F0452BLEGK [RENESAS]

Dual Path RF Switch with LNA and DVGA 2.3GHz to 2.7GHz;
F0452BLEGK
型号: F0452BLEGK
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Dual Path RF Switch with LNA and DVGA 2.3GHz to 2.7GHz

文件: 总29页 (文件大小:3489K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Path RF Switch with LNA and  
DVGA 2.3GHz to 2.7GHz  
F0452B  
Datasheet  
Description  
Features  
The F0452B is an integrated dual-path RF front-end consisting of  
an RF switch and two gain stages with 6dB gain control used in the  
analog front-end receiver of an Active Antenna System (AAS). The  
F0452B supports frequencies from 2.3GHz to 2.7GHz.  
.
Gain at 2.6GHz  
34dB typical in High Gain Mode  
28dB typical in Low Gain Mode  
1.5dB NF at 2.6GHz  
+23dBm OIP3 at 2.6GHz  
OP1dB at 2.6GHz  
.
.
.
The F0452B provides 34dB gain with +23dBm OIP3, +15dBm  
output P1dB, and 1.5dB noise figure (NF) at 2.6GHz. Gain is  
reduced 6dB in a single step with a maximum settling time of 31ns.  
The device uses a single 3.3V supply and 130mA of IDD.  
+15dBm in High Gain Mode  
+14dBm in Low Gain Mode  
The F0452B is offered in a 5 5 0.8 mm, 32-LGA package with  
50Ω input and output amplifier impedances for ease of integration  
into the signal path.  
.
.
.
.
.
.
50Ω single-ended input / output amplifier impedances  
IDD = 130mA  
Independent Standby Mode for power savings  
Supply voltage: +3.15V to +3.45V  
5 5 mm, 32-LGA package  
-40°C to +105°C exposed pad operating temperature range  
Competitive Advantage  
.
.
.
.
High integration  
Low noise and high linearity  
On-chip matching and bias  
Extremely low current consumption  
Block Diagram  
Typical Applications  
.
.
.
Multi-mode, multi-carrier receivers  
4.5G (LTE Advanced)  
5G band 42  
SW1_IN  
STBY1  
ATT1_CTRL  
SW1_CTRL  
SW2_CTRL  
ATT2_CTRL  
STBY2  
SW2_IN  
1
May 7, 2019  
Contents  
Pin Assignments....................................................................................................................................................................................................5  
Pin Descriptions.....................................................................................................................................................................................................6  
Absolute Maximum Ratings...................................................................................................................................................................................7  
Recommended Operating Conditions ...................................................................................................................................................................8  
Electrical Characteristics .......................................................................................................................................................................................9  
Thermal Characteristics.......................................................................................................................................................................................13  
Typical Operating Conditions ..............................................................................................................................................................................13  
Programming.......................................................................................................................................................................................................18  
Evaluation Kit Picture ..........................................................................................................................................................................................20  
Evaluation Kit / Applications Circuit .....................................................................................................................................................................21  
Evaluation Kit Operation......................................................................................................................................................................................23  
Mode Control Setup....................................................................................................................................................................................23  
Power-On Procedure..................................................................................................................................................................................23  
Power-Off Procedure..................................................................................................................................................................................23  
Application Information........................................................................................................................................................................................24  
Power Supplies...........................................................................................................................................................................................24  
Control Pin Interface...................................................................................................................................................................................24  
Package Outline Drawings ..................................................................................................................................................................................25  
Ordering Information............................................................................................................................................................................................25  
Marking Diagram .................................................................................................................................................................................................25  
Revision History...................................................................................................................................................................................................26  
2
May 7, 2019  
List of Figures  
Figure 1. Pin Assignments for 5 5 0.8 mm 32-LGA Top View...................................................................................................................5  
Figure 2. Typical TX Input Power and Reduced Exposed Pad Temperature Profile ..........................................................................................8  
Figure 3. RX Mode Gain (High Gain)................................................................................................................................................................14  
Figure 4. RX Mode Gain (Low Gain) ................................................................................................................................................................14  
Figure 5. RX Mode Channel Isolation (High Gain)............................................................................................................................................14  
Figure 6. RX Mode Channel Isolation (Low Gain) ............................................................................................................................................14  
Figure 7. RX Mode Input Return Loss (High Gain)...........................................................................................................................................14  
Figure 8. RX Mode Input Return Loss (Low Gain)............................................................................................................................................14  
Figure 9. RX Mode Output Return Loss (High Gain)........................................................................................................................................15  
Figure 10. RX Mode Output Return Loss (Low Gain).........................................................................................................................................15  
Figure 11. RX Mode OP1dB vs. Frequency (High Gain) ....................................................................................................................................15  
Figure 12. RX Mode OP1dB vs. Frequency (Low Gain).....................................................................................................................................15  
Figure 13. RX Mode OIP3 vs. Frequency (High Gain)........................................................................................................................................15  
Figure 14. RX Mode OIP3 vs. Frequency (Low Gain) ........................................................................................................................................15  
Figure 15. TX Mode Switch Isolation (SWx_IN to RXx_OUT) ............................................................................................................................16  
Figure 16. TX Mode Channel Isolation (Switch Inputs).......................................................................................................................................16  
Figure 17. TX Mode Input Return Loss...............................................................................................................................................................16  
Figure 18. Stability Factor...................................................................................................................................................................................16  
Figure 19. RX Mode Noise Figure (High Gain)...................................................................................................................................................16  
Figure 20. RX Mode Noise Figure (Low Gain)....................................................................................................................................................16  
Figure 21. Switching Time from TX to RX Mode ................................................................................................................................................17  
Figure 22. Switching Time from RX to TX Mode ................................................................................................................................................17  
Figure 23. Standby to RX Mode Transient Time ................................................................................................................................................17  
Figure 24. RX Mode to Standby Transient Time ................................................................................................................................................17  
Figure 25. 6dB Gain Reduction Transient Time .................................................................................................................................................17  
Figure 26. 6dB Gain Increase Transient Time....................................................................................................................................................17  
Figure 27. Electrical Schematic ..........................................................................................................................................................................19  
Figure 28. Evaluation Kit: Top View....................................................................................................................................................................20  
Figure 29. Evaluation Kit: Bottom View ..............................................................................................................................................................20  
Figure 30. Electrical Schematic ..........................................................................................................................................................................21  
Figure 31. Standby and Switch Control Logic.....................................................................................................................................................23  
Figure 32. Control Pin Interface Schematic........................................................................................................................................................24  
3
May 7, 2019  
List of Tables  
Table 1. Pin Descriptions...................................................................................................................................................................................6  
Table 2. Absolute Maximum Ratings.................................................................................................................................................................7  
Table 3. Recommended Operating Conditions .................................................................................................................................................8  
Table 4. Electrical Characteristics .....................................................................................................................................................................9  
Table 5. Electrical Characteristics: RX Path in RX Mode Cascaded Performance .........................................................................................11  
Table 6. Electrical Characteristics: RX Path in RX Mode Cascaded Performance and TX Performance .......................................................12  
Table 7. Thermal Characteristics.....................................................................................................................................................................13  
Table 8. Gain Step Truth Table .......................................................................................................................................................................18  
Table 9. Standby and RF Switch Truth Table..................................................................................................................................................18  
Table 10. Bill of Material (BOM) ........................................................................................................................................................................22  
4
May 7, 2019  
Pin Assignments  
Figure 1. Pin Assignments for 5 5 0.8 mm 32-LGA Top View  
ATT1_CTRL  
1
GND  
SW1_IN  
GND  
NC  
24  
23  
22  
21  
20  
19  
18  
17  
STBY1  
2
SW1_CTRL  
GND  
3
4
5
6
7
8
GND  
NC  
SW2_CTRL  
STBY2  
GND  
SW2_IN  
GND  
ATT2_CTRL  
5
May 7, 2019  
Pin Descriptions  
Table 1.  
Pin Descriptions  
Number  
Name  
Description  
1-bit 6dB gain control for path 1. (LOW/open = no attenuation; HIGH = 6dB attenuation). A 500kΩ pull-down  
resistor is connected between this input and GND.  
1
2
ATT1_CTRL  
STBY1  
Standby (LOW/open = path 1 power ON; HIGH = path 1 power OFF). A 500kΩ pull-down resistor is connected  
between this input and GND.  
RF SWITCH 1 control (LOW/open = select main RX PATH 1; HIGH = switch output). SW1_CTRL also puts path  
3
SW1_CTRL 1 into Standby Mode for minimum current consumption. A 500kΩ pull-down resistor is connected between this  
input and GND.  
4, 5, 9, 11,  
13, 15, 17,  
19, 22, 24,  
GND  
Ground these pins.  
26, 28, 30, 32  
RF SWITCH 2 control (LOW/open = select main RX PATH 2; HIGH = switch output). SW2_CTRL also puts path  
6
7
SW2_CTRL 2 into Standby Mode for minimum current consumption. A 500kΩ pull-down resistor is connected between this  
input and GND.  
Standby (LOW/open = path 2 power ON; HIGH = path 2 power OFF). A 500kΩ pull-down resistor is connected  
between this input and GND.  
STBY2  
1-bit 6dB gain control for path 2. (LOW/open = no attenuation; HIGH = 6dB attenuation). A 500kΩ pull-down  
resistor connects between this input and GND.  
8
10  
ATT2_CTRL  
RX2_OUT  
VDD  
RF output path 2 matched to 50Ω. Use external DC block as close to the pin as possible.  
Power supply. Bypass to GND with capacitors shown in the F0452B Application Circuit (see Figure 30) as close  
as possible to the pins.  
12, 14, 27, 29  
RF2 switch output matched to 50Ω. Use external 50Ω terminating resistor with proper power rating as required  
for the application.  
16  
SW2_OUT  
18  
23  
SW2_IN  
SW1_IN  
RF2 switch input matched to 50Ω. Use an external DC block as close to the pin as possible.  
RF1 switch input matched to 50Ω. Use an external DC block as close to the pin as possible.  
RF1 switch output matched to 50Ω. Use an external 50Ω terminating resistor with proper power rating as  
required for the application.  
25  
SW1_OUT  
31  
RX1_OUT  
NC  
RF output path 1 matched to 50Ω. Use an external DC block as close to the pin as possible.  
20, 21  
Not internally connected.  
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground  
vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also  
required to achieve the specified RF performance.  
EPAD  
6
May 7, 2019  
Absolute Maximum Ratings  
Stresses beyond those listed below may cause permanent damage to the device. Functional operation of the device at these or any other  
conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
Table 2.  
Absolute Maximum Ratings  
Parameter  
Symbol  
VDD  
Minimum  
-0.3  
Maximum  
+3.6  
Units  
VDD to GND  
V
V
STBY1, STBY2, ATT1_CTRL, ATT2_CTRL, SW1_CTRL, SW2_CTRL to GND  
VCTRL  
-0.3  
VDD + 0.25  
SW1_IN, SW2_IN, RX1_OUT, RX2_OUT, SW1_OUT, SW2_OUT to GND  
Externally Applied DC Voltage  
VSW  
-50  
50  
mV  
TX Mode CW Average Input Power +7.5dB PAR at SW1_IN, SW2_IN Ports,  
10s, 89% Duty Cycle  
PABS_TX  
+31  
+33 [b]  
dBm  
50Ω, TEPAD = 105°C [a], VDD = +3.3V  
RX Mode Average Input Power +7.5dB PAR at SW1_IN, SW2_IN Ports,  
1 Hour Single Event, 50% Duty Cycle  
PABS_RX  
+8  
dBm  
50Ω, TEPAD = 105°C [a], VDD = +3.3V  
Storage Temperature Range  
TST  
-65  
+150  
+260  
°C  
°C  
Lead Temperature (soldering, 10s)  
TLEAD  
Electrostatic Discharge HBM  
1500  
VESDHBM  
V
V
(JEDEC/ESDA JS-001-2012)  
(Class 1C)  
Electrostatic Discharge CDM  
(JEDEC JS-002-2014)  
500  
VESDCDM  
(Class C2A)  
ALL pins except pins 16, 18, 23, 25  
Electrostatic Discharge CDM  
(JEDEC JS-002-2014)  
Pins 16, 18, 23, 25  
125  
VESDCDM  
V
(Class C0B)  
[a] TEPAD = Temperature of the exposed paddle.  
[b] RF input exposures greater than +31dBm and up to +33dBm for multiple extended periods will affect device reliability and lifetime if the maximum  
recommended input junction temperature is exceeded.  
7
May 7, 2019  
 
 
Recommended Operating Conditions  
Table 3.  
Recommended Operating Conditions  
Parameter  
Symbol  
Condition  
Minimum  
3.15  
Typical  
Maximum  
3.45  
Units  
V
Power Supply Voltage  
VDD  
3.3  
Operating Temperature Range  
RF Frequency Range  
TEPAD  
fRF  
Exposed Paddle  
-40  
+105  
°C  
2.3  
2.7  
GHz  
TX Mode CW Average Input Power,  
+7.5dB PAR, Full Life Time [a]  
PMAX_TX  
89% Duty Cycle  
89% Duty Cycle  
+30[b]  
-25  
dBm  
dBm  
50Ω, VDD = +3.3V  
RX Mode CW Average Input Power,  
+7.5dB PAR, Full Life Time [a]  
PMAX_RX  
50Ω, VDD = +3.3V  
Port Impedance (SW1_IN, SW2_IN,  
RX1_OUT, RX2_OUT)  
ZRF  
TJ  
50  
Ω
Junction Temperature  
+125  
°C  
[a] Assumes device environmental temperature cycling within the specified exposed pad operating temperature range of -40°C and 105°C and a  
maximum junction temperature of 125°C.  
[b] Operation beyond the maximum recommended operating input power level should be limited and have reduced exposed pad temperatures to  
maintain device reliability per foundry guidelines (see Figure 2). Electrical characteristics and lifetime are not guaranteed for RF input power  
levels beyond what is specified in this table.  
Figure 2. Typical TX Input Power and Reduced Exposed Pad Temperature Profile  
Note: This graph estimates the maximum input power without exceeding the maximum junction temperature of 125°C using an IDT-specific evaluation board  
and test environment.  
Average Input Power +7.5dB PAR  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
60  
65  
70  
75  
80  
85  
90  
95 100 105 110 115  
Exposed Pad Temperature (°C)  
8
May 7, 2019  
 
 
 
Electrical Characteristics  
Table 4.  
Electrical Characteristics  
See F0452B Application Circuit in Figure 30. Specifications apply when operated as an RX RF amplifier with VDD = +3.3V, TEPAD = +25°C,  
STBYx = LOW, RX output power = -10dBm, ZS = ZL = 50Ω, and EVKit trace and connector losses are de-embedded unless otherwise noted.  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
Lower of  
(VDD, 3.3)  
Logic Input High Threshold  
VIH  
1.17[a]  
V
Logic Input Low Threshold  
Logic Current  
VIL  
-0.3  
0.63  
10  
V
IIH, IIL  
For each control pin  
2 paths in RX Mode  
-10  
µA  
130  
70  
180  
1 path in RX Mode  
1 path in TX Mode  
100  
1 path in RX Mode  
DC Current  
IDD  
67  
5
mA  
1 path in Standby Mode  
1 path in TX Mode  
1 path in Standby Mode  
2 paths in Standby Mode  
5
6
Gain Step  
GSTEP  
dB  
dB  
Relative to maximum gain,  
over-voltage, and temperature  
Gain Step Absolute Error  
Relative Phase Gain Step  
Gain Step Settling Time [b]  
GSTEP_ERR  
GSTEP_PH  
GSTEP_SET  
±0.5  
28  
deg  
ns  
50% control logic to RF output  
within ±0.1dB of final value  
20  
31  
30  
50% control logic to RF output  
within ±1 degree of final value  
Gain Step Phase Settling Time [b]  
Power ON Switching Time [b]  
GSTEP_PHSET  
16  
ns  
To RX Mode from TX Mode  
50% control logic to RF output  
settled to within ±0.1dB of final  
value  
SWON  
1
µs  
To TX Mode from RX Mode  
50% control logic to RF input  
settled within ±0.1dB of final  
value  
Power OFF Switching Time [b]  
SWOFF  
0.5  
µs  
9
May 7, 2019  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
To RX Mode from Standby  
Mode  
Power ON from Standby Mode [b]  
SWON_STANDBY  
1
1
µs  
50% STBYx to RF output  
settled within ±0.1dB of final  
value  
To Standby Mode from RX  
Mode  
Power OFF to Standby Mode [b]  
SWOFF_STANDBY  
µs  
50% STBYx to gain below  
-25dB from maximum gain  
[a] Items in the Minimum/Maximumcolumns in bold italics are guaranteed by test. Items in the “Minimum”/“Maximum” columns not in bold italics  
are guaranteed by design characterization.  
[b] fRF = 2.6GHz. Assumes the control signal is clean and no external RC circuitry is required on the pin. Adding RC circuitry increases switching  
time. Timing tests performed with a control logic signal of +3.3V and a rise/fall time ≤ 30ns.  
10  
May 7, 2019  
 
Table 5.  
Electrical Characteristics: RX Path in RX Mode Cascaded Performance  
See the F0452B Application Circuit in Figure 30. Specifications apply when operated as an RX RF amplifier with VDD = +3.3V, fRF = 2.6GHz,  
TEPAD = +25°C, STBYx = LOW, RX output power = -10dBm, ZS = ZL = 50Ω, and EVKit trace and connector losses are de-embedded unless  
otherwise noted.  
Parameter  
Symbol  
Condition  
Minimum  
Typical  
Maximum  
Units  
Measured at SW1_IN, SW2_IN,  
High/Low Gain Mode,  
12 [a]  
fRF = 2.4GHz  
Measured at SW1_IN, SW2_IN,  
High/Low Gain Mode,  
Input Return Loss  
RLIN  
20  
dB  
fRF = 2.6GHz  
Measured at SW1_IN, SW2_IN,  
High/Low Gain Mode,  
6
fRF = 2.3GHz to 2.7GHz  
Measured at RX1_OUT,  
RX2_OUT,  
Output Return Loss  
RLOUT  
7
dB  
dB  
High/Low Gain Modes,  
fRF = 2.3GHz to 2.7GHz  
Reverse Isolation, RX1_OUT to  
SW1_IN, or RX2_OUT to SW2_IN  
ISOREV  
fRF = 2.3GHz to 2.7GHz  
50  
58  
34  
GHG  
GHG_TEMP  
GLG  
High Gain Mode  
32  
31  
37  
38  
Gain  
dB  
dB  
TEPAD = -40°C to 105°C  
Low Gain Mode  
Gain Attenuated  
25.5  
28  
31.5  
fRF = 2.3GHz to 2.7GHz  
(Difference between maximum  
and minimum gain in each  
100MHz subrange within the  
specified frequency range)  
Gain Ripple  
Noise Figure  
GRIPPLE  
±0.75  
dB  
dB  
Measured at antenna port  
ideally matched to LNA  
1.5  
1.5  
1.7  
2.3  
NF  
TEPAD = 105°C  
Low Gain Mode  
[a] Items in the “Minimum”/“Maximum” columns in bold italics are guaranteed by test. Items in the “Minimum”/“Maximum” columns NOT in bold italics  
are guaranteed by design characterization.  
11  
May 7, 2019  
 
Table 6.  
Electrical Characteristics: RX Path in RX Mode Cascaded Performance and TX Performance  
See the F0452B Application Circuit in Figure 30. Specifications apply when operated as an RX RF amplifier with VDD = +3.3V, fRF = 2.6GHz,  
TEPAD = +25°C, STBYx = LOW, RX output power = -10dBm, ZS = ZL = 50Ω, and EVKit trace and connector losses are de-embedded unless  
otherwise noted.  
Parameter  
Symbol  
Condition  
Pout = 0dBm/tone  
Minimum  
Typical  
Maximum  
Units  
OIP31  
23[a]  
5MHz tone separation  
Pout = 0dBm/tone  
OIP32  
OIP33  
5MHz tone separation  
TEPAD = -40°C to 105°C  
20  
Pout = 0dBm/tone  
5MHz tone separation  
Low Gain Mode  
Output Third-Order Intercept Point  
dBm  
23  
Pout = 0dBm/tone  
5MHz tone separation  
Low Gain Mode  
OIP34  
18  
TEPAD = -40°C to 105°C  
OP1dB1  
OP1dB2  
OP1dB3  
OP1dB4  
High Gain Mode [b]  
13  
11  
15  
14  
High Gain Mode  
TEPAD = -40°C to 105°C  
Output 1dB Compression  
dBm  
Low Gain Mode  
Low Gain Mode  
10  
40  
TEPAD = -40°C to 105°C  
RFISO1 = (푅푋1_푂푈푇  
)
푅푋2_푂푈푇  
푑퐵  
with -60 ≤ SW1_IN ≤ -30dBm  
Channel Isolation  
ISOCH  
50  
65  
dB  
dB  
RFISO2 = (푅푋2_푂푈푇  
)
푅푋1_푂푈푇  
푑퐵  
with -60 ≤ SW2_IN ≤ -30dBm  
TX Mode  
RF Switch Isolation  
ISOSW  
55  
Measured at SW_IN to  
RX_OUT of the same channel  
[a] Items in the “Minimum”/“Maximum” columns in bold italics are guaranteed by test. Items in the “Minimum”/“Maximum” columns not in bold italics  
are guaranteed by design characterization.  
[b] In the OP1dB calculation formula, Gdenotes the gain of each part instance at the frequency of interest and appropriate HIGH / LOW gain state.  
12  
May 7, 2019  
 
 
Thermal Characteristics  
Table 7.  
Thermal Characteristics  
Parameter  
Symbol  
Value  
Units  
θJA  
Junction-to-Ambient Thermal Resistance  
43  
°C/W  
Junction-to-Case Thermal Resistance  
(Case is defined as the exposed paddle)  
θJC_BOT  
11.7  
°C/W  
Moisture Sensitivity Rating (Per J-STD-020)  
MSL3  
Typical Operating Conditions  
Unless otherwise noted:  
.
.
.
.
.
.
VDD = +3.3V  
TEPAD = 25°C  
ZL = ZS = 50Ω single-ended with matching networks  
STBY1 = STBY2 = LOW or open  
SW_CTRL = LOW or open  
Gain Setting = High Gain Mode  
.
PIN -30dBm  
.
.
All temperatures are referenced to the exposed paddle  
Evaluation kit traces and connector losses are de-embedded  
13  
May 7, 2019  
Typical Performance Characteristics: Part 1  
Figure 3. RX Mode Gain (High Gain)  
Figure 4. RX Mode Gain (Low Gain)  
40  
38  
36  
34  
32  
30  
28  
26  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
-40 C, +3.15 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-40 C, +3.30 V  
+25 C, +3.30 V  
+105 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
-40 C, +3.15 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-40 C, +3.30 V  
+25 C, +3.30 V  
+105 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
24  
22  
20  
2
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3
2
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3
Frequency(GHz)  
Frequency(GHz)  
Figure 5. RX Mode Channel Isolation  
Figure 6. RX Mode Channel Isolation  
(High Gain)  
(Low Gain)  
70  
70  
65  
60  
55  
50  
45  
40  
65  
60  
55  
50  
45  
40  
-40 C, +3.15 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-40 C, +3.30 V  
+25 C, +3.30 V  
+105 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
-40 C, +3.15 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-40 C, +3.30 V  
+25 C, +3.30 V  
+105 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
35  
30  
35  
30  
2
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3
2
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3
Frequency(GHz)  
Frequency(GHz)  
Figure 7.  
RX Mode Input Return Loss (High Gain)  
Figure 8.  
RX Mode Input Return Loss (Low Gain)  
0
-5  
0
-5  
-40 C, +3.15 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-40 C, +3.30 V  
+25 C, +3.30 V  
+105 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
-40 C, +3.15 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-40 C, +3.30 V  
+25 C, +3.30 V  
+105 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
-10  
-15  
-20  
-25  
-30  
-35  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
2
-40  
2
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3
Frequency(GHz)  
Frequency(GHz)  
14  
May 7, 2019  
Typical Performance Characteristics: Part 2  
Figure 9.  
RX Mode Output Return Loss  
(High Gain)  
Figure 10. RX Mode Output Return Loss  
(Low Gain)  
0
-5  
0
-5  
-40 C, +3.15 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-40 C, +3.30 V  
+25 C, +3.30 V  
+105 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
-40 C, +3.15 V  
-40 C, +3.30 V  
+25 C, +3.30 V  
+105 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-10  
-15  
-20  
-25  
-10  
-15  
-20  
-25  
-30  
-30  
2
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3
2
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3
2.8  
2.8  
Frequency(GHz)  
Frequency(GHz)  
Figure 11. RX Mode OP1dB vs. Frequency  
(High Gain)  
Figure 12. RX Mode OP1dB vs. Frequency  
(Low Gain)  
20  
20  
-40 C, +3.15 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-40 C, +3.30 V  
+25 C, +3.30 V  
+105 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
-40 C, +3.15 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-40 C, +3.30 V  
+25 C, +3.30 V  
+105 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.3  
2.4  
2.5  
2.6  
2.7  
Frequency(GHz)  
Frequency(GHz)  
Figure 13. RX Mode OIP3 vs. Frequency  
(High Gain)  
Figure 14. RX Mode OIP3 vs. Frequency  
(Low Gain)  
30  
30  
-40 C, +3.15 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-40 C, +3.30 V  
+25 C, +3.30 V  
+105 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
-40 C, +3.15 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-40 C, +3.30 V  
+25 C, +3.30 V  
+105 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.3  
2.4  
2.5  
2.6  
2.7  
Frequency(GHz)  
Frequency(GHz)  
15  
May 7, 2019  
Typical Performance Characteristics: Part 3  
Figure 15. TX Mode Switch Isolation  
(SWx_IN to RXx_OUT)  
Figure 16. TX Mode Channel Isolation  
(Switch Inputs)  
100  
90  
100  
90  
80  
70  
60  
50  
40  
80  
70  
60  
-40 C, +3.15 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-40 C, +3.30 V  
+25 C, +3.30 V  
+105 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
-40 C, +3.15 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-40 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
50  
40  
+25 C, +3.30 V  
+105 C, +3.30 V  
2
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3
3
3
2
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3
10  
3
Frequency(GHz)  
Frequency(GHz)  
Figure 17. TX Mode Input Return Loss  
Figure 18. Stability Factor  
0
1000  
-40 C, +3.15 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-40 C, +3.30 V  
+25 C, +3.30 V  
+105 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
-5  
-10  
-15  
-20  
-25  
-30  
100  
10  
-40 C, +3.15 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-40 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
+25 C, +3.30 V  
+105 C, +3.30 V  
1
2
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
0
1
2
3
4
5
6
7
8
9
Frequency(GHz)  
Frequency(GHz)  
Figure 19. RX Mode Noise Figure (High Gain)  
Figure 20. RX Mode Noise Figure (Low Gain)  
4
4
-40 C, +3.15 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-40 C, +3.30 V  
+25 C, +3.30 V  
+105 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
-40 C, +3.15 V  
+25 C, +3.15 V  
+105 C, +3.15 V  
-40 C, +3.30 V  
+25 C, +3.30 V  
+105 C, +3.30 V  
-40 C, +3.45 V  
+25 C, +3.45 V  
+105 C, +3.45 V  
3.5  
3
3.5  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
2
2.2  
2.4  
2.6  
2.8  
2
2.2  
2.4  
2.6  
2.8  
Frequency(GHz)  
Frequency(GHz)  
16  
May 7, 2019  
Typical Performance Characteristics: Part 4  
Figure 21. Switching Time from TX to RX Mode  
Figure 23. Standby to RX Mode Transient Time  
Figure 25. 6dB Gain Reduction Transient Time  
Figure 22. Switching Time from RX to TX Mode  
Figure 24. RX Mode to Standby Transient Time  
Figure 26. 6dB Gain Increase Transient Time  
17  
May 7, 2019  
Programming  
Table 8.  
Gain Step Truth Table  
ATT1_CTRL, ATT2_CTRL  
Attenuation Setting  
LOW or Open  
0dB  
6dB  
HIGH  
Table 9.  
Standby and RF Switch Truth Table  
In TX Mode, the amplifiers are OFF but the bias will remain ON for fast turn-on recovery time.  
STBY1, STBY2  
LOW or Open  
LOW or Open  
HIGH  
SW1_CTRL, SW2_CTRL  
LOW or Open  
MODE  
RX  
Amplifier State  
ON  
OFF  
OFF  
HIGH  
TX  
HIGH or LOW or Open  
STANDBY  
18  
May 7, 2019  
 
Typical Application Circuit  
Figure 27 is a typical circuit (minimum components) that can be used in a design for the F0452B by the customer.  
Figure 27. Electrical Schematic  
VDD  
C12  
C14  
C13  
C18  
C11  
C17  
J2  
J3  
RX1_OUT  
SW1_OUT  
GND  
J1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
SW1_IN  
ATT1_CTRL  
STBY1  
SW1_CTRL  
ATT1_CTRL  
STBY1  
SW1_CTRL  
GND  
GND  
SW2_CTRL  
STBY2  
ATT2_CTRL  
GND  
SW1_IN  
GND  
U1  
GND  
GND  
GND  
SW1_CTRL  
STBY2  
ATT2_CTRL  
SW2_IN  
GND  
J4  
GND  
SW2_IN  
J5  
J6  
C19  
C7  
C20  
C9  
SW2_OUT  
RX2_OUT  
C8  
C10  
VDD  
19  
May 7, 2019  
 
Evaluation Kit Picture  
Figure 28. Evaluation Kit: Top View  
TBD  
TBD  
Figure 29. Evaluation Kit: Bottom View  
20  
May 7, 2019  
Evaluation Kit / Applications Circuit  
Figure 30. Electrical Schematic  
VDD  
R8  
J9  
TP1  
VDD  
VDD  
VDD  
C14  
C15  
R7  
C12  
C16  
SW1  
TP2  
C13  
C18  
C11  
C17  
GND  
SW DIP-8  
J2  
J3  
RX1_OUT  
SW1_OUT  
J10  
R1  
R2  
R3  
R4  
R5  
R6  
C1  
C2  
C3  
C4  
C5  
C6  
GND  
J7  
J1  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
SW1_IN  
ATT1_CTRL  
STBY1  
SW1_CTRL  
GND  
GND  
SW2_CTRL  
STBY2  
GND  
SW1_IN  
GND  
GND  
GND  
GND  
SW2_IN  
GND  
U1  
J4  
ATT2_CTRL  
HEADER 8  
GND  
SW2_IN  
J11  
J5  
J6  
C19  
C7  
C20  
C9  
SW2_OUT  
RX2_OUT  
C8  
C10  
VDD  
21  
May 7, 2019  
Table 10. Bill of Material (BOM)  
Part Reference  
QTY  
Description  
Manufacturer Part #  
Manufacturer  
C1, C6  
0
4
4
4
1
1
1
4
1
1
8
1
1
DNP  
C2 - C5  
CAP CER 100pF 50V 5% NP0 (0402)  
CAP CER 10000pF 50V 10% X7R (0402)  
CAP CER 1µF 10V 10% X5R (0402)  
CAP CER 10000pF 50V 5% C0G/NP0 (0603)  
CAP CER 8.0pF ±0.1pF 50V NP0 (0402)  
0Ω ±1%, 1/10W, Resistor (0402)  
GRM1555C1H101JA01D  
GRM155R71H103KA88D  
GRM155R61A105KE15D  
GRM1885C1H103JA01D  
GJM1555C1H8R0BB01D  
ERJ-2RKF0000X  
Murata  
Murata  
C7, C9, C11, C13  
C8, C10, C12, C14  
Murata  
C15  
C17-C20  
R1, R6  
R2-R5  
R7  
Murata  
Murata  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Cinch Connectivity  
3M  
100Ω ±1%, 1/10W, Resistor (0402)  
1kΩ ±1%, 1/10W, Resistor (0402)  
1.3kΩ ±1%, 1/10W, Resistor (0402)  
SMA Edge Mount  
ERJ-2RKF1000X  
ERJ-2RKF1001X  
R8  
ERJ-2RKF1301X  
J1- J6, J10, J11  
J7  
142-0761-881  
CONN HEADER VERT SGL 8POS GOLD  
CONN SMA JACK STR 50OHM EDGE MNT  
961108-6404-AR  
J9  
142-0701-851  
Cinch Connectivity  
TP1, TP2  
SW1  
1
1
1
8 Pin DIP Switch (3 POS)  
Dual Path RF Switch + LNA + DVGA 5X5 LGA  
Printed Circuit Board  
KAT1108E  
F0452BLEGK  
E-Switch  
IDT  
U1  
F0453 EVKIT Stripline R2  
22  
May 7, 2019  
Evaluation Kit Operation  
TBD  
Mode Control Setup  
There are three operation modes as described in Table 9: RX Mode, TX Mode, and Standby Mode. Based on each mode, set up the standby  
pins and switch control pins as described in Table 9. The standby and switch control logic are shown in Figure 31.  
Figure 31. Standby and Switch Control Logic  
Power-On Procedure  
Set up the voltage supplies and Evaluation Board so that the STBY1 and STBY2 pins are either open or connected to logic LOW, and then  
enable the power supply.  
Power-Off Procedure  
Disable the power supply.  
23  
May 7, 2019  
 
Application Information  
Power Supplies  
A common VDD power supply should be used for all pins requiring DC power. All supply pins should be bypassed with external capacitors to  
minimize noise and fast transients. Supply noise can degrade the noise figure, and fast transients can trigger ESD clamps and cause them to  
fail. Supply voltage change or transients should have a slew rate smaller than 1V / 20µs. In addition, all control pins should remain at  
0V (±0.3V) while the supply voltage ramps up or while it returns to zero.  
Control Pin Interface  
If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit  
at the input of each control pin is recommended. This applies to control pins 1, 2, 3, 6, 7, and 8 shown in Figure 32.  
Figure 32. Control Pin Interface Schematic  
5 k  
ATT1_CTRL  
2 pF  
5 k  
STBY1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
2 pF  
5 k  
SW1_CTRL  
2 pF  
5 k  
SW2_CTRL  
2 pF  
5 k  
STBY2  
2 pF  
5 k  
ATT2_CTRL  
2 pF  
24  
May 7, 2019  
 
Package Outline Drawings  
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is  
the most current data available.  
www.idt.com/document/psc/leg32-package-outline-50-x-50-mm-body-08-mm-thick-05mm-pitch-lga  
Ordering Information  
Orderable Part Number  
Package  
MSL Rating  
MSL3  
Shipping Packaging  
Temperature  
-40° to +105°C  
-40° to +105°C  
F0452BLEGK  
Tray  
Reel  
5.0 5.0 0.8 mm 32-LGA  
5.0 5.0 0.8 mm 32-LGA  
F0452BLEGK8  
F0452BEVB  
MSL3  
Evaluation Board  
Marking Diagram  
.
Lines 1 and 2 indicate the part number  
Line 3 indicates the following:  
“#” denotes stepping  
IDTF04  
52BLEGK  
#YYWW$  
.
“YY” is the last two digits of the year; “WW” is the work week number when the part was assembled.  
“$” denotes the mark code.  
.
Line 4 is the lot number  
LOT  
25  
May 7, 2019  
Revision History  
Revision Date  
Description of Change  
May 7, 2019  
Initial release.  
IMPORTANT NOTICE AND DISCLAIMER  
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL  
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING  
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND  
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,  
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible  
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)  
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These  
resources are subject to change without notice. Renesas grants you permission to use these resources only for  
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly  
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.  
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,  
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject  
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources  
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.  
(Rev.1.0 Mar 2020)  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
For further information on a product, technology, the most  
up-to-date version of a document, or your nearest sales  
office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas  
Electronics Corporation. All trademarks and registered  
trademarks are the property of their respective owners.  
© 2020 Renesas Electronics Corporation. All rights reserved.  

相关型号:

F0452BLEGK8

Dual Path RF Switch with LNA and DVGA 2.3GHz to 2.7GHz
RENESAS

F0452C

Dual Path RF Switch with LNA and DVGA 2.3GHz to 2.7GHz
RENESAS

F0452CEVB

Dual Path RF Switch with LNA and DVGA 2.3GHz to 2.7GHz
RENESAS

F0452CLFGK

Dual Path RF Switch with LNA and DVGA 2.3GHz to 2.7GHz
RENESAS

F0452CLFGK8

Dual Path RF Switch with LNA and DVGA 2.3GHz to 2.7GHz
RENESAS

F0453B

Dual Path RF Switch with LNA and DVGA 3300MHz to 4000MHz
IDT

F0453BEVBK

Dual Path RF Switch with LNA and DVGA 3300MHz to 4000MHz
IDT

F0453BLEGK

Dual Path RF Switch with LNA and DVGA 3300MHz to 4000MHz
IDT

F0453BLEGK8

Dual Path RF Switch with LNA and DVGA 3300MHz to 4000MHz
IDT

F0453C

Dual Path RF Switch with LNA and DVGA 3300MHz to 4000MHz
RENESAS

F0453CEVB

Dual Path RF Switch with LNA and DVGA 3300MHz to 4000MHz
RENESAS

F0453CLFGK

Dual Path RF Switch with LNA and DVGA 3300MHz to 4000MHz
RENESAS