pin be pulled high or pulled low (see Table 8,  
page 10).  
7. Add LED rise and fall timing (Figure 16, page 42).  
8. Change 2SB1188 to 2SB1182 (Figure 20 and Table 35, page 47).  
9. Modify Table 36. Absolute Maximum Ratings, and Table 37. Operating  
Range, on page 50.  
10. Add power startup internal sequence (section 9.6 Power Start Up &  
Internal Reset Sequence, page 56).  
11. Modify section 10 Mechanical Dimensions, page 58.  
12. Modify section 11 Ordering Information, page 59.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
ii  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
Table of Contents  
1. GENERAL DESCRIPTION................................................................................................................................................1  
2. FEATURES...........................................................................................................................................................................2  
3. APPLICATIONS..................................................................................................................................................................2  
4. PIN ASSIGNMENTS ...........................................................................................................................................................3  
4.1.  
4.2.  
4.3.  
4.4.  
PIN ASSIGNMENTS (RTL8208B-LF) ............................................................................................................................3  
LEAD (PB)-FREE PACKAGE IDENTIFICATION ................................................................................................................3  
PIN ASSIGNMENTS (RTL8208BF-LF) ..........................................................................................................................4  
LEAD (PB)-FREE PACKAGE IDENTIFICATION ................................................................................................................4  
5. PIN DESCRIPTIONS ..........................................................................................................................................................6  
5.1.  
5.2.  
5.3.  
5.4.  
5.5.  
5.6.  
5.7.  
5.8.  
MEDIA CONNECTION PINS............................................................................................................................................6  
POWER AND GROUND PINS ..........................................................................................................................................6  
MISCELLANEOUS PINS .................................................................................................................................................7  
RMII/SMII/SS-SMII PINS...........................................................................................................................................7  
SMI (SERIAL MANAGEMENT INTERFACE)....................................................................................................................9  
LED PINS.....................................................................................................................................................................9  
MODE CONTROL PINS ................................................................................................................................................10  
TEST PINS ..................................................................................................................................................................12  
6. REGISTER DESCRIPTIONS ..........................................................................................................................................13  
6.1.  
6.2.  
6.3.  
6.4.  
6.5.  
6.6.  
6.7.  
6.8.  
6.9.  
6.10.  
REGISTER0: CONTROL ...............................................................................................................................................14  
REGISTER1: STATUS ...................................................................................................................................................16  
REGISTER2: PHY IDENTIFIER 1 REGISTER .................................................................................................................18  
REGISTER3: PHY IDENTIFIER 2 REGISTER .................................................................................................................18  
REGISTER4: AUTO-NEGOTIATION ADVERTISEMENT ...................................................................................................19  
REGISTER5: AUTO-NEGOTIATION LINK PARTNER ABILITY.........................................................................................21  
REGISTER6: AUTO-NEGOTIATION EXPANSION............................................................................................................23  
PORT 1 REGISTER24: CABLE TESTER CONTROL REGISTER0.......................................................................................24  
PORT1 REGISTER29: CABLE TESTER CONTROL REGISTER1 .......................................................................................24  
PORT1 REGISTER30: CABLE STATUS REGISTER..........................................................................................................25  
7. FUNCTION DESCRIPTION............................................................................................................................................26  
7.1.  
7.1.1.  
7.1.2.  
7.1.3.  
7.1.4.  
7.1.5.  
7.2.  
7.2.1.  
7.2.2.  
GENERAL ...................................................................................................................................................................26  
SMI (Serial Management Interface).....................................................................................................................26  
Port Pair-Loop Back Mode (PP-LPBK) (RTL8208BF-LF Only).........................................................................26  
PHY Address.........................................................................................................................................................27  
Auto-Negotiation ..................................................................................................................................................27  
Full-Duplex Flow Control....................................................................................................................................27  
INITIALIZATION AND SETUP........................................................................................................................................28  
Reset .....................................................................................................................................................................28  
Setup and Configuration.......................................................................................................................................28  
10BASE-T ..................................................................................................................................................................28  
Transmit Function ................................................................................................................................................28  
Receive Function ..................................................................................................................................................28  
Link Monitor.........................................................................................................................................................28  
Jabber...................................................................................................................................................................29  
Loopback ..............................................................................................................................................................29  
100BASE-TX .............................................................................................................................................................29  
Transmit Function ................................................................................................................................................29  
Receive Function ..................................................................................................................................................30  
Link Monitor.........................................................................................................................................................31  
7.3.  
7.3.1.  
7.3.2.  
7.3.3.  
7.3.4.  
7.3.5.  
7.4.  
7.4.1.  
7.4.2.  
7.4.3.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
iii  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
7.5.  
7.6.  
7.6.1.  
7.6.2.  
7.6.3.  
7.6.4.  
7.6.5.  
BASELINE WANDER COMPENSATION..........................................................................................................................31  
100BASE-FX (RTL8208BF-LF ONLY) ......................................................................................................................31  
Transmit Function ................................................................................................................................................32  
Receive Function ..................................................................................................................................................32  
Link Monitor.........................................................................................................................................................32  
Far-End-Fault-Indication.....................................................................................................................................32  
Reduced Fiber Interface.......................................................................................................................................33  
RMII/SMII/SS-SMII.................................................................................................................................................33  
RMII (Reduced MII) .............................................................................................................................................34  
SMII (Serial MII)..................................................................................................................................................35  
SS-SMII (Source Synchronous -Serial MII)..........................................................................................................36  
POWER SAVING AND POWER DOWN MODE ................................................................................................................38  
Power Saving Mode..............................................................................................................................................38  
Reg0.11 Power Down Mode .................................................................................................................................38  
LED CONFIGURATION................................................................................................................................................38  
Serial LEDs ..........................................................................................................................................................38  
Scan LED..............................................................................................................................................................41  
CROSSOVER DETECTION AND AUTO CORRECTION .....................................................................................................46  
POLARITY DETECTION AND AUTO CORRECTION ........................................................................................................46  
1.8V POWER GENERATION .........................................................................................................................................47  
CABLE TESTER...........................................................................................................................................................47  
7.7.  
7.7.1.  
7.7.2.  
7.7.3.  
7.8.  
7.8.1.  
7.8.2.  
7.9.  
7.9.1.  
7.9.2.  
7.10.  
7.11.  
7.12.  
7.13.  
8. APPLICATION INFORMATION....................................................................................................................................48  
8.1.  
8.2.  
10BASE-T/100BASE-TX APPLICATION ......................................................................................................................48  
100BASE-FX APPLICATION (RTL8208BF-LF ONLY) .................................................................................................49  
9. CHARACTERISTICS.......................................................................................................................................................50  
9.1.  
9.2.  
9.3.  
9.4.  
9.5.  
ABSOLUTE MAXIMUM RATINGS .................................................................................................................................50  
OPERATING RANGE ....................................................................................................................................................50  
DC CHARACTERISTICS...............................................................................................................................................50  
AC CHARACTERISTICS...............................................................................................................................................52  
DIGITAL TIMING CHARACTERISTICS...........................................................................................................................52  
RMII Receive Timing ............................................................................................................................................53  
RMII Transmit Timing ..........................................................................................................................................54  
SMII Receive Timing.............................................................................................................................................54  
SMII Transmit Timing...........................................................................................................................................55  
SS-SMII Receive Timing .......................................................................................................................................55  
SS-SMII Transmit Timing......................................................................................................................................56  
POWER START UP & INTERNAL RESET SEQUENCE .....................................................................................................56  
THERMAL CHARACTERISTICS.....................................................................................................................................57  
Thermal Operating Range....................................................................................................................................57  
Thermal Resistances.............................................................................................................................................57  
9.5.1.  
9.5.2.  
9.5.3.  
9.5.4.  
9.5.5.  
9.5.6.  
9.6.  
9.7.  
9.7.1.  
9.7.2.  
10.  
10.1.  
11.  
MECHANICAL DIMENSIONS ...................................................................................................................................58  
NOTES FOR MECHANICAL DIMENSIONS .....................................................................................................................59  
ORDERING INFORMATION......................................................................................................................................59  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
iv  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
List of Tables  
TABLE 1. PIN ASSIGNMENTS..........................................................................................................................................................5  
TABLE 2. MEDIA CONNECTION PINS..............................................................................................................................................6  
TABLE 3. POWER AND GROUND PINS ............................................................................................................................................6  
TABLE 4. MISCELLANEOUS PINS ...................................................................................................................................................7  
TABLE 5. RMII/SMII/SS-SMII PINS .............................................................................................................................................7  
TABLE 6. SMI (SERIAL MANAGEMENT INTERFACE)......................................................................................................................9  
TABLE 7. LED PINS.......................................................................................................................................................................9  
TABLE 8. MODE CONTROL PINS ..................................................................................................................................................10  
TABLE 9. TEST PINS.....................................................................................................................................................................12  
TABLE 10. REGISTER DESCRIPTIONS.............................................................................................................................................13  
TABLE 11. REGISTER0: CONTROL .................................................................................................................................................14  
TABLE 12. REGISTER1: STATUS ....................................................................................................................................................16  
TABLE 13. REGISTER2: PHY IDENTIFIER 1 REGISTER ...................................................................................................................18  
TABLE 14. REGISTER3: PHY IDENTIFIER 2 REGISTER ...................................................................................................................18  
TABLE 15. REGISTER4: AUTO-NEGOTIATION ADVERTISEMENT....................................................................................................19  
TABLE 16. REGISTER5: AUTO-NEGOTIATION LINK PARTNER ABILITY .........................................................................................21  
TABLE 17. REGISTER6: AUTO-NEGOTIATION EXPANSION.............................................................................................................23  
TABLE 18. PORT 1 REGISTER24: CABLE TESTER CONTROL REGISTER0........................................................................................24  
TABLE 19. PORT1 REGISTER29: CABLE TESTER CONTROL REGISTER1.........................................................................................24  
TABLE 20. PORT1 REGISTER30: CABLE STATUS REGISTER...........................................................................................................25  
TABLE 21. SMI READ/WRITE CYCLES ..........................................................................................................................................26  
TABLE 22. PORT PAIR-LOOP BACK MODE (PP-LPBK).................................................................................................................26  
TABLE 23. 4B/5B CODING ............................................................................................................................................................30  
TABLE 24. 100BASE-FX ...............................................................................................................................................................31  
TABLE 25. PECL DC CHARACTERISTICS ......................................................................................................................................32  
TABLE 26. RMII/SMII/SS-SMII MODES ......................................................................................................................................33  
TABLE 27. RMII/SMII/SS-SMII SIGNALS ....................................................................................................................................33  
TABLE 28. SMII RECEPTION ENCODING .......................................................................................................................................35  
TABLE 29. SMII TRANSMISSION ENCODING .................................................................................................................................36  
TABLE 30. SERIAL LED MODE .....................................................................................................................................................38  
TABLE 31. SERIAL LED STATUS ...................................................................................................................................................39  
TABLE 32. BI-COLOR LED............................................................................................................................................................41  
TABLE 33. SCAN LED...................................................................................................................................................................41  
TABLE 34. SCAN LED STATUS......................................................................................................................................................41  
TABLE 35. AN EXAMPLE USING POWER TRANSISTOR 2SB1182 ...................................................................................................47  
TABLE 36. ABSOLUTE MAXIMUM RATINGS ..................................................................................................................................50  
TABLE 37. OPERATING RANGE......................................................................................................................................................50  
TABLE 38. DC CHARACTERISTICS.................................................................................................................................................50  
TABLE 39. AC CHARACTERISTICS.................................................................................................................................................52  
TABLE 40. DIGITAL TIMING CHARACTERISTICS............................................................................................................................52  
TABLE 41. RMII RECEIVE TIMING ................................................................................................................................................53  
TABLE 42. RMII TRANSMIT TIMING .............................................................................................................................................54  
TABLE 43. SMII RECEIVE TIMING.................................................................................................................................................54  
TABLE 44. SMII TRANSMIT TIMING..............................................................................................................................................55  
TABLE 45. SS-SMII RECEIVE TIMING...........................................................................................................................................55  
TABLE 46. SS-SMII TRANSMIT TIMING ........................................................................................................................................56  
TABLE 47. THERMAL OPERATING RANGE.....................................................................................................................................57  
TABLE 48. THERMAL RESISTANCES ..............................................................................................................................................57  
TABLE 49. ORDERING INFORMATION ............................................................................................................................................59  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
v
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
List of Figures  
FIGURE 1. PIN ASSIGNMENTS (RTL8208B-LF).............................................................................................................................3  
FIGURE 2. PIN ASSIGNMENTS (RTL8208BF-LF)...........................................................................................................................4  
FIGURE 3. RMII SIGNAL DIAGRAM .............................................................................................................................................34  
FIGURE 4. SMII SIGNAL DIAGRAM..............................................................................................................................................35  
FIGURE 5. SMII RECEPTION ........................................................................................................................................................35  
FIGURE 6. SMII TRANSMISSION ..................................................................................................................................................36  
FIGURE 7. SS-SMII SIGNAL DIAGRAM ........................................................................................................................................36  
FIGURE 8. SS-SMII RECEPTION...................................................................................................................................................37  
FIGURE 9. SS-SMII TRANSMISSION.............................................................................................................................................37  
FIGURE 10. 3-BIT SERIAL STREAM MODE.....................................................................................................................................39  
FIGURE 11. 2-BIT SERIAL STREAM MODE.....................................................................................................................................39  
FIGURE 12. EXTERNAL CIRCUIT FOR 3-BIT SERIAL LED MODE....................................................................................................40  
FIGURE 13. EXTERNAL CIRCUIT FOR 2-BIT SERIAL LED MODE....................................................................................................40  
FIGURE 14. 3-BIT BI-COLOR LED.................................................................................................................................................41  
FIGURE 15. SCAN LED TIMING FOR MODE 0 AND MODE 1 ...........................................................................................................42  
FIGURE 16. RISE AND FALL TIMING OF THE SCAN_STATUS AND SCAN_LED TRANSITION.....................................................42  
FIGURE 17. EXTERNAL CIRCUIT FOR SCAN LED MODE 0 .............................................................................................................43  
FIGURE 18. EXTERNAL CIRCUIT FOR SCAN LED MODE 1 .............................................................................................................44  
FIGURE 19. EXTERNAL CIRCUIT FOR SCAN LED MODE 2 .............................................................................................................45  
FIGURE 20. USING A PNP TRANSISTOR TO TRANSFORM 3.3V INTO 1.8V .....................................................................................47  
FIGURE 21. 10BASE-T/100BASE-TX APPLICATION ......................................................................................................................48  
FIGURE 22. 100BASE-FX APPLICATION (RTL8208BF-LF ONLY).................................................................................................49  
FIGURE 23. RMII RECEIVE TIMING...............................................................................................................................................53  
FIGURE 24. RMII TRANSMIT TIMING ............................................................................................................................................54  
FIGURE 25. SMII RECEIVE TIMING ...............................................................................................................................................54  
FIGURE 26. SMII TRANSMIT TIMING.............................................................................................................................................55  
FIGURE 27. SS-SMII RECEIVE TIMING..........................................................................................................................................55  
FIGURE 28. SS-SMII TRANSMIT TIMING.......................................................................................................................................56  
FIGURE 29. POWER START UP & INTERNAL RESET SEQUENCE .....................................................................................................56  
FIGURE 30. CROSS-SECTION OF 128-PIN QFP ...............................................................................................................................57  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
vi  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
1. General Description  
The RTL8208B-LF and RTL8208BF-LF (jointly referred to as the RTL8208B(F)-LF) are single-chip  
highly integrated 8-port, 10Base-T/100Base-TX (FX) Ethernet transceivers implemented in 0.18µm  
CMOS technology. They are currently the world’s smallest Octal-PHY chip package. Realtek patented  
removal of traditional SD pins in 100Base-FX (RTL8208BF-LF only) allow us to obtain a lower pin-  
count. Flexible hardware settings are provided to configure the various operating modes of the chip.  
The RTL8208B(F)-LF provides 8 separate and independent channels. Each channel consists of an  
RMII/SMII/SS-SMII interface-to-MAC controller, and hardware pins are used to configure the interface  
for RMII, SMII, or SS-SMII mode. In RMII mode, another hardware pin is used to set Port-Pair  
Loopback mode (PP-LPBK MODE, RTL8208BF-LF only), which can extend physical transmission  
length and perform physical media transport operations without a switch controller.  
A PECL (Pseudo Emitter Coupled Logic) receiver accepts input from a fiber transceiver and directly  
passed to a clock recovery circuit for data/clock recovery. The chip utilizes an advanced CMOS process  
to meet low voltage and low power requirements. With on-chip DSP (Digital Signal Processing)  
technology, the chip provides excellent performance under all operating conditions.  
A built-in UTP cable tester diagnoses an open/short fault in an attached cable. The RTL8208B(F)-LF also  
features very low power consumption (maximum of 1.6W). Additionally, pin-outs are designed to  
provide optimized direct routing, which simplifies the layout work and reduces EMI noise issues.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
1
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
2. Features  
„
Supports 8-port integrated physical layer  
and transceiver for 10Base-T and  
100Base-TX  
„
„
Supports Port-Pair Loopback mode (PP-  
LPBK mode, RTL8208BF-LF only)  
Supports two power reduction methods:  
„
„
„
Up to 8 ports support 100Base-FX  
(RTL8208BF-LF only)  
‹
‹
Power saving mode (cable detection)  
Power down mode  
Reduced 100Base-FX (RTL8208BF-LF  
only) interface (patented)  
„
Power-on auto reset function eliminates the  
need for external reset circuits  
Robust baseline wander correction for  
improved 100Base-TX performance  
„
„
„
„
Crossover detection and auto correction  
Polarity detection and Auto Correction  
Flexible serial/scan LED display modes  
„
„
Complies with IEEE 802.3/802.3u  
IEEE 802.3u compliant auto negotiation  
for 10/100Mbps control  
Cable tester for diagnosing open/short  
faults in attached cables  
„
Hardware controlled Flow control  
advertisement ability  
„
„
„
128-pin QFP package  
„
„
Supports RMII/SMII/SS-SMII interfaces  
Very low power consumption  
1.8V/3.3V power supply  
0.18µm, CMOS technology  
3. Applications  
RTL8208B-LF  
„
Octal PHY for Fast Ethernet switch with twisted pair interface  
RTL8208BF-LF  
Octal PHY for Fast Ethernet switch with twisted pair interface and fiber capability  
„
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
2
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
4. Pin Assignments  
4.1. Pin Assignments (RTL8208B-LF)  
Octal PHY for Fast Ethernet Switch with Twisted Pair Interface  
Figure 1. Pin Assignments (RTL8208B-LF)  
Note: Signal type codes are listed in section 5 Pin Descriptions, page 6.  
4.2. Lead (Pb)-Free Package Identification  
Lead (Pb)-free package is indicated by an ‘L’ in the location marked ‘T’ in Figure 1.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
3
Track ID: JATR-1076-21 Rev. 1.3  
 
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
4.3. Pin Assignments (RTL8208BF-LF)  
Octal PHY for Fast Ethernet Switch with Twisted Pair Interface and Fiber Capability  
Figure 2. Pin Assignments (RTL8208BF-LF)  
Note: Signal type codes are listed in section 5 Pin Descriptions, page 6.  
4.4. Lead (Pb)-Free Package Identification  
Lead (Pb)-free package is indicated by an ‘L’ in the location marked ‘T’ in Figure 2.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
4
Track ID: JATR-1076-21 Rev. 1.3  
 
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
Table 1. Pin Assignments  
Pin Name  
Pin# Function  
Driver Pin Name  
Capacity  
Pin#  
Type  
Driver  
Capacity  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RXIP[0]  
RXIN[0]  
TXON[0]  
TXOP[0]  
VSSA  
TXOP[1]  
TXON[1]  
RXIN[1]  
RXIP[1]  
VDDA  
RXIP[2]  
RXIN[2]  
TXON[2]  
TXOP[2]  
VSSA  
TXOP[3]  
TXON[3]  
RXIN[3]  
RXIP[3]  
RXIP[4]  
RXIN[4]  
TXON[4]  
TXOP[4]  
VDDA  
TXOP[5]  
TXON[5]  
RXIN[5]  
RXIP[5]  
VSSA  
RXIP[6]  
RXIN[6]  
TXON[6]  
TXOP[6]  
VDDA  
TXOP[7]  
TXON[7]  
RXIN[7]  
RXIP[7]  
VSSA  
VSSA  
1
2
3
4
5
6
7
8
AI  
AI  
TXD1[6]  
TXD0[6]  
TX_EN[6]  
VDDO  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
I,ND  
I,ND  
I,ND  
DP  
AO  
AO  
AG  
AO  
AO  
AI  
AI  
AP  
AI  
AI  
AO  
AO  
AG  
AO  
AO  
AI  
AI  
AI  
AI  
AO  
AO  
AP  
AO  
AO  
AI  
AI  
AG  
AI  
-
VSS  
DG  
8mA  
8mA  
8mA  
-
RXD1[5]/ TP_ASY_PAUSE  
RXD0[5]/ LED_BLNK_TIME  
CRS_DV[5]/ TP_PAUSE  
TXD1[5]  
TXD0[5]  
TX_EN[5]  
RXD1[4]/ FX_ASY_PAUSE  
RXD0[4]/ PHY_ADDR[4]  
CRS_DV[4]/ RX_CLK  
TXD1[4]  
I/O,Pd  
I/O,Pu  
I/O,Pu  
I,ND  
I,ND  
I,ND  
I/O,Pd  
I/O,Pd  
I/O,ND  
I,ND  
I,ND  
I,ND  
I,Pd  
I/O,Pd  
I/O,Pu  
I/O,Pu  
I,ND  
I,ND  
I,ND  
DG  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
-
8mA  
8mA  
16mA  
-
-
-
-
8mA  
8mA  
8mA  
-
-
-
-
-
8mA  
8mA  
8mA  
-
-
-
8mA  
8mA  
8mA  
-
-
-
-
-
8mA  
8mA  
8mA  
-
-
-
8mA  
-
-
8mA  
8mA  
8mA  
-
-
-
-
-
-
-
-
-
-
TXD0[4]  
TX_EN[4]/ TX_CLK  
SYNC/TX_SYNC  
RXD1[3]/ LEDSEL  
RXD0[3]/ PHY_ADDR[3]  
CRS_DV[3]/RX_SYNC/ FX_PAUSE  
TXD1[3]  
TXD0[3]  
TX_EN[3]  
VSS  
VDD  
RXD1[2]/ DISBLINK  
RXD0[2]/ LEDMODE[1]  
CRS_DV[2]/ FX_DUPLEX  
TXD1[2]  
TXD0[2]  
TX_EN[2]  
RXD1[1]/ EN_AUTOXOVER  
RXD0[1]/ LEDMODE[0]  
CRS_DV[1]/ SEL_TXFX[1]  
TXD1[1]  
TXD0[1]  
TX_EN[1]  
DP  
I/O,Pd  
I/O,Pd  
I/O,Pu  
I,ND  
I,ND  
I,ND  
I/O,Pu  
I/O,Pd  
I/O,Pd  
I,ND  
I,ND  
I,ND  
DP  
AI  
AO  
AO  
AP  
AO  
AO  
AI  
-
-
-
-
-
-
-
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
AI  
AG  
AG  
O,Pu  
O,Pu  
O,Pu  
O,Pu  
O,Pu  
DP  
DG  
O,Pu  
O,Pu  
O,Pu  
I,Pu  
I/O,Pd  
I,Pd  
I/O,Pd  
I/O,Pd  
I/O,Pu  
I,ND  
I,ND  
I,ND  
DP  
VDDO  
VSS  
-
DG  
8mA  
8mA  
8mA  
8mA  
8mA  
-
SCAN_LED[7]  
SCAN_LED[6]  
SCAN_LED[5]  
SCAN_LED[4]  
SCAN_LED[3]  
VDDO  
RXD1[0]/ PP-LPBK MODE  
RXD0[0]/ ENANAPAR  
CRS_DV[0]/ SEL_TXFX[0]  
TXD1[0]  
TXD0[0]  
TX_EN[0]  
MDIO  
MDC  
NC  
SCAN_STATUS[2]  
SCAN_STATUS[1] /LED_DATA  
SCAN_STATUS[0] /LED_CLK  
VDDA  
VDDA  
XI  
XO  
VSSA  
DTEST1  
VSSA  
I/O,Pd  
I/O,Pd  
I/O,Pd  
I,ND  
I,ND  
I,ND  
I/O,Pu  
I,Pd  
-
VSS  
8mA  
8mA  
8mA  
-
8mA  
-
8mA  
8mA  
8mA  
-
SCAN_LED[2]  
SCAN_LED[1]  
SCAN_LED[0]  
RESET#  
REFCLK  
CPRST  
RXD1[7]/ SEL_RXC  
RXD0[7]/ SEL_TXC  
CRS_DV[7]/ MODE[0]  
TXD1[7]  
TXD0[7]  
TX_EN[7]  
VDD  
-
O,Pu  
O,Pu  
O,Pu  
AP  
AP  
I,ND  
O,ND  
AG  
I/O,ND  
AG  
AP  
AO  
AO  
AP  
-
-
-
-
VDDA  
IBREF  
VCTRL  
VDDAH  
VSS  
RXD1[6]  
RXD0[6]/ FRC_PARA_FULL  
CRS_DV[6]/ MODE[1]  
DG  
I/O,Pd  
I/O,Pd  
I/O,Pu  
8mA  
8mA  
8mA  
-
VDDA  
AP  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
5
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
5. Pin Descriptions  
In order to reduce pin count, and therefore size and cost, some pins have multiple functions. In such cases  
the functions are separated with a “ / ” symbol. For the RTL8208B-LF refer to Figure 1, page 3; for the  
RTL8208BF-LF refer to Figure 2, page 4, for a graphical representation.  
Signal type codes shown below are used in the previous and following tables:  
I:  
Input  
P:  
Power  
O:  
A:  
D:  
ND:  
Output  
G:  
Pu:  
Pd:  
Ground  
Internal pull up (30K ohm)  
Internal pull down (30K ohm)  
Analog signal  
Digital signal  
Not defined  
5.1. Media Connection Pins  
Table 2. Media Connection Pins  
Pin Name  
Pin  
Type Description  
RXIP[7:0]  
38, 30,  
AI  
Receiver Input.  
28, 20, 19,  
11 , 9, 1  
Differential positive signal shared by 100Base-TX, 100Base-FX, and  
10Base-T.  
RXIN[7:0]  
TXOP[7:0]  
TXON[7:0]  
37, 31, 27,  
21, 18, 12, 8,  
2
35, 33, 25,  
23, 16, 14, 6,  
4
36, 32, 26,  
22, 17, 13, 7,  
3
AI  
Receiver Input.  
Differential negative signal shared by 100Base-TX, 100Base-FX, and  
10Base-T.  
Transmitter Output.  
Differential positive signal shared by 100Base-TX, 100Base-FX, and  
10Base-T.  
Transmitter Output.  
Differential negative signal shared by 100Base-TX, 100Base-FX, and  
10Base-T.  
AO  
AO  
5.2. Power and Ground Pins  
Table 3. Power and Ground Pins  
Type Description  
Pin Name  
VDDA  
Pin  
10, 24, 34, 117,  
118, 124, 128  
127  
5, 15, 29, 39,  
40, 121, 123  
60, 90  
46, 68, 103  
47, 61, 69, 89,  
104  
AP  
1.8V Power to analog.  
VDDAH  
VSSA  
AP  
AG  
3.3V Power to regulator.  
Analog ground.  
VDD  
VDDO  
VSS  
DP  
DP  
DG  
1.8V Power to digital core.  
3.3V Power to digital I/O.  
Digital ground.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
6
Track ID: JATR-1076-21 Rev. 1.3  
 
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
5.3. Miscellaneous Pins  
Table 4. Miscellaneous Pins  
Pin Name  
Pin  
Type Description  
RESET#  
51  
I,  
Reset.  
(Pu)  
This is an active low input. To complete the reset function, this pin  
must be asserted low for at least 10ms.  
25MHz Crystal input or 25MHz Oscillator clock input.  
The clock tolerance is ±50ppm.  
XI  
119  
I
When XI is pulled low, XO must be floating. REFCLK will then be  
the chip clock input.  
XO  
REFCLK  
120  
52  
O
I/O  
(Pd)  
25MHz Crystal output.  
Reference clock.  
If XI is 25MHz active, REFCLK is a 50MHz output.  
If XI is pulled-low (disabled), REFCLK is a clock input as described  
below:  
RMII mode = 50MHz ±50ppm clock input  
SMII/SS-SMII mode = 125MHz ±50ppm clock input.  
Pin driver capacity = 8mA.  
IBREF  
VCTRL  
NC  
125  
126  
113  
Reference Bias Resistor.  
AO  
AO  
When using a 1:1 transformer on Tx/Rx, this pin must be tied to analog  
ground through an external 2Kresistor.  
Voltage control.  
This pin controls a PNP transistor to generate the 1.8V power supply  
for VDD and VDDA pins.  
Not Connected.  
5.4. RMII/SMII/SS-SMII Pins  
Table 5. RMII/SMII/SS-SMII Pins  
Type Description  
I Transmit Data Input (bit 0).  
Pin Name  
TXD0[7:0]  
Pin  
58, 66, 74,  
80, 87, 95,  
101, 109  
RMII: TXD0 and TXD1 are the di-bits input, transmitted and driven  
synchronously to REFCLK from the MAC.  
SMII: TXD0 inputs the data that is transmitted and is driven  
synchronously to REFCLK. In 100Mbps, TXD0 inputs a new 10-bit  
segment starting with SYNC. In 10Mbps, TXD0 must repeat each  
10-bit segment 10 times.  
SS-SMII: TXD0 behaves as SMII except synchronous to TX_CLK  
instead of REFCLK and inputs a new 10-bit segment starting with  
TX_SYNC instead of SYNC.  
TXD1[7:0]  
57, 65, 73,  
79, 86, 94,  
100, 108  
I
Transmit Data Input (bit 1).  
RMII: TXD1 and TXD0 are the input di-bits synchronously to  
REFCLK.  
SMII/SS-SMII: The I/O pin of TX_EN should not be used.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
7
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
Pin Name  
Pin  
Type Description  
TX_EN[7:0]  
TX_CLK/TX_EN[4]  
59, 67, 75,  
81, 88, 96,  
102, 110  
I
Transmit Enable.  
RMII: TX_EN indicates the di-bits on TXD is valid and is  
synchronous to REFCLK.  
SMII: The I/O pin of TX_EN should not be used.  
SS-SMII: TX_EN[4] of RMII is used as TX_CLK, which is a  
125MHz clock input from MAC.  
The I/O pin of TX_EN should not be used.  
RXD0[7:0]  
O
Receive Data Input (bit 0).  
55  
63  
71  
77  
84  
92  
98  
106  
(Pd)  
(Pd)  
(Pu)  
(Pd)  
(Pu)  
(Pd)  
(Pd)  
(Pd)  
RMII: RXD0 and RXD1 output di-bits synchronously to REFCLK.  
SMII: RXD0 outputs data or in-band management information  
synchronously to REFCLK. In 100Mbps, RXD0 outputs a new 10-  
bit segment starting with SYNC. In 10Mbps, RXD0 must repeat  
each 10-bit segment 10 times.  
SS-SMII: RXD0 behaves as SMII except synchronous to RX_CLK  
instead of REFCLK and inputs a new 10-bit segment starting with  
RX_SYNC instead of SYNC.  
All pins driver capacity = 8mA  
RXD1[7:0]  
O
Receive Data Input (bit 1).  
54  
62  
70  
76  
83  
91  
97  
105  
(Pd)  
(Pd)  
(Pd)  
(Pd)  
(Pd)  
(Pd)  
(Pu)  
(Pd)  
O
RMII: RXD1 and RXD0 output di-bits synchronously to REFCLK.  
SMII/SS-SMII: The I/O pin of RXD1 should not be used.  
All pins driver capacity = 8mA  
CRS_DV[7:0]  
Carrier Sense and Data Valid.  
RX_SYNC/CRS_DV[3]  
RX_CLK/CRS_DV[4]  
56  
64  
72  
(Pu)  
(Pu)  
(Pu)  
RMII: CRS_DV is asynchronous to REFCLK and asserts when the  
medium is non-idle.  
SMII: CRS_DV[7:0] are not used and driven low.  
78 (16mA)  
(ND) SS-SMII: CRS_DV[3] of RMII is used as RX_SYNC which is a  
85  
93  
99  
07  
82  
(Pu)  
(Pu)  
(Pd)  
(Pd)  
I
sync signal used to delimit the 10-bit segment of RXD0 for all ports.  
CRS_DV[4] of RMII is used as RX_CLK, which is a 125MHz clock  
output. CRS_DV[7:5] and CRS_DV[2:0] are not used.  
All pins driver capacity = 8mA, except pin 78 (16mA).  
Sync/Transmit Synchronous.  
SYNC/  
TX_SYNC  
(Pd)  
SMII: SYNC is a sync signal used to delimit a 10-bit segment of  
RXD0 and TXD0 for all ports.  
SS-SMII: TX_SYNC is a sync signal used to delimit the 10-bit  
segment of TXD0 for all ports.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
8
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
5.5. SMI (Serial Management Interface)  
Table 6. SMI (Serial Management Interface)  
Pin Name  
Pin  
Type Description  
MDIO  
111  
I/O,  
(Pu)  
Management Data I/O. Bi-directional data interface. A 1.5Kpull-  
up resistor is required (as specified in IEEE802.3u).  
The MAC controller access of the MII registers should be delayed at  
least 700µs after completion of the reset because of the internal reset  
operation of the RTL8208B(F)-LF.  
Pin driver capacity = 8mA.  
MDC  
112  
I, (Pd) Management Data Clock. 0 to 2.5MHz clock sourced by MAC to  
sample MDIO.  
The MAC controller access of the MII registers should be delayed at  
least 700µs after completion of the reset because of the internal reset  
operation of the RTL8208B(F)-LF.  
5.6. LED Pins  
Table 7. LED Pins  
Pin Name  
Pin  
Type Description  
SCAN_LED[7:0]  
41, 42, 43,  
O
In scan LED mode, SCAN_LED[7:0] is the Scan LED port enable.  
44, 45, 48, (Pu) See section 7.9 LED Configuration, page 38.  
49, 50  
114, 115,  
116  
All pins driver capacity = 8mA.  
In scan LED mode, SCAN_STATUS[2:0] outputs (Col/Fulldup,  
(Pu) Link/Act, Spd) for each port.  
SCAN_STATUS[2:0]  
O
LED_CLK/SCAN_  
STATUS[0]  
In serial LED mode, SCAN_STATUS[0] is used as LED_CLK,  
which outputs the reference clock for the serial LED signals.  
LED_DATA/SCAN_  
STATUS[1]  
In serial LED mode, SCAN_STATUS[1] is used as LED_DATA,  
which outputs serial status bits that can be shifted into a shift register  
to be displayed via LEDs. LED_DATA is output synchronously to  
LED_CLK.  
All pins driver capacity = 8mA.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
9
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
5.7. Mode Control Pins  
Table 8. Mode Control Pins  
Type Description  
I/O, Select 10/100BaseTX or 100BaseFX (default = 2’b00).  
(Pd, Pd) If PP-LPBK MODE = 0:  
2’b00: All 8 ports (port0~port7) are 10Base-T/100Base-TX.  
Pin Name  
SEL_TXFX[1:0]/  
CRS_DV[1:0]  
Pin  
99, 107  
2’b01: Port 7 is 100FX, other ports are 10Base-T/100Base-TX.  
2’b10: Ports 6 & 7 are 100FX, other ports are 10Base-T/  
100Base-TX.  
2’b11: All 8 ports are 100Base-FX.  
If PP-LPBK MODE =1:  
2’b00: All 8 ports (port0~port7) are 10Base-T/100Base-TX.  
2’b01: Port 7 and 5 are 100FX, others are 10Base-T/100Base-TX.  
2’b10: Ports 1, 3, 5 & 7 are 100FX, others are  
10Base-T/100Base-TX.  
2’b11: All 8 ports are 100Base-FX.  
Note: RTL8208BF-LF only.  
PP-LPBK MODE/  
RXD1[0]  
105  
I/O,  
(Pd)  
Port-Pair Loopback mode (default =0).  
Upon power-on reset, this pin is input to assert PP-LPBK MODE.  
When set, all eight ports are port-pair looped back, acting like a signal  
regeneration/transformation repeater.  
See section 7.1.2 Port Pair-Loop Back Mode (PP-LPBK), page 26,  
covering PP-LPBK MODE.  
Note: RTL8208BF-LF only.  
PHY_ADDR[4:3]/  
RXD0[4:3]  
77, 84  
64, 56  
I/O,  
PHY Address (default = 2’b01).  
(Pd, Pu) These 2 bits determine the highest 2 bits of the 5-bit PHY address  
upon reset.  
We recommend using a resistor to pull up or pull down.  
I/O, (Pu,Pu) Select RMII/SMII/SS-SMII mode (default = 2’b11).  
2’b1x: RMII  
MODE[1:0]/  
CRS_DV[6:7]  
2’b00: SMII  
2’b01: SS-SMII  
We recommend using a resistor to pull up or pull down.  
I/O, (Pu) Twisted Pair Pause capability (default =1).  
Sets the Flow control ability of Reg.4.10 for UTP ports upon power-  
on reset.  
1: With flow control ability  
0: Without flow control ability  
I/O, (Pu) 100Base-FX Flow control capability (default =1).  
Forces the flow control capability of Reg.4.10 and Reg.5.10 upon  
power-on reset.  
TP_PAUSE/  
CRS_DV[5]  
72  
85  
FX_PAUSE/  
CRS_DV[3]  
1: With flow control ability in 100Base-FX  
0: Without flow control ability in 100Base-FX  
Note: RTL8208BF-LF only.  
TP_ASY_PAUSE/  
RXD1[5]  
70  
I/O, (Pd) Twisted Pair Asymmetric Pause capability (default =0).  
Sets the Asymmetric Flow control ability of Reg.4.11 for UTP ports  
upon power-on reset.  
1: With asymmetric flow control ability  
0: Without asymmetric flow control ability.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
10  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
Pin Name  
Pin  
Type  
Description  
FX_ASY_PAUSE/  
RXD1[4]  
76  
I/O, (Pd) 100Base-FX Asymmetric Flow control capability (default =0).  
Forces the asymmetric flow control capability of Reg.4.11 and  
Reg.5.11 upon power-on reset.  
1: Asymmetric flow control ability in 100Base-FX  
0: No asymmetric flow control ability in 100Base-FX  
Note: RTL8208BF-LF only.  
FX_DUPLEX/  
CRS_DV[2]  
93  
I/O, (Pu) FX_DUPLEX: Force 100Base-FX Full Duplex Mode (default =1).  
This pin sets 100Base-FX duplex and affects those ports in  
100Base-FX mode.  
1: Full duplex  
0: Half duplex  
Upon reset, this pin sets the default values of Reg.0.8 of those ports in  
100Base-FX.  
Note: RTL8208BF-LF only.  
EN_AUTOXOVER/  
RXD1[1]  
97  
91  
71  
I/O, (Pu) Enable Auto Crossover Detection (default =1).  
1: Enable auto crossover detection  
0: Disable auto crossover detection  
I/O, (Pd) Disable power-on/reset LED blinking: (default = 0)  
1: Disable power-on LED blinking  
DISBLINK/  
RXD1[2]  
0: Blink  
LED_BLNK_TIME/  
RXD0[5]  
I/O, (Pu) LED Blink Time (default =1).  
Controls the blinking speed of activity and collision LEDs.  
1: 43ms (recommended to use external 10K pull up resistor)  
0: 120ms  
LEDSEL/RXD1[3]  
83  
I/O, (Pd) LED Selection (default=1’b0).  
LEDSEL  
1’b1: Scan LED  
1’b0: Serial LED  
LEDMODE[1:0]/  
RXD0[2:1]  
92, 98  
I/O,  
LEDMODE[1:0] (default = 00).  
(Pd, Pd) When using the RTL8208B(F)-LF LED solution , we recommend using  
an external resister to pull high or pull low.  
In Serial LED, LEDMODE[1:0] controls the forms of serial LED status.  
LEDMODE Mode  
Output  
2’b00  
2’b01  
2’b10  
2’b11  
3-bit serial stream  
2-bit serial stream  
3-bit for Bi-color LED Col/Fulldup, Link/Act, Spd  
1-bit serial stream Link/Act/Spd  
Col/Fulldup, Link/Act, Spd  
Spd, Link/Act  
In Scan LED, LEDMODE[1:0] controls the output of  
SCAN_STATUS[2:0].  
LEDMODE Mode  
Output  
2’b00  
2’b01  
2’b10  
2’b11  
Mode 0  
Mode 1  
Mode 2  
Reserved  
Col/Fulldup, Link/Act, Spd  
RX, TX, Link  
NC, Bi-color Link/Act/Spd, NC  
FRC_PARA_FULL/  
RXD0[6]  
63  
I/O  
(Pd)  
Force full duplex when link is established by parallel detection  
(default=0).  
1: Force full duplex when link is established by parallel detection  
0: Normal operation  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
11  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
Pin Name  
SEL_RXC/RXD1[7]  
Pin  
54  
Type  
I/O  
Description  
In SMII, SEL_RXC control the clock to output delay of RXD.  
0: Clock out data on falling edge of receive clock  
1: Clock out data on rising edge of receive clock  
Recommended to set SEL_RXC=1.  
(Pd)  
In SS-SMII, SEL_RXC, must be set to 1.  
SEL_TXC/RXD0[7]  
55  
I/O  
(Pd)  
In SMII, SEL_TXC control the clock to output delay of TXD.  
0: Clock out data on falling edge of transmit clock  
1: Clock out data on rising edge of transmit clock  
Recommended to set SEL_TXC=1.  
In SS-SMII, SEL_TXC, must be set to 1.  
5.8. Test Pins  
Table 9. Test Pins  
Pin Name  
ENANAPAR/  
RXD0[0]  
Pin  
106  
Type Description  
I/O,  
Enable analog parameter write (default =0).  
1: Enable analog parameter write operation  
0: Disable analog parameter write operation  
Reserved for internal use.  
(Pd)  
CPRST  
53  
I,  
(Pd)  
Must be left floating.  
DTEST1  
122  
I/O  
Reserved for internal use.  
Must be left floating.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
12  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
6. Register Descriptions  
The first six registers of the MII are defined by the MII specification. Other registers are defined by  
Realtek for internal use.  
Signal type codes below are used in the following tables:  
RO:  
RW:  
SC:  
Read Only  
Read/Write  
Self Clearing  
LL:  
LH:  
Latch Low until cleared  
Latch High until cleared  
Table 10. Register Descriptions  
Register Description  
0
1
2
3
4
5
6
Control Register.  
Status Register.  
PHY Identifier 1 Register.  
PHY Identifier 2 Register.  
Auto-Negotiation Advertisement Register.  
Auto-Negotiation Link Partner Ability Register.  
Auto-Negotiation Expansion Register.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
13  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
6.1. Register0: Control  
Table 11. Register0: Control  
Reg. bit Name  
Description  
Type  
RW/SC  
RW  
Default  
0.15  
0.14  
Reset  
Loopback  
1: PHY reset. This bit is self-clearing.  
This will loopback TXD to RXD and ignore all activity on  
the cable media.  
0
0
1: Enable loopback  
0: Normal operation  
0.13  
Spd_Sel  
RW  
0
When NWay is enabled, this bit reflects the auto negotiation  
result (Read Only).  
When NWay is disabled, this bit can be set by SMI*.  
(Read/Write).  
When 100FX is enabled, this bit =1 (Read Only).  
1: 100Mbps  
0: 10Mbps  
0.12  
Auto Negotiation  
Enable  
This bit can be set through SMI (Read/Write).  
When 100FX is enabled, this bit =0 (Read only).  
1: Enable auto negotiation process  
0: Disable auto negotiation process  
1: Power down. All functions will be disabled except SMI  
read/write function  
RW  
1
(0 for  
100FX)  
0.11  
0.10  
Power Down  
Isolate  
RW  
RW  
0
0
0: Normal operation  
1: Electrically isolate the PHY from RMII/SMII/SS-SMII.  
PHY is still able to respond to MDC/MDIO  
0: Normal operation  
0.9  
0.8  
Restart Auto  
Negotiation  
Duplex Mode  
1: Restart Auto-Negotiation process  
0: Normal operation  
RW/SC  
RW  
0
0
When NWay is enabled, this bit reflects the result of auto  
negotiation (Read Only).  
When NWay is disabled, this bit can be set by SMI*  
(Read/Write).  
When 100FX is enabled, this bit is determined by the  
FX_DUPLEX pin (Read/Write).  
1: Full duplex operation  
0: Half duplex operation  
0.[7:0]  
Reserved  
RO  
0
*SMI: Serial Management Interface composed of MDC, MDIO, that allows the MAC to manage the PHY.  
Reset – In order to reset the RTL8208B(F)-LF using software control, a ‘1’ must be written to bit 15  
using an SMI write operation. The bit clears itself after the reset process has completed. Writes to other  
Control register bits will have no effect until the reset process has completed (approximately 1µs).  
Writing a ‘0’ to this bit has no effect. Because this bit is self-clearing after a few cycles from a write  
operation, it will return a ‘0’ when read.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
14  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
Loopback – The RTL8208B(F)-LF may be placed into loopback mode by writing a ‘1’ to bit 14.  
Loopback mode may be cleared either by writing a ‘0’ to bit 14 or by resetting the chip. When this bit is  
read, it will return a ‘1’ when the chip is in software-controlled loopback mode, otherwise it will return a  
‘0’.  
Speed Selection – If auto negotiation is enabled, this bit has no effect on the speed selection. However, if  
auto negotiation is disabled using software control, the operating speed of the RTL8208B(F)-LF can be  
forced by writing the appropriate value to bit 13. Writing a ‘1’ to this bit forces 100Base-X operation,  
while writing a ‘0’ forces 10Base-T operation. When this bit is read, it returns the value of the  
software-controlled forced-speed selection only.  
Auto Negotiation Enable – Default is auto negotiation enabled for all TP ports, and disabled for FX  
ports. Auto negotiation can be disabled via software control by setting 0.12=0.  
Power Down – The RTL8208B(F)-LF supports a low power mode. Writing a ‘1’ will enable power down  
mode, and writing a ‘0’ will return the RTL8208B(F)-LF to normal operation. When read, this register  
will return a ‘1’ when in power down mode, and a ‘0’ during normal operation.  
Isolate – Each PHY may be isolated from its MII by writing a ‘1’ to bit 10. All MII outputs will be tri-  
stated and all MII inputs will be ignored. Since the MII management interface is still active, the isolate  
mode may be cleared either by writing a ‘0’ to bit 10 or by resetting the chip. When this bit is read, it will  
return a ‘1’ when the chip is in isolate mode, and return a ‘0’ during normal operation.  
Restart Auto Negotiation – Bit 9 is a self-clearing bit that allows the auto negotiation process to be  
restarted, regardless of the status of the auto negotiation state machine. In order for this bit to have an  
effect, auto negotiation must be enabled. Writing a ‘1’ to this bit restarts auto negotiation. Writing a ‘0’ to  
this bit has no effect. When this bit is read, it will always return a ‘0’.  
Duplex Mode – By default, the RTL8208B(F)-LF powers up in half duplex mode. The chip can be  
forced into full duplex mode by writing a ‘1’ to bit 8 while auto negotiation is disabled. Half duplex mode  
can be resumed either by writing a ‘0’ to bit 8 or by resetting the chip. When NWay is enabled, this bit  
reflects the results of auto negotiation, and is in read-only mode. When NWay is disabled, this bit can be  
set through the SMI, and is in Read/Write mode. When 100FX is enabled, this bit can be set through the  
SMI or FX_DUPLEX pin and is in Read/Write mode.  
Reserved Bits – All reserved MII register bits must be written as ‘0’ at all times. Ignore the  
RTL8208B(F)-LF output when these bits are read.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
15  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
6.2. Register1: Status  
Table 12. Register1: Status  
Reg. bit Name  
Description  
Type  
RO  
RO  
Default  
1.15  
1.14  
100Base_T4  
0: No 100Base-T4 capability (permanently =0)  
1: 100Base-TX full duplex capable  
0: Not 100Base-TX full duplex capable  
1: 100Base-TX half duplex capable  
0: Not 100Base-TX half duplex capable  
1: 10Base-TX full duplex capable  
0
1
100Base_TX_FD  
100Base_TX_HD  
10Base_T_FD  
1.13  
1.12  
1.11  
RO  
RO  
RO  
1
1
1
0: Not 10Base-TX full duplex capable  
1: 10Base-TX half duplex capable  
10Base_T_HD  
0: Not 10Base-TX half duplex capable  
Reserved.  
The RTL8208B(F)-LF will accept management frames with  
preamble suppressed.  
1: Auto-negotiation process completed. Reg.4.5 are valid if  
this bit is set  
0: Auto-negotiation process not completed  
1: Remote fault indication from link partner has been  
detected.  
1.[10:7]  
1.6  
Reserved  
RO  
RO  
0
1
MF Preamble  
Suppression  
Auto-negotiate  
Complete  
1.5  
1.4  
RO  
0
0
Remote Fault  
RO/LH  
0: No remote fault indication detected  
When in 100FX mode, this bit means in-band signal Far-  
End-Fault is detected. Refer to section 7.6.4 Far-End-Fault-  
Indication, page 32.  
This bit will remain set until it is cleared by reading  
register 1 via the management interface.  
1: NWay auto negotiation capable (permanently =1)  
0: No auto negotiation capability  
1: Link has not failed since previous read  
0: Link has failed since previous read  
If the link fails, this bit will be set to 0 until read.  
1: Jabber detected.  
1.3  
1.2  
Auto-Negotiation  
Ability  
Link Status  
RO  
1
0
RO/LL  
1.1  
1.0  
Jabber Detect  
RO/LH  
RO  
0
1
0: No Jabber detected  
The jabber function is disabled in 100Base-X mode. Jabber  
is supported only in 10Base-T mode.  
Extended Capability 1: Extended register capable (permanently =1)  
0: Not extended register capable  
100Base_T4 – The RTL8208B(F)-LF does not support the T4 function. Any reads to this bit will  
return a ‘0’.  
100Base_TX_FD – The RTL8208B(F)-LF is capable of operating in 100Base-TX full duplex mode.  
100Base_TX_HD – The RTL8208B(F)-LF is capable of operating in 100Base-TX half duplex mode.  
10Base_T_FD – The RTL8208B(F)-LF is capable of operating in 10Base-T full duplex mode.  
10Base_T_HD – The RTL8208B(F)-LF is capable of operating in 10Base-T half duplex mode.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
16  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
Reserved – Ignore the output of the RTL8208B(F)-LF when these bits are read.  
MF Preamble Suppression – Management Frame Preamble Suppression is permanently set in the  
RTL8208B(F)-LF, allowing subsequent MII management frames to be accepted, with or without the  
standard preamble pattern. Only two preamble bits are required between successive management  
commands, instead of the normal 32. However, a minimum of 32 preamble bits are required for the first  
SMI read/write transaction after reset. One idle bit is required between any two management transactions  
(as defined in the IEEE 802.3u spec). Reads of this bit will always return a ‘1’.  
Auto-Negotiation Complete – Bit 5 will return a ‘1’ if the auto negotiation process has been completed  
and the contents of registers 4 and 5 are valid.  
Remote Fault – When the link partner detects a far-end fault, it sends a far-end indication stream pattern.  
When the RTL8208B(F)-LF receives this pattern, it sets Reg1.4=1.  
Auto-Negotiation Ability – The RTL8208B(F)-LF is capable of performing IEEE auto negotiation, and  
will return a ‘1’ when bit 4 is read, regardless of whether or not the auto negotiation function has been  
disabled.  
Link Status – The RTL8208B(F)-LF will return a ‘1’ on bit 2 when the link state machine is in Link Pass,  
indicating that a valid link has been established. Otherwise, it will return ‘0’. When a link failure occurs  
after the link pass state has been entered, the Link Status bit will be latched at ‘0’ and will remain so until  
the bit is read. After the bit is read, it becomes ‘1’ if the Link Pass state has been entered again.  
Jabber Detect – The RTL8208B(F)-LF will return a ‘1’ on bit 1 if a jabber condition has been detected.  
After the bit is read, or if the chip is reset, it reverts to ‘0’. This is for 10Base-T only. Jabber occurs when  
a predefined excessively long packet is detected in 10Base-T mode. When the duration of TX_EN  
exceeds the jabber timer (21ms), transmit and loopback functions are disabled and the COL LED starts  
blinking. After TX_EN goes low for more than 500ms, the transmitter is re-enabled and the COL LED  
stops blinking.  
Extended Capability – The RTL8208B(F)-LF supports extended capability registers and will return a ‘1’  
when bit 0 is read. Several extended registers have been implemented in the RTL8208B(F)-LF.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
17  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
6.3. Register2: PHY Identifier 1 Register  
The PHY Identifier Registers #1 and #2 together form a unique identifier for the PHY section of this  
device. The Identifier consists of a concatenation of the Organizationally Unique Identifier (OUI), the  
vendor’s model number, and the model revision number. A PHY may return a value of zero in each of the  
32 bits of the PHY Identifier if desired. The PHY Identifier is intended to support network management.  
Table 13. Register2: PHY Identifier 1 Register  
Reg. bit Name  
2.[15:0] OUI  
Description  
Type  
RO  
Default  
001C h  
Composed of the 3rd to 18th bits of the Organizationally  
Unique Identifier (OUI).  
6.4. Register3: PHY Identifier 2 Register  
Table 14. Register3: PHY Identifier 2 Register  
Reg. bit Name  
3.[15:10] OUI  
Description  
Type  
RO  
RO  
Default  
110010  
001000  
0001  
Assigned to the 19th through 24th bits of the OUI.  
Manufacturer’s model number.  
Manufacturer's revision number.  
3.[9:4]  
3.[3:0]  
Model Number  
Revision Number  
RO  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
18  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
6.5. Register4: Auto-Negotiation Advertisement  
This register contains the advertisement abilities of this device that will be transmitted during auto-  
negotiation.  
Table 15. Register4: Auto-Negotiation Advertisement  
Reg. bit Name  
Description  
Type  
Default  
4.15  
Next Page  
1: Next Page enabled  
0: Next Page disabled (Permanently =0)  
Permanently =0.  
1: Transmit remote fault  
0: Do not transmit remote fault  
Reserved.  
RO  
0
4.14  
4.13  
Acknowledge  
Remote Fault  
RO  
RW  
0
0
4.12  
4.11  
Reserved  
RW  
RW  
0
Asymmetric Pause 1: Advertises that the RTL8208B(F)-LF has asymmetric  
flow control capability  
Set by  
TP_ASY_PAUSE  
Or  
0: No asymmetric flow control capability  
In 100FX mode, this bit is set by FX_ASY_PAUSE upon  
reset.  
FX_ASY_PAUSE  
In 100/10TP mode, this bit is set by TP_ASY_PAUSE  
upon reset.  
4.10  
Pause  
1: Advertises that the RTL8208B(F)-LF has flow control  
capability  
0: No flow control capability  
RW  
Set by  
TP_PAUSE  
Or  
In 100FX mode, this bit is set by FX_PAUSE upon reset.  
In 100/10TP mode, this bit is set by TP_PAUSE upon  
reset.  
FX_PAUSE  
4.9  
4.8  
100Base-T4  
100Base-TX-FD  
100Base-TX  
10Base-T-FD  
10Base-T  
1: 100Base-T4 capable  
RO  
RW  
RW  
RW  
RW  
RO  
0
0: Not 100Base-T4 capable (permanently =0)  
1: 100Base-TX full duplex capable  
0: Not 100Base-TX full duplex capable  
1: 100Base-TX half duplex capable  
0: Not 100Base-TX half duplex capable  
1: 10Base-TX full duplex capable  
0: Not 10Base-TX full duplex capable  
1: 10Base-TX half duplex capable  
0: Not 10Base-TX half duplex capable  
[00001]=IEEE 802.3.  
1
4.7  
1
4.6  
1
1
4.5  
4.[4:0]  
Selector Field  
00001  
Next Page – The RTL8208B(F)-LF does not implement the Next Page function, so bit 15 will always  
return a ‘0’ when read.  
Acknowledge – Because the Next Page function is not implemented, bit 14 will always return a ‘0’ when  
read.  
Remote Fault –Writing a ‘1’ to this bit causes a remote fault indicator to be sent to the link partner  
during auto-negotiation.  
Reserved – Reserved bits are R/W to allow for forward compatibility with future IEEE standards.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
19  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
Asymmetric Pause – Setting this bit indicates the availability of Asymmetric Flow Control capabilities  
when full duplex operation is in use. This bit is used by one MAC to communicate Asymmetric Pause  
Capability to its Link Partner and has no effect on PHY operation.  
Pause –Setting this bit indicates the availability of Flow Control capabilities when full duplex operation  
is in use. This bit is used by one MAC to communicate Pause Capability to its Link Partner and has no  
effect on PHY operation.  
100Base-T4 – Because the RTL8208B(F)-LF does not support the T4 function, any reads to this bit will  
return a ‘0’.  
100Base-TX-FD – This bit advertises that the RTL8208B(F)-LF can operate in 100Base-TX full duplex  
mode. Writing a ‘0’ to this bit will suppress advertising of this ability. Resetting the chip restores the  
default value. The default value is ‘1’ and writing a ‘1’ will set this bit to ‘1’. Reading this bit will return  
the last written value, or the default value if no write has been completed since the last reset.  
100Base-TX – This bit advertises that the RTL8208B(F)-LF can operate in 100Base-TX half duplex  
mode. Writing a ‘0’ to this bit will suppress advertising of this ability. Resetting the chip will restore the  
default value. The default value is ‘1’ and writing a ‘1’ will set this bit to ‘1’. Reading this bit will return  
the last written value, or the default value if no write has been completed since the last reset.  
10Base-T-FD – This bit advertises that the RTL8208B(F)-LF can operate in 10Base-T full duplex mode.  
Writing a ‘0’ to this bit will suppress advertising of this ability. Resetting the chip will restore the default  
value. The default value is ‘1’ and writing a ‘1’ will set this bit to ‘1’. Reading this bit will return the last  
written value, or the default value if no write has been completed since the last reset.  
10Base-T – This bit advertises that the RTL8208B(F)-LF can operate in 10Base-T half duplex mode.  
Writing a ‘0’ to this bit will suppress advertising of this ability. Resetting the chip will restore the default  
value. The default value is ‘1’ and writing a ‘1’ will set this bit to ‘1’. Reading this bit will return the last  
written value, or the default value if no write has been completed since the last reset.  
Selector Field – Bits 4:0 contain a fixed value of 00001, indicating that the chip belongs to the  
IEEE 802.3 class of PHY transceivers.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
20  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
6.6. Register5: Auto-Negotiation Link Partner Ability  
This register contains the advertised abilities of the Link Partner as received during auto negotiation. The  
content changes after successful auto negotiation.  
Table 16. Register5: Auto-Negotiation Link Partner Ability  
Reg. bit Name  
Description  
Type  
Default  
5.15  
5.14  
5.13  
Next Page  
1: Link partner desires Next Page transfer  
0: Link partner does not desire Next Page transfer  
1: Link Partner acknowledges reception of FLP words  
0: No acknowledgement by Link Partner  
1: Remote Fault indicated by Link Partner  
0: No remote fault indicated by Link Partner  
Reserved.  
1: Asymmetric Flow control supported by Link Partner  
0: No Asymmetric flow control supported by Link Partner  
When auto-negotiation is enabled, this bit reflects Link  
Partner ability (read only).  
RO  
0
Acknowledge  
Remote Fault  
RO  
RO  
0
0
5.12  
5.11  
Reserved  
Asymmetric Pause  
RO  
RW  
0
0
In 100FX mode, this bit is set by FX_ASY_PAUSE or SMI.  
1: Flow control supported by Link Partner  
0: No flow control supported by Link Partner  
When auto-negotiation is enabled, this bit reflects Link  
Partner ability (read only).  
5.10  
Pause  
RW  
0
In 100FX mode, this bit is set by FX_PAUSE or SMI.  
1: 100Base-T4 supported by Link Partner  
0: 100Base-T4 not supported by Link Partner  
1: 100Base-TX full duplex supported by Link Partner  
0: 100Base-TX full duplex not supported by Link Partner  
For 100FX mode, this bit is set when Reg.0.8=1 or  
FX_DUPLEX =1.  
5.9  
5.8  
100Base-T4  
RO  
RO  
0
0
100Base-TX-FD  
When auto-negotiation is disabled, this bit is set when  
Reg.0.13=1 and Reg.0.8=1.  
5.7  
100Base-TX  
1: 100Base-TX half duplex supported by Link Partner  
0: 100Base-TX half duplex not supported by Link Partner  
For 100FX mode, this bit is set when Reg.0.8=0 or  
FX_DUPLEX =0.  
RO  
0
When auto-negotiation is disabled, this bit is set when  
Reg.0.13=1 and Reg.0.8=0.  
5.6  
5.5  
10Base-T-FD  
10Base-T  
1: 10Base-TX full duplex supported by Link Partner  
0: 10Base-TX full duplex not supported by Link Partner  
When auto-negotiation is disabled, this bit is set when  
Reg.0.13=0 and Reg.0.8=1.  
1: 10Base-TX half duplex supported by Link Partner  
0: 10Base-TX half duplex not supported by Link Partner  
When auto-negotiation disabled, this bit is set when  
Reg.0.13=0 and Reg.0.8=0.  
RO  
RO  
RO  
0
0
5.[4:0]  
Selector Field  
[00001]=IEEE 802.3.  
00001  
Note: The values are only guaranteed to be valid once auto-negotiation has successfully completed, as indicated by bit 5  
of the MII Status Register.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
21  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
Next Page – Bit 15 returns a value of ‘1’ when the Link Partner implements the Next Page function and  
has Next Page information that it wants to transmit. However, since the RTL8208B(F)-LF does not  
implement the Next Page function, it ignores the Next Page bit, except to copy it to this register.  
Acknowledge – Bit 14 is used by auto negotiation to indicate that a device has successfully received its  
Link Partner’s Link Code Word.  
Remote Fault – Bit 13 returns a value of ‘1’ when the Link Partner signals that a fault has occurred.  
Reserved – Not defined by the IEEE 802.3 standard.  
Asymmetric Pause – Indicates that the Link Partner asymmetric pause bit is set.  
Pause – Indicates that the Link Partner pause bit is set.  
100Base-T4 – Though the RTL8208B(F)-LF does not support the T4 function, this bit reflects the T4  
ability of the Link Partner.  
100Base-TX-FD – This bit indicates that the Link Partner can support 100Base-TX full duplex mode.  
This bit is cleared any time auto negotiation is restarted or the RTL8208B(F)-LF is reset.  
100Base-TX – This bit indicates that the Link Partner can support 100Base-TX half duplex mode. This  
bit is cleared any time auto negotiation is restarted or the RTL8208B(F)-LF is reset.  
10Base-T-FD – This bit indicates that the Link Partner can support 10Base-T full duplex mode. This bit  
is cleared any time auto negotiation is restarted or the RTL8208B(F)-LF is reset.  
10Base-T – This bit indicates that the Link Partner can support 10Base-T half duplex mode. This bit is  
cleared any time auto negotiation is restarted or the RTL8208B(F)-LF is reset.  
Selector Field – Bits 4:0 reflect the value of the Link Partner’s selector field. These bits are cleared each  
time auto negotiation is restarted or the chip is reset, and generally reflects the value 0001, indicating that  
the Link Partner is an IEEE 802.3 device.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
22  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
6.7. Register6: Auto-Negotiation Expansion  
Table 17. Register6: Auto-Negotiation Expansion  
Reg. bit Name  
6.[15:5] Reserved  
Description  
Type  
RO  
RO  
Default  
0
0
6.4  
Parallel Detection  
1: A fault has been detected via the Parallel Detection  
function  
Fault  
0: No fault has been detected via the Parallel Detection  
function  
6.3  
6.2  
6.1  
6.0  
Link Partner Next  
Page Able  
Local Next Page  
Able  
1: Link Partner is Next Page able  
RO  
RO  
0
0
0
0: Link Partner is not Next Page able  
1: RTL8208B(F)-LF is Next Page able  
0: RTL8208B(F)-LF is not Next Page able (permanently=0)  
1: A New Page has been received  
0: A New Page has not been received  
If Auto-Negotiation is enabled, this bit means:  
1: Link Partner is Auto-Negotiation able  
0: Link Partner is not Auto-Negotiation able  
In 100FX or auto-negotiation disabled, this bit is always 1.  
Page Received  
RO/LH  
RO  
Link Partner Auto-  
Negotiation Able  
0 (Auto-  
Negotiation)  
or  
1 (100FX)  
Reserved – Ignore the output of the RTL8208B(F)-LF when these bits are read.  
Parallel Detection Fault – Bit 4 is a read-only bit that is latched high when a parallel detection fault  
occurs in the auto negotiation state machine. For further details, consult the IEEE 802.3 standard. The bit  
is reset to ‘0’ after the register is read, or when the chip is reset.  
Link Partner Next Page Able – Bit 3 returns a ‘1’ when the Link Partner has Next Page capabilities. It  
has the same value as bit 15 of the Link Partner Ability Register.  
Local Next Page Able – The RTL8208B(F)-LF does not have Next Page capabilities, so it will always  
return a ‘0’ when bit 2 is read.  
Page Received – Bit 1 is latched high when a new link code word is received from the Link Partner,  
checked, and acknowledged. This bit is cleared when the link is lost or the chip is reset.  
Link Partner Auto-Negotiation Able – Bit 0 returns a ‘1’ once the Link Partner is known to have auto  
negotiation capabilities. Before any auto negotiation information is exchanged, or if the Link Partner does  
not comply with IEEE auto negotiation, the bit returns a value of ‘0’.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
23  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
6.8. Port 1 Register24: Cable Tester Control Register0  
Table 18. Port 1 Register24: Cable Tester Control Register0  
Reg. bit Name  
Description  
Type  
RW  
RW  
RW  
Default  
000  
0
15:13  
12  
11  
Port Selection  
Reserved  
Port selection for cable test.  
Must be set to the default value.  
1: Run cable test  
ENRTCT  
0
0: Stop cable test  
10:8  
7:0  
Reserved  
Reserved  
Must be set to the default value.  
Must be set to the default value.  
RW  
RW  
111  
0x80  
Port Selection  
000 = Select Port 0 to run cable test  
001 = Select Port 1 to run cable test  
010 = Select Port 2 to run cable test  
011 = Select Port 3 to run cable test  
100 = Select Port 4 to run cable test  
101 = Select Port 5 to run cable test  
110 = Select Port 6 to run cable test  
111 = Select Port 7 to run cable test  
ENRTCT – Set to ‘1’ to run the UTP cable test, and set to ‘0’ after completion of the cable test process.  
6.9. Port1 Register29: Cable Tester Control Register1  
Table 19. Port1 Register29: Cable Tester Control Register1  
Reg. bit Name  
Description  
Must be set to the default value.  
1: Cable test on TX pair  
Type  
RW  
RW  
Default  
15  
14  
Reserved  
SELTX  
0
0
0: Cable test on RX pair  
13  
12  
11:0  
Reserved  
Reserved  
Reserved  
Must be set to the default value.  
Must be set to the default value.  
Must be set to the default value.  
RW  
RW  
RW  
0
1
0x7d0  
SELTX  
0: Select RX_Pair (pair 1/2) to run cable test  
1: Select TX_Pair (pair 3/6) to run cable test  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
24  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
6.10. Port1 Register30: Cable Status Register  
Table 20. Port1 Register30: Cable Status Register  
Description  
Reg. bit Name  
Type  
Default  
15  
RTCT_RDY  
1: Cable test status is ready  
RO  
0
0: Cable test status is not ready  
14  
13:12  
Reserved  
Status  
RO  
RO  
0
00  
Cable tester status.  
00: Normal cable  
01: Open in cable  
10: Short in cable  
11: Reserved  
11:9  
8:0  
Reserved  
Distance  
RO  
RO  
0
0
Distance of Reflection.  
RTCT_RDY – This bit will return a ‘1’ if the cable test process has been completed and the contents of  
Status and Distance are valid.  
Status – Cable test status is valid after completion of cable test process.  
Distance – These bits (in decimal) divided by 4 equal the approximate distance (meters) to the open/short  
fault location.  
These bits are valid after completion of the cable test process.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
25  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
7. Function Description  
7.1. General  
7.1.1. SMI (Serial Management Interface)  
SMI (Serial Management Interface) is also known as MII Management Interface and consists of two  
signals, MDIO and MDC, which allow the MAC controller to control and monitor the state of the PHY.  
MDC is a clock input for PHY to latch MDIO on its rising edge. The clock can run from DC to 2.5MHz.  
MDIO is a bi-directional connection used to write data to, or read data from PHY. The PHY address base  
is set by pins PHY_ADDR[4:3], and the eight port addresses of the RTL8208B(F)-LF are internally 000,  
001, 010, 011, 100, 101, 110, and 111.  
Table 21. SMI Read/Write Cycles  
Preamble  
(32 bits)  
1……..1  
1……..1  
Start  
(2 bits)  
01  
OP Code  
(2 bits)  
10  
PHYAD  
(5 bits)  
AAAAA  
AAAAA  
REGAD  
(5 bits)  
RRRRR  
RRRRR  
Turnaround  
Data  
Idle  
(2 bits)  
Z0  
(16 bits)  
D…….D  
D…….D  
Z*  
Z*  
Read  
01  
01  
10  
Write  
Note1: *Z: high-impedance. During idle time, MDIO state is determined by an external 1.5Kpull-up resistor.  
Note2: The RTL8208B(F)-LF supports Preamble Suppression, which allows the MAC to issue Read/Write Cycles without  
preamble bits (but needs at least one Idle for every cycle). However, for the first MII management cycle after  
power-on reset, a 32-bit preamble is needed. To guarantee the first successful SMI transaction after power-on  
reset, the MAC should be delayed at least 700µs to issue the first SMI Read/Write Cycle relative to the rising edge  
of reset.  
7.1.2. Port Pair-Loop Back Mode (PP-LPBK) (RTL8208BF-LF Only)  
Port Pair-Loop Back Mode (PP-LPBK) mode is enabled by pulling the pin high on reset. When in  
PP-LPBK mode, the ports of the RTL8208BF-LF are configured as four pairs, port0 & port1, port2 &  
port3, port4 & port5, and port6 & port7. Each pair is set as RMII interface loopback, acting as a signal  
regeneration /transformation repeater, so a switch controller is not necessary.  
In PP-LPBK mode, TP port and FX port selection is different from that in normal mode. The TP and FX  
port selection configuration is as follows:  
In Table 22, ‘U’ means UTP port, ‘F’ means Fiber port.  
Table 22. Port Pair-Loop Back Mode (PP-LPBK) (RTL8208BF-LF Only)  
PP-LPBK Mode  
SEL_TXFX[1:0]  
(Pin 99, 107)  
Port0, Port1  
Port2, Port3  
Port4, Port5  
Port6, Port7  
(Pin 105)  
0
(Normal Mode)  
0 0  
0 1  
1 0  
1 1  
0 0  
0 1  
1 0  
1 1  
U U  
U U  
U U  
F F  
U U  
U U  
U F  
F F  
U U  
U U  
U U  
F F  
U U  
U U  
U F  
F F  
U U  
U U  
U U  
F F  
U U  
U F  
U F  
F F  
U U  
U F  
F F  
F F  
U U  
U F  
U F  
F F  
1
(PP-LPBK)  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
26  
Track ID: JATR-1076-21 Rev. 1.3  
 
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
Since this configuration is a loopback connection, it uses full duplex only. Half duplex is not supported.  
The loopback-pair ports should be configured to the same speed. Although this mode does not effect  
normal NWay mode, in order to keep each pair’s two ports at the same speed, there is an auto-detection  
scheme. This scheme specifies that if one port of the pair is already linked, when the other port is linked  
later, the earlier link-on port will re-start auto negotiation. When PP-LPBK mode is set, there are three  
requirements: it must be based upon RMII mode; no switch controller can be connected; and TX_EN[7:0]  
must be pulled down.  
7.1.3. PHY Address  
Each transceiver in the RTL8208B(F)-LF has a unique PHY address for MII management. The address is  
set through the PHY address pins. The pins are latched at the trailing end of a reset. Transceiver 1 will  
have the address AA000, where AA=PHYAD [4:3]. Each internal PHY address is AA000, AA001,  
AA010, AA011, AA100, AA101, AA110, AA111. Every time an SMI write or read operation is executed,  
the transceiver compares the PHY address with its own PHY address definition, and the operation is  
executed only when the addresses match.  
7.1.4. Auto-Negotiation  
For 10/100Mbps TP ports, the RTL8208B(F)-LF default setup is Auto-Negotiation enabled. Setting  
Register 0.12=0 via an SMI write will disable Auto-Negotiation. For a 100FX port, Auto-Negotiation is  
always disabled.  
For an Auto-Negotiation enabled port, the RTL8208B(F)-LF will negotiate with its link partner to  
determine the speed and duplex status. The RTL8208B(F)-LF’s ability is advertised in Register 4. After  
Auto-Negotiation is finished, the link partner’s ability is stored in Register 5.  
If the link partner is Auto-Negotiation disabled, the RTL8208B(F)-LF enters a parallel-detection state to  
identify the speed of the link partner. The RTL8208B(F)-LF will link at the same speed as the link partner,  
in half duplex mode if FRC_PARA_FULL=0 upon reset, or in full duplex mode if FRC_PARA_FULL=1  
upon reset.  
Auto-Negotiation is also used to determine full-duplex flow control. Flow control ability is advertised in  
Register 4.10. The link partner’s flow control ability is stored in Register 5.10. See the following section  
for more information.  
7.1.5. Full-Duplex Flow Control  
If hardware pins TP_PAUSE or FX_PAUSE are enabled at power-on reset, Register 5.10=1 and Register  
4.10=1. Therefore, after reset is completed:  
When Auto-Negotiation is enabled -- Register 4.10 may be overwritten by the MAC, and Register 5.10  
may be updated after NWay has completed. Register 5.10 is set as read-only for the MAC.  
When Auto-Negotiation is disabled -- Register 5.10 is set to R/W for the MAC through the SMI  
interface. If the SMI does not write to Register 5.10, the Register remains 5.10=1, which means hardware  
forced flow control is enabled.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
27  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
7.2. Initialization and Setup  
7.2.1. Reset  
The RTL8208B(F)-LF is initialized while in the reset state. During reset, each transceiver is reset  
simultaneously. There are three ways to reset the RTL8208B(F)-LF: Power-on auto reset; hardware pin  
reset; and software reset. The internal power-on auto-reset circuit can reset the chip while the reset pin is  
floating. The hardware reset signal must be asserted low for at least 10ms on the RESET# pin. A software  
reset is implemented by writing Register 0.15=1, which is self-clearing.  
7.2.2. Setup and Configuration  
The operational modes of the RTL8208B(F)-LF can be configured either by hardware pin (pulled high or  
low) upon reset, or by software programming via accessing the RTL8208B(F)-LF registers through the  
SMI (see section 5 Pin Descriptions, page 6 for details).  
7.3. 10Base-T  
7.3.1. Transmit Function  
When TX_EN is active, TXD from RMII/SMII/SS-SMII is serialized, Manchester-encoded, and driven  
onto the network medium as a packet stream. An on-chip filtering and wave shaping circuit eliminates the  
need for external filtering. The transmit function is disabled when the link has failed or when the auto-  
negotiation process is in progress.  
7.3.2. Receive Function  
The Manchester decoder converts the incoming serial stream when the circuit detects the signal, and the  
digital serial stream is then converted to 2-bit (RMII) or 1-bit (SMII/SS-SMII) data format. The preamble  
of the incoming stream is stripped off and regenerated. SFD is generated into RXD once the incoming  
SFD is detected and data bits entering the elastic buffer are over threshold.  
7.3.3. Link Monitor  
The 10Base-T link pulse detection circuit continually monitors the RXIP/RXIN pins for the presence of  
valid link pulses. Auto-polarity is implemented to correct the detected reverse polarity of RXIP/RXIN  
signal pairs.  
The 10Base-T link pulse detection circuit constantly monitors the RXIP/RXIN pins for the presence of  
valid link pulses. Auto-polarity is implemented for correcting the detected reverse polarity of the  
RXIP/RXIN signal pairs.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
28  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
7.3.4. Jabber  
Jabber occurs when TX_EN is asserted for longer than 21ms. Both transmit and loopback functions are  
disabled once jabber has occurred. The MII Register 1.1 (Jabber detect) bit is set high until jabber  
disappears and the bit is read again. The Jabber function is supported in 10-Base-T only, and is not  
implemented in 100Base-TX. The collision LED of the corresponding port will blink while Jabber occurs.  
Jabber is dismissed after TX_EN remains low for at least 500ms.  
7.3.5. Loopback  
Loopback mode can be achieved by writing to Register 0.14=1. Loopback mode routes transmitted data at  
the output of NRZ to the NRZI conversion module, back to the receiving path. This mode is used to check  
the device’s connections at the 5-bit symbol bus, and verify the operation of the Phase-Locked Loop  
(PLL).  
7.4. 100Base-TX  
An internal 125MHz clock is generated by an on-chip PLL circuit to synchronize the transmit data or  
generate the clock signal for the incoming data stream.  
7.4.1. Transmit Function  
Upon detection of TX_EN high, the RTL8208B(F)-LF converts RMII/SMII/SS-SMII TXD to a 5-bit  
code-group and substitutes J/K code-groups for the first two code-groups (Start of Stream Delimiters  
(SSD)). As long as TX_EN is asserted high, 4B5B coding continues for all data. At the end of TX_EN,  
T/R code-groups are appended to the last data field. These are stripped off at the remote receiving end.  
During the inter-packet gap, where TX_EN deasserted, IDLE code-groups are transmitted for clocking  
purposes of the remote receiver. The 5-bit serial data stream is 4B5B coded and then scrambled, as  
defined by the TP-PMD Stream Cipher function, to flatten the power spectrum energy such that EMI  
effects are significantly reduced.  
The scrambled seed is unique for each port based on PHY addresses. After scrambling, the bit stream is  
driven onto the network media in the form of MLT-3 signaling. This multi-level signaling technology  
moves the power spectrum energy from high frequency to low frequency, which also benefits EMI  
emission. Scrambling is not implemented in 100Base-FX.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
29  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
7.4.2. Receive Function  
The receive path includes a receiver composed of an adaptive equalizer and DC restoration circuits. These  
circuits compensate for incoming distortion of the MLT-3 signal. An MLT-3 to NRZI, and NRZI to NRZ  
converter is used to convert analog signals to digital bit-streams. A PLL circuit is also included to clock  
data bits with minimum bit error rate. De-scrambler, 5B/4B decoder, and serial-to-parallel conversion  
circuits follow. CRS_DV is asserted no later than within a few bits time of when the SSD (Start-of-  
Stream-Delimiter) is detected (delay due to the elastic buffer as mentioned in the RMII section, page 34),  
and ends toggling once the data in the elastic buffer has been dumped to RXD.  
Table 23. 4B/5B Coding  
Name  
0
1
2
3
4
5
6
7
4B Code  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000*  
0101*  
0101*  
0000*  
0000*  
1000  
0111  
0111  
0111  
0111  
0111  
0111  
0111  
0111  
0111  
0111  
5B Code  
11110  
01001  
10100  
10101  
01010  
01011  
01110  
01111  
10010  
10011  
10110  
10111  
11010  
11011  
11100  
11101  
11111  
11000  
10001  
01101  
00111  
00100  
00000  
00001  
00010  
00011  
00101  
00110  
01000  
01100  
10000  
11001  
Definition  
Data 0  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
Data 9  
Data A  
Data B  
Data C  
Data D  
Data E  
8
9
A
B
C
D
E
F
Data F  
Idle  
I
J
Start of stream Delimiter, Part 1  
Start of stream Delimiter, Part 2  
End of stream Delimiter, Part 1  
End of stream Delimiter, Part 2  
Transmit Error (used to force signaling errors)  
Invalid code  
Invalid code  
Invalid code  
Invalid code  
Invalid code  
K
T
R
H
V
V
V
V
V
V
V
V
V
V
Invalid code  
Invalid code  
Invalid code  
Invalid code  
Invalid code  
*Treated as an invalid code (mapped to 0111) when received in data field.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
30  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
7.4.3. Link Monitor  
In 100Base-TX mode, receive signal energy is detected by monitoring the receive pair for transitions in  
the signal level. Signal levels are qualified using squelch detect circuits. When no signal or valid signals  
are detected on the receive pair, the link monitor will enter and remain in the ‘Link Fail’ state where only  
idle codes will be transmitted. When a valid signal is detected on the receive pair, the link monitor will  
enter the ‘Link Pass’ state and the transmit and receive functions will be enabled.  
7.5. Baseline Wander Compensation  
The RTL8208B(F)-LF is ANSI TP-PMD compliant and supports input and Base Line Wander (BLW)  
compensation in 100Base-TX mode. The RTL8208B(F)-LF does not require external attenuation circuitry  
at its receive inputs, RXIP/RXIN. It accepts TP-PMD compliant waveforms directly, requiring only a  
100termination and a 1:1 transformer.  
BLW is the change in the average DC content, over time, of an AC coupled digital transmission over a  
given transmission medium. BLW is a result of the interaction between the low frequency components of  
a transmitted bit stream and the frequency response of the AC coupling component(s) within the  
transmission system. If the low frequency content of the digital bit stream goes below the low frequency  
pole of the AC coupling transformers, then the droop characteristics of the transformers will dominate,  
resulting in potentially serious BLW. If BLW is not compensated for, packet loss will occur.  
7.6. 100Base-FX (RTL8208BF-LF Only)  
The RTL8208BF-LF (the RTL8208B-LF does not support fiber application) can be configured to  
100Base-FX mode through SEL_TXFX[1:0] (PP-LPBK MODE should be 0), depending on the setting of  
SEL_TXFX[1:0], port 7 or port 6/7, or all eight ports can be configured for 100Base-FX operation.  
Note: In compliance with IEEE 802.3u, 100Base-FX does not support Auto-Negotiation. In order to  
operate correctly, both sides of the connection should be set to the same duplex and flow control ability.  
Table 24. 100Base-FX  
PP-LPBK Mode=0  
SEL_TXFX[1:0]  
Medium Type  
Port 0 Port 1  
Port2  
UTP  
UTP  
UTP  
FX  
Port3  
Port4  
UTP  
UTP  
UTP  
FX  
Port5  
UTP  
UTP  
UTP  
FX  
Port6  
UTP  
UTP  
FX  
Port7  
UTP  
FX  
FX  
FX  
2’b00  
2’b01  
2’b10  
2’b11  
UTP  
UTP  
UTP  
FX  
UTP  
UTP  
UTP  
FX  
UTP  
UTP  
UTP  
FX  
FX  
UTP: 10Base-T/100Base-TX. FX: 100Base-FX.  
The RTL8208BF-LF performs a link monitoring function with less pins required than regular  
100Base-FX applications (it removes a pair of differential Signal Detect signals (Realtek patent)), which  
significantly reduces the pin count in this octal PHY.  
Any of the RTL8208BF-LF transceivers may interface with an external 100Base-FX fiber optic device  
and receiver, instead of the magnetic module used with twisted-pair cable. The differential transmit and  
receive data pairs will operate at PECL (Positive Emitter Coupled Logic) voltage levels instead of those  
required for twisted-pair transmission. The data will be encoded using two-level NRZI instead of three-  
level MLT3. The data stream is not scrambled for fiber-optic transmission.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
31  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
7.6.1. Transmit Function  
In 100Base-FX transmission, TXD is processed as 100Base-TX, except without scrambling, before the  
NRZI stage. Instead of converting to MLT-3 signals, as in 100Base-TX, the serial data stream is driven  
out as NRZI PECL signals. These enter the fiber transceiver in differential-pairs form. The fiber  
transceiver only operates in a 3.3V environment. Refer to Figure 22, page 49 for more information.  
Table 25. PECL DC Characteristics  
Symbol  
Min  
Max  
Unit  
Parameter  
PECL Input High Voltage  
PECL Input Low Voltage  
PECL Output High Voltage  
PECL Output Low Voltage  
Vih  
Vil  
Voh  
Vol  
Vdd-1.16  
Vdd-1.81  
Vdd-1.02  
Vdd-0.88  
Vdd-1.47  
V
V
V
V
Vdd-1.62  
7.6.2. Receive Function  
Signals are received through PECL receiver inputs from a fiber transceiver and directly passed to a clock  
recovery circuit for data/clock recovery. Scrambling/de-scrambling is bypassed in 100Base-FX.  
7.6.3. Link Monitor  
In 100Base-FX mode, if the RTL8208BF-LF receive path detects a valid link word, it enters the link state.  
If no valid link word is detected, it is in a link down state. Therefore, SD+/- is not necessary. The  
RTL8208BF-LF uses a reduced 100Base-FX interface.  
7.6.4. Far-End-Fault-Indication  
The MII Register 1.4 (Remote Fault indication detected) is a Far-End-Fault-Indication (FEFI) bit when  
100FX is enabled, and indicates that a FEFI has been detected. FEFI is an alternative in-band signaling  
that is composed of 84 consecutive 1’s followed by one 0. When the RTL8208BF-LF has detected this  
pattern three times, Reg.1.4 is set, which means the transmit path (Remote side’s receive path) has  
problems.  
If the RTL8208BF-LF detects no valid link pulse on the RxOP/N pair, it sends out a FEFI stream pattern,  
which in turn will cause the remote side to detect a Far-End-Fault. This means the RTL8208BF-LF sees  
problems on the receive path.  
The FEFI mechanism is used only in 100Base-FX applications.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
32  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
7.6.5. Reduced Fiber Interface  
The RTL8208BF-LF ignores the underlying SD signal of the fiber transceiver to complete link detection  
and connection. This is achieved by monitoring RD signals from the fiber transceiver and checking  
whether any link integrity events are encountered. This significantly reduces pin-count, especially for  
high-port PHY devices. This is a Realtek patent-pending technology and available only with Realtek  
products.  
7.7. RMII/SMII/SS-SMII  
The interface to the MAC can be RMII, SMII, or SS-SMII through MODE[1:0]. When floating  
MODE[1:0] upon power-on reset, the RTL8208B(F)-LF operates in RMII mode (default).  
Table 26. RMII/SMII/SS-SMII Modes  
MODE[1:0]  
2’b1x  
Operation Mode  
RMII  
REFCLK Clock Input  
50MHz ±50ppm  
2’b00  
2’b01  
SMII  
SS-SMII  
125MHz ±50ppm  
125MHz ±50ppm  
Table 27 illustrates the signals required for each interface:  
Table 27. RMII/SMII/SS-SMII Signals  
SMII  
RMII  
REFCLK  
SS-SMII  
REFCLK  
TX_SYNC  
REFCLK  
SYNC  
CRS_DV[2:0]  
CRS_DV[3]  
CRS_DV[4]  
CRS_DV[7:5]  
RXD0[7:0]  
RXD1[7:0]  
TX_EN[3:0]  
TX_EN[4]  
RX_SYNC  
RX_CLK  
RXD0[7:0]  
TXD0[7:0]  
RXD0[7:0]  
TX_CLK  
TX_EN[7:5]  
TXD0[7:0]  
TXD1[7:0]  
TXD0[7:0]  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
33  
Track ID: JATR-1076-21 Rev. 1.3  
 
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
7.7.1. RMII (Reduced MII)  
The RTL8208B(F)-LF meets all of the RMII requirements outlined in the RMII Consortium  
specifications. The main advantage introduced by RMII is pin count reduction; e.g., it operates with only  
one 50MHz reference clock for both the TX and RX sides, without separate clocks needed for both paths,  
as with the MII interface. However, some hardware modification is needed for this change, the most  
important of which is the presence of an elastic buffer for absorption of the frequency difference between  
the 50MHz reference clock and the clocking information of the incoming data stream. Another change  
implemented is that the MII RXDV and Carrier_Sense are merged into one signal, CRS_DV, which is  
asserted high while detecting incoming packet data. When internal Carrier_Sense is de-asserted,  
CRS_DV is de-asserted when the first di-bit of a nibble is presented onto RXD[1:0] synchronously to  
REFCLK. If there is still data in the FIFO that has not yet been presented onto RXD[1:0], then, on the  
second di-bit of a nibble, CRS_DV reasserts. This pattern of assertion and de-assertion continues until all  
received data in the FIFO has been presented onto RXD[1:0]  
Figure 3. RMII Signal Diagram  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
34  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
7.7.2. SMII (Serial MII)  
The RTL8208B(F)-LF also supports SMII interface to MAC, which allows a further reduction in the  
number of signals. As illustrated below, both the MAC and RTL8208B(F)-LF are synchronous to a  
125MHz reference clock.  
Figure 4. SMII Signal Diagram  
Receive Path  
Receive data and control information are signaled in 10-bit segments. The SYNC signal is used to delimit  
the 10-bit segments. The MAC is responsible for generating SYNC pulses every ten clocks. In 100Mbps  
mode, each segment represents a byte of data. In 10Mbps mode, each segment is repeated ten times to  
represent a byte of data. The receive sequence contains all of the information defined on the standard MII  
receive path.  
Table 28. SMII Reception Encoding  
CRS RX_DV  
RXD0  
RXER  
from  
Previous  
Frame  
RXD1  
Speed  
0: 10Mbps  
1: 100Mbps  
RXD2  
Duplex  
0: Half 0: Down  
1: Full 1: Up  
RXD3  
Link  
RXD4  
Jabber  
0: OK  
RXD5  
Upper  
Nibble  
0:  
Invalid  
1: Valid  
RXD6  
False  
Carrier  
0: OK  
1: Detected  
RXD7  
X
0
1
1: Detected  
X
1
One Data Byte (Two MII Data Nibbles)  
1
2
3
4
5
6
7
8
9
10  
REFCLK  
SYNC  
CRS  
RXDV  
RXD0  
RXD1  
RXD2  
RXD3  
RXD4  
RXD5  
RXD6  
RXD7  
RXD[0]  
Figure 5. SMII Reception  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
35  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
Transmit Path  
Transmit data and control information are signaled in 10-bit segments. SYNC signal is used to delimit the  
10-bit segments. MAC is responsible to generate these SYNC pulses every ten clocks. For 100Mbps  
mode, each segment represents a byte of data. However, for 10Mbps mode, each segment is repeated ten  
times to represent a byte of data.  
Table 29. SMII Transmission Encoding  
TXER  
TXEN  
TXD0  
TXD1  
TXD2  
TXD3  
TXD4  
TXD5  
TXD6  
TXD7  
X
X
0
1
X
X
X
X
X
X
X
X
One Data Byte (Two MII Data Nibbles)  
1
2
3
4
5
6
7
8
9
10  
REFCLK  
SYNC  
TXD[0]  
TX_ER TX_EN  
TXD0  
TXD1  
TXD2  
TXD3  
TXD4  
TXD5  
TXD6  
TXD7  
Figure 6. SMII Transmission  
Collision Detection  
The RTL8208B(F)-LF does not indicate that a collision has occurred. It is left to the MAC to detect the  
assertion of both CRS_DV and TX_EN.  
7.7.3. SS-SMII (Source Synchronous -Serial MII)  
Source-Synchronous SMII is designed for applications requiring a trace delay of more than 1ns. Three  
signals are added to the SMII interface: RX_SYNC, RX_CLK, TX_CLK; and the SYNC of SMII is  
modified to TX_SYNC in SS-SMII.  
Figure 7. SS-SMII Signal Diagram  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
36  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
Receive Path  
Receive data and control information are signaled in 10-bit segments. The RX_SYNC signal is used to  
delimit the 10-bit segments. The RTL8208B(F)-LF is responsible for generating these RX_SYNC pulses  
every ten clocks. In 100Mbps mode, each segment represents a byte of data. In 10Mbps mode, each  
segment is repeated ten times to represent a byte of data. The receive sequence contains all the  
information defined on the standard MII receive path.  
1
2
3
4
5
6
7
8
9
10  
RX_CLK  
RX_SYNC  
RXD[0]  
CRS  
RXDV  
RXD0  
RXD1  
RXD2  
RXD3  
RXD4  
RXD5  
RXD6  
RXD7  
Figure 8. SS-SMII Reception  
Transmit Path  
Transmit data and control information are signaled in 10-bit segments. The TX_SYNC signal is used to  
delimit the 10-bit segments. The MAC is responsible for generating these TX_SYNC pulses every ten  
clocks. In 100Mbps mode, each segment represents a byte of data. In 10Mbps mode, each segment is  
repeated ten times to represent a byte of data. The receive sequence contains all the information defined  
on the standard MII receive path. The PHY can sample one of the ten segments.  
1
2
3
4
5
6
7
8
9
10  
TX_CLK  
TX_SYNC  
TXD[0]  
TX_ER TX_EN  
TXD0  
TXD1  
TXD2  
TXD3  
TXD4  
TXD5  
TXD6  
TXD7  
Figure 9. SS-SMII Transmission  
Collision Detection  
The RTL8208B(F)-LF does not indicate that a collision has occurred. It is left to the MAC to detect the  
assertion of both CRS_DV and TX_EN.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
37  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
7.8. Power Saving and Power Down Mode  
7.8.1. Power Saving Mode  
The RTL8208B(F)-LF implements power saving mode on a per-port basis. A port automatically enters  
power saving mode ten seconds after the cable is disconnected from it. Once a port enters power saving  
mode, it transmits normal link pulses only on its TXOP/TXON pins and continues to monitor the  
RXIP/RXIN pins to detect incoming signals, which might be the 100Base-TX MLT-3 idle pattern,  
10Base-T link pulses, or Auto-Negotiation’s FLP (Fast Link Pulse). After it detects an incoming signal, it  
wakes up from power saving mode and operates in normal mode according to the result of the connection.  
Power saving mode is not supported when in 100FX operation.  
7.8.2. Reg0.11 Power Down Mode  
The RTL8208B(F)-LF implements power- down mode on a per-port basis. Setting MII Reg.0.11 forces  
the corresponding port of the RTL8208B(F)-LF to enter power down mode. This disables all  
transmit/receive functions on that port.  
7.9. LED Configuration  
7.9.1. Serial LEDs  
The RTL8208B(F)-LF supports serial LED status streams for LED display. The forms of LED status  
streams, shown below, are controlled by LEDMODE[1:0] pins, which are latched upon reset. All LED  
statuses are represented as active-low, except Link/Act in Bi-color LED mode, whose polarity depends on  
Spd status.  
Table 30. Serial LED Mode  
LEDMODE[1:0]  
Mode  
3-bit serial stream  
2-bit serial stream  
3-bit for Bi-color LED Col/Fulldup, Link/Act, Spd  
1-bit serial stream Link/Act/Spd  
Output Sequences  
Col/Fulldup, Link/Act, Spd  
Spd, Link/Act  
00  
01  
10  
11  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
38  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
Table 31. Serial LED Status  
Description  
Collision/Full duplex Indicator.  
LED Status  
Col/Fulldup  
Blinks every 43ms when collisions are occurring. Low for full  
duplex, and high for half duplex mode.  
Link/Act  
Link/Activity Indicator.  
In 3-bit serial stream mode, low for link established. In 3-bit  
Bi-color LED mode, Link/Act is high for link established  
when speed is low (100Mbps); Link/Act is low for link  
established when speed is high (10Mbps). Link/Act Blinks  
every 43ms when the corresponding port is transmitting or  
receiving.  
Spd  
Speed Indicator.  
Low for 100Mbps, high for 10Mbps.  
Link/Act/Spd  
Link/Activity/Speed Indicator. Low for link established.  
Blinking every 43ms for 100Mbps activity. Blinking every  
120ms for 10Mbps activity.  
LED Blinking Time  
LED blinking time can be set to 120ms by setting LED_BLNK_TIME=0. The LED statuses supporting  
43/120ms blink times are Col/Fulldup, Link/Act. For status Link/Act/Spd, LED blinking time is not  
affected by LED_BLNK_TIME.  
Serial Stream Order  
Every bit stream is output port by port, from port0 to port7 with Col/Fulldup as the first bit in a port  
stream. In 2-bit serial stream mode, the sequence is Spd, then Link/Act. The following diagrams illustrate  
the sequences in 3-bit and 2-bit serial stream mode.  
640 ns  
640 ns  
640 ns  
640 ns  
640 ns  
640 ns  
640 ns  
640 ns  
640 ns  
LEDCLK  
LEDDTA  
21  
24  
1
2
3
20  
22  
23  
19  
Col/Dup Link/Act  
Spd  
Col/Dup Link/Act  
Spd  
Col/Dup Link/Act  
Spd  
Port 0 3-bit Serial Stream  
Port 6 3-bit Serial Stream  
Port 7 3-bit Serial Stream  
Figure 10. 3-Bit Serial Stream Mode  
640 ns  
640 ns  
640 ns  
640 ns  
640 ns  
640 ns  
640 ns  
LEDCLK  
LEDDTA  
13  
14  
15  
16  
1
2
Spd  
Link/Act  
Spd  
Link/Act  
Spd  
Link/Act  
Port 6 2-bit  
Serial Stream  
Port 7 2-bit  
Serial Stream  
Port 0 2-bit  
Serial Stream  
Figure 11. 2-Bit Serial Stream Mode  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
39  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
VDD  
QA  
QB  
QC  
LEDDTA  
LEDCLK  
A
Port 7 Spd LED  
Port 7 Link/Act LED  
Port 7 Col/Dup LED  
Port 6 Spd LED  
Port 6 Link/Act LED  
Port 6 Col/Dup LED  
CLK  
74164 QD  
VDD  
VDD  
VDD  
QE  
QF  
QG  
QH  
B
Port 5 Spd LED  
Port 5 Link/Act LED  
CLR  
QA  
QB  
QC  
A
Port 5 Col/Dup LED  
Port 4 Spd LED  
Port 4 Link/Act LED  
Port 4 Col/Dup LED  
Port 3 Spd LED  
Port 3 Link/Act LED  
Port 3 Col/Dup LED  
Port 2 Spd LED  
CLK  
74164 QD  
QE  
QF  
QG  
QH  
B
CLR  
QA  
QB  
QC  
Port 2 Link/Act LED  
Port 2 Col/Dup LED  
Port 1 Spd LED  
Port 1 Link/Act LED  
Port 1 Col/Dup LED  
A
CLK  
74164 QD  
QE  
QF  
QG  
QH  
Port 0 Spd LED  
Port 0 Link/Act LED  
Port 0 Col/Dup LED  
B
CLR  
Figure 12. External Circuit for 3-Bit Serial LED Mode  
VDD  
QA  
LEDDTA  
LEDCLK  
Port 7 Link/Act LED  
Port 7 Spd LED  
Port 6 Link/Act LED  
Port 6 Spd LED  
A
QB  
QC  
CLK  
74164 QD  
VDD  
QE  
Port 5 Link/Act LED  
QF  
QG  
QH  
Port 5 Spd LED  
Port 4 Link/Act LED  
Port 4 Spd LED  
B
CLR  
QA  
QB  
QC  
Port 3 Link/Act LED  
Port 3 Spd LED  
Port 2 Link/Act LED  
Port 2 Spd LED  
A
CLK  
74164 QD  
VDD  
QE  
Port 1 Link/Act LED  
QF  
Port 1 Spd LED  
Port 0 Link/Act LED  
Port 0 Spd LED  
B
QG  
QH  
CLR  
Figure 13. External Circuit for 2-Bit Serial LED Mode  
Single-Chip Octal 10/100-TX/FX PHY Transceiver 40 Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
Bi-Color LED  
For 3-bit Bi-color LED mode, Link/Act and Spd are used for one Bi-color LED package, which is a  
single LED package with two LEDs connected in parallel and with opposite polarities.  
Table 32. Bi-Color LED  
Spd  
0
0
Link/Act  
Indication  
No Link  
100Mbps Link up  
10Mbps Link up  
Bi-Color State  
Off  
0
1
0
Green  
Yellow  
1
Yellow  
Link/Act  
Spd  
Green  
Figure 14. 3-Bit Bi-Color LED  
7.9.2. Scan LED  
The RTL8208B(F)-LF supports Scan LED display mode. The forms of LED status streams, as shown  
below, are controlled by LEDMODE[1:0] pins, which are latched upon reset.  
Table 33. Scan LED  
LEDMODE[1:0]  
Mode  
Mode 0  
Mode 1  
SCAN_STATUS[2:0]  
Col/Fulldup, Link/Act, Spd  
Rx, Tx, Link  
00  
01  
10  
11  
Mode 2 for Bi-color LED  
Reserved  
NC, Bi-color Link/Act/Spd, NC  
Table 34. Scan LED Status  
LED Status  
Description  
Link/Act  
Link/Activity Indicator.  
High for link established.  
Blinks when the corresponding port is transmitting or receiving.  
Link  
Link Indicator.  
High for link established.  
Spd  
Speed Indicator.  
High for 100Mbps and low for 10Mbps.  
Col/Fulldup  
Collision/Full duplex Indicator.  
High for full duplex, low for half duplex.  
Blinks when collisions occur on the corresponding port.  
Bi-Color LED Link, Activity, and Speed Indicator.  
Its polarity depends on the Speed status.  
Blinks when the corresponding port is transmitting or receiving.  
High for receive activity.  
Bi-Color  
Link/Act/Spd  
RX  
TX  
High for transmit activity.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
41  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
Scan LED Timing for Mode 0 and Mode 1  
2.5µS  
2.5µS  
2.5µS  
2.5µS  
2.5µS  
2.5µS  
2.5µS  
2.5µS  
SCAN_LED[0]  
SCAN_LED[1]  
SCAN_LED[2]  
SCAN_LED[3]  
SCAN_LED[4]  
SCAN_LED[5]  
SCAN_LED[6]  
SCAN_LED[7]  
3-bit LED  
3-bit LED  
3-bit LED  
3-bit LED  
3-bit LED  
3-bit LED  
3-bit LED  
3-bit LED  
SCAN_STATUS[2:0]  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
Figure 15. Scan LED Timing for Mode 0 and Mode 1  
T1  
T2  
90%  
90%  
SCAN_STATUS[3:0]  
SCAN_LED [7:0]  
10%  
10%  
Figure 16. Rise and Fall Timing of the SCAN_STATUS and SCAN_LED Transition  
T1: Rise time of all SCAN signals, typically 40ns.  
T2: Fall time of all SCAN signals, typically 40ns.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
42  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
External Circuit for Scan LED Mode 0  
Figure 17. External Circuit for Scan LED Mode 0  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
43  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
External Circuit for Scan LED Mode 1  
Figure 18. External Circuit for Scan LED Mode 1  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
44  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
External Circuit for Scan LED Mode 2  
Figure 19. External Circuit for Scan LED Mode 2  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
45  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
7.10. Crossover Detection and Auto Correction  
During the link setup phase, the RTL8208B(F)-LF checks whether it receives active signals on each port  
in order to determine if a connection can be established. In cases where the RTL8208B(F)-LF receiver  
data pin pair is connected to the receiver data pin pair of the peer device, or vice versa, the  
RTL8208B(F)-LF will automatically change its configuration to swap receiver data pins with transmitter  
data pins. If a port is connected to a PC or NIC with MDI-X interface with a crossover cable, the  
RTL8208B(F)-LF will reconfigure the port to ensure proper connection. This effectively replaces the DIP  
switch commonly used for reconfiguring a port on a hub or switch.  
By pulling-up EN_AUTOXOVER, the RTL8208B(F)-LF identifies the type of connected cable and sets  
the port to MDI or MDIX. When switching to MDI mode, the RTL8208B(F)-LF uses TXOP/N as  
transmit pairs; when switching to MDIX mode, the RTL8208B(F)-LF uses RXIP/N as transmit pairs. The  
same is true for the receive pairs. This function is port-based. Pulling-down EN_AUTOXOVER disables  
this function and the RTL8208B(F)-LF operates in MDI mode, in which TXOP/N represents transmit  
pairs, and RXIP/N represents receive pairs.  
Note: IEEE 802.3 compliant forced mode 100M ports with Autoxover have link problems with NWAY  
(Auto-Negotiation) ports. It is recommended to NOT use Autoxover for forced 100M.  
7.11. Polarity Detection and Auto Correction  
For better noise immunity and lower interference to ambient devices, the Ethernet electrical signal on a  
twisted pair cable is transmitted in differential form. That is, the signal is transmitted on two wires in each  
direction with inverse polarities (+/-). If wiring on the connector is faulty, or a faulty transformer is used,  
the two inputs to a transceiver may carry signals with opposite but incorrect polarities. As a direct  
consequence, the transceiver will not work properly.  
When the RTL8208B(F)-LF operates in 10Base-T mode, it automatically reverses the polarity of its two  
receiver input pins if it detects that the polarities of the incoming signals on the pins is incorrect. However,  
this feature is unnecessary when the RTL8208B(F)-LF is operating in 100Base-TX mode.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
46  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
7.12. 1.8V Power Generation  
The RTL8208B(F)-LF uses a PNP power transistor to generate 1.8V from the 3.3V power supply. This  
1.8V provides for digital core and analog circuits. The 1.8V power generation circuit also uses an external  
diode (1N4001) to reduce the voltage drop between the Emitter and Collector of the power transistor. If  
your system needs more than one RTL8208B(F)-LF chip (greater than 8 ports), do not use one PNP  
transistor for all of the RTL8208B(F)-LF chips, even if the rating is enough. Instead, use one transistor  
for each RTL8208B(F)-LF.  
Do not connect any beads directly between the collector of the PNP transistor and VDDA. This will affect  
the stability of the 1.8V power significantly.  
Figure 20. Using a PNP Transistor to Transform 3.3V Into 1.8V  
Table 35. An Example Using Power Transistor 2SB1182  
Parameter  
Symbol  
VCBO  
VCEO  
VEBO  
IC  
Limits  
-40  
-32  
-5  
-2  
10  
Unit  
V
V
Collector-Base Voltage  
Collector-Emitter Voltage  
Emitter-Base Voltage  
Collector Current  
Collector Power  
V
A (DC)  
W
PC  
Dissipation  
Junction Temperature  
Storage Temperature  
Tj  
Tstg  
150  
-55~+150  
°C  
°C  
Note: Absolute maximum ratings (Ta=25°C).  
For more information, refer to http://www.rohm.com  
7.13. Cable Tester  
The cable tester (UTP cable only) determines the quality of the cables, connectors, and terminations.  
Some of the possible problems that can be diagnosed include open/short faults. The fault location can also  
be identified.  
The RTL8208B(F)-LF’s cable tester transmits a signal of known amplitude to one pair of an attached  
cable. The transmitted signal will continue down the cable until it reflects off a cable imperfection. The  
magnitude of the reflection and the time it takes for the reflection to come back are shown in registers.  
Using the information in the registers, the distance to the problem location and the type of problem can be  
determined.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
47  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
8. Application Information  
8.1. 10Base-T/100Base-TX Application  
Figure 21. 10Base-T/100Base-TX Application  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
48  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
8.2. 100Base-FX Application (RTL8208BF-LF only)  
Figure 22. 100Base-FX Application (RTL8208BF-LF only)  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
49  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
9. Characteristics  
9.1. Absolute Maximum Ratings  
WARNING: Absolute maximum ratings are limits beyond which permanent damage may be caused to  
the device, or device reliability will be affected. All voltages are specified reference to GND unless  
otherwise specified.  
Table 36. Absolute Maximum Ratings  
Parameter  
Storage Temperature  
VDDA ,VDD Supply Referenced to GND  
VDDAH,VDDO Supply Referenced to GND  
Digital Input Voltage  
Min  
-10  
GND-0.3  
GND-0.3  
GND  
Max  
+125  
+1.98  
+3.63  
VDD+0.3  
Units  
°C  
V
V
V
9.2. Operating Range  
Table 37. Operating Range  
Parameter  
Min  
0
3.13  
1.74  
Typical  
Max  
+70  
3.46  
1.93  
Units  
Ambient Operating Temperature (Ta)  
3.3V Supply Voltage Range (VDDAH, VDDO)  
1.8V Supply Voltage Range (VDDA, VDD)  
-
3.3  
1.8  
°C  
V
V
9.3. DC Characteristics  
Table 38. DC Characteristics  
Symbol Conditions  
Typical  
Parameter  
Min  
Max Units  
Power Supply Current  
for 1.8V  
Icc  
Icc  
PS  
10Base-T, idle  
10Base-T, peak continuous 100% utilization  
100Base-TX, idle  
100Base-TX, Peak continuous 100%  
utilization  
Power saving  
Power down  
10Base-T, idle  
10Base-T, peak continuous 100% utilization  
100Base-TX, idle  
100Base-TX, peak continuous 100%  
utilization  
Power saving  
Power down  
10Base-T, idle  
10Base-T, peak continuous 100% utilization  
100Base-TX, idle  
TBD  
TBD  
80  
mA  
mA  
mW  
810  
760  
760  
70  
60  
42  
40  
35  
37  
Power Supply Current  
for 3.3V  
-
-
-
-
25  
20  
282  
1590  
1483  
1490  
Total Power  
Consumption for all 8  
ports  
100Base-TX, peak continuous 100%  
utilization  
Power saving  
Power down  
208  
174  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
50  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
Typical  
Parameter  
Symbol Conditions  
Min  
Max Units  
TTL Input High Voltage  
Vih  
2
-
-
-
0.8  
10  
-
V
V
TTL Input Low Voltage  
TTL Input Current  
Vil  
Iin  
-
-10  
-
-
uA  
pF  
V
TTL Input Capacitance  
Output High Voltage  
Output Low Voltage  
Cin  
3
-
Voh  
Vol  
|IOZ|  
2.6  
-
-
-
0.4  
10  
V
Output Tristate Leakage  
Current  
-
-
uA  
Transmitter, 100Base-TX (1:1 Transformer Ratio)  
TX+/- Output Current  
High  
TX+/- Output Current  
Low  
-
-
-
40  
mA  
uA  
IOH  
IOL  
0
-
Transmitter, 10Base-T(1:1 Transformer Ratio)  
Receiver, 100Base-TX  
TX+/- Output Current  
High  
TX+/- Output Current  
Low  
-
-
-
100  
-
mA  
uA  
IOH  
IOL  
0
RX+/- Common-mode  
Input Voltage  
RX+/- Differential Input  
Resistance  
-
-
1.8  
2.5  
-
-
V
-
-
kΩ  
Receiver, 10Base-T  
Differential Input  
Resistance  
Input Squelch Threshold  
-
-
2.5  
-
-
kΩ  
-
-
340  
mV  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
51  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
9.4. AC Characteristics  
Table 39. AC Characteristics  
Parameter  
SYM Conditions  
Min  
Typical Max Units  
Transmitter, 100Base-TX  
Differential Output  
Voltage, Peak-to-Peak  
Differential Output  
Voltage Symmetry  
Differential Output  
Overshoot  
V
2.022  
100.3  
2.7  
-
-
-
V
%
%
50from each output to Vcc, Best-fit over  
14 bit times  
50from each output to Vcc, |Vp+|/|Vp-|  
-
-
-
OD  
V
V
OS  
Percent of Vp+ or Vp-  
10-90% of Vp+ or Vp-  
OO  
tr ,tf  
Rise/Fall Time  
4.2/4.3  
100  
-
-
-
ns  
ps  
ps  
-
-
-
Rise/Fall Time Imbalance  
Duty Cycle Distortion  
|tr - tf|  
-
Deviation from best-fit time-grid, 010101 …  
Sequence  
133  
Timing Jitter  
-
Idle pattern  
650  
-
ps  
-
Transmitter, 10Base-TX  
Differential Output  
Voltage, Peak-to-Peak  
TP_IDL Silence Duration  
V
4.56  
-
-
V
50from each output to Vcc, all pattern  
-
OD  
-
Period of time from start of TP_IDL to link  
pulses or period of time between link pulses  
10.5  
15.8  
ms  
Transmitter Output Jitter  
Harmonic Content  
-
-
6
-
-
ns  
-
-
dB below fundamental, 20 cycles of all  
ones data  
31.6  
dB  
9.5. Digital Timing Characteristics  
Table 40. Digital Timing Characteristics  
SYM Conditions  
100Base-TX Transmit System Timing  
Parameter  
Min  
Typical Max Units  
Active TX_EN Sampled  
to first bit of ‘J’ on MDI  
output  
Inactive TX_EN Sampled  
to first bit of ‘T’ on MDI  
output  
-
-
11  
15  
11  
12  
16  
12  
Bits  
Bits  
Bits  
-
-
-
TX Propagation Delay  
tTXpd From TXD[1:0] to TXOP/N  
100Base-TX Receive System Timing  
From RXIP/N to CRS_DV  
First bit of ‘J’ on MDI  
input to CRS_DV assert  
First bit of ‘T’ on MDI  
input to CRS_DV de-  
assert  
-
-
-
-
6
8
Bits  
Bits  
From RXIP/N to CRS_DV  
16  
18  
RX Propagation Delay  
tRXpd From RXIP/N to RXD[1:0]  
10Base-TX Transmit System Timing  
tTXpd From TXD[1:0] to TXOP/N  
From TX_EN assert to TXOP/N  
-
15  
17  
Bits  
TX Propagation Delay  
TX_EN to MDI output  
-
-
5
5
6
6
Bits  
Bits  
-
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
52  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
Parameter  
SYM Conditions  
10Base-TX Receive System Timing  
Min  
Typical Max Units  
From RXIP/N to  
CRS_DV  
Carrier Sense Turn-off  
Delay  
tCSON Preamble on RXIP/N to CRS_DV asserted  
tCSOFF TP_IDL to CRS_DV de-asserted  
tRXpd From RXIP/N to RXD[1:0]  
-
-
12  
8
-
9
Bits  
Bits  
Bits  
RX Propagation Delay  
9
-
12  
LED Timing  
LED On Time  
LED Off Time  
tLEDon While LED blinking  
43  
43  
-
-
120  
120  
ms  
ms  
tLEDoff While LED blinking  
Jabber Timing (10Base-T Only)  
Jabber Active  
Jabber de-assert  
-
-
From TX_EN=1 to Jabber asserted  
From TX_EN=0 to Jabber de-asserted  
SMI Timing  
60  
60  
70  
-
80  
80  
ms  
ms  
MDC  
-
-
-
-
MDC clock rate  
Write cycle  
Write cycle  
Read cycle  
-
-
-
-
-
2.5  
-
-
MHz  
ns  
ns  
MDIO Setup Time  
MDIO Hold Time  
MDIO output delay  
relative to rising edge of  
MDC  
10  
10  
-
10  
ns  
9.5.1. RMII Receive Timing  
Table 41. RMII Receive Timing  
Symbol  
Description  
Minimum  
Typical  
Maximum  
Units  
T_opd_rxd_rmii  
REFCLK rising edge to RXD/CRS_DV  
delay.  
4
-
9
ns  
T_opd_rxd_rmii  
REFCLK  
RXD  
Figure 23. RMII Receive Timing  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
53  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
9.5.2. RMII Transmit Timing  
Table 42. RMII Transmit Timing  
Symbol  
T_ipsu_txd_rmii  
T_iphd_txd_rmii  
Description  
Minimum  
Typical  
Maximum  
Units  
ns  
ns  
TXD/TX_EN setup time to REFCLK.  
TXD/TX_EN hold time from  
REFCLK.  
2
2
-
-
-
-
T_ipsu_txd_rmii  
T_iphd_txd_rmii  
REFCLK  
TXD  
Valid Data  
Figure 24. RMII Transmit Timing  
9.5.3. SMII Receive Timing  
Table 43. SMII Receive Timing  
Symbol  
Description  
Minimum  
Typical  
Maximum  
Units  
T_opd_rxd_smii  
REFCLK rising edge to RXD delay.  
3.5  
4
4.5  
ns  
T_opd_rxd_smii  
REFCLK  
RXD  
Figure 25. SMII Receive Timing  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
54  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
9.5.4. SMII Transmit Timing  
Table 44. SMII Transmit Timing  
Symbol  
T_ipsu_txd_smii  
T_iphd_txd_smii  
Description  
TXD/SYNC setup time to REFCLK.  
TXD/SYNC hold time from REFCLK.  
Minimum  
Typical  
Maximum  
Units  
ns  
ns  
1
1.5  
-
-
-
-
T_ipsu_txd_smii  
T_iphd_txd_smii  
REFCLK  
TXD  
Valid Data  
Figure 26. SMII Transmit Timing  
9.5.5. SS-SMII Receive Timing  
Table 45. SS-SMII Receive Timing  
Symbol  
Description  
Minimum  
Typical  
Maximum  
Units  
T_opd_rxd_s3mii  
RX_CLK rising edge to RXD/RX_SYNC  
delay.  
1.5  
-
3
ns  
T_opd_rxd_s3mii  
RX_CLK  
RXD  
Figure 27. SS-SMII Receive Timing  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
55  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
9.5.6. SS-SMII Transmit Timing  
Table 46. SS-SMII Transmit Timing  
Symbol  
Description  
Minimum  
Typical  
Maximum  
Units  
T_ipsu_txd_s3mii  
TXD/TX_SYNC setup time to  
TX_CLK.  
1.5  
-
-
ns  
T_iphd_txd_s3mii  
TXD/TX_SYNC hold time from  
TX_CLK.  
1
-
-
ns  
T_ipsu_txd_s3mii  
T_iphd_txd_s3mii  
TX_CLK  
TXD  
Valid Data  
Figure 28. SS-SMII Transmit Timing  
9.6. Power Start Up & Internal Reset Sequence  
Figure 29. Power Start Up & Internal Reset Sequence  
tpou33: min. 1ms and max. 5ms, 3.3V power on to stable duration requirement.  
tpou18: min. 600µs and max. 2ms, 1.8V power on to stable duration requirement.  
tsr: min. 10ms after 1.8V Power Stable, stable supply voltage to reset high duration.  
trw: max. 50ms, Reset_wait (Start normal PHY after reset deassertion).  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
56  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
9.7. Thermal Characteristics  
Heat generated by the chip causes a temperature rise of the package. If the temperature of the chip (Tj,  
junction temperature) is beyond the design limits, there will be negative effects on operation and the life  
of the IC package. Heat dissipation, either through a heat sink or electrical fan, is necessary to provide a  
reasonable environment (Ta, ambient temperature) in a closed case. As power density increases, thermal  
management becomes more critical. A method to estimate the possible Ta is outlined below.  
Thermal parameters are defined according to JEDEC standard JESD 51-2, 51-6:  
θja (Thermal resistance from junction to ambient), represents resistance to heat flow from the chip to  
ambient air. This is an index of heat dissipation capability. A lower θja means better thermal performance.  
θja = (Tj - Ta) / Ph  
Where Tj is the junction temperature  
Ta is the ambient temperature  
Ph is the power dissipation  
θjc (Thermal resistance from junction to case), represents resistance to heat flow from the chip to the  
package top case. θjc is important when an external heat sink is attached on the package top.  
θjc = (Tj - Tc) / Ph, where Tj is the junction temperature  
Figure 30. Cross-section of 128-Pin QFP  
9.7.1. Thermal Operating Range  
Table 47. Thermal Operating Range  
Parameter  
SYM Conditions  
Min  
Typical Max  
Units  
Junction operating  
temperature  
Tj  
-
25  
125  
°C  
Ambient operating  
temperature  
Ta  
-
25  
70  
°C  
9.7.2. Thermal Resistances  
Table 48. Thermal Resistances  
SYM Conditions  
Parameter  
Min  
Typical Max  
Units  
Thermal resistance:  
junction to ambient  
Thermal resistance:  
junction to case  
2 layer PCB, 0 ft/s airflow  
-
28.2  
-
θja  
°C/W  
2 layer PCB, 0 ft/s airflow  
-
2.0  
-
θjc  
°C/W  
Note: PCB conditions (JEDEC JESD51-7)  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
57  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
10. Mechanical Dimensions  
See the Mechanical Dimensions notes on the next page.  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
58  
Track ID: JATR-1076-21 Rev. 1.3  
RTL8208B-LF/RTL8208BF-LF  
Datasheet  
10.1. Notes for Mechanical Dimensions  
Symbol Dimensions in inches  
Min Typical Max  
Dimensions in mm  
Min Typical Max  
Notes:  
1. Dimensions D1 & E1 do not include mold protrusion.  
A
A1  
-
-
-
0.134  
-
-
-
-
3.40  
-
2. Controlling dimension: Millimeter (mm).  
3. General appearance spec. Should be based on final  
visual inspection.  
0.010  
0.25  
A2  
b
c
0.101 0.107 0.117  
0.004 0.008 0.012  
2.50  
0.10  
0.09  
2.72  
0.20  
-
2.97  
0.30  
0.23  
0.004  
-
0.008  
D
0.913 BSC  
23.2 BSC  
TITLE:  
Quad Flat Package 128 Leads 14x20mm Outline  
D1  
E
0.787 BSC  
0.677 BSC  
0.551 BSC  
0.20 BSC  
20.00 BSC  
17.20 BSC  
14.00 BSC  
E1  
APPROVE  
CHECK  
DOC. NO.  
0.5 BSC  
VERSION  
PAGE  
DWG NO.  
DATE  
e
L
L1  
y
0.026 0.035 0.041  
0.063 BSC  
0.65  
0.88  
1.60 BSC  
1.03  
-
0°  
-
-
0.004  
12°  
-
0°  
-
-
0.10  
12°  
θ
REALTEK SEMICONDUCTOR CORP.  
11. Ordering Information  
Table 49. Ordering Information  
Package  
Part Number  
Status  
RTL8208B-LF  
RTL8208BF-LF  
128-pin QFP with lead (Pb)-free package  
RTL8208B-LF with Fiber support  
Realtek Semiconductor Corp.  
Headquarters  
No. 2, Innovation Road II  
Hsinchu Science Park, Hsinchu 300, Taiwan  
Tel.: +886-3-578-0211. Fax: +886-3-577-6047  
www.realtek.com.tw  
Single-Chip Octal 10/100-TX/FX PHY Transceiver  
59  
Track ID: JATR-1076-21 Rev. 1.3  

相关型号:

RTL8208B-LF

Network Interface
REALTEK

RTL8208BF-LF

SINGLE-CHIP OCTAL 10/100BASE-TX/FX PHY TRANSCEIVER
REALTEK

RTL8208电路图-1

RTL8208电路图-1,RTL8204
ETC

RTL8211B

INTEGRATED 10/100/1000 GIGABIT ETHERNET TRANSCEIVER
REALTEK

RTL8211B-GR

INTEGRATED 10/100/1000 GIGABIT ETHERNET TRANSCEIVER
REALTEK

RTL8211BL-GR

INTEGRATED 10/100/1000 GIGABIT ETHERNET TRANSCEIVER
REALTEK

RTL8211BN

INTEGRATED 10/100/1000 GIGABIT ETHERNET TRANSCEIVER
REALTEK

RTL8211BN-GR

INTEGRATED 10/100/1000 GIGABIT ETHERNET TRANSCEIVER
REALTEK

RTL8211C

INTEGRATED 10/100/1000 GIGABIT ETHERNET TRANSCEIVER
REALTEK

RTL8211C-GR

INTEGRATED 10/100/1000 GIGABIT ETHERNET TRANSCEIVER
REALTEK

RTL8211C-GR_08

INTEGRATED 10/100/1000 GIGABIT ETHERNET TRANSCEIVER
REALTEK