EL5306ISZ [RENESAS]

350MHz Fixed Gain Amplifiers with Enable; QSOP16, SOIC16; Temp Range: -40° to 85°C;
EL5306ISZ
型号: EL5306ISZ
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

350MHz Fixed Gain Amplifiers with Enable; QSOP16, SOIC16; Temp Range: -40° to 85°C

放大器 光电二极管 商用集成电路
文件: 总13页 (文件大小:290K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EL5106, EL5306  
Data Sheet  
June 6, 2012  
FN7357.7  
350MHz Fixed Gain Amplifiers with Enable  
Features  
The EL5106 and EL5306 are fixed gain amplifiers with a  
bandwidth of 350MHz. This makes these amplifiers ideal for  
today’s high speed video and monitor applications. They  
feature internal gain setting resistors and can be configured  
in a gain of +1, -1 or +2.  
• Pb-free available (RoHS compliant)  
• Gain selectable (+1, -1, +2)  
• 350MHz -3dB BW (A = 2)  
V
• 1.5mA supply current per amplifier  
• Fast enable/disable  
With a supply current of just 1.5mA and the ability to run  
from a single supply voltage from 5V to 12V, these amplifiers  
are also ideal for handheld, portable or battery powered  
equipment.  
• Single and dual supply operation, from 5V to 12V  
• Available in SOT-23 packages  
The EL5106 and EL5306 also incorporate an enable and  
disable function to reduce the supply current to 25µA typical  
per amplifier. Allowing the CE pin to float or applying a low  
logic level will enable the amplifier.  
• 450MHz, 3.5mA product available (EL5108 and EL5308)  
Applications  
• Battery powered equipment  
• Handheld, portable devices  
• Video amplifiers  
The EL5106 is offered in the 6 Ld SOT-23 and the  
industry-standard 8 Ld SOIC packages and the EL5306 is  
available in the 16 Ld SOIC and 16 Ld QSOP packages. All  
operate over the industrial temperature range of -40°C to  
+85°C.  
• Cable drivers  
• RGB amplifiers  
Ordering Information  
PART NUMBER  
(Note 4)  
PART  
MARKING  
PACKAGE  
(Pb-free)  
PKG.  
DWG. #  
EL5106IWZ-T7 (Notes 1, 2)  
EL5106IWZ-T7A (Notes 1, 2)  
EL5106ISZ (Note 2)  
BAFA (Note 3)  
6 Ld SOT-23  
6 Ld SOT-23  
P6.064A  
BAFA (Note 3)  
5106ISZ  
P6.064A  
M8.15E  
8 Ld SOIC (150 mil)  
8 Ld SOIC (150 mil)  
8 Ld SOIC (150 mil)  
16 Ld SOIC (150 mil)  
16 Ld SOIC (150 mil)  
16 Ld SOIC (150 mil)  
16 Ld QSOP (150 mil)  
16 Ld QSOP (150 mil)  
16 Ld QSOP (150 mil)  
EL5106ISZ-T7 (Notes 1, 2)  
EL5106ISZ-T13 (Notes 1, 2)  
EL5306ISZ (Note 2)  
5106ISZ  
M8.15E  
5106ISZ  
M8.15E  
EL5306ISZ  
EL5306ISZ  
EL5306ISZ  
5306IUZ  
MDP0027  
MDP0027  
MDP0027  
MDP0040  
MDP0040  
MDP0040  
EL5306ISZ-T7 (Notes 1, 2)  
EL5306ISZ-T13 (Notes 1, 2)  
EL5306IUZ (Note 2)  
EL5306IUZ-T7 (Notes 1, 2)  
EL5306IUZ-T13 (Notes 1, 2)  
NOTES:  
5306IUZ  
5306IUZ  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-  
020.  
3. The part marking is located on the bottom of the part.  
4. For Moisture Sensitivity Level (MSL), please see device information page for EL5106, EL5306. For more information on MSL please see tech  
brief TB363.  
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas Inc. 2002-2005, 2007, 2010, 2012. All Rights Reserved  
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.  
All other trademarks mentioned are the property of their respective owners.  
 
 
 
 
 
EL5106, EL5306  
Pinouts  
EL5106  
(8 LD SOIC)  
TOP VIEW  
EL5306  
(16 LD SOIC, QSOP)  
TOP VIEW  
INA+  
CEA  
VS-  
1
2
3
4
5
6
7
8
16 INA-  
NC  
IN-  
CE  
1
2
3
4
8
7
6
5
-
+
15 OUTA  
14 VS+  
VS+  
OUT  
NC  
-
+
IN+  
VS-  
+
-
CEB  
INB+  
NC  
13 OUTB  
12 INB-  
11 NC  
EL5106  
(6 LD SOT-23)  
TOP VIEW  
+
-
CEC  
INC+  
10 OUTC  
9
INC-  
OUT  
VS-  
IN+  
VS+  
CE  
1
2
3
6
5
4
+
-
IN-  
FN7357.7  
June 6, 2012  
2
EL5106, EL5306  
Absolute Maximum Ratings (T = +25°C)  
Thermal Information  
A
Supply Voltage between V + and V -. . . . . . . . . . . . . . . . . . . 13.2V  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Ambient Operating Temperature . . . . . . . . . . . . . . . .-40°C to +85°C  
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . +125°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves  
Pb-free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
S
S
Pin Voltages. . . . . . . . . . . . . . . . . . . . . . . . . V - -0.5V to V + +0.5V  
S
S
Maximum Continuous Output Current . . . . . . . . . . . . . . . . . . . 50mA  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and  
result in failures not covered by warranty.  
IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests  
are at the specified temperature and are pulsed tests, therefore: T = T = T  
A
J
C
Electrical Specifications V + = +5V, V - = -5V, R = 150Ω, T = +25°C Unless Otherwise Specified.  
S
S
L
A
PARAMETER  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
BW  
-3dB Bandwidth  
A
= +1  
= -1  
= +2  
250  
380  
350  
20  
MHz  
MHz  
MHz  
MHz  
V/µs  
ns  
V
A
V
A
V
BW1  
SR  
0.1dB Bandwidth  
Slew Rate  
V
V
= -2.5V to +2.5V, A = +2  
3000  
4500  
16  
O
V
t
0.1% Settling Time  
Input Voltage Noise  
IN+ Input Current Noise  
= -2.5V to +2.5V, A = 2  
OUT V  
S
e
2.8  
nV/Hz  
pA/Hz  
%
N
i +  
N
6
dG  
dP  
Differential Gain Error (Note 5)  
Differential Phase Error (Note 5)  
A
= +2  
0.02  
0.04  
V
A
= +2  
°
V
DC PERFORMANCE  
V
Specified Offset Voltage  
Output offset voltage including I *R term  
-15  
15  
mV  
OS  
b
F
T V  
Input Offset Voltage Temperature  
Coefficient  
Measured from T  
MIN  
to T  
MAX  
5
µV/°C  
C
OS  
A
Gain Error  
V
= -3V to +3V, R = 150Ω  
1
2.5  
%
E
O
L
R , R  
Internal R and R  
G
325  
Ω
F
G
F
INPUT CHARACTERISTICS  
CMIR  
Common Mode Input Range  
+ Input Current  
±3  
±3.3  
1.5  
2
V
+I  
7
µA  
MΩ  
pF  
IN  
IN  
IN  
R
C
Input Resistance  
at I +  
N
Input Capacitance  
1
OUTPUT CHARACTERISTICS  
V
Output Voltage Swing  
R = 150Ω to GND  
±3.4  
±3.7  
60  
±3.6  
±3.85  
100  
V
V
O
L
R = 1kΩ to GND  
L
I
Output Current  
R = 10Ω to GND  
mA  
OUT  
L
SUPPLY  
I
I
Supply Current - Enabled (per amplifier) No load, V = 0V  
IN  
1.35  
1.5  
12  
75  
1.82  
25  
mA  
µA  
dB  
SON  
Supply Current - Disabled (per amplifier) No load, V = 0V  
IN  
SOFF  
PSRR  
Power Supply Rejection Ratio  
DC, V = ±4.75V to ±5.25V  
S
FN7357.7  
June 6, 2012  
3
 
EL5106, EL5306  
Electrical Specifications V + = +5V, V - = -5V, R = 150Ω, T = +25°C Unless Otherwise Specified. (Continued)  
S
S
L
A
PARAMETER  
ENABLE  
DESCRIPTION  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
t
t
I
I
Enable Time  
Disable Time  
280  
400  
5
ns  
ns  
µA  
µA  
V
EN  
DIS  
CE Pin Input High Current  
CE Pin Input Low Current  
CE = V +  
1
25  
-1  
IHCE  
ILCE  
S
CE = V -  
+1  
0
S
V
V
CE Input High Voltage for Power-down  
CE Input Low Voltage for Enable  
V + -1  
S
IHCE  
ILCE  
V + -3  
V
S
NOTE:  
5. Standard NTSC test, AC signal amplitude = 286mV , f = 3.58MHz  
P-P  
Pin Descriptions  
EL5306  
EL5106  
(SO8)  
EL5106  
(SOT23-6)  
(SO16,  
QSOP16)  
PIN  
NAME  
FUNCTION  
Not connected  
EQUIVALENT CIRCUIT  
1, 5  
2
6, 11  
NC  
4
9, 12, 16  
IN-  
INC-, INB-,  
INA-  
Inverting input  
R
G
IN+  
IN-  
R
F
CIRCUIT 1  
3
3
1, 5, 8  
IN+  
INA+, INB+,  
INC+  
Non-inverting input  
(Reference Circuit 1)  
4
6
2
1
3
VS-  
Negative supply  
Output  
10, 13, 15  
OUT  
OUTC,  
OUTB,  
OUTA  
OUT  
R
F
CIRCUIT 2  
7
8
6
5
14  
VS+  
Positive supply  
Chip enable  
2, 4, 7  
CE,  
CEA,  
CEB,  
CEC  
V +  
S
CE  
V -  
S
CIRCUIT 3  
FN7357.7  
June 6, 2012  
4
EL5106, EL5306  
Typical Performance Curves  
5
11  
9
A
= +2  
= ±5V  
= 150Ω  
V
R
= ±5V  
= 150Ω  
V
S
L
C
= 10pF  
L
V
S
R
L
3
1
C
= 6.8pF  
L
7
5
3
1
A
= -1  
V
C
= 2.2pF  
L
-1  
-3  
-5  
A = 2  
V
C
= 0pF  
L
A
= 1  
V
100k  
1M  
10M  
FREQUENCY (Hz)  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
1G  
100M  
100M  
FIGURE 2. FREQUENCY RESPONSE FOR VARIOUS C  
L
FIGURE 1. FREQUENCY RESPONSE  
1.6  
1.2  
0.8  
0.4  
0
450  
R
= 150Ω  
L
R
= 150Ω  
L
A
= -1  
V
A
= -1  
= 2  
V
350  
250  
150  
A
= 1, 2  
V
A
V
A
= 1  
V
1
10  
100  
1k  
4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 3. GROUP DELAY vs FREQUENCY  
FIGURE 4. BANDWIDTH vs SUPPLY VOLTAGE  
0
-10  
-20  
1
R
= 150Ω  
L
0.8  
0.6  
0.4  
0.2  
0
A
= -1  
= 2  
V
-30  
-40  
-50  
-60  
-70  
-80  
PSRR+  
A
V
PSRR-  
A
= 1  
V
1k  
10k  
100k  
1M  
10M  
100M  
4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0  
FREQUENCY (Hz)  
V
(V)  
S
FIGURE 5. PEAKING vs SUPPLY VOLTAGE  
FIGURE 6. POWER SUPPLY REJECTION RATIO vs  
FREQUENCY  
FN7357.7  
June 6, 2012  
5
EL5106, EL5306  
Typical Performance Curves (Continued)  
100  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
I -  
S
10  
I +  
S
1
0.1  
10k  
4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0  
100k  
1M  
100M  
10M  
FREQUENCY (Hz)  
V
S
(V)  
FIGURE 8. SUPPLY CURRENT vs SUPPLY VOLTAGE (PER  
AMPLIFIER)  
FIGURE 7. OUTPUT IMPEDANCE vs FREQUENCY  
0
V
= ±5V  
= 2  
= 150Ω  
S
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
A
M=100ns  
V
R
V
L
= 2V  
OP-P  
HD3  
HD2  
CH1 2.00V/DIV  
CH2 1.00V/DIV  
0M  
10M  
20M  
30M  
40M  
50M  
60M  
FREQUENCY (Hz)  
FIGURE 9. HARMONIC DISTORTION vs FREQUENCY  
FIGURE 10. ENABLED RESPONSE  
JEDEC JESD51-3 LOW EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.0  
909mW  
0.9  
SO16 (0.150”)  
M=100ns  
θ
= +110°C/W  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
JA  
CH1 2.00V/DIV  
625mW  
633mW  
SO8  
θ
= +160°C/W  
JA  
391mW  
QSOP16  
SOT23-6  
= +256°C/W  
CH2 1.00V/DIV  
θ
= +158°C/W  
JA  
θ
JA  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 12. PACKAGE POWER DISSIPATION vs AMBIENT  
TEMPERATURE  
FIGURE 11. DISABLED RESPONSE  
FN7357.7  
June 6, 2012  
6
EL5106, EL5306  
Typical Performance Curves (Continued)  
JEDEC JESD51-7 HIGH EFFECTIVE THERMAL  
CONDUCTIVITY TEST BOARD  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
1.250W  
SO16 (0.150”)  
θ
= +80°C/W  
JA  
909mW  
893mW  
SO8  
θ
θ
= +110°C/W  
JA  
435mW  
SOT23-6  
= +230°C/W  
QSOP16  
= +112°C/W  
θ
0.2  
0.1  
0
JA  
JA  
0
25  
50  
75 85 100  
125  
150  
AMBIENT TEMPERATURE (°C)  
FIGURE 13. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE  
the positive supply. For ±5V supply, this means that the  
Applications Information  
amplifier will be enabled when CE is 2V or less, and disabled  
when CE is above 4V. Although the logic levels are not  
standard TTL, this choice of logic voltages allow the EL5106  
and EL5306 to be enabled by tying CE to ground, even in 5V  
single supply applications. The CE pin can be driven from  
CMOS outputs.  
Product Description  
The EL5106 and EL5306 are fixed gain amplifier that offers  
a wide -3dB bandwidth of 350MHz and a low supply current  
of 1.5mA. They work with supply voltages ranging from a  
single 5V to 12V and they are also capable of swinging to  
within 1.2V of either supply on the output. These  
combinations of high bandwidth and low power make the  
EL5106 and EL5306 the ideal choice for many  
low-power/high-bandwidth applications such as portable,  
handheld, or battery-powered equipment.  
Gain Setting  
The EL5106 and EL5306 are built with internal feedback and  
gain resistors. The internal feedback resistors have equal  
value; as a result, the amplifier can be configured into gain of  
+1, -1, and +2 without any external resistors. Figure 14  
shows the amplifier in gain of +2 configuration. The gain  
error is ±2% maximum. Figure 15 shows the amplifier in gain  
of -1 configuration. For gain of +1, IN+ and IN- should be  
connected together as shown in Figure 16. This  
configuration avoids the effects of any parasitic capacitance  
on the IN- pin. Since the internal feedback and gain resistors  
change with temperature and process, external resistor  
should not be used to adjust the gain settings.  
For varying bandwidth and higher gains, consider the  
EL5191 with 1GHz on a 9mA supply current or the EL5162  
with 300MHz on a 4mA supply current. Versions include  
single, dual, and triple amp packages with 5 Ld SOT-23,  
16 Ld QSOP, and 8 Ld SOIC or 16 Ld SOIC outlines.  
Power Supply Bypassing and Printed Circuit  
Board Layout  
As with any high frequency device, good printed circuit  
board layout is necessary for optimum performance. Low  
impedance ground plane construction is essential. Surface  
mount components are recommended, but if leaded  
components are used, lead lengths should be as short as  
possible. The power supply pins must be well bypassed to  
reduce the risk of oscillation. The combination of a 4.7µF  
tantalum capacitor in parallel with a 0.01µF capacitor has  
been shown to work well when placed at each supply pin.  
325Ω  
325Ω  
IN-  
-
IN+  
+
FIGURE 14. A = +2  
V
Disable/Power-Down  
The EL5106 and EL5306 amplifiers can be disabled placing  
their output in a high impedance state. When disabled, the  
amplifier supply current is reduced to <25µA. The EL5106  
and EL5306 are disabled when its CE pin is pulled up to  
within 1V of the positive supply. Similarly, the amplifier is  
enabled by floating or pulling the CE pin to at least 3V below  
FN7357.7  
June 6, 2012  
7
 
 
EL5106, EL5306  
325Ω  
325Ω  
325Ω  
+5  
IN-  
-
IN+  
+
325Ω  
FIGURE 15. A = -1  
V
-
V
OUT  
+5  
+
0.1µF  
1k  
1k  
325Ω  
0.1µF  
IN- 325Ω  
V
IN  
-
+
IN+  
FIGURE 17.  
FIGURE 16. A = +1  
V
Video Performance  
Supply Voltage Range and Single-Supply  
Operation  
For good video performance, an amplifier is required to  
maintain the same output impedance and the same  
frequency response as DC levels are changed at the output.  
This is especially difficult when driving a standard video load  
of 150Ω, because of the change in output current with DC  
level. Previously, good differential gain could only be  
achieved by running high idle currents through the output  
transistors (to reduce variations in output impedance).  
Special circuitries have been incorporated in the EL5106 and  
EL5306 to reduce the variation of output impedance with  
current output. This results in dG and dP specifications of  
0.02% and 0.04°, while driving 150Ω at a gain of 2.  
The EL5106 and EL5306 have been designed to operate  
with supply voltages having a span of greater than or equal  
to 5V and less than 11V. In practical terms, this means that  
the EL5106 and EL5306 will operate on dual supplies  
ranging from ±2.5V to ±5V. With single-supply, the EL5106  
and EL5306 will operate from 5V to 10V.  
As supply voltages continue to decrease, it becomes  
necessary to provide input and output voltage ranges that  
can get as close as possible to the supply voltages. The  
EL5106 and EL5306 have an input range which extends to  
within 2V of either supply. So, for example, on ±5V supplies,  
the EL5106 and EL5306 have an input range which spans  
±3V. The output range is also quite large, extending to within  
1V of the supply rail. On a ±5V supply, the output is therefore  
capable of swinging from -4V to +4V. Single-supply output  
range is larger because of the increased negative swing due  
to the external pull-down resistor to ground. Figure 16 shows  
an AC-coupled, gain of +2, +5V single supply circuit  
configuration.  
Output Drive Capability  
In spite of its low 1.5mA of supply current per amplifier, the  
EL5106 and EL5306 are capable of providing a maximum of  
±125mA of output current.  
Driving Cables and Capacitive Loads  
When used as a cable driver, double termination is always  
recommended for reflection-free performance. For those  
applications, the back-termination series resistor will  
decouple the EL5106 and EL5306 from the cable and allow  
extensive capacitive drive. However, other applications may  
have high capacitive loads without a back-termination  
resistor. In these applications, a small series resistor (usually  
between 5Ω and 50Ω) can be placed in series with the  
output to eliminate most peaking.  
FN7357.7  
June 6, 2012  
8
 
EL5106, EL5306  
where:  
Current Limiting  
The EL5106 and EL5306 have no internal current-limiting  
circuitry. If the output is shorted, it is possible to exceed the  
Absolute Maximum Rating for output current or power  
dissipation, potentially resulting in the destruction of the  
device.  
T
= Maximum ambient temperature  
MAX  
θ
= Thermal resistance of the package  
JA  
n = Number of amplifiers in the package  
PD = Maximum power dissipation of each amplifier in  
MAX  
the package  
Power Dissipation  
With the high output drive capability of the EL5106 and  
EL5306, it is possible to exceed the +125°C Absolute  
Maximum junction temperature under certain very high load  
PD  
Equation 2:  
for each amplifier can be calculated as shown in  
MAX  
current conditions. Generally speaking when R falls below  
about 25Ω, it is important to calculate the maximum junction  
V
L
OUTMAX  
R
L
----------------------------  
PD  
= (2 × V × I  
) + (V - V ) ×  
OUTMAX  
MAX  
S
SMAX  
S
temperature (T  
) for the application to determine if  
JMAX  
(EQ. 2)  
power supply voltages, load conditions, or package type  
need to be modified for the EL5106 and EL5306 to remain in  
the safe operating area. These parameters are calculated as  
shown in Equation 1:  
where:  
V = Supply voltage  
S
I
= Maximum bias supply current  
SMAX  
(EQ. 1)  
T
= T  
+ (θ × n × PD  
)
MAX  
JMAX  
MAX  
JA  
V
= Maximum output voltage (required)  
OUTMAX  
R = Load resistance  
L
Revision History  
DATE  
REVISION  
CHANGE  
April 25, 2012  
FN7357.7  
Removed obsolete part EL5106IS from “Order Information” page 1.  
Corrected Pkg Dwg # in “Order Information” page 1 for EL5306ISZ parts from M8.15E to  
MDP0027.  
Added MSL note (Note 4 on page 1).  
Changed Min/Max limits for “VOS” on page 3 from -10/10mV to -15/15mV. Added “Output  
offset voltage including I *R term” to conditions column. Changed Description from “Offset  
b
F
Voltage” to “Specified Offset Voltage”.  
Added package outline drawing MDP0027 to page 13.  
June 4, 2009  
FN7357.6  
Removed obsolete, leaded devices EL5106IW-T7, EL5106IW-T7A; EL5106IS-T7, EL5106IS-  
T13; EL5306IS, EL5306IS-T7, EL5306IS-T13; EL5306IU, EL5306IU-T7, EL5306IU-T13  
Corrected Figure references in “Gain Setting” on page 7 (Fig 14 callout was referencing Fig  
13; Fig 15 callout was referencing Fig 14; Fig 16 callout was referencing Fig 15) .  
Updated pin descriptions to match pin names of EL5306.  
Applied Intersil Standards: Updated Pb-free bullet in Features, Updated ordering information  
by removing tape and reel column and adding standard reference note and updating note to  
match lead finish, updated caution statement to legal's suggested verbiage. Changed date  
and Rev'd to 6.  
Updated Package Outline Drawing MDP0038 toP6.064A - P6.064A replaces 6 Ld SOT-23  
(same dimensions, just MDP0038 had both 5 & 6 Ld SOT23s w/dimensions listed in table)  
Updated Package Outline Drawing MDP0027 to M8.15E - M8.15E replaces MDP0027 8 Ld  
SOIC (same dimensions, just MDP0027 had 8, 14, 16, 20, 24, 28 Ld SOICS with dimensions  
listed in table)  
P1, added Note 3 "The part marking is located on the bottom of the part" for SOT-23 package  
Added Revision History table.  
FN7357.7  
June 6, 2012  
9
 
 
EL5106, EL5306  
Package Outline Drawing  
M8.15E  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
Rev 0, 08/09  
4
4.90 ± 0.10  
A
DETAIL "A"  
0.22 ± 0.03  
B
6.0 ± 0.20  
3.90 ± 0.10  
4
PIN NO.1  
ID MARK  
5
(0.35) x 45°  
4° ± 4°  
0.43 ± 0.076  
1.27  
0.25 M C A B  
SIDE VIEW “B”  
TOP VIEW  
1.75 MAX  
1.45 ± 0.1  
0.25  
GAUGE PLANE  
C
SEATING PLANE  
0.175 ± 0.075  
SIDE VIEW “A  
0.10 C  
0.63 ±0.23  
DETAIL "A"  
(0.60)  
(1.27)  
NOTES:  
(1.50)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
(5.40)  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
The pin #1 identifier may be either a mold or mark feature.  
Reference to JEDEC MS-012.  
5.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
FN7357.7  
June 6, 2012  
10  
EL5106, EL5306  
Package Outline Drawing  
P6.064A  
6 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE  
Rev 0, 2/10  
1.90  
0-3°  
0.08-0.20  
0.95  
D
A
6
5
4
PIN 1  
INDEX AREA  
2.80  
3
1.60  
3
5
0.15 C D  
2x  
(0.60)  
1
2
3
0.20  
2x  
C
SEE DETAIL X  
END VIEW  
0.40 ±0.05  
0.20 M  
3
A-B  
B
C
D
TOP VIEW  
10° TYP  
(2 PLCS)  
5
0.15 C A-B  
2x  
2.90  
H
1.14 ±0.15  
1.45 MAX  
C
GAUGE  
PLANE  
(0.25)  
0.10  
C
SEATING PLANE  
0.05-0.15  
(0.60)  
SIDE VIEW  
DETAIL "X"  
0.45±0.1  
4
(1.20)  
NOTES:  
(2.40)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5M-1994.  
3. Dimension is exclusive of mold flash, protrusions or gate burrs.  
4. Foot length is measured at reference to guage plane.  
This dimension is measured at Datum “H”.  
Package conforms to JEDEC MO-178AA.  
5.  
6.  
(0.95)  
(1.90)  
TYPICAL RECOMMENDED LAND PATTERN  
FN7357.7  
June 6, 2012  
11  
EL5106, EL5306  
Quarter Size Outline Plastic Packages Family (QSOP)  
A
MDP0040  
QUARTER SIZE OUTLINE PLASTIC PACKAGES FAMILY  
D
(N/2)+1  
N
INCHES  
SYMBOL QSOP16 QSOP24 QSOP28 TOLERANCE NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.056  
0.010  
0.008  
0.193  
0.236  
0.154  
0.025  
0.025  
0.041  
16  
0.068  
0.006  
0.056  
0.010  
0.008  
0.341  
0.236  
0.154  
0.025  
0.025  
0.041  
24  
0.068  
0.006  
0.056  
0.010  
0.008  
0.390  
0.236  
0.154  
0.025  
0.025  
0.041  
28  
Max.  
±0.002  
±0.004  
±0.002  
±0.001  
±0.004  
±0.008  
±0.004  
Basic  
-
PIN #1  
I.D. MARK  
E
E1  
-
-
-
1
(N/2)  
c
-
B
D
1, 3  
0.010 C A B  
E
-
e
E1  
e
2, 3  
H
-
C
SEATING  
L
±0.009  
Basic  
-
PLANE  
L1  
N
-
0.007 C A B  
b
0.004 C  
Reference  
-
Rev. F 2/07  
L1  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not  
included.  
A
2. Plastic interlead protrusions of 0.010” maximum per side are not  
included.  
c
SEE DETAIL "X"  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994.  
0.010  
A2  
GAUGE  
PLANE  
L
A1  
4°±4°  
DETAIL X  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN7357.7  
June 6, 2012  
12  
EL5106, EL5306  
Small Outline Package Family (SO)  
A
D
h X 45°  
(N/2)+1  
N
A
PIN #1  
I.D. MARK  
E1  
E
c
SEE DETAIL “X”  
1
(N/2)  
B
L1  
0.010 M  
C A B  
e
H
C
A2  
A1  
GAUGE  
PLANE  
SEATING  
PLANE  
0.010  
L
4° ±4°  
0.004 C  
b
0.010 M  
C
A
B
DETAIL X  
MDP0027  
SMALL OUTLINE PACKAGE FAMILY (SO)  
INCHES  
SO16  
(0.150”)  
SO16 (0.300”)  
(SOL-16)  
SO20  
SO24 (SOL- SO28 (SOL-  
SYMBOL  
SO-8  
0.068  
0.006  
0.057  
0.017  
0.009  
0.193  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
8
SO-14  
0.068  
0.006  
0.057  
0.017  
0.009  
0.341  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
14  
(SOL-20)  
0.104  
0.007  
0.092  
0.017  
0.011  
0.504  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
20  
24)  
28)  
TOLERANCE  
MAX  
NOTES  
A
A1  
A2  
b
0.068  
0.006  
0.057  
0.017  
0.009  
0.390  
0.236  
0.154  
0.050  
0.025  
0.041  
0.013  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.406  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
16  
0.104  
0.007  
0.092  
0.017  
0.011  
0.606  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
24  
0.104  
0.007  
0.092  
0.017  
0.011  
0.704  
0.406  
0.295  
0.050  
0.030  
0.056  
0.020  
28  
-
±0.003  
-
±0.002  
-
±0.003  
-
c
±0.001  
-
D
E
±0.004  
1, 3  
±0.008  
-
E1  
e
±0.004  
2, 3  
Basic  
-
L
±0.009  
-
L1  
h
Basic  
-
Reference  
Reference  
-
N
-
Rev. M 2/07  
NOTES:  
1. Plastic or metal protrusions of 0.006” maximum per side are not included.  
2. Plastic interlead protrusions of 0.010” maximum per side are not included.  
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.  
4. Dimensioning and tolerancing per ASME Y14.5M-1994  
FN7357.7  
June 6, 2012  
13  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY