HA1-2420-2/883 [RENESAS]

IC SAMPLE AND HOLD AMPLIFIER, 3.2 us ACQUISITION TIME, CDIP14, FRIT SEALED, CERAMIC, DIP-14, Sample and Hold Circuit;
HA1-2420-2/883
型号: HA1-2420-2/883
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

IC SAMPLE AND HOLD AMPLIFIER, 3.2 us ACQUISITION TIME, CDIP14, FRIT SEALED, CERAMIC, DIP-14, Sample and Hold Circuit

放大器 CD
文件: 总12页 (文件大小:363K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HA-2420, HA-2425  
®
Data Sheet  
November 19, 2004  
FN2856.6  
3.2µs Sample and Hold Amplifiers  
Features  
The HA-2420 and HA-2425 is a monolithic circuit consisting  
of a high performance operational amplifier with its output in  
series with an ultra-low leakage analog switch and JFET  
input unity gain amplifier.  
• Maximum Acquisition Time  
- 10V Step to 0.1% . . . . . . . . . . . . . . . . . . . . . 4µs (Max)  
- 10V Step to 0.01% . . . . . . . . . . . . . . . . . . . . 6µs (Max)  
• Low Droop Rate (C = 1000pF). . . . . . . . . . 5µV/ms (Typ)  
H
With an external hold capacitor connected to the switch  
output, a versatile, high performance sample-and-hold or  
track-and-hold circuit is formed. When the switch is closed,  
the device behaves as an operational amplifier, and any of  
the standard op amp feedback networks may be connected  
around the device to control gain, frequency response, etc.  
When the switch is opened the output will remain at its last  
level.  
• Gain Bandwidth Product . . . . . . . . . . . . . . . 2.5MHz (Typ)  
• Low Effective Aperture Delay Time . . . . . . . . . 30ns (Typ)  
• TTL Compatible Control Input  
• ±12V to ±15V Operation  
Applications  
• 12-Bit Data Acquisition  
• Digital to Analog Deglitcher  
• Auto Zero Systems  
• Peak Detector  
Performance as a sample-and-hold compares very favorably  
with other monolithic, hybrid, modular, and discrete circuits.  
Accuracy to better than 0.01% is achievable over the  
temperature range. Fast acquisition is coupled with superior  
droop characteristics, even at high temperatures. High slew  
rate, wide bandwidth, and low acquisition time produce  
excellent dynamic characteristics. The ability to operate at  
gains greater than 1 frequently eliminates the need for  
external scaling amplifiers.  
• Gated Operational Amplifier  
Pinout  
HA-2420 (CERDIP)  
HA-2425 (PDIP)  
TOP VIEW  
The device may also be used as a versatile operational  
amplifier with a gated output for applications such as analog  
switches, peak holding circuits, etc. For more information,  
please see Application Note AN517..  
-IN  
+IN  
1
2
3
4
5
6
7
14 S/H CONTROL  
13 GND  
Ordering Information  
OFFSET ADJ.  
OFFSET ADJ.  
V-  
12 NC  
TEMP.  
PKG.  
DWG. #  
11 HOLD CAP.  
10 NC  
o
PART NUMBER RANGE ( C)  
PACKAGE  
-55 to 125 14 Ld CERDIP  
0 to 75 14 Ld PDIP  
HA1-2420-2  
HA3-2425-5  
F14.3  
E14.3  
NC  
9
8
V+  
NC  
OUTPUT  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2003, 2004. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
HA-2420, HA-2425  
Absolute Maximum Ratings  
Thermal Information  
o
o
Voltage Between V+ and V- Terminals. . . . . . . . . . . . . . . . . . . . .40V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24V  
Digital Input Voltage (Sample and Hold Pin) . . . . . . . . . . +8V, -15V  
Output Current . . . . . . . . . . . . . . . . . . . . . . . .Short Circuit Protected  
Thermal Resistance (Typical, Note 1)  
θ
( C/W)  
θ
( C/W)  
JA  
JC  
CERDIP Package. . . . . . . . . . . . . . . . .  
PDIP Package . . . . . . . . . . . . . . . . . . .  
75  
95  
20  
N/A  
o
Maximum Junction Temperature (Ceramic Packages). . . . . . . .175 C  
Maximum Junction Temperature (Plastic Package) . . . . . . . .150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300 C  
o
o
o
Operating Conditions  
o
Temperature Range  
HA-2420-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55 C to 125 C  
HA-2425-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 C to 75 C  
o
o
o
o
Supply Voltage Range (Typical). . . . . . . . . . . . . . . . . ±12V to ±15V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
Electrical Specifications Test Conditions (Unless Otherwise Specified) V  
= ±15.0V; C = 1000pF; Digital Input: V = +0.8V  
(Sample), V = +2.0V (Hold), Unity Gain Configuration (Output tied to Negative Input)  
SUPPLY  
H
IL  
IH  
HA-2420-2  
TYP  
HA-2425-5  
TEST  
CONDITIONS  
TEMP.  
( C)  
o
PARAMETER  
INPUT CHARACTERISTICS  
Input Voltage Range  
Offset Voltage  
MIN  
MAX  
MIN  
TYP  
MAX  
UNITS  
Full  
25  
±10  
-
2
-
4
±10  
-
3
-
6
V
-
-
mV  
mV  
nA  
nA  
nA  
nA  
MΩ  
V
Full  
25  
-
3
6
-
4
8
Bias Current  
-
40  
-
200  
400  
50  
100  
-
-
40  
-
200  
400  
50  
100  
-
Full  
25  
-
-
Offset Current  
-
-
10  
-
-
-
10  
-
Full  
25  
Input Resistance  
5
10  
-
5
10  
-
Common Mode Range  
Full  
±10  
-
±10  
-
TRANSFER CHARACTERISTICS  
Large Signal Voltage Gain  
Common Mode Rejection  
R
= 2k, V = 20V  
P-P  
Full  
Full  
Full  
25  
80  
-
50  
90  
-
-
-
25  
74  
-
50  
90  
-
-
-
kV/V  
dB  
L
O
V
= ±10V  
CM  
Hold Mode Feedthrough Attenuation  
(Note 2)  
f
100kHz  
-76  
-76  
dB  
IN  
Gain Bandwidth Product (Note 2)  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Current  
25  
-
2.5  
-
-
2.5  
-
MHz  
R
= 2kΩ  
Full  
25  
±10  
-
-
-
-
-
±10  
-
-
-
-
-
V
mA  
kHz  
L
±15  
-
±15  
-
Full Power Bandwidth (Note 2)  
Output Resistance  
V
= 20V  
25  
-
-
100  
0.15  
-
-
100  
0.15  
O
P-P  
DC  
25  
TRANSIENT RESPONSE  
Rise Time (Note 2)  
V
V
V
= 200mV  
= 200mV  
25  
25  
25  
-
-
75  
25  
5
100  
40  
-
-
-
75  
25  
5
100  
40  
-
ns  
%
O
O
O
P-P  
P-P  
Overshoot (Note 2)  
Slew Rate (Note 2)  
= 10V  
3.5  
3.5  
V/µs  
P-P  
FN2856.6  
2
November 19, 2004  
HA-2420, HA-2425  
Electrical Specifications Test Conditions (Unless Otherwise Specified) V  
= ±15.0V; C = 1000pF; Digital Input: V = +0.8V  
IL  
(Sample), V = +2.0V (Hold), Unity Gain Configuration (Output tied to Negative Input) (Continued)  
SUPPLY  
H
IH  
HA-2420-2  
TYP  
HA-2425-5  
TYP  
TEST  
CONDITIONS  
TEMP.  
( C)  
o
PARAMETER  
DIGITAL INPUT CHARACTERISTICS  
Digital Input Current  
MIN  
MAX  
MIN  
MAX  
UNITS  
V
V
= 0V  
Full  
Full  
Full  
Full  
-
-
-
-
-
-
-0.8  
20  
0.8  
-
-
-
-
-
-
-
-0.8  
20  
0.8  
-
mA  
µA  
V
IN  
IN  
= 5V  
Digital Input Voltage  
Low  
High  
SAMPLE AND HOLD CHARACTERISTICS  
-
-
2.0  
2.0  
V
Acquisition Time (Note 2)  
Acquisition Time (Note 2)  
Hold Step Error  
To 0.1% 10V Step  
To 0.01% 10V Step  
= 0V  
25  
25  
-
-
-
-
-
-
-
-
-
-
-
2.3  
3.2  
10  
860  
30  
30  
5
4
6
20  
-
-
-
-
-
-
-
-
-
-
-
-
2.3  
3.2  
10  
860  
30  
30  
5
4
µs  
µs  
6
V
25  
20  
mV  
ns  
IN  
Hold Mode Settling Time  
Aperture Time (Note 3)  
Effective Aperture Delay Time  
Aperture Uncertainty  
Drift Current (Note 2)  
HA1-2420  
To ±1mV  
25  
-
25  
-
-
ns  
25  
-
-
ns  
25  
-
-
-
ns  
V
= 0V  
25  
5
-
5
pA  
nA  
nA  
nA  
IN  
Full  
Full  
Full  
1.8  
-
10  
-
-
-
HA1-2425  
0.1  
7.5  
1.0  
10.0  
HA3-2425, HA4P2425,  
HA9P2425  
-
-
POWER SUPPLY CHARACTERISTICS  
Supply Current (+)  
25  
25  
-
-
3.5  
2.5  
90  
5.5  
3.5  
-
-
-
3.5  
2.5  
90  
5.5  
3.5  
-
mA  
mA  
dB  
Supply Current (-)  
Power Supply Rejection  
NOTES:  
Full  
80  
74  
2. A = ±1, R = 2k, C = 50pF.  
V
L
L
3. Derived from computer simulation only; not tested.  
Functional Diagram  
OFFSET  
ADJUST  
V+  
9
3
4
1
7
-
-INPUT  
OUT  
-
+
+
2
+INPUT  
HA-2420/2425  
14  
S/H  
CONTROL  
11  
13  
GND  
5
V-  
HOLD  
CAPACITOR  
FN2856.6  
3
November 19, 2004  
HA-2420, HA-2425  
Test Circuits and Waveforms  
-IN  
OUTPUT  
HOLD  
INPUT  
S/H  
CONTROL  
S/H  
CONTROL  
HOLD  
CAP  
SAMPLE  
+IN  
GND  
OUTPUT  
C
H
V
STEP  
S/H CONTROL  
INPUT  
NOTE: Set rise/fall times of S/H Control to approximately 20ns.  
FIGURE 1. HOLD STEP ERROR AND DRIFT CURRENT  
FIGURE 2. HOLD STEP ERROR TEST  
+5V  
EN  
HI-508A  
MUX  
SINE WAVE  
INPUT  
IN2  
IN1  
IN3  
IN4  
IN5  
IN6  
IN7  
IN8  
A2  
HA-2420/2425  
-IN  
V
O
OUT  
GND  
+IN  
OUT  
S/H  
HOLD  
HOLD  
S/H  
CONTROL CAP  
CONTROL  
SAMPLE  
C
V
H
INP-P  
OUTPUT  
A0  
A1  
V  
S/H CONTROL INPUT  
t  
NOTE: Compute hold mode feedthrough attenuation from the formula:  
V
HOLD  
OUT  
----------------------------------  
Feedthrough Attenuation = 20log  
V
HOLD  
IN  
NOTE: Measure the slope of the output during hold, V/t,  
and compute drift current from: I = C V/t.  
Where V  
sinewave during the hold mode.  
HOLD = Peak-to-Peak value of output  
OUT  
D
H
FIGURE 4. HOLD MODE FEEDTHROUGH ATTENUATION  
FIGURE 3. DRIFT CURRENT TEST  
FN2856.6  
November 19, 2004  
4
HA-2420, HA-2425  
Schematic Diagram  
OFFSET ADJ.  
V+  
R
R
Q
Q
1
2
64  
Q
89  
J
63  
Q
Q
58  
Q
29  
Q
Q
30  
65  
Q
Q
17  
23  
Q
5
Q
Q
106  
90  
Q
66  
Q
2
Q
72  
Q
4
82  
59  
Q
Q
Q
R
74  
45  
46  
J
R
61  
Q
P
73  
Q
Q
Q
7
9
Q
91  
Q
105  
Q
87  
Q
51  
Q
Q
52  
Q
15  
Q
Q
6
C
7
Q
H
47  
Q
Q
48  
11  
Q
53  
Q
54  
49  
Q
50  
27  
D
1
Q
75  
Q
19  
Q
20  
21  
Q
8
Q
31  
C
3
Q
R
32  
15pF  
9
Q
Q
100  
R
8
OUT  
Q
101  
Q
Q
3
24  
Q Q  
33 34  
Q
R
18  
10  
56  
Q
25  
Q
10  
Q
Q
38  
13  
Q
77  
S/H  
Q
Q
35  
76  
CONTROL  
Q
Q
55  
22  
Q
C
26  
4
Q
Q
83  
Q
69  
67  
GND  
J
60  
Q
68  
R
121  
Q
12  
Q
14  
GND  
Q
78  
J
86  
R
11  
Q
83  
Q
Q
Q
39  
40  
Q
Q
79  
70  
J
Q
57  
41  
Q
103  
Q
42  
43  
Q
102  
Q
44  
Q
Q
71  
Q
80  
62  
Q
16  
R
14  
R
13  
Q
81  
-IN  
+IN  
V-  
FN2856.6  
November 19, 2004  
5
HA-2420, HA-2425  
Application Information  
R
0.002R  
OUT  
F
F
INPUT  
HOLD STEP VOLTAGE (mV)  
+10  
R
OUTPUT  
I
-IN  
S/H  
CONTROL  
5
+IN  
-10  
-5  
+5  
+10  
R  
F
0
----------  
NOTE: GAIN ∼  
R
DC INPUT VOLTAGE (V)  
S/H CONTROL INPUT  
I
-5  
C
= 0.1µF  
H
FIGURE 6. INVERTING CONFIGURATION  
-10  
C
C
= 10,000pF  
= 1000pF  
H
H
-15  
-20  
-25  
-30  
-35  
INPUT  
OUTPUT  
+IN  
-IN  
OUT  
S/H  
CONTROL  
C
= 100pF  
H
R
F
S/H CONTROL  
INPUT  
R
I
R
F
FIGURE 5. HOLD STEP vs INPUT VOLTAGE  
NOTE: GAIN ~ 1 + -------  
0.002R  
I
R
I
Offset Adjustment  
The offset voltage of the HA-2420 and HA-2425 may be  
adjusted using a 100ktrim pot, as shown in Figure 8. The  
recommended adjustment procedure is:  
FIGURE 7. NON-INVERTING CONFIGURATION  
Figure 8 shows a typical unity gain circuit, with Offset  
Zeroing. All of the other normal op amp feedback  
configurations may be used with the HA-2420, HA-2425. The  
input amplifier may be used as a gated amplifier by utilizing  
Pin 11 as the output. This amplifier has excellent drive  
capabilities along with exceptionally low switch leakage.  
Apply 0V to the sample-and-hold input, and a square wave  
to the S/H control.  
Adjust the trim pot for 0V output in the hold mode.  
Gain Adjustment  
CONTROL  
The linear variation in pedestal voltage with sample-and-hold  
V+  
input voltage causes a -0.06% gain error (C = 1000pF). In  
H
C
H
some applications (D/A deglitcher, A/D converter) the gain  
error can be adjusted elsewhere in the system, while in other  
applications it must be adjusted at the sample-and-hold. The  
two circuits shown below demonstrate how to adjust gain  
error at the sample-and-hold.  
-
+
-
+
The recommended procedure for adjusting gain error is:  
1. Perform offset adjustment.  
2. Apply the nominal input voltage that should produce a  
+10V output.  
OUT  
IN  
100kΩ  
V-  
3. Adjust the trim pot for +10V output in the hold mode.  
OFFSET TRIM (±25mV RANGE)  
4. Apply the nominal input voltage that should produce a  
-10V output.  
FIGURE 8. BASIC SAMPLE-AND-HOLD (TOP VIEW)  
The method used to reduce leakage paths on the PC board  
and the device package is shown in Figure 9. This guard ring  
is recommended to minimize the drift during hold mode.  
5. Measure the output hold voltage (V  
). Adjust  
-10NOMINAL  
the trim pot for an output hold voltage of  
(V  
) + (-10V)  
10NOMINAL  
-----------------------------------------------------------------  
2
The hold capacitor should have extremely high insulation  
resistance and low dielectric absorption. Polystyrene (below  
o
85 C), Teflon, or Parlene types are recommended.  
For more applications, consult Intersil Application Note  
AN517, or the factory applications group.  
FN2856.6  
6
November 19, 2004  
HA-2420, HA-2425  
Effective Aperture Delay Time (EADT)  
CONTROL  
The difference between the digital delay time from the Hold  
command to the opening of the S/H switch, and the  
propagation time from the analog input to the switch.  
GND  
-IN  
HOLD  
CAPACITOR  
+IN  
EADT may be positive, negative or zero. If zero, the S/H  
amplifier will output a voltage equal to V at the instant the  
IN  
Hold command was received. For negative EADT, the output in  
Hold (exclusive of pedestal and droop errors) will correspond to  
a value of V that occurred before the Hold command.  
IN  
V-  
OUT  
Aperture Uncertainty  
V+  
The range of variation in Effective Aperture Delay Time.  
Aperture Uncertainty (also called Aperture Delay Uncertainty,  
Aperture Time Jitter, etc.) sets a limit on the accuracy with  
which a waveform can be reconstructed from sample data.  
FIGURE 9. GUARD RING LAYOUT (BOTTOM VIEW)  
Drift Current  
Glossary of Terms  
The net leakage current from the hold capacitor during the  
hold mode. Drift current can be calculated from the droop  
rate using the formula:  
Acquisition Time  
The time required following a “sample” command, for the output  
to reach its final value within ±0.1% or ±0.01%. This is the  
minimum sample time required to obtain a given accuracy, and  
includes switch delay time, slewing time and settling time.  
V  
-------  
(V s)  
I
(pA) = C (pF) ×  
D
H
t  
Aperture Time  
The time required for the sample-and-hold switch to open,  
independent of delays through the switch driver and input  
amplifier circuitry. The switch opening time is that interval  
between the conditions of 10% open and 90% open.  
FN2856.6  
7
November 19, 2004  
HA-2420, HA-2425  
Typical Performance Curves  
1000  
1000  
MIN. SAMPLE TIME  
DRIFT DURING HOLD  
AT 25 C (mV/s)  
EQUIV. INPUT NOISE  
o
FOR 0.1% ACCURACY  
“SAMPLE” MODE - 100kΩ  
SOURCE RESISTANCE  
10V SWINGS (µs)  
100  
10  
OUTPUT NOISE  
“HOLD” MODE  
UNITY GAIN PHASE  
MARGIN (DEGREES)  
HOLD STEP  
100  
10  
1
OFFSET  
ERROR (mV)  
1.0  
UNITY GAIN  
BANDWIDTH  
(MHz)  
EQUIV. INPUT NOISE  
“SAMPLE” MODE - 0Ω  
SOURCE RESISTANCE  
0.1  
SLEW RATE  
(V/µs)  
0.01  
10pF  
100pF  
1000pF  
0.01µF  
0.1µF  
1.0µF  
10  
100  
1K  
10K  
100K  
1M  
C
VALUE  
H
BANDWIDTH (LOWER 3dB FREQUENCY = 10Hz)  
FIGURE 10. TYPICAL SAMPLE AND HOLD PERFORMANCE  
AS A FUNCTION OF HOLDING CAPACITOR  
FIGURE 11. BROADBAND NOISE CHARACTERISTICS  
1000  
100  
10  
100  
90  
C
C
C
= 100pF  
= 1000pF  
= 0.01µF  
H
H
H
80  
70  
60  
50  
40  
30  
20  
10  
0
C
C
= 1.0µF  
= 0.1µF  
H
H
-10  
-20  
-30  
1
10  
100  
1K  
10K  
100K  
1M  
10M  
100M  
-50  
-25  
0
25  
50  
75  
100  
125  
o
TEMPERATURE ( C)  
FREQUENCY (Hz)  
FIGURE 12. DRIFT CURRENT vs TEMPERATURE  
FIGURE 13. OPEN LOOP FREQUENCY RESPONSE  
0
20  
C
= 0.01µF  
H
-30  
-40  
-50  
-60  
-70  
-80  
-90  
C
= 1.0µF  
H
C
= 1000pF  
H
C
= 1000pF  
H
C
100pF  
H
40  
60  
80  
100  
120  
140  
160  
180  
200  
220  
240  
C
= 0.1µF  
H
100  
1K  
10K  
100K  
1M  
10M  
10  
100  
1K  
10K  
100K  
1M  
10M  
100M  
±10V SINUSOIDAL INPUT FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 14. HOLD MODE FEED THROUGH ATTENUATION  
FIGURE 15. OPEN LOOP PHASE RESPONSE  
4V  
S/H  
SAMPLE  
HOLD  
CONTROL  
0V  
FN2856.6  
8
November 19, 2004  
HA-2420, HA-2425  
Typical Performance Curves (Continued)  
S/H  
S/H  
(5V/DIV.)  
(5V/DIV.)  
+10V  
0V  
V
OUT  
(2V/DIV.)  
V
OUT  
(2V/DIV.)  
0V  
-10V  
TIME (1µs/DIV)  
TIME (1µs/DIV)  
FIGURE 16. ACQUISITION TIME (C = 1000pF)  
FIGURE 17. ACQUISITION TIME (C = 1000pF)  
H
H
S/H  
(5V/DIV.)  
S/H  
(5V/DIV.)  
+1V  
OUT  
0V  
V
(0.5V/DIV.)  
V
OUT  
(0.5V/DIV.)  
-1V  
0V  
TIME (1µs/DIV)  
TIME (1µs/DIV)  
FIGURE 18. ACQUISITION TIME (C = 1000pF)  
H
FIGURE 19. ACQUISITION TIME (C = 1000pF)  
H
S/H  
(5V/DIV.)  
S/H  
(5V/DIV.)  
0.1V  
0V  
0V  
V
OUT  
(50mV/DIV.)  
-0.1V  
V
OUT  
(50mV/DIV.)  
TIME (500ns/DIV)  
TIME (500ns/DIV)  
FIGURE 20. ACQUISITION TIME (C = 1000pF)  
H
FIGURE 21. ACQUISITION TIME (C = 1000pF)  
H
FN2856.6  
November 19, 2004  
9
HA-2420, HA-2425  
Die Characteristics  
DIE DIMENSIONS:  
102 mils x 61 mils x 19 mils  
2590µm x 1550µm x 483µm  
PASSIVATION:  
Type: Nitride (Si N ) over Silox (SiO , 5% Phos.)  
Silox Thickness: 12kÅ ±2kÅ  
3
4
2
Nitride Thickness: 3.5kÅ ±1.5kÅ  
METALLIZATION:  
Type: Al, 1% Cu  
TRANSISTOR COUNT:  
Thickness: 16kÅ ±2kÅ  
78  
SUBSTRATE POTENTIAL:  
PROCESS:  
V-  
Bipolar Dielectric Isolation  
BACKSIDE FINISH:  
Gold, Nickel, Silicon, etc.  
Metallization Mask Layout  
HA-2420, HA-2425  
GND  
VOS ADJ  
VOS ADJ  
HOLD CAP  
V-  
V+  
OUTPUT  
FN2856.6  
10  
November 19, 2004  
HA-2420, HA-2425  
Dual-In-Line Plastic Packages (PDIP)  
E14.3 (JEDEC MS-001-AA ISSUE D)  
14 LEAD DUAL-IN-LINE PLASTIC PACKAGE  
N
E1  
INDEX  
AREA  
INCHES MILLIMETERS  
1 2  
3
N/2  
SYMBOL  
MIN  
MAX  
0.210  
-
MIN  
-
MAX  
5.33  
-
NOTES  
-B-  
-C-  
A
A1  
A2  
B
-
4
-A-  
0.015  
0.115  
0.014  
0.045  
0.008  
0.735  
0.005  
0.300  
0.240  
0.39  
2.93  
0.356  
1.15  
0.204  
18.66  
0.13  
7.62  
6.10  
4
D
E
BASE  
PLANE  
0.195  
0.022  
0.070  
0.014  
0.775  
-
4.95  
0.558  
1.77  
0.355  
19.68  
-
-
A2  
A
-
SEATING  
PLANE  
L
C
L
B1  
C
8
D1  
B1  
-
eA  
A1  
A
D1  
e
D
5
eC  
C
B
eB  
D1  
E
5
0.010 (0.25) M  
C
B S  
0.325  
0.280  
8.25  
7.11  
6
NOTES:  
E1  
e
5
1. Controlling Dimensions: INCH. In case of conflict between English  
and Metric dimensions, the inch dimensions control.  
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
-
e
A
6
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication No. 95.  
e
-
0.430  
0.150  
-
10.92  
3.81  
7
B
L
0.115  
2.93  
4
9
4. Dimensions A, A1 and L are measured with the package seated in  
N
14  
14  
JEDEC seating plane gauge GS-3.  
Rev. 0 12/93  
5. D, D1, and E1 dimensions do not include mold flash or protrusions.  
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).  
e
6. E and  
dicular to datum  
7. e and e are measured at the lead tips with the leads uncon-  
are measured with the leads constrained to be perpen-  
A
-C-  
.
B
C
strained. e must be zero or greater.  
C
8. B1maximumdimensionsdonotincludedambarprotrusions. Dambar  
protrusions shall not exceed 0.010 inch (0.25mm).  
9. N is the maximum number of terminal positions.  
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,  
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 -  
1.14mm).  
FN2856.6  
11  
November 19, 2004  
HA-2420, HA-2425  
Ceramic Dual-In-Line Frit Seal Packages (CERDIP)  
c1 LEAD FINISH  
F14.3 MIL-STD-1835 GDIP1-T14 (D-1, CONFIGURATION A)  
14 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE  
-D-  
E
-A-  
INCHES MILLIMETERS  
MIN  
BASE  
(c)  
METAL  
SYMBOL  
MAX  
0.200  
0.026  
0.023  
0.065  
0.045  
0.018  
0.015  
0.785  
0.310  
MIN  
-
MAX  
5.08  
0.66  
0.58  
1.65  
1.14  
0.46  
0.38  
19.94  
7.87  
NOTES  
b1  
A
b
-
-
M
M
(b)  
0.014  
0.014  
0.045  
0.023  
0.008  
0.008  
-
0.36  
0.36  
1.14  
0.58  
0.20  
0.20  
-
2
-B-  
b1  
b2  
b3  
c
3
SECTION A-A  
bbb  
C A - B  
D
D
S
S
S
-
4
BASE  
PLANE  
Q
2
A
-C-  
SEATING  
PLANE  
c1  
D
3
L
α
5
S1  
b2  
eA  
A A  
e
E
0.220  
5.59  
5
b
C A - B  
eA/2  
aaa M C A - B S D S  
c
e
0.100 BSC  
2.54 BSC  
-
eA  
eA/2  
L
0.300 BSC  
0.150 BSC  
7.62 BSC  
3.81 BSC  
-
ccc  
D
S
M
S
-
NOTES:  
0.125  
0.200  
0.060  
-
3.18  
5.08  
1.52  
-
-
1. Index area: A notch or a pin one identification mark shall be locat-  
ed adjacent to pin one and shall be located within the shaded  
area shown. The manufacturer’s identification shall not be used  
as a pin one identification mark.  
Q
0.015  
0.005  
0.38  
0.13  
6
S1  
7
o
o
o
o
90  
105  
90  
105  
-
α
aaa  
bbb  
ccc  
M
2. The maximum limits of lead dimensions b and c or M shall be  
measured at the centroid of the finished lead surfaces, when  
solder dip or tin plate lead finish is applied.  
-
-
-
-
0.015  
0.030  
0.010  
0.0015  
-
-
-
-
0.38  
0.76  
0.25  
0.038  
-
-
3. Dimensions b1 and c1 apply to lead base metal only. Dimension  
M applies to lead plating and finish thickness.  
-
2, 3  
8
4. Corner leads (1, N, N/2, and N/2+1) may be configured with a  
partial lead paddle. For this configuration dimension b3 replaces  
dimension b2.  
N
14  
14  
Rev. 0 4/94  
5. This dimension allows for off-center lid, meniscus, and glass  
overrun.  
6. Dimension Q shall be measured from the seating plane to the  
base plane.  
7. Measure dimension S1 at all four corners.  
8. N is the maximum number of terminal positions.  
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.  
10. Controlling dimension: INCH.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN2856.6  
12  
November 19, 2004  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY