F0448NBGK8 [RENESAS]

Dual Matched Broadband RF DVGA 3.4GHz to 3.8GHz;
F0448NBGK8
型号: F0448NBGK8
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Dual Matched Broadband RF DVGA 3.4GHz to 3.8GHz

文件: 总35页 (文件大小:3665K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Matched Broadband RF DVGA  
3.4GHz to 3.8GHz  
F0448  
Datasheet  
Description  
Features  
The F0448 is a 3.4GHz to 3.8GHz dual RF digital variable gain  
amplifier (DVGA) designed for use in receivers.  
.
RF Frequency Range: 3.4GHz to 3.8GHz  
.
Dual Channel RF amp and DSAs for Diversity / MIMO  
Receivers  
This dual RF DVGA provides two independent receiver channels  
each with 13dB typical maximum gain and 6dB noise figure  
designed to operate with a single +5V supply. For each channel,  
gain control is split into three separate attenuators: DSA0, a single  
6dB step using a single control pin; DSA1, a 23dB SPI-controlled  
gain adjustment in 1dB steps; and DSA2, includes 18dB  
attenuation in 6dB steps controlled using two control pins. The  
F0448 offers +37dBm nominal output IP3 using 220mA total ICC.  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
< 2dB overshoot between DSA transitions  
13dB typical maximum gain at 3.6GHz  
DSA0: Single 6dB coarse step  
DSA1: 23dB total gain range in 1dB steps  
DSA2: 18dB gain range in 6dB steps  
+37dBm OIP3 at 3.6GHz  
6dB Noise figure at 3.6GHz  
+5V Supply voltage  
This device is packaged in a 6 × 6 mm, 36-QFN with 50Ω single-  
ended RF input and RF output impedances for ease of integration  
into the signal-channel lineup for each of the two channels.  
ICC = 220mA  
Independent standby: 7mA standby current  
SPI interface for DSA1  
Competitive Advantage  
1-bit control for DSA0  
.
.
.
.
.
High reliability  
2-bit control for DSA2  
High linearity  
50Ω input and output impedance  
Internally matched  
Low DC current  
Zero DistortionTM technology  
GlitchFreeTM technology  
Temperature range: -40°C to +105°C  
6 × 6 × 0.75 mm 36-QFN package  
Typical Applications  
Block Diagram  
.
.
.
.
Multi-mode, Multi-carrier Receivers  
PHS/PAS Base Stations  
Distributed Antenna Systems  
Digital Radio  
F0448  
DSA0A  
DSA1A  
23dB  
RF AMP A  
DSA2A  
18dB  
RFIN_A  
RFOUT_A  
DATA  
6dB  
CSb  
2
CLK  
TM  
Free TM  
lit  
Glitch  
-
Decode  
Logic / Bias  
VCTRL0  
2
VCTRL1  
2
VCTRL2  
2
TM  
TM  
6dB  
23dB  
18dB  
STBY  
i
t
ti  
Zero  
-
Distortion  
2
RFIN_B  
RFOUT_B  
DSA0B  
DSA1B  
RF AMP B  
DSA2B  
1
October 24, 2018  
Contents  
Pin Assignments....................................................................................................................................................................................................5  
Pin Descriptions.....................................................................................................................................................................................................6  
Absolute Maximum Ratings...................................................................................................................................................................................7  
Recommended Operating Conditions ...................................................................................................................................................................7  
Electrical Characteristics .......................................................................................................................................................................................8  
Thermal Characteristics.......................................................................................................................................................................................11  
Typical Operating Conditions (TOC) ...................................................................................................................................................................11  
Typical Performance Characteristics...................................................................................................................................................................12  
Programming.......................................................................................................................................................................................................18  
Serial Control – DSA1 ................................................................................................................................................................................18  
Parallel Control Mode – DSA0, DSA2, STBY......................................................................................................................................................21  
Typical Application Circuit ...................................................................................................................................................................................22  
Evaluation Kit Picture ..........................................................................................................................................................................................23  
Evaluation Kit / Applications Circuit.....................................................................................................................................................................24  
Evaluation Kit Operation......................................................................................................................................................................................26  
Power Supply Setup...................................................................................................................................................................................26  
GND Jumpers.............................................................................................................................................................................................26  
Standby (STBY) Pin ...................................................................................................................................................................................27  
Serial Control..............................................................................................................................................................................................28  
Parallel Control Pins...................................................................................................................................................................................29  
Power-On Procedure..................................................................................................................................................................................29  
Power-Off Procedure..................................................................................................................................................................................29  
Application Information........................................................................................................................................................................................30  
Power Supplies...........................................................................................................................................................................................30  
RSET and RDSET......................................................................................................................................................................................30  
Control Pin Interface...................................................................................................................................................................................30  
Package Outline Drawings ..................................................................................................................................................................................31  
Marking Diagram .................................................................................................................................................................................................31  
Ordering Information............................................................................................................................................................................................31  
Revision History...................................................................................................................................................................................................32  
2
October 24, 2018  
List of Figures  
Figure 1. Pin Assignments for 6 × 6 mm 32-QFN – Top View............................................................................................................................5  
Figure 2. Maximum Gain vs. Frequency...........................................................................................................................................................12  
Figure 3. Gain vs. Frequency for DSA0 Settings..............................................................................................................................................12  
Figure 4. Gain vs. Frequency for DSA1 Settings..............................................................................................................................................12  
Figure 5. Gain vs. Frequency for DSA2 Settings..............................................................................................................................................12  
Figure 6. Stability vs. Frequency as a Function of Voltage and Temperature ..................................................................................................12  
Figure 7. Input Return Loss for DSA0 Settings.................................................................................................................................................13  
Figure 8. Output Return Loss for DSA0 Settings..............................................................................................................................................13  
Figure 9. Input Return Loss for DSA1 Settings.................................................................................................................................................13  
Figure 10. Output Return Loss for DSA1 Settings..............................................................................................................................................13  
Figure 11. Input Return Loss for DSA2 Settings.................................................................................................................................................13  
Figure 12. Output Return Loss for DSA2 Settings..............................................................................................................................................13  
Figure 13. Reverse Location for DSA0 Settings.................................................................................................................................................14  
Figure 14. Phase Deviation Between Adjacent States vs. DSA0 Setting ...........................................................................................................14  
Figure 15. Reverse Location for DSA1 Settings.................................................................................................................................................14  
Figure 16. Phase Deviation Between Adjacent States vs. DSA1 Setting ...........................................................................................................14  
Figure 17. Reverse Location for DSA2 Settings.................................................................................................................................................14  
Figure 18. Phase Deviation Between Adjacent States vs. DSA2 Setting ...........................................................................................................14  
Figure 19. DSA0 Absolute Attenuation Error (INL).............................................................................................................................................15  
Figure 20. DSA0 Attenuator Step Error (DNL)...................................................................................................................................................15  
Figure 21. DSA1 Absolute Attenuation Error (INL).............................................................................................................................................15  
Figure 22. DSA1 Attenuator Step Error (DNL)....................................................................................................................................................15  
Figure 23. DSA2 Absolute Attenuation Error (INL).............................................................................................................................................15  
Figure 24. DSA2 Attenuator Step Error (DNL)....................................................................................................................................................15  
Figure 25. OIP3 vs. Frequency with POUT = 0dBm/Tone and Max Gain.............................................................................................................16  
Figure 26. OIP3 vs. Frequency with POUT = -10dBm/Tone and Max Gain..........................................................................................................16  
Figure 27. OIP3 vs. Frequency with POUT = -18dBm/Tone and DSA2 = 18dB....................................................................................................16  
Figure 28. OIP3 vs. Frequency as a Function of Tone Spacing with POUT = 0dBm/Tone...................................................................................16  
Figure 29. OIP3 vs. Frequency with POUT = 0dBm/Tone and DSA0 = 6dB.........................................................................................................16  
Figure 30. Wideband OIP2 vs. Frequency with POUT = -10dBm/Tone................................................................................................................17  
Figure 31. Wideband OIP2 vs. Frequency with POUT = 0dBm/Tone ...................................................................................................................17  
Figure 32. NF vs. Frequency as a Function of Temperature at Max Gain..........................................................................................................17  
Figure 33. NF vs. Frequency as a Function of Temperature with DSA1 = 22dB................................................................................................17  
Figure 34. Gain Compression at fRF = 3.6GHz ...................................................................................................................................................17  
Figure 35. EVKit Connector and Trace Losses ..................................................................................................................................................17  
Figure 36. Serial Register Data Flow Diagram (LSB Clock in First) ...................................................................................................................18  
Figure 37. DSA1 Default Condition.....................................................................................................................................................................18  
Figure 38. Serial Timing Diagram.......................................................................................................................................................................20  
Figure 39. Electrical Schematic ..........................................................................................................................................................................22  
Figure 40. Top View............................................................................................................................................................................................23  
3
October 24, 2018  
Figure 41. Bottom View ......................................................................................................................................................................................23  
Figure 42. Electrical Schematic ..........................................................................................................................................................................24  
Figure 43. Power Supply Connections – Top View.............................................................................................................................................26  
Figure 44. Power Supply Connections – Bottom View .......................................................................................................................................26  
Figure 45. Two Ground Jumper Connections.....................................................................................................................................................26  
Figure 46. Two Standby Pin Connections ..........................................................................................................................................................27  
Figure 47. Two Jumpers for Serial Programming Connections ..........................................................................................................................28  
Figure 48. Parallel Pin Connections ...................................................................................................................................................................29  
Figure 49. Control Pin Interface..........................................................................................................................................................................30  
List of Tables  
Table 1. Pin Descriptions...................................................................................................................................................................................6  
Table 2. Absolute Maximum Ratings.................................................................................................................................................................7  
Table 3. Recommended Operating Conditions .................................................................................................................................................7  
Table 4. Electrical Characteristics .....................................................................................................................................................................8  
Table 5. Package Thermal Characteristics......................................................................................................................................................11  
Table 6. DSA1 Attenuation Word Truth Table (LSB = First In)........................................................................................................................19  
Table 7. SPI Timing Diagram Values for Figure 38.........................................................................................................................................20  
Table 8. DSA0 Truth Table..............................................................................................................................................................................21  
Table 9. DSA2 Truth Table..............................................................................................................................................................................21  
Table 10. STANDBY Truth Table ......................................................................................................................................................................21  
Table 11. Bill of Material (BOM) ........................................................................................................................................................................25  
Table 12. J13 Header Pins................................................................................................................................................................................28  
Table 13. Attenuator Control Using One Latch Signal.......................................................................................................................................29  
4
October 24, 2018  
Pin Assignments  
Figure 1. Pin Assignments for 6 × 6 mm 32-QFN – Top View  
F0448  
35  
34  
33  
32  
31  
30  
29  
28  
36  
DSA0_A  
DSA1_A  
DSA2_A  
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
RFout_A  
RFin_A  
GND  
GND  
VCC  
Rset  
VCTRL0_A  
SPI Data  
SPI Clk  
Decode Logic  
VCC  
Bias Control  
RDset  
VCC  
VCC  
VCTRL0_B  
GND  
GND  
RFin_B  
RFout_B  
DSA0_B  
DSA1_B  
DSA2_B  
10  
11  
12  
13  
14  
15  
16  
17  
18  
5
October 24, 2018  
 
 
Pin Descriptions  
Table 1.  
Pin Descriptions  
Number  
Name  
Description  
1
RFIN_A  
GND  
Input RF port for channel A which is internally matched to 50Ω. Must use external DC block.  
2, 8, 15, 16,  
17, 29, 30, 31  
Internally grounded. This pin must be grounded with a via as close to the pin as possible.  
1-bit DSA0 6dB attenuator control for channel A. Logic HIGH is for 6dB attenuated and logic LOW is for 0dB  
attenuated.  
3
VCTRL0_A  
4
DATA  
CLK  
VCC  
Data input: 3.3V or 1.8V CMOS compatible.  
5
Clock input: 3.3V or 1.8V CMOS compatible.  
6, 21, 23, 25  
Power Supply. Use bypass capacitors as close to pin as possible.  
1-bit DSA0 6dB attenuator control for channel B. Logic HIGH is for 6dB attenuated and logic LOW is for 0dB  
attenuated.  
7
9
VCTRL0_B  
RFIN_B  
NC  
Input RF port for channel B that is internally matched to 50Ω. Must use external DC block.  
10, 18, 20, 26,  
28, 36  
No internal connection. These pins can be left unconnected or be connected to ground (recommended). Use a via as  
close to the pin as possible if grounded.  
11  
12  
CSb_B  
STBY_B  
Chip Select bar input for channel B: 3.3V or 1.8V CMOS compatible. Logic LOW allows data to be shifted in.  
Standby pin for channel B (LOW/Open = device power ON, HIGH = device power OFF with SPI still powered ON). An  
internal pull-down resistor of 57kΩ connects between this pin and GND.  
13  
14  
19  
22  
24  
27  
32  
33  
VCTRL1_B  
VCTRL2_B  
RFOUT_B  
RDSET  
Bit 0 for DSA2 channel B attenuator. Logic HIGH is for 6dB attenuated and logic LOW is for 0dB attenuated.  
Bit 1 for DSA2 channel B attenuator. Logic HIGH is for 12dB attenuated and logic LOW is for 0dB attenuated.  
Output RF port for channel B. Use external DC block as close to the pin as possible.  
Connect external resistor to GND to optimize amplifier bias. Used with pin 24.  
RSET  
Connect external resistor to GND to optimize amplifier bias. Used with pin 22.  
RFOUT_A  
VCTRL2_A  
VCTRL1_A  
Output RF port for channel A. Use external DC block as close to the pin as possible.  
Bit 1 for DSA2 channel A attenuator. Logic HIGH is for 12dB attenuated and logic LOW is for 0dB attenuated.  
Bit 0 for DSA2 channel A attenuator. Logic HIGH is for 6dB attenuated and logic LOW is for 0dB attenuated.  
Standby pin for channel A (LOW/Open = device power ON, HIGH = device power OFF with SPI still powered ON). An  
internal pull-down resistor of 57kΩ connects between this pin and GND.  
34  
35  
STBY_A  
CSb_A  
Chip Select bar input for channel A: 3.3V or 1.8V CMOS compatible. Logic LOW allows data to be shifted in.  
Exposed paddle. Internally connected to ground. Solder this exposed paddle to a printed circuit board (PCB) pad that  
uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground  
vias are also required to achieve the specified RF performance.  
— EPAD  
6
October 24, 2018  
 
 
Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device.  
Functional operation of the F0448 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect  
device reliability.  
Table 2.  
Absolute Maximum Ratings  
Parameter  
Symbol  
Minimum  
Maximum  
Units  
VCC to GND  
VCC  
-0.3  
+5.5  
V
Lower of  
(VCC, 3.6)  
DATA, CSb_A, CSb_B, CLK, VCTRL0_A, VCTRL0_B  
VLOGIC1  
-0.3  
V
STBY_A, STBY_B, VCTRL1_A, VCTRL1_B, VCTRL2_A, VCTRL2_B  
RFIN_A, RFIN_B externally applied DC voltage  
RFOUT_A, RFOUT_B, externally applied DC voltage  
RF Input Power (RFIN_A or RFIN_B) applied for 24 hours maximum [a]  
Continuous Power Dissipation  
VLOGIC2  
VRFIN  
VRFOUT  
PMAX  
-0.3  
+1.4  
+1.4  
VCC + 0.25  
+3.6  
+3.6  
+22  
V
V
V
dBm  
W
PDISS  
TST  
1.5  
Storage Temperature Range  
-65  
150  
°C  
°C  
Lead Temperature (soldering, 10s)  
260  
2000  
Class 2  
ElectroStatic Discharge – HBM (JEDEC/ESDA JS-001-2012)  
ElectroStatic Discharge – CDM (JEDEC 22-C101F)  
V
V
1000  
Class C3  
[a] Exposure to these maximum RF levels can result in significant VCC current draw due to overdriving the amplifier stage.  
Recommended Operating Conditions  
Table 3.  
Recommended Operating Conditions  
Parameter  
Symbol  
VCC  
Condition  
All VCC pins  
Minimum  
4.75  
Typical  
Maximum  
5.25  
Units  
V
Supply Voltage  
5.00  
Operating Temperature Range  
Junction Temperature  
RF Frequency Range  
Maximum RF Input Power  
RF Source Impedance  
RF Load Impedance  
TEPAD  
TJ  
Exposed paddle  
-40  
+105  
+125  
3.8  
°C  
°C  
fRF  
3.4  
GHz  
dBm  
Ω
PIP  
DSA0 = DSA1 = 0dB  
Single ended  
0
ZRFI  
50  
50  
ZRFO  
Single ended  
Ω
7
October 24, 2018  
 
 
 
 
 
Electrical Characteristics  
See F0448 Typical Application Circuit. VCC = +5V, TC = +25°C, fRF = 3.6GHz specifications apply when operated as a dual-channel RF DVGA,  
maximum gain setting, POUT = 0dBm, ZRFI = ZRFO = 50, Evaluation Board (EVKit) traces and connectors are de-embedded, unless otherwise  
stated.  
Table 4.  
Electrical Characteristics  
Parameter  
Symbol  
VIH  
Condition  
Applies for all logic levels.  
Applies for all logic levels.  
Minimum  
Typical  
Maximum  
Units  
Logic Input High  
Logic Input Low  
1.07 [a]  
V
V
VIL  
0.63  
5
Logic Current  
(CLK, DATA, CSb_A, CSb_B,  
VCTRL0_A, VCTRL1_A, VCTRL2_A,  
VCTRL0_B, VCTRL1_B, VCTRL2_B)  
IIH, IIL  
-5  
μA  
μA  
5V logic  
-5  
-5  
-5  
127  
87  
Logic Current for Standby  
(STBY_A, STBY_B) [b]  
I
IH-SB, IIL-SB 3.3V logic  
1.8V logic  
47  
ICC_2  
ICC_1  
Both channels on  
220  
110  
7
270  
142  
14  
Supply Current  
Startup Time  
One channel on  
Standby Mode  
mA  
ns  
ICC_STBY  
50% of STBY going LOW to Gain  
within ± 1dB with no attenuation.  
tSTART  
74  
DSA0 Adjustment Range  
DSA1 Adjustment Range  
DSA2 Adjustment Range  
Maximum Attenuation Glitch  
AADJ0  
AADJ1  
6dB step size  
1dB step size  
6dB step size  
6
23  
18  
2
dB  
dB  
dB  
dB  
AADJ2  
ATTNG  
50% CTRL to within 0.1dB final value,  
0dB state to 6dB state  
tDSA0_1  
24  
35  
35  
DSA0 Gain Settling Time  
DSA1 Gain Settling Time  
DSA2 Gain Settling Time  
ns  
ns  
ns  
50% CTRL to within 0.1dB final value,  
6dB state to 0dB state  
tDSA0_2  
tDSA1  
18  
300  
16  
50% of CSb to within 0.1dB final value  
50% CTRL to within 0.1dB final value,  
0dB state to 18dB state  
tDSA2_1  
35  
35  
35  
35  
50% CTRL to within 0.1dB final value,  
18dB state to 0dB state  
tDSA2_2  
15  
24  
18  
50% CTRL to within 1 degree of final  
value, 0dB state to 6dB state  
tDSA0_1_PH  
tDSA0_2_PH  
DSA0 Phase Settling Time  
ns  
50% CTRL to within 1 degree of final  
value, 6dB state to 0dB state  
8
October 24, 2018  
 
 
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
50% CTRL to within 1 degree of final  
value, 0dB state to 18dB state  
tDSA2_1_PH  
16  
35  
35  
DSA2 Phase Settling Time  
ns  
50% CTRL to within 1 degree of final  
value, 18dB state to 0dB state  
tDSA0_1_PH  
15  
Stability K factor  
KFACT  
Over entire temperature range  
1.4  
unit  
Serial Clock Speed  
SPICLK  
10  
MHz  
CSb_A, CSb_B to first serial clock  
rising edge  
SPI 3 wire bus. 50% of CSb falling  
edge to 50% of CLK rising edge.  
tLS  
tH  
10  
10  
10  
ns  
ns  
ns  
SPI 3 wire bus. 50% of CLK rising  
edge to 50% of Data falling edge.  
Serial Data Hold Time  
SPI 3 wire bus. 50% of CLK rising  
edge to 50% of CSb rising edge.  
Final serial clock rising edge to CSb  
tLC  
RF Input Return Loss  
RF Output Return Loss  
RLIN  
RLOUT  
15  
20  
dB  
dB  
GMAX  
12  
13  
13.5  
GMIN  
Maximum attenuation  
-38.1  
-32  
-26.4  
Gain  
dB  
GTEMP  
Variation over temperature  
Variation over frequency [c]  
±0.15  
±0.2  
0.52  
0.16  
0.55  
0.32  
0.43  
6.6  
GVAR  
DSA0 Absolute Accuracy  
DSA1 Step Error  
INLDSA0  
DNLDSA1  
INLDSA1  
DNLDSA2  
INLDSA2  
ΦPH_DSA0  
dB  
dB  
DSA1 Absolute Accuracy  
DSA2 Step Error  
dB  
dB  
DSA2 Absolute Accuracy  
Relative Phase DSA0  
Phase Deviation DSA1  
Relative Phase DSA2  
dB  
deg  
deg  
deg  
ΦPH_DSA1 Between adjacent states  
3
ΦPH_ DSA2 Any State  
6.6  
NF  
5.9  
Noise Figure  
NFHOT  
NF22  
TEPAD = +105°C  
6.6  
dB  
DSA1 22dB attenuation  
27.7  
9
October 24, 2018  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
OIP31  
1MHz tone separation  
34  
37  
1MHz tone separation  
POUT = -10dBm/tone  
OIP32  
OIP36dB  
OIP33  
33  
35  
37  
36  
1MHz tone separation  
DSA0 full attenuation  
dBm  
Output Third Order Intercept Point  
1MHz tone separation  
Worst case over temp range  
33  
POUT = -18dBm/tone  
OIP318dB 1MHz tone separation  
DSA2 full 18dB attenuation  
21  
Input 1dB Compression [d]  
Output 1dB Compression  
Reverse Isolation  
IP1dB  
OP1dB  
REVISO  
Full attenuation  
24  
18  
22  
39  
39  
dBm  
dBm  
dB  
19  
35  
Channel Isolation [e]  
CHISO  
dB  
Over voltage and temperature  
[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these columns that  
are not shown in bold italics are guaranteed by design characterization.  
[b] During standby mode, SPI is to be left ON and previous state is maintained when device is powered up.  
[c] Including frequency and ripple variations valid within each individual 3GPP band.  
[d] Input 1dB compression point is a linearity figure of merit. For maximum RF input power, see Absolute Maximum Ratings.  
[e] Signal applied to RFIN_A (RFIN_B), measure desired signal at RFOUT_A (RFOUT_B) and compare to signal level at RFOUT_B (RFOUT_A).  
Maximum gain setting.  
10  
October 24, 2018  
 
 
 
 
 
Thermal Characteristics  
Table 5.  
Package Thermal Characteristics  
Parameter  
Symbol  
Value  
Units  
Junction to Ambient Thermal Resistance.  
θJA  
37.1  
°C/W  
Junction to Case Thermal Resistance.  
(Case is defined as the exposed paddle)  
θJC-BOT  
9.1  
°C/W  
Moisture Sensitivity Rating (Per J-STD-020)  
MSL 1  
Typical Operating Conditions (TOC)  
Unless otherwise noted, for the TOC graphs on the following pages, the following conditions apply:  
.
.
.
.
.
.
.
.
.
.
.
Vcc = 5.0V  
ZL = ZS = 50Single ended  
fRF = 3.6GHz  
TEPAD = +25°C  
Gain setting = Maximum gain  
STBY = LOW  
POUT = 0dBm/tone  
1MHz Tone Spacing  
ATTN setting = 0dB (Maximum gain; DSA0 = DSA1 = DSA2 = 0dB)  
All temperatures are referenced to the exposed paddle  
Evaluation Kit traces and connector losses are de-embedded  
11  
October 24, 2018  
 
 
 
Typical Performance Characteristics  
Figure 2. Maximum Gain vs. Frequency  
Figure 3. Gain vs. Frequency for DSA0 Settings  
15.0  
15  
+4.75 V / -40 C  
+5.00 V / -40 C  
+5.25 V / -40 C  
+4.75 V / +25 C  
+5.00 V / +25 C  
+5.25 V / +25 C  
+4.75 V / +105 C  
+5.00 V / +105 C  
+5.25 V / +105 C  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
10  
5
0
-5  
-10  
DSA0=0dB  
DSA0=6dB  
-15  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Frequency (GHz)  
Frequency (GHz)  
Figure 4. Gain vs. Frequency for DSA1 Settings  
Figure 5. Gain vs. Frequency for DSA2 Settings  
15  
15  
10  
5
10  
5
0
0
-5  
-10  
-5  
-10  
0 dB  
1 dB  
2 dB  
3 dB  
4 dB  
5 dB  
DSA2=0 dB  
DSA2=6 dB  
DSA2=12 dB  
DSA2=18 dB  
6 dB  
7 dB  
8 dB  
9 dB  
10 dB  
16 dB  
22 dB  
11 dB  
17 dB  
23 dB  
12 dB  
18 dB  
13 dB  
19 dB  
14 dB  
20 dB  
15 dB  
21 dB  
-15  
-15  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Frequency (GHz)  
Frequency (GHz)  
Figure 6. Stability vs. Frequency as a Function  
of Voltage and Temperature  
5.0  
+4.75 V / -40 C  
+5.00 V / -40 C  
+5.25 V / -40 C  
+4.75 V / +25 C  
+5.00 V / +25 C  
+5.00 V / +25 C  
+4.75 V / +105 C  
+5.25 V / +105 C  
+5.25 V / +105 C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Frequency (GHz)  
12  
October 24, 2018  
 
 
 
 
 
 
Figure 7. Input Return Loss for DSA0 Settings  
Figure 8. Output Return Loss for DSA0  
Settings  
0
0
DSA0=0 dB  
DSA0=6 dB  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-5  
DSA0=0 dB  
DSA0=6 dB  
-10  
-15  
-20  
-25  
-30  
-35  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Frequency (GHz)  
Frequency (GHz)  
Figure 9. Input Return Loss for DSA1 Settings  
Figure 10. Output Return Loss for DSA1  
Settings  
0
-5  
0
0 dB  
6 dB  
12 dB  
18 dB  
1 dB  
7 dB  
13 dB  
19 dB  
2 dB  
8 dB  
14 dB  
20 dB  
3 dB  
9 dB  
15 dB  
21 dB  
4 dB  
5 dB  
10 dB  
16 dB  
22 dB  
11 dB  
17 dB  
23 dB  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
-25  
-30  
0 dB  
6 dB  
12 dB  
18 dB  
1 dB  
7 dB  
13 dB  
19 dB  
2 dB  
8 dB  
14 dB  
20 dB  
3 dB  
9 dB  
15 dB  
21 dB  
4 dB  
5 dB  
10 dB  
16 dB  
22 dB  
11 dB  
17 dB  
23 dB  
-35  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Frequency (GHz)  
Frequency (GHz)  
Figure 11. Input Return Loss for DSA2 Settings  
Figure 12. Output Return Loss for DSA2  
Settings  
0
0
DSA2=00 dB  
DSA2=12 dB  
DSA2=06 dB  
DSA2=18 dB  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
DSA2=00 dB  
DSA2=06 dB  
DSA2=12 dB  
DSA2=18 dB  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Frequency (GHz)  
Frequency (GHz)  
13  
October 24, 2018  
 
 
 
 
 
 
Figure 13. Reverse Isolation for DSA0 Settings  
Figure 14. Phase Deviation Between Adjacent  
States vs. DSA0 Setting  
0
0
-5  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
DSA0=0 dB  
DSA0=6 dB  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
-8  
-9  
-10  
0
6
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
DSA0 Setting (dB)  
Frequency (GHz)  
Figure 15. Reverse Isolation for DSA1 Settings  
Figure 16. Phase Deviation Between Adjacent  
States vs. DSA1 Setting  
0
0
0 dB  
1 dB  
2 dB  
3 dB  
4 dB  
5 dB  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
6 dB  
7 dB  
8 dB  
9 dB  
10 dB  
16 dB  
22 dB  
11 dB  
17 dB  
23 dB  
12 dB  
18 dB  
13 dB  
19 dB  
14 dB  
20 dB  
15 dB  
21 dB  
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
-8  
-9  
-10  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
0
5
10  
15  
20  
Frequency (GHz)  
DSA1 Setting (dB)  
Figure 17. Reverse Isolation for DSA2 Settings  
Figure 18. Phase Deviation Between Adjacent  
States vs. DSA2 Setting  
0
0
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
DSA2=0 dB  
-5  
-1  
-2  
DSA2=6 dB  
-10  
DSA2=12 dB  
DSA2=18 dB  
-15  
-3  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
0
6
12  
18  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
DSA2 Setting (dB)  
Frequency (GHz)  
14  
October 24, 2018  
 
 
 
 
 
 
Figure 19. DSA0 Absolute Attenuation Error  
Figure 20. DSA0 Attenuator Step Error (DNL)  
(INL)  
1.0  
1.0  
0.9  
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0
6
0
6
DSA0 Setting (dB)  
DSA0 Setting (dB)  
Figure 21. DSA1 Absolute Attenuation Error  
Figure 22. DSA1 Attenuator Step Error (DNL)  
(INL)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.8  
0.7  
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-0.1  
-0.2  
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
0.2  
0.1  
0.0  
0
5
10  
15  
20  
0
5
10  
15  
20  
DSA1 Setting (dB)  
DSA1 Setting (dB)  
Figure 23. DSA2 Absolute Attenuation Error  
Figure 24. DSA2 Attenuator Step Error (DNL)  
(INL)  
1.0  
0.8  
0.7  
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-0.1  
-0.2  
0
6
12  
18  
0
6
12  
18  
DSA2 Setting (dB)  
DSA2 Setting (dB)  
15  
October 24, 2018  
 
 
 
 
 
 
Figure 25. OIP3 vs. Frequency with  
Figure 26. OIP3 vs. Frequency with  
POUT = -10dBm/Tone and Max Gain  
POUT = 0dBm/Tone and Max Gain  
50  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
3
3.2  
3.4  
3.6  
3.8  
4
3
3.2  
3.4  
3.6  
3.8  
4
Frequency (GHz)  
Frequency (GHz)  
Figure 27. OIP3 vs. Frequency with  
POUT = -18dBm/Tone and DSA2 = 18dB  
Figure 28. OIP3 vs. Frequency as a Function of  
Tone Spacing with POUT = 0dBm/Tone  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
-40 C  
+25 C  
+105 C  
3
3.2  
3.4  
3.6  
3.8  
4
0
10  
20  
30  
40  
50  
Frequency (GHz)  
Tone Spacing Frequency (MHz)  
Figure 29. OIP3 vs. Frequency with  
POUT = 0dBm/Tone and DSA0 = 6dB  
50  
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
3
3.2  
3.4  
3.6  
3.8  
4
Frequency (GHz)  
16  
October 24, 2018  
 
 
 
 
 
Figure 30. Wideband OIP2 vs. Frequency with  
POUT = -10dBm/Tone  
Figure 31. Wideband OIP2 vs. Frequency with  
POUT = 0dBm/Tone  
0
0
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Frequency (GHz)  
Frequency (GHz)  
Figure 32. NF vs. Frequency as a Function of  
Figure 33. NF vs. Frequency as a Function of  
Temperature at Max Gain  
Temperature with DSA1 = 22dB  
7
32  
31  
30  
29  
28  
27  
26  
25  
24  
6.5  
6
5.5  
5
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
4.5  
4
23  
22  
3
3.2  
3.4  
3.6  
3.8  
4
3
3.2  
3.4  
3.6  
3.8  
4
Frequency (GHz)  
Frequency (GHz)  
Figure 34. Gain Compression at fRF = 3.6GHz  
Figure 35. EVKit Connector and Trace Losses  
14  
13  
12  
11  
10  
0.0  
-40 C  
-0.1  
+25 C  
+105 C  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1.0  
-40 C, +4.75 V  
+25 C, +4.75 V  
+105 C, +4.75 V  
-40 C, +5.00 V  
+25 C, +5.00 V  
+105 C, +5.00 V  
-40 C, +5.25 V  
+25 C, +5.25 V  
+105 C, +5.25 V  
9
8
0
1
2
3
4
5
6
8
10  
12  
14  
16  
18  
20  
Frequency (GHz)  
Output Power (dBm)  
17  
October 24, 2018  
 
 
 
 
 
 
Programming  
The F0448 is programmed in both the serial and parallel. The 23dB attenuator (DSA1) is programmed using a three-wire serial control line. You  
choose which channel is programmed by using either or both CSb lines. Parallel pins are used for the one-bit 6dB attenuator ((DSA0_A,  
DSA0_B) and two-bit 18dB (6dB step) attenuator (DSA2_A, DSA2_B). The standby pins are also controlled by the parallel pin. All logic is both  
1.8V and 3.3V compatible.  
Serial Control – DSA1  
The serial interface uses an 8-bit word with only 5 bits used. The serial word is shifted in LSB (D0) first.  
Figure 36. Serial Register Data Flow Diagram (LSB Clock in First)  
1
2
3
4
5
6
7
8
9
CLK  
Data Word  
Latched into  
Active Register  
CSb  
Data Word 8 bits  
X
X
1 dB  
2 dB  
4 dB  
8 dB 16 dB  
X
DATA  
D0  
LSB  
D1  
D2  
D3 D4  
D5 D6  
D7  
MSB  
Figure 37. DSA1 Default Condition  
When the device is first powered up, DSA1 will default to the Maximum Attenuation setting as shown.  
Default Register Setting  
x
x
1
1
1
1
1
x
D0  
LSB  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
MSB  
The F0448 includes a CLK inhibit feature designed to minimize sensitivity to CLK bus noise when the device is not being programmed. When  
CSb is high (> VIH), the CLK input is disabled and serial data (DATA) is not clocked into the shift register. It is recommended that CSb be pulled  
high (> VIH) when the device is not being programmed.  
18  
October 24, 2018  
 
 
 
 
Table 6.  
DSA1 Attenuation Word Truth Table (LSB = First In)  
Attenuation word  
Attenuation  
Setting (dB)  
D7 (MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
D0 (LSB)  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
LOW  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
LOW  
LOW  
HIGH  
LOW  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
LOW  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
LOW  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
LOW  
LOW  
LOW  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
1
2
4
8
16  
22  
23 (max)  
23 (max)  
23 (max)  
23 (max)  
23 (max)  
23 (max)  
23 (max)  
23 (max)  
23 (max)  
19  
October 24, 2018  
 
Figure 38. Serial Timing Diagram  
tH  
tP  
tLC  
tS  
tCH  
tCL  
CLK  
DATA  
tLS  
CSb  
tL  
tL  
Table 7.  
SPI Timing Diagram Values for Figure 38  
Parameter  
Symbol  
Test Condition  
Minimum  
Typical  
Maximum  
10  
Units  
MHz  
ns  
CLK Frequency  
fC  
tCH  
tCL  
tS  
CLK High Duration Time  
CLK Low Duration Time  
DATA to CLK Setup Time  
CLK Period [a]  
50  
50  
10  
100  
10  
10  
10  
10  
ns  
ns  
tP  
ns  
CLK to DATA Hold Time  
CSb to CLK Setup Time  
CSb Trigger Pulse Width  
CSb Trigger to CLK Setup Time [b]  
tH  
ns  
tLS  
tL  
ns  
ns  
tLC  
ns  
[a] (tCH + tCL) 1/fC  
[b] Once all desired DATA is clocked in, tLC represents the time a CSb high needs to occur before any subsequent CLK signals.  
20  
October 24, 2018  
 
 
 
 
Parallel Control Mode – DSA0, DSA2, STBY  
Externally set the parallel control pins either logic LOW or HIGH.  
Table 8.  
DSA0 Truth Table  
VCTRL0_A (VCTRL0_B)  
ATTENUATION SETTING (dB)  
DSA0_A or DSA0_B  
LOW  
HIGH  
0 (Reference IL)  
6
Table 9.  
DSA2 Truth Table  
ATTENUATION SETTING (dB)  
VCTRL1_A (VCTRL1_B)  
VCTRL2_A (VCTRL2_B)  
DSA2_A or DSA2_B  
LOW  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
0 (Reference IL)  
6
12  
18  
Table 10. STANDBY Truth Table  
Control Pins  
Logic Level  
LOW (or open)  
HIGH  
Function  
Channel Powered On  
Channel Powered OFF  
STBY_A, STBY_B  
21  
October 24, 2018  
 
 
 
 
Typical Application Circuit  
Figure 39 is a typical circuit that can be used in a design for the F0448.  
Figure 39. Electrical Schematic  
CSB_A  
R3  
R1  
R4  
C6  
C4  
C3  
STBY_A  
U1  
RFOUT_A  
RFIN_A  
C1  
C2  
J1  
1
27  
26  
25  
24  
23  
22  
21  
20  
19  
J3  
RFIN_A  
RFOUT_A  
NC  
VCTRL0_A  
R6  
2
3
4
5
6
7
8
9
C11  
GND  
C10  
C12  
C13  
VCC2A  
VCTRL0_A  
SPI_DATA  
SPI_CLK  
VCC  
VCC  
SPI_DATA  
SPI_CLK  
R10  
R11  
R26  
R25  
RSET  
VCC  
VCC2AB  
F0448  
C16  
C14  
C15  
RDSET  
VCC  
R13  
VCC1  
C19  
VCC2B  
VCTRL0_B  
GND  
C22  
C17  
C16  
C28  
C20  
NC  
VCTRL0_B  
C21  
RFOUT_B  
RFIN_B  
RFOUT_B  
RFIN_B  
J4  
J2  
STBY_B  
C24  
C27  
R19  
C26  
R18  
R17  
CSB_B  
22  
October 24, 2018  
 
 
Evaluation Kit Picture  
Figure 40. Top View  
Figure 41. Bottom View  
23  
October 24, 2018  
 
 
 
Evaluation Kit / Applications Circuit  
Figure 42 is the evaluation board schematic.  
Figure 42. Electrical Schematic  
1
2
N C  
8 2  
N C  
G N  
G N  
G N  
8 1  
7 1  
6 1  
5 1  
4 1  
3 1  
2 1  
1 1  
0 1  
D
D
D
G N  
G N  
G N  
D
D
D
9 2  
0 3  
1 3  
2 3  
3 3  
4 3  
5 3  
6 3  
7 3  
A 2 _ L R T C V  
A 1 _ L R T C V  
B 2 _ L R T C V  
B 1 _ L R T C V  
3
2
1
3
2
1
A
B Y S _ T  
S B C _ A  
B
B Y S _ T  
S B C _ B  
N C  
N C  
E P A D  
24  
October 24, 2018  
 
 
Table 11. Bill of Material (BOM)  
Part Reference  
QTY  
Description  
Manufacturer Part #  
Manufacturer  
C1, C2, C21, C28  
4
47pF ±5%, 50V, C0G Ceramic Capacitor (0402)  
GRM1555C1H470J  
Murata  
C3, C4, C6, C10, C11,  
C16, C22, C24, C26,  
C27  
10 2pF ±0.1pF, 50V, C0G Ceramic Capacitor (0402)  
GRM1555C1H2R0B  
Murata  
C12, C14, C17, C20  
C13, C15, C18, C19  
4
4
1000pF ±5%, 50V, C0G Ceramic Capacitor (0402)  
0.1µF ±10%, 16V, X7R Ceramic Capacitor (0402)  
GRM1555C1H102J  
GRM155R71C104K  
Murata  
Murata  
R1, R3, R4, R6, R10,  
R11, R13, R17, R18,  
R19  
10 5.11kΩ ±1%, 1/10W, Resistor (0402)  
ERJ-2RKF5111X  
Panasonic  
R21, R22, R23, R24  
R25, R26  
4
2
5
2
4
1
1
1
0Ω Resistor (0402)  
ERJ-2GE0R00X  
ERJ-3EKF4421V  
142-0701-851  
Panasonic  
4.42kΩ ±1%, 1/10W, Resistor (0402)  
Edge Launch SMA (0.375 inch pitch ground tabs)  
CONN HEADER VERT SGL 3 X 1 POS GOLD  
CONN HEADER VERT SGL 2 X 1 POS  
CONN HEADER VERT SGL 11 X 2 POS GOLD  
Dual DVGA  
Panasonic  
J1, J3, J5, J9, J14  
J4, J11  
Emerson Johnson  
961103-6404-AR  
961102-6404-AR  
67997-122HLF  
3M  
3M  
J6, J10, J12, J15  
J13  
FCI  
IDT  
IDT  
U1  
F0448NBGK  
Printed Circuit Board  
F0440 EVKIT REV 01  
C5, C7, C8, C9, C23,  
C25, C29, C30, R2,  
R5, R15, R20, R7, R8,  
R9, R12, R14, R16, J7,  
J8  
DNP  
25  
October 24, 2018  
 
Evaluation Kit Operation  
Power Supply Setup  
Set up a power supply in the voltage range of 4.75V to 5.25V with the power supply output disabled. The voltage is applied via the SMA  
connector, J1, show in Figure 43 and Figure 44.  
Figure 43. Power Supply Connections – Top View  
Figure 44. Power Supply Connections – Bottom View  
GND Jumpers  
Headers J6 and J10 must be jumped (grounded) for optimum RF performance. Figure 45 shows the header locations.  
Figure 45. Two Ground Jumper Connections  
26  
October 24, 2018  
 
 
 
 
 
 
Standby (STBY) Pin  
The Evaluation Board can control the F0448 for standby operation. The standby pin is the center pin of the J4 and J11 header as shown in  
Figure 46. VCC (logic HIGH) and ground (logic LOW) pins are available to make a connection with a jumper.  
Figure 46. Two Standby Pin Connections  
To place channel A in the normal operation mode (on), use one of these options:  
.
.
.
Make no connections on J4.  
Apply a logic LOW signal to STBY (pin 2 of J4 or the middle pin).  
Make a connection between pin 1 (GND) and pin 2 (STBY, the middle pin) of J4.  
To place channel A in the standby mode (off), use one of these options:  
.
.
Apply a logic HIGH signal to the STBY (pin 2 of J4 or the middle pin).  
Make a connection between pin 3 (VCC) and pin 2 (STBY, the middle pin) of J4.  
To place channel B in the normal operation mode (on), use one of these options:  
.
.
.
Make no connections on J11.  
Apply a logic LOW signal to STBY (pin 2 of J11 or the middle pin).  
Make a connection between pin 1 (GND) and pin 2 (STBY, the middle pin) of J11.  
To place channel B in the standby mode (off), use one of these options:  
.
.
Apply a logic HIGH signal to the STBY (pin 2 of J11 or the middle pin).  
Make a connection between pin 3 (VCC) and pin 2 (STBY, the middle pin) of J11.  
27  
October 24, 2018  
 
 
Serial Control  
Both channels have a digital controlled attenuator, DSA1_A and DSA1_B, which share the serial control word. The serial control pins are on  
header J13 and are shown in Figure 47. Table 12 lists the pin functions on header J13.  
Figure 47. Two Jumpers for Serial Programming Connections  
Table 12. J13 Header Pins  
Pin  
1
Label  
GND  
Pin  
2
Label  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
3
DATA  
4
5
CLK  
6
7
CSb_A  
8
9
CSb_B  
10  
12  
14  
16  
18  
20  
22  
11  
13  
15  
17  
19  
21  
VCTRL0_A  
VCTRL0_B  
VCTRL1_A  
VCTRL1_B  
VCTRL2_A  
VCTRL2_B  
Each channel has its own latch pins, CSB_A and CSB_B (pin 7 of J13 and pin 9 of J13) so each channel attenuator can be independently  
controlled. If you only have one latch signal, the ability to control each channel attenuator achieved using headers J12 and J15. The latch signal  
must be applied to CSb_A (pin 7 of J13). Table 13 lists the operation for the connections on these headers.  
28  
October 24, 2018  
 
 
 
Table 13. Attenuator Control Using One Latch Signal  
J12  
CSb_B  
OPEN  
Function  
OPEN  
No control of attenuators  
OPEN  
CLOSED  
OPEN  
DSA1_B attenuator is controlled  
DSA1_A attenuator is controlled  
CLOSED  
CLOSED  
CLOSED  
DSA1_A attenuator is controlled DSA1_B attenuator is controlled  
Parallel Control Pins  
Both channels have two other attenuators, DSA0 and DSA1, which are parallel controlled. These parallel pins are located on header J13 shown  
in Figure 48. Table 12 lists the pin functions on header J13.  
Figure 48. Parallel Pin Connections  
See Table 8 and Table 9 for the attenuation control.  
Power-On Procedure  
Set up the voltage supplies and Evaluation Board as described in “Power Supply Setup” with the “Standby Pin” set for logic LOW, then enable  
the power supply.  
Power-Off Procedure  
Disable the power supply.  
29  
October 24, 2018  
 
 
 
 
 
Application Information  
The F0448 is optimized for use in high-performance RF applications from 3.4GHz to 3.6GHz.  
Power Supplies  
Bypass supply pins with external capacitors to minimize noise and fast transients. Supply noise can degrade noise figure and fast transients  
can trigger ESD clamps and cause them to fail. Supply voltage change or transients should have a slew rate smaller than 1V/20µS. In  
addition, all control pins should remain at 0V (±0.3V) while the supply voltage ramps or while it returns to zero.  
RSET and RDSET  
The F0448 is optimized for gain and intermodulation products by adjusting the bias resistors RSET and RDSET. For the optimized setting,  
RSET (R26) and RDSET (R25) are 4.42kΩ.  
Control Pin Interface  
If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit  
at the input of each control pin is recommended. This applies to control pins 3-7, 11-14, and 32-35 as shown below. Note the recommended  
resistor and capacitor values do not necessarily match the EVKit BOM for the case of poor control signal integrity.  
Figure 49. Control Pin Interface  
5kΩ  
VCTRL1_A  
2pF  
5kΩ  
5kΩ  
STBY_A  
VCTRL2_A  
2pF  
2pF  
5kΩ  
CSb_A  
2pF  
35  
34  
33  
32  
31  
30  
29  
28  
36  
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
5kΩ  
VCTRL0_A  
2pF  
5kΩ  
5kΩ  
DATA  
CLK  
2pF  
2pF  
F0448  
Exposed pad (GND)  
5kΩ  
VCTRL0_B  
2pF  
18  
10  
11  
12  
13  
14  
15  
16  
17  
5kΩ  
CSb_B  
2pF  
5kΩ  
5kΩ  
VCTRL2_B  
STBY_B  
2pF  
2pF  
5kΩ  
VCTRL1_B  
2pF  
30  
October 24, 2018  
 
 
 
 
 
Package Outline Drawings  
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is  
the most current data available.  
https://www.idt.com/document/psc/nbnbg36-package-outline-60-x-60-mm-body-epad-410-mm-sq-050-mm-pitch-qfn  
Marking Diagram  
.
.
.
.
.
Line 1 and 2 are the part number.  
Line 3 “ZW” is for die version.  
IDTF0448  
NBGK  
ZW1707L  
Q86A034MY  
Line 3 “yyww = 1707 has two digits for the year and week that the part was assembled.  
Line 3 “L” denotes Assembly Site.  
Line 4 “Q86A034MY” is the Assembly Lot number.  
Ordering Information  
Orderable Part Number  
Package  
MSL Rating  
Shipping Packaging  
Tray  
Temperature  
-40°C to +105°C  
-40°C to +105°C  
F0448NBGK  
F0448NBGK8  
F0448EVB  
1
6 × 6 × 0.75 mm 36-QFN  
6 × 6 × 0.75 mm 36-QFN  
1
Tape and Reel  
Evaluation Board  
Evaluation Solution  
F0448EVS  
31  
October 24, 2018  
 
 
 
Revision History  
Revision Date  
Description of Change  
Removed “or pin open” from Pin Descriptions  
.
.
.
October 24, 2018  
October 18, 2018  
Removed “or open” from Table 8 and Table 9  
Updated Figure 47  
.
.
.
Updated various logic levels.  
Update Typical Performance Characteristics  
Completed other minor improvements.  
August 29, 2018  
August 8, 2018  
Added θJA and θJC-BOT values to Table 5.  
Initial release.  
 
IMPORTANT NOTICE AND DISCLAIMER  
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL  
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING  
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND  
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,  
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible  
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)  
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These  
resources are subject to change without notice. Renesas grants you permission to use these resources only for  
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly  
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.  
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,  
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject  
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources  
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.  
(Rev.1.0 Mar 2020)  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
For further information on a product, technology, the most  
up-to-date version of a document, or your nearest sales  
office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas  
Electronics Corporation. All trademarks and registered  
trademarks are the property of their respective owners.  
© 2020 Renesas Electronics Corporation. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY