HD64F36902GP [RENESAS]

16-BIT, FLASH, 12MHz, MICROCONTROLLER, PDIP32, 0.400 INCH, 1.78 MM PITCH, SDIP-32;
HD64F36902GP
型号: HD64F36902GP
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

16-BIT, FLASH, 12MHz, MICROCONTROLLER, PDIP32, 0.400 INCH, 1.78 MM PITCH, SDIP-32

光电二极管
文件: 总442页 (文件大小:2618K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
To our customers,  
Old Company Name in Catalogs and Other Documents  
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology  
Corporation, and Renesas Electronics Corporation took over all the business of both  
companies. Therefore, although the old company name remains in this document, it is a valid  
Renesas Electronics document. We appreciate your understanding.  
Renesas Electronics website: http://www.renesas.com  
April 1st, 2010  
Renesas Electronics Corporation  
Issued by: Renesas Electronics Corporation (http://www.renesas.com)  
Send any inquiries to http://www.renesas.com/inquiry.  
Notice  
1.  
2.  
All information included in this document is current as of the date this document is issued. Such information, however, is  
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please  
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to  
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.  
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights  
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights  
of Renesas Electronics or others.  
3.  
4.  
You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.  
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of  
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,  
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by  
you or third parties arising from the use of these circuits, software, or information.  
5.  
When exporting the products or technology described in this document, you should comply with the applicable export control  
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas  
Electronics products or the technology described in this document for any purpose relating to military applications or use by  
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and  
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited  
under any applicable domestic or foreign laws or regulations.  
6.  
7.  
Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics  
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages  
incurred by you resulting from errors in or omissions from the information included herein.  
Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and  
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as  
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular  
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior  
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for  
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way  
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an  
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written  
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise  
expressly specified in a Renesas Electronics data sheets or data books, etc.  
“Standard”:  
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual  
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.  
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-  
crime systems; safety equipment; and medical equipment not specifically designed for life support.  
“Specific”:  
Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or  
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare  
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.  
8.  
9.  
You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,  
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation  
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or  
damages arising out of the use of Renesas Electronics products beyond such specified ranges.  
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have  
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,  
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to  
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a  
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire  
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because  
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system  
manufactured by you.  
10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental  
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable  
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS  
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with  
applicable laws and regulations.  
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas  
Electronics.  
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this  
document or Renesas Electronics products, or if you have any other inquiries.  
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-  
owned subsidiaries.  
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.  
The revision list can be viewed directly by  
clicking the title page.  
The revision list summarizes the locations of  
revisions and additions. Details should always  
be checked by referring to the relevant text.  
H8/36912 Group,  
H8/36902 Group  
Hardware Manual  
16  
Renesas 16-Bit Single-Chip Microcomputer  
H8 Family/H8/300H Tiny Series  
H8/36912F  
H8/36902F  
H8/36912  
H8/36911  
H8/36902  
H8/36901  
H8/36900  
HD64F36912G  
HD64F36902G  
HD64336912G  
HD64336911G  
HD64336902G  
HD64336901G  
HD64336900G  
Rev.3.00 2006.09  
Rev. 3.00 Sep. 14, 2006 Page ii of xxviii  
Keep safety first in your circuit designs!  
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and  
more reliable, but there is always the possibility that trouble may occur with them. Trouble with  
semiconductors may lead to personal injury, fire or property damage.  
Remember to give due consideration to safety when making your circuit designs, with appropriate  
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or  
(iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
1. These materials are intended as a reference to assist our customers in the selection of the Renesas  
Technology Corp. product best suited to the customer's application; they do not convey any license  
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or  
a third party.  
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-  
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or  
circuit application examples contained in these materials.  
3. All information contained in these materials, including product data, diagrams, charts, programs and  
algorithms represents information on products at the time of publication of these materials, and are  
subject to change by Renesas Technology Corp. without notice due to product improvements or  
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or  
an authorized Renesas Technology Corp. product distributor for the latest product information  
before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors.  
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising  
from these inaccuracies or errors.  
Please also pay attention to information published by Renesas Technology Corp. by various means,  
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).  
4. When using any or all of the information contained in these materials, including product data,  
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total  
system before making a final decision on the applicability of the information and products. Renesas  
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the  
information contained herein.  
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or  
system that is used under circumstances in which human life is potentially at stake. Please contact  
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when  
considering the use of a product contained herein for any specific purposes, such as apparatus or  
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in  
whole or in part these materials.  
7. If these products or technologies are subject to the Japanese export control restrictions, they must  
be exported under a license from the Japanese government and cannot be imported into a country  
other than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the  
country of destination is prohibited.  
8. Please contact Renesas Technology Corp. for further details on these materials or the products  
contained therein.  
Rev. 3.00 Sep. 14, 2006 Page iii of xxviii  
General Precautions on Handling of Product  
1. Treatment of NC Pins  
Note: Do not connect anything to the NC pins.  
The NC (not connected) pins are either not connected to any of the internal circuitry or are  
used as test pins or to reduce noise. If something is connected to the NC pins, the  
operation of the LSI is not guaranteed.  
2. Treatment of Unused Input Pins  
Note: Fix all unused input pins to high or low level.  
Generally, the input pins of CMOS products are high-impedance input pins. If unused pins  
are in their open states, intermediate levels are induced by noise in the vicinity, a pass-  
through current flows internally, and a malfunction may occur.  
3. Processing before Initialization  
Note: When power is first supplied, the product's state is undefined.  
The states of internal circuits are undefined until full power is supplied throughout the  
chip and a low level is input on the reset pin. During the period where the states are  
undefined, the register settings and the output state of each pin are also undefined. Design  
your system so that it does not malfunction because of processing while it is in this  
undefined state. For those products which have a reset function, reset the LSI immediately  
after the power supply has been turned on.  
4. Prohibition of Access to Undefined or Reserved Addresses  
Note: Access to undefined or reserved addresses is prohibited.  
The undefined or reserved addresses may be used to expand functions, or test registers  
may have been be allocated to these addresses. Do not access these registers; the system's  
operation is not guaranteed if they are accessed.  
Rev. 3.00 Sep. 14, 2006 Page iv of xxviii  
Configuration of This Manual  
This manual comprises the following items:  
1. General Precautions on Handling of Product  
2. Configuration of This Manual  
3. Preface  
4. Contents  
5. Overview  
6. Description of Functional Modules  
CPU and System-Control Modules  
On-Chip Peripheral Modules  
The configuration of the functional description of each module differs according to the  
module. However, the generic style includes the following items:  
i) Feature  
ii) Input/Output Pin  
iii) Register Description  
iv) Operation  
v) Usage Note  
When designing an application system that includes this LSI, take notes into account. Each section  
includes notes in relation to the descriptions given, and usage notes are given, as required, as the  
final part of each section.  
7. List of Registers  
8. Electrical Characteristics  
9. Appendix  
10. Main Revisions and Additions in this Edition (only for revised versions)  
The list of revisions is a summary of points that have been revised or added to earlier versions.  
This does not include all of the revised contents. For details, see the actual locations in this  
manual.  
11. Index  
Rev. 3.00 Sep. 14, 2006 Page v of xxviii  
Preface  
The H8/36912 Group and H8/36902 Group are single-chip microcomputers made up of the high-  
speed H8/300H CPU employing Renesas Technology original architecture as their cores, and the  
peripheral functions required to configure a system. The H8/300H CPU has an instruction set that  
is compatible with the H8/300 CPU.  
Target Users: This manual was written for users who will be using the H8/36912 Group and  
H8/36902 Group in the design of application systems. Target users are expected to  
understand the fundamentals of electrical circuits, logical circuits, and  
microcomputers.  
Objective:  
This manual was written to explain the hardware functions and electrical  
characteristics of the H8/36912 Group and H8/36902 Group to the target users.  
Refer to the H8/300H Series Software Manual for a detailed description of the  
instruction set.  
Notes on reading this manual:  
In order to understand the overall functions of the chip  
Read the manual according to the contents. This manual can be roughly categorized into parts  
on the CPU, system control functions, peripheral functions and electrical characteristics.  
In order to understand the details of the CPU's functions  
Read the H8/300H Series Software Manual.  
In order to understand the details of a register when its name is known  
Read the index that is the final part of the manual to find the page number of the entry on the  
register. The addresses, bits, and initial values of the registers are summarized in section 19,  
List of Registers.  
Example:  
Register name:  
The following notation is used for cases when the same or a  
similar function, e.g. serial communication interface, is  
implemented on more than one channel:  
XXX_N (XXX is the register name and N is the channel  
number)  
Bit order:  
The MSB is on the left and the LSB is on the right.  
Rev. 3.00 Sep. 14, 2006 Page vi of xxviii  
Notes:  
When using an on-chip emulator (E7, E8) for H8/36912, H8/36902 program development and  
debugging, the following restrictions must be noted.  
1. The NMI pin is reserved for the E7 or E8, and cannot be used.  
2. Area H'2000 to H'2FFF is used by the E7 or E8, and is not available to the user.  
3. Area H'F980 to H'FD7F must on no account be accessed.  
4. When the E7 or E8 is used, address breaks can be set as either available to the user or for use  
by the E7 or E8. If address breaks are set as being used by the E7 or E8, the address break  
control registers must not be accessed.  
5. When the E7 or E8 is used, NMI is an input/output pin (open-drain in output mode).  
Related Manuals: The latest versions of all related manuals are available from our web site.  
Please ensure you have the latest versions of all documents you require.  
http://www.renesas.com/  
H8/36912 Group and H8/36902 Group manuals:  
Document Title  
Document No.  
This manual  
H8/36912 Group, H8/36902 Group Hardware Manual  
H8/300H Series Software Manual  
REJ09B0213  
User's manuals for development tools:  
Document Title  
Document No.  
H8S, H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor  
User's Manual  
REJ10B0058  
H8S, H8/300 Series Simulator/Debugger User's Manual  
REJ10B0211  
REJ10B0024  
H8S, H8/300 Series High-Performance Embedded Workshop 3 Tutorial  
H8S, H8/300 Series High-Performance Embedded Workshop 3 User's Manual REJ10B0026  
Application notes:  
Document Title  
Document No.  
REJ05B0464  
REJ05B0520  
H8S, H8/300 Series C/C++ Compiler Package Application Note  
Single Power Supply F-ZTATTM On-Board Programming  
Rev. 3.00 Sep. 14, 2006 Page vii of xxviii  
Rev. 3.00 Sep. 14, 2006 Page viii of xxviii  
Contents  
Section 1 Overview................................................................................................1  
1.1  
1.2  
1.3  
1.4  
Features................................................................................................................................. 1  
Internal Block Diagram......................................................................................................... 3  
Pin Arrangement................................................................................................................... 5  
Pin Functions ........................................................................................................................ 9  
Section 2 CPU......................................................................................................11  
2.1  
Address Space and Memory Map....................................................................................... 12  
2.2  
Register Configuration........................................................................................................ 14  
2.2.1  
2.2.2  
2.2.3  
General Registers................................................................................................ 15  
Program Counter (PC) ........................................................................................ 16  
Condition-Code Register (CCR)......................................................................... 16  
2.3  
2.4  
2.5  
2.6  
Data Formats....................................................................................................................... 18  
2.3.1  
2.3.2  
General Register Data Formats........................................................................... 18  
Memory Data Formats........................................................................................ 20  
Instruction Set..................................................................................................................... 21  
2.4.1  
2.4.2  
Table of Instructions Classified by Function ...................................................... 21  
Basic Instruction Formats ................................................................................... 30  
Addressing Modes and Effective Address Calculation....................................................... 32  
2.5.1  
2.5.2  
Addressing Modes .............................................................................................. 32  
Effective Address Calculation ............................................................................ 35  
Basic Bus Cycle.................................................................................................................. 37  
2.6.1  
2.6.2  
Access to On-Chip Memory (RAM, ROM)........................................................ 37  
On-Chip Peripheral Modules .............................................................................. 38  
2.7  
2.8  
CPU States.......................................................................................................................... 39  
Usage Notes........................................................................................................................ 40  
2.8.1  
2.8.2  
2.8.3  
Notes on Data Access to Empty Areas ............................................................... 40  
EEPMOV Instruction.......................................................................................... 40  
Bit Manipulation Instruction............................................................................... 40  
Section 3 Exception Handling .............................................................................47  
3.1  
Exception Sources and Vector Address.............................................................................. 47  
3.2  
Register Descriptions.......................................................................................................... 49  
3.2.1  
3.2.2  
3.2.3  
Interrupt Edge Select Register 1 (IEGR1) .......................................................... 49  
Interrupt Edge Select Register 2 (IEGR2) .......................................................... 50  
Interrupt Enable Register 1 (IENR1) .................................................................. 50  
Rev. 3.00 Sep. 14, 2006 Page ix of xxviii  
3.2.4  
3.2.5  
3.2.6  
3.2.7  
Interrupt Enable Register 2 (IENR2) .................................................................. 51  
Interrupt Flag Register 1 (IRR1)......................................................................... 52  
Interrupt Flag Register 2 (IRR2)......................................................................... 53  
Wakeup Interrupt Flag Register (IWPR) ............................................................ 53  
3.3  
3.4  
Reset Exception Handling .................................................................................................. 54  
Interrupt Exception Handling ............................................................................................. 55  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
External Interrupts .............................................................................................. 55  
Internal Interrupts ............................................................................................... 56  
Interrupt Handling Sequence .............................................................................. 57  
Interrupt Response Time..................................................................................... 59  
3.5  
Usage Notes........................................................................................................................ 61  
3.5.1  
3.5.2  
3.5.3  
Interrupts after Reset........................................................................................... 61  
Notes on Stack Area Use .................................................................................... 61  
Notes on Rewriting Port Mode Registers ........................................................... 61  
Section 4 Address Break .....................................................................................63  
4.1  
Register Descriptions.......................................................................................................... 64  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
Address Break Control Register (ABRKCR) ..................................................... 64  
Address Break Status Register (ABRKSR) ........................................................ 66  
Break Address Registers (BARH, BARL).......................................................... 66  
Break Data Registers (BDRH, BDRL) ............................................................... 66  
4.2  
Operation ............................................................................................................................ 67  
Section 5 Clock Pulse Generators .......................................................................69  
5.1  
Features............................................................................................................................... 70  
5.2  
Register Descriptions.......................................................................................................... 71  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
RC Control Register (RCCR) ............................................................................. 71  
RC Trimming Data Protect Register (RCTRMDPR).......................................... 72  
RC Trimming Data Register (RCTRMDR)........................................................ 73  
Clock Control/Status Register (CKCSR)............................................................ 74  
5.3  
System Clock Select Operation .......................................................................................... 75  
5.3.1  
5.3.2  
Clock Control Operation..................................................................................... 76  
Clock Change Timing......................................................................................... 78  
5.4  
5.5  
Trimming of On-chip Oscillator Frequency ....................................................................... 80  
External Oscillators ............................................................................................................ 82  
5.5.1  
5.5.2  
5.5.3  
Connecting Crystal Resonator ............................................................................ 82  
Connecting Ceramic Resonator .......................................................................... 83  
External Clock Input Method.............................................................................. 83  
5.6  
Prescaler.............................................................................................................................. 83  
5.6.1 Prescaler S .......................................................................................................... 83  
Rev. 3.00 Sep. 14, 2006 Page x of xxviii  
5.7  
Usage Notes........................................................................................................................ 84  
5.7.1  
5.7.2  
Note on Resonators............................................................................................. 84  
Notes on Board Design....................................................................................... 84  
Section 6 Power-Down Modes ............................................................................85  
6.1  
6.2  
Register Descriptions.......................................................................................................... 85  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
System Control Register 1 (SYSCR1)................................................................ 86  
System Control Register 2 (SYSCR2)................................................................ 88  
Module Standby Control Register 1 (MSTCR1) ................................................ 89  
Module Standby Control Register 2 (MSTCR2) ................................................ 90  
Mode Transitions and States of LSI.................................................................................... 91  
6.2.1  
6.2.2  
6.2.3  
Sleep Mode ......................................................................................................... 93  
Standby Mode..................................................................................................... 93  
Subsleep Mode.................................................................................................... 94  
6.3  
6.4  
6.5  
Operating Frequency in Active Mode................................................................................. 94  
Direct Transition................................................................................................................. 94  
Module Standby Function................................................................................................... 95  
Section 7 ROM ....................................................................................................97  
7.1  
Block Configuration ........................................................................................................... 97  
7.2  
Register Descriptions.......................................................................................................... 99  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
Flash Memory Control Register 1 (FLMCR1).................................................... 99  
Flash Memory Control Register 2 (FLMCR2).................................................. 100  
Erase Block Register 1 (EBR1) ........................................................................ 101  
Flash Memory Enable Register (FENR)........................................................... 101  
7.3  
7.4  
On-Board Programming Modes........................................................................................ 102  
7.3.1  
7.3.2  
Boot Mode ........................................................................................................ 102  
Programming/Erasing in User Program Mode.................................................. 106  
Flash Memory Programming/Erasing............................................................................... 107  
7.4.1  
7.4.2  
7.4.3  
Program/Program-Verify.................................................................................. 107  
Erase/Erase-Verify............................................................................................ 109  
Interrupt Handling when Programming/Erasing Flash Memory....................... 110  
7.5  
Program/Erase Protection ................................................................................................. 112  
7.5.1  
7.5.2  
7.5.3  
Hardware Protection ......................................................................................... 112  
Software Protection........................................................................................... 112  
Error Protection................................................................................................. 112  
Section 8 RAM ..................................................................................................115  
Rev. 3.00 Sep. 14, 2006 Page xi of xxviii  
Section 9 I/O Ports.............................................................................................117  
9.1  
Port 1................................................................................................................................. 117  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
9.1.5  
Port Mode Register 1 (PMR1).......................................................................... 118  
Port Control Register 1 (PCR1)........................................................................ 119  
Port Data Register 1 (PDR1) ............................................................................ 119  
Port Pull-Up Control Register 1 (PUCR1)........................................................ 120  
Pin Functions .................................................................................................... 120  
9.2  
9.3  
Port 2................................................................................................................................. 121  
9.2.1  
9.2.2  
9.2.3  
Port Control Register 2 (PCR2)........................................................................ 122  
Port Data Register 2 (PDR2) ............................................................................ 122  
Pin Functions .................................................................................................... 123  
Port 5................................................................................................................................. 124  
9.3.1  
9.3.2  
9.3.3  
9.3.4  
9.3.5  
Port Mode Register 5 (PMR5).......................................................................... 125  
Port Control Register 5 (PCR5)........................................................................ 125  
Port Data Register 5 (PDR5) ............................................................................ 126  
Port Pull-Up Control Register 5 (PUCR5)........................................................ 126  
Pin Functions .................................................................................................... 127  
9.4  
9.5  
Port 7................................................................................................................................. 128  
9.4.1  
9.4.2  
9.4.3  
Port Control Register 7 (PCR7)........................................................................ 128  
Port Data Register 7 (PDR7) ............................................................................ 129  
Pin Functions .................................................................................................... 129  
Port 8................................................................................................................................. 130  
9.5.1  
9.5.2  
9.5.3  
Port Control Register 8 (PCR8)........................................................................ 131  
Port Data Register 8 (PDR8) ............................................................................ 131  
Pin Functions .................................................................................................... 132  
9.6  
9.7  
Port B................................................................................................................................ 134  
9.6.1  
9.6.2  
Port Data Register B (PDRB) ........................................................................... 134  
Pin Functions .................................................................................................... 135  
Port C................................................................................................................................ 136  
9.7.1  
9.7.2  
9.7.3  
Port Control Register C (PCRC)....................................................................... 137  
Port Data Register C (PDRC) ........................................................................... 137  
Pin Functions .................................................................................................... 138  
Section 10 Timer B1..........................................................................................139  
10.1 Features............................................................................................................................. 139  
10.2 Register Descriptions........................................................................................................ 140  
10.2.1  
10.2.2  
10.2.3  
Timer Mode Register B1 (TMB1) .................................................................... 140  
Timer Counter B1 (TCB1)................................................................................ 141  
Timer Load Register B1 (TLB1) ...................................................................... 141  
Rev. 3.00 Sep. 14, 2006 Page xii of xxviii  
10.3 Operation .......................................................................................................................... 142  
10.3.1  
10.3.2  
Interval Timer Operation .................................................................................. 142  
Auto-Reload Timer Operation .......................................................................... 142  
10.4 Timer B1 Operating Modes .............................................................................................. 143  
Section 11 Timer V............................................................................................145  
11.1 Features............................................................................................................................. 145  
11.2 Input/Output Pins.............................................................................................................. 147  
11.3 Register Descriptions........................................................................................................ 147  
11.3.1  
11.3.2  
11.3.3  
11.3.4  
11.3.5  
Timer Counter V (TCNTV).............................................................................. 147  
Time Constant Registers A and B (TCORA, TCORB) .................................... 148  
Timer Control Register V0 (TCRV0) ............................................................... 148  
Timer Control/Status Register V (TCSRV)...................................................... 150  
Timer Control Register V1 (TCRV1) ............................................................... 151  
11.4 Operation .......................................................................................................................... 152  
11.4.1 Timer V Operation............................................................................................ 152  
11.5 Timer V Application Examples ........................................................................................ 155  
11.5.1  
11.5.2  
Pulse Output with Arbitrary Duty Cycle........................................................... 155  
Pulse Output with Arbitrary Pulse Width and Delay from TRGV Input .......... 156  
11.6 Usage Notes...................................................................................................................... 157  
Section 12 Timer W...........................................................................................159  
12.1 Features............................................................................................................................. 159  
12.2 Input/Output Pins.............................................................................................................. 162  
12.3 Register Descriptions........................................................................................................ 162  
12.3.1  
12.3.2  
12.3.3  
12.3.4  
12.3.5  
12.3.6  
12.3.7  
12.3.8  
Timer Mode Register W (TMRW) ................................................................... 163  
Timer Control Register W (TCRW) ................................................................. 164  
Timer Interrupt Enable Register W (TIERW) .................................................. 165  
Timer Status Register W (TSRW) .................................................................... 166  
Timer I/O Control Register 0 (TIOR0)............................................................. 168  
Timer I/O Control Register 1 (TIOR1)............................................................. 169  
Timer Counter (TCNT)..................................................................................... 171  
General Registers A to D (GRA to GRD)......................................................... 171  
12.4 Operation .......................................................................................................................... 172  
12.4.1  
12.4.2  
Normal Operation ............................................................................................. 172  
PWM Operation................................................................................................ 176  
12.5 Operation Timing.............................................................................................................. 181  
12.5.1  
12.5.2  
12.5.3  
TCNT Count Timing ........................................................................................ 181  
Output Compare Output Timing....................................................................... 182  
Input Capture Timing........................................................................................ 183  
Rev. 3.00 Sep. 14, 2006 Page xiii of xxviii  
12.5.4  
12.5.5  
12.5.6  
12.5.7  
12.5.8  
Timing of Counter Clearing by Compare Match.............................................. 183  
Buffer Operation Timing .................................................................................. 184  
Timing of IMFA to IMFD Flag Setting at Compare Match ............................. 185  
Timing of IMFA to IMFD Setting at Input Capture ......................................... 186  
Timing of Status Flag Clearing......................................................................... 186  
12.6 Usage Notes...................................................................................................................... 187  
Section 13 Watchdog Timer..............................................................................191  
13.1 Features............................................................................................................................. 191  
13.2 Register Descriptions........................................................................................................ 192  
13.2.1  
13.2.2  
13.2.3  
Timer Control/Status Register WD (TCSRWD) .............................................. 192  
Timer Counter WD (TCWD)............................................................................ 194  
Timer Mode Register WD (TMWD) ................................................................ 194  
13.3 Operation .......................................................................................................................... 195  
Section 14 Serial Communication Interface 3 (SCI3).......................................197  
14.1 Features............................................................................................................................. 197  
14.2 Input/Output Pins.............................................................................................................. 199  
14.3 Register Descriptions........................................................................................................ 199  
14.3.1  
14.3.2  
14.3.3  
14.3.4  
14.3.5  
14.3.6  
14.3.7  
14.3.8  
14.3.9  
Receive Shift Register (RSR) ........................................................................... 200  
Receive Data Register (RDR)........................................................................... 200  
Transmit Shift Register (TSR).......................................................................... 200  
Transmit Data Register (TDR).......................................................................... 200  
Serial Mode Register (SMR) ............................................................................ 201  
Serial Control Register 3 (SCR3) ..................................................................... 202  
Serial Status Register (SSR) ............................................................................. 204  
Bit Rate Register (BRR) ................................................................................... 206  
Sampling Mode Register (SPMR) .................................................................... 211  
14.4 Operation in Asynchronous Mode.................................................................................... 212  
14.4.1  
14.4.2  
14.4.3  
14.4.4  
Clock................................................................................................................. 212  
SCI3 Initialization............................................................................................. 213  
Data Transmission ............................................................................................ 214  
Serial Data Reception ....................................................................................... 216  
14.5 Operation in Clocked Synchronous Mode........................................................................ 219  
14.5.1  
14.5.2  
14.5.3  
14.5.4  
14.5.5  
Clock................................................................................................................. 219  
SCI3 Initialization............................................................................................. 220  
Serial Data Transmission.................................................................................. 220  
Serial Data Reception (Clocked Synchronous Mode) ...................................... 223  
Simultaneous Serial Data Transmission and Reception.................................... 225  
14.6 Multiprocessor Communication Function ........................................................................ 227  
Rev. 3.00 Sep. 14, 2006 Page xiv of xxviii  
14.6.1  
14.6.2  
Multiprocessor Serial Data Transmission......................................................... 229  
Multiprocessor Serial Data Reception .............................................................. 231  
14.7 Interrupts........................................................................................................................... 235  
14.8 Usage Notes...................................................................................................................... 236  
14.8.1  
14.8.2  
Break Detection and Processing ....................................................................... 236  
Mark State and Break Sending.......................................................................... 236  
14.8.3 Receive Error Flags and Transmit Operations  
(Clocked Synchronous Mode Only).................................................................. 236  
14.8.4 Receive Data Sampling Timing and Reception Margin in Asynchronous  
Mode ................................................................................................................. 237  
Section 15 I2C Bus Interface 2 (IIC2)................................................................239  
15.1 Features............................................................................................................................. 239  
15.2 Input/Output Pins.............................................................................................................. 241  
15.3 Register Descriptions........................................................................................................ 242  
15.3.1  
15.3.2  
15.3.3  
15.3.4  
15.3.5  
15.3.6  
15.3.7  
15.3.8  
15.3.9  
I2C Bus Control Register 1 (ICCR1)................................................................. 242  
I2C Bus Control Register 2 (ICCR2)................................................................. 245  
I2C Bus Mode Register (ICMR)........................................................................ 246  
I2C Bus Interrupt Enable Register (ICIER)....................................................... 248  
I2C Bus Status Register (ICSR)......................................................................... 250  
Slave Address Register (SAR).......................................................................... 252  
I2C Bus Transmit Data Register (ICDRT)......................................................... 253  
I2C Bus Receive Data Register (ICDRR).......................................................... 253  
I2C Bus Shift Register (ICDRS)........................................................................ 253  
15.4 Operation .......................................................................................................................... 254  
15.4.1  
15.4.2  
15.4.3  
15.4.4  
15.4.5  
15.4.6  
15.4.7  
15.4.8  
I2C Bus Format.................................................................................................. 254  
Master Transmit Operation............................................................................... 255  
Master Receive Operation................................................................................. 257  
Slave Transmit Operation ................................................................................. 259  
Slave Receive Operation................................................................................... 261  
Clocked Synchronous Serial Format................................................................. 263  
Noise Canceler.................................................................................................. 265  
Example of Use................................................................................................. 266  
15.5 Interrupts........................................................................................................................... 270  
15.6 Bit Synchronous Circuit.................................................................................................... 271  
15.7 Usage Notes...................................................................................................................... 272  
15.7.1  
15.7.2  
Issue (Retransmission) of Start/Stop Conditions .............................................. 272  
WAIT Setting in I2C Bus Mode Register (ICMR) ............................................ 272  
Rev. 3.00 Sep. 14, 2006 Page xv of xxviii  
Section 16 A/D Converter .................................................................................273  
16.1 Features............................................................................................................................. 273  
16.2 Input/Output Pins.............................................................................................................. 275  
16.3 Register Description ......................................................................................................... 275  
16.3.1  
16.3.2  
16.3.3  
A/D Data Registers A to D (ADDRA to ADDRD) .......................................... 275  
A/D Control/Status Register (ADCSR) ............................................................ 276  
A/D Control Register (ADCR) ......................................................................... 278  
16.4 Operation .......................................................................................................................... 279  
16.4.1  
16.4.2  
16.4.3  
16.4.4  
Single Mode...................................................................................................... 279  
Scan Mode ........................................................................................................ 279  
Input Sampling and A/D Conversion Time ...................................................... 280  
External Trigger Input Timing.......................................................................... 281  
16.5 A/D Conversion Accuracy Definitions............................................................................. 282  
16.6 Usage Notes...................................................................................................................... 284  
16.6.1  
16.6.2  
Permissible Signal Source Impedance.............................................................. 284  
Influences on Absolute Accuracy ..................................................................... 284  
Section 17 Band-Gap Circuit, Power-On Reset, and Low-Voltage  
Detection Circuits............................................................................285  
17.1 Features............................................................................................................................. 286  
17.2 Register Descriptions........................................................................................................ 288  
17.2.1  
17.2.2  
Low-Voltage-Detection Control Register (LVDCR)........................................ 288  
Low-Voltage-Detection Status Register (LVDSR)........................................... 290  
17.3 Operations......................................................................................................................... 291  
17.3.1  
17.3.2  
Power-On Reset Circuit.................................................................................... 291  
Low-Voltage Detection Circuit......................................................................... 292  
Section 18 Power Supply Circuit ......................................................................299  
18.1 When Using Internal Power Supply Step-Down Circuit .................................................. 299  
18.2 When Not Using Internal Power Supply Step-Down Circuit ........................................... 300  
Section 19 List of Registers...............................................................................301  
19.1 Register Addresses (Address Order)................................................................................. 302  
19.2 Register Bits ..................................................................................................................... 306  
19.3 Register States in Each Operating Mode .......................................................................... 309  
Section 20 Electrical Characteristics.................................................................313  
20.1 Absolute Maximum Ratings ............................................................................................. 313  
20.2 Electrical Characteristics (F-ZTATTM Version)................................................................. 314  
Rev. 3.00 Sep. 14, 2006 Page xvi of xxviii  
20.2.1  
20.2.2  
20.2.3  
20.2.4  
20.2.5  
20.2.6  
20.2.7  
20.2.8  
20.2.9  
Power Supply Voltage and Operating Ranges.................................................. 314  
DC Characteristics ............................................................................................ 316  
AC Characteristics ............................................................................................ 321  
A/D Converter Characteristics.......................................................................... 325  
Watchdog Timer Characteristics....................................................................... 326  
Power-Supply-Voltage Detection Circuit Characteristics................................. 327  
LVDI External Voltage Detection Circuit Characteristics................................ 327  
Power-On Reset Characteristics........................................................................ 328  
Flash Memory Characteristics .......................................................................... 329  
20.3 Electrical Characteristics (Masked ROM Version)........................................................... 331  
20.3.1  
20.3.2  
20.3.3  
20.3.4  
20.3.5  
20.3.6  
20.3.7  
20.3.8  
Power Supply Voltage and Operating Ranges.................................................. 331  
DC Characteristics ............................................................................................ 333  
AC Characteristics ............................................................................................ 338  
A/D Converter Characteristics.......................................................................... 342  
Watchdog Timer Characteristics....................................................................... 343  
Power-Supply-Voltage Detection Circuit Characteristics................................. 344  
LVDI External Voltage Detection Circuit Characteristics................................ 344  
Power-On Reset Characteristics........................................................................ 345  
20.4 Operation Timing.............................................................................................................. 346  
20.5 Output Load Condition ..................................................................................................... 348  
Appendix A Instruction Set ...............................................................................349  
A.1 Instruction List.................................................................................................................. 349  
A.2 Operation Code Map......................................................................................................... 364  
A.3 Number of Execution States ............................................................................................. 367  
A.4 Combinations of Instructions and Addressing Modes ...................................................... 378  
Appendix B I/O Port Block Diagrams...............................................................379  
B.1  
I/O Port Block Diagrams .................................................................................................. 379  
B.2  
Port States in Each Operating State .................................................................................. 394  
Appendix C Product Code Lineup.....................................................................395  
Appendix D Package Dimensions .....................................................................396  
Main Revisions and Additions in this Edition.....................................................399  
Index ....................................................................................................................405  
Rev. 3.00 Sep. 14, 2006 Page xvii of xxviii  
Rev. 3.00 Sep. 14, 2006 Page xviii of xxviii  
Figures  
Section 1 Overview  
Figure 1.1 Internal Block Diagram of H8/36912 Group.................................................................3  
Figure 1.2 Internal Block Diagram of H8/36902 Group.................................................................4  
Figure 1.3 Pin Arrangement of H8/36912 Group (FP-32A)...........................................................5  
Figure 1.4 Pin Arrangement of H8/36902 Group (FP-32A)...........................................................6  
Figure 1.5 Pin Arrangement of H8/36912 Group (FP-32D, 32P4B) ..............................................7  
Figure 1.6 Pin Arrangement of H8/36902 Group (FP-32D, 32P4B) ..............................................8  
Section 2 CPU  
Figure 2.1 Memory Map (1) .........................................................................................................12  
Figure 2.1 Memory Map (2) .........................................................................................................13  
Figure 2.2 CPU Registers .............................................................................................................14  
Figure 2.3 Usage of General Registers .........................................................................................15  
Figure 2.4 Relationship between Stack Pointer and Stack Area...................................................16  
Figure 2.5 General Register Data Formats (1)..............................................................................18  
Figure 2.5 General Register Data Formats (2)..............................................................................19  
Figure 2.6 Memory Data Formats.................................................................................................20  
Figure 2.7 Instruction Formats......................................................................................................31  
Figure 2.8 Branch Address Specification in Memory Indirect Mode...........................................35  
Figure 2.9 On-Chip Memory Access Cycle..................................................................................37  
Figure 2.10 On-Chip Peripheral Module Access Cycle (3-State Access).....................................38  
Figure 2.11 CPU Operation States................................................................................................39  
Figure 2.12 State Transitions........................................................................................................40  
Figure 2.13 Example of Timer Configuration with Two Registers Allocated to Same  
Address......................................................................................................................41  
Section 3 Exception Handling  
Figure 3.1 Reset Sequence............................................................................................................56  
Figure 3.2 Stack Status after Exception Handling........................................................................58  
Figure 3.3 Interrupt Sequence.......................................................................................................60  
Figure 3.4 Port Mode Register Setting and Interrupt Request Flag Clearing Procedure ..............61  
Section 4 Address Break  
Figure 4.1 Block Diagram of Address Break................................................................................63  
Figure 4.2 Address Break Interrupt Operation Example (1).........................................................67  
Figure 4.2 Address Break Interrupt Operation Example (2).........................................................68  
Rev. 3.00 Sep. 14, 2006 Page xix of xxviii  
Section 5 Clock Pulse Generators  
Figure 5.1 Block Diagram of Clock Pulse Generators.................................................................. 69  
Figure 5.2 State Transition of System Clock................................................................................ 75  
Figure 5.3 Flowchart of Clock Switching On-chip Oscillator Clock to External Clock (1)........ 76  
Figure 5.4 Flowchart of Clock Switching External Clock to On-chip Oscillator Clock (2)......... 77  
Figure 5.5 Timing Chart of Switching On-chip Oscillator Clock to External Clock.................... 78  
Figure 5.6 Timing Chart to Switch External Clock to On-chip Oscillator Clock......................... 79  
Figure 5.7 Example of Trimming Flow for On-chip Oscillator Frequency.................................. 80  
Figure 5.8 Timing Chart of Trimming of On-chip Oscillator Frequency..................................... 81  
Figure 5.9 Example of Connection to Crystal Resonator ............................................................. 82  
Figure 5.10 Equivalent Circuit of Crystal Resonator.................................................................... 82  
Figure 5.11 Example of Connection to Ceramic Resonator ......................................................... 83  
Figure 5.12 Example of External Clock Input.............................................................................. 83  
Figure 5.13 Example of Incorrect Board Design.......................................................................... 84  
Section 6 Power-Down Modes  
Figure 6.1 Mode Transition Diagram ...........................................................................................91  
Section 7 ROM  
Figure 7.1 Flash Memory Block Configuration............................................................................ 98  
Figure 7.2 Programming/Erasing Flowchart Example in User Program Mode.......................... 106  
Figure 7.3 Program/Program-Verify Flowchart ......................................................................... 108  
Figure 7.4 Erase/Erase-Verify Flowchart ................................................................................... 111  
Section 9 I/O Ports  
Figure 9.1 Port 1 Pin Configuration............................................................................................ 117  
Figure 9.2 Port 2 Pin Configuration............................................................................................ 121  
Figure 9.3 Port 5 Pin Configuration............................................................................................ 124  
Figure 9.4 Port 7 Pin Configuration............................................................................................ 128  
Figure 9.5 Port 8 Pin Configuration............................................................................................ 130  
Figure 9.6 Port B Pin Configuration........................................................................................... 134  
Figure 9.7 Port C Pin Configuration........................................................................................... 136  
Section 10 Timer B1  
Figure 10.1 Block Diagram of Timer B1.................................................................................... 139  
Section 11 Timer V  
Figure 11.1 Block Diagram of Timer V ..................................................................................... 146  
Figure 11.2 Increment Timing with Internal Clock.................................................................... 153  
Figure 11.3 Increment Timing with External Clock................................................................... 153  
Figure 11.4 OVF Set Timing...................................................................................................... 153  
Figure 11.5 CMFA and CMFB Set Timing................................................................................ 154  
Rev. 3.00 Sep. 14, 2006 Page xx of xxviii  
Figure 11.6 TMOV Output Timing ............................................................................................154  
Figure 11.7 Clear Timing by Compare Match............................................................................154  
Figure 11.8 Clear Timing by TMRIV Input ...............................................................................155  
Figure 11.9 Pulse Output Example.............................................................................................155  
Figure 11.10 Example of Pulse Output Synchronized to TRGV Input.......................................156  
Figure 11.11 Contention between TCNTV Write and Clear ......................................................157  
Figure 11.12 Contention between TCORA Write and Compare Match.....................................158  
Figure 11.13 Internal Clock Switching and TCNTV Operation.................................................158  
Section 12 Timer W  
Figure 12.1 Timer W Block Diagram.........................................................................................161  
Figure 12.2 Free-Running Counter Operation............................................................................172  
Figure 12.3 Periodic Counter Operation.....................................................................................173  
Figure 12.4 0 and 1 Output Example (TOA = 0, TOB = 1)........................................................173  
Figure 12.5 Toggle Output Example (TOA = 0, TOB = 1) ........................................................174  
Figure 12.6 Toggle Output Example (TOA = 0, TOB = 1) ........................................................174  
Figure 12.7 Input Capture Operating Example...........................................................................175  
Figure 12.8 Buffer Operation Example (Input Capture).............................................................176  
Figure 12.9 PWM Mode Example (1) ........................................................................................177  
Figure 12.10 PWM Mode Example (2) ......................................................................................177  
Figure 12.11 Buffer Operation Example (Output Compare) ......................................................178  
Figure 12.12 PWM Mode Example  
(TOB, TOC, and TOD = 0: Initial Output Values are Set to 0).............................179  
Figure 12.13 PWM Mode Example  
(TOB, TOC, and TOD = 1: Initial Output Values are Set to 1).............................180  
Figure 12.14 Count Timing for Internal Clock Source...............................................................181  
Figure 12.15 Count Timing for External Clock Source..............................................................181  
Figure 12.16 Output Compare Output Timing ...........................................................................182  
Figure 12.17 Input Capture Input Signal Timing........................................................................183  
Figure 12.18 Timing of Counter Clearing by Compare Match...................................................183  
Figure 12.19 Buffer Operation Timing (Compare Match)..........................................................184  
Figure 12.20 Buffer Operation Timing (Input Capture) .............................................................184  
Figure 12.21 Timing of IMFA to IMFD Flag Setting at Compare Match..................................185  
Figure 12.22 Timing of IMFA to IMFD Flag Setting at Input Capture......................................186  
Figure 12.23 Timing of Status Flag Clearing by CPU................................................................186  
Figure 12.24 Contention between TCNT Write and Clear .........................................................188  
Figure 12.25 Internal Clock Switching and TCNT Operation....................................................188  
Figure 12.26 When Compare Match and Bit Manipulation Instruction to TCRW Occur at the  
Same Timing .........................................................................................................189  
Rev. 3.00 Sep. 14, 2006 Page xxi of xxviii  
Section 13 Watchdog Timer  
Figure 13.1 Block Diagram of Watchdog Timer........................................................................ 191  
Figure 13.2 Watchdog Timer Operation Example...................................................................... 195  
Section 14 Serial Communication Interface 3 (SCI3)  
Figure 14.1 Block Diagram of SCI3........................................................................................... 198  
Figure 14.2 Block Diagram of Noise Filter Circuit .................................................................... 211  
Figure 14.3 Data Format in Asynchronous Communication ...................................................... 212  
Figure 14.4 Relationship between Output Clock and Transfer Data Phase  
(Asynchronous Mode) (Example with 8-Bit Data, Parity, Two Stop Bits) ............. 212  
Figure 14.5 Sample SCI3 Initialization Flowchart ..................................................................... 213  
Figure 14.6 Example of SCI3 Transmission in Asynchronous Mode  
(8-Bit Data, Parity, One Stop Bit) ........................................................................... 214  
Figure 14.7 Sample Serial Transmission Data Flowchart (Asynchronous Mode)...................... 215  
Figure 14.8 Example of SCI3 Reception in Asynchronous Mode  
(8-Bit Data, Parity, One Stop Bit) ........................................................................... 216  
Figure 14.9 Sample Serial Reception Data Flowchart (Asynchronous Mode)........................... 218  
Figure 14.10 Data Format in Clocked Synchronous Communication ........................................ 219  
Figure 14.11 Example of SCI3 Transmission in Clocked Synchronous Mode .......................... 221  
Figure 14.12 Sample Serial Transmission Flowchart (Clocked Synchronous Mode) ................ 222  
Figure 14.13 Example of SCI3 Reception in Clocked Synchronous Mode................................ 223  
Figure 14.14 Sample Serial Reception Flowchart (Clocked Synchronous Mode)...................... 224  
Figure 14.15 Sample Flowchart of Simultaneous Serial Transmit and Receive Operations  
(Clocked Synchronous Mode)............................................................................... 226  
Figure 14.16 Example of Inter-Processor Communication Using Multiprocessor Format  
(Transmission of Data H'AA to Receiving Station A) .......................................... 228  
Figure 14.17 Sample Multiprocessor Serial Transmission Flowchart........................................ 230  
Figure 14.18 Sample Multiprocessor Serial Reception Flowchart (1)........................................ 232  
Figure 14.18 Sample Multiprocessor Serial Reception Flowchart (2)........................................ 233  
Figure 14.19 Example of SCI3 Reception Using Multiprocessor Format  
(Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit).............................. 234  
Figure 14.20 Receive Data Sampling Timing in Asynchronous Mode ...................................... 237  
Section 15 I2C Bus Interface 2 (IIC2)  
Figure 15.1 Block Diagram of I2C Bus Interface 2..................................................................... 240  
Figure 15.2 External Circuit Connections of I/O Pins................................................................ 241  
Figure 15.3 I2C Bus Formats ...................................................................................................... 254  
Figure 15.4 I2C Bus Timing........................................................................................................ 254  
Figure 15.5 Master Transmit Mode Operation Timing (1)......................................................... 256  
Figure 15.6 Master Transmit Mode Operation Timing (2)......................................................... 256  
Figure 15.7 Master Receive Mode Operation Timing (1) .......................................................... 258  
Rev. 3.00 Sep. 14, 2006 Page xxii of xxviii  
Figure 15.8 Master Receive Mode Operation Timing (2)...........................................................259  
Figure 15.9 Slave Transmit Mode Operation Timing (1) ...........................................................260  
Figure 15.10 Slave Transmit Mode Operation Timing (2) .........................................................261  
Figure 15.11 Slave Receive Mode Operation Timing (1)...........................................................262  
Figure 15.12 Slave Receive Mode Operation Timing (2)...........................................................262  
Figure 15.13 Clocked Synchronous Serial Transfer Format.......................................................263  
Figure 15.14 Transmit Mode Operation Timing.........................................................................264  
Figure 15.15 Receive Mode Operation Timing ..........................................................................265  
Figure 15.16 Block Diagram of Noise Canceler.........................................................................265  
Figure 15.17 Sample Flowchart for Master Transmit Mode.......................................................266  
Figure 15.18 Sample Flowchart for Master Receive Mode........................................................267  
Figure 15.19 Sample Flowchart for Slave Transmit Mode.........................................................268  
Figure 15.20 Sample Flowchart for Slave Receive Mode ..........................................................269  
Figure 15.21 Timing of Bit Synchronous Circuit .......................................................................271  
Section 16 A/D Converter  
Figure 16.1 Block Diagram of A/D Converter ...........................................................................274  
Figure 16.2 A/D Conversion Timing..........................................................................................280  
Figure 16.3 External Trigger Input Timing ................................................................................281  
Figure 16.4 A/D Conversion Accuracy Definitions (1)..............................................................283  
Figure 16.5 A/D Conversion Accuracy Definitions (2)..............................................................283  
Figure 16.6 Analog Input Circuit Example.................................................................................284  
Section 17 Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuits  
Figure 17.1 Block Diagram around BGR ...................................................................................286  
Figure 17.2 Block Diagram of Power-On Reset Circuit and Low-Voltage Detection Circuit....287  
Figure 17.3 Operational Timing of Power-On Reset Circuit......................................................292  
Figure 17.4 Operating Timing of LVDR Circuit........................................................................293  
Figure 17.5 Operational Timing of LVDI Circuit.......................................................................294  
Figure 17.6 Operational Timing of LVDI Circuit  
(When Compared Voltage is Input through ExtU and ExtD Pins)..........................296  
Figure 17.7 Timing for Enabling/Disabling of Low-Voltage Detection Circuit.........................297  
Section 18 Power Supply Circuit  
Figure 18.1 Power Supply Connection when Internal Step-Down Circuit is Used ....................299  
Figure 18.2 Power Supply Connection when Internal Step-Down Circuit is Not Used .............300  
Section 20 Electrical Characteristics  
Figure 20.1 System Clock Input Timing.....................................................................................346  
Figure 20.2 RES Low Width Timing..........................................................................................346  
Figure 20.3 Input Timing............................................................................................................346  
Figure 20.4 I2C Bus Interface Input/Output Timing...................................................................347  
Rev. 3.00 Sep. 14, 2006 Page xxiii of xxviii  
Figure 20.5 SCK3 Input Clock Timing ...................................................................................... 347  
Figure 20.6 SCI3 Input/Output Timing in Clocked Synchronous Mode.................................... 348  
Figure 20.7 Output Load Circuit ................................................................................................ 348  
Appendix  
Figure B.1 Port 1 Block Diagram (P17) ..................................................................................... 379  
Figure B.2 Port 1 Block Diagram (P14) ..................................................................................... 380  
Figure B.3 Port 2 Block Diagram (P22) ..................................................................................... 381  
Figure B.4 Port 2 Block Diagram (P21) ..................................................................................... 382  
Figure B.5 Port 2 Block Diagram (P20) ..................................................................................... 383  
Figure B.6 (1) Port 5 Block Diagram (P57, P56) (for H8/36912 Group) ................................... 384  
Figure B.6 (2) Port 5 Block Diagram (P57, P56) (for H8/36902 Group) ................................... 385  
Figure B.7 Port 5 Block Diagram (P55) ..................................................................................... 386  
Figure B.8 Port 5 Block Diagram (P76) ..................................................................................... 387  
Figure B.9 Port 7 Block Diagram (P75) ..................................................................................... 388  
Figure B.10 Port 7 Block Diagram (P74) ................................................................................... 389  
Figure B.11 Port 8 Block Diagram (P84 to P81)........................................................................ 390  
Figure B.12 Port 8 Block Diagram (P80) ................................................................................... 391  
Figure B.13 Port B Block Diagram (PB3, PB2)......................................................................... 392  
Figure B.14 Port B Block Diagram (PB1, PB0)......................................................................... 392  
Figure B.15 Port C Block Diagram (PC1).................................................................................. 393  
Figure B.16 Port C Block Diagram (PC0).................................................................................. 394  
Figure D.1 FP-32D Package Dimensions................................................................................... 396  
Figure D.2 FP-32A Package Dimension..................................................................................... 397  
Figure D.3 32P4B Package Dimension ...................................................................................... 398  
Rev. 3.00 Sep. 14, 2006 Page xxiv of xxviii  
Tables  
Section 1 Overview  
Table 1.1 Pin Functions ............................................................................................................9  
Section 2 CPU  
Table 2.1  
Table 2.2  
Table 2.3  
Table 2.3  
Table 2.4  
Table 2.5  
Table 2.6  
Table 2.6  
Table 2.7  
Table 2.8  
Table 2.9  
Table 2.10  
Table 2.11  
Table 2.12  
Table 2.12  
Operation Notation .................................................................................................21  
Data Transfer Instructions.......................................................................................22  
Arithmetic Operations Instructions (1) ...................................................................23  
Arithmetic Operations Instructions (2) ...................................................................24  
Logic Operations Instructions.................................................................................25  
Shift Instructions.....................................................................................................25  
Bit Manipulation Instructions (1)............................................................................26  
Bit Manipulation Instructions (2)............................................................................27  
Branch Instructions.................................................................................................28  
System Control Instructions....................................................................................29  
Block Data Transfer Instructions............................................................................30  
Addressing Modes ..................................................................................................32  
Absolute Address Access Ranges...........................................................................34  
Effective Address Calculation (1)...........................................................................35  
Effective Address Calculation (2)...........................................................................36  
Section 3 Exception Handling  
Table 3.1  
Table 3.2  
Exception Sources and Vector Address..................................................................47  
Interrupt Wait States ...............................................................................................59  
Section 4 Address Break  
Table 4.1  
Access and Data Bus Used .....................................................................................65  
Section 5 Clock Pulse Generators  
Table 5.1  
Crystal Resonator Parameters.................................................................................82  
Section 6 Power-Down Modes  
Table 6.1  
Table 6.2  
Table 6.3  
Operating Frequency and Wait Time......................................................................87  
Transition Mode after SLEEP Instruction Execution and Interrupt Handling........92  
Internal State in Each Operating Mode...................................................................92  
Section 7 ROM  
Table 7.1  
Table 7.2  
Table 7.3  
Setting Programming Modes ................................................................................102  
Boot Mode Operation ...........................................................................................104  
System Clock Frequencies for which Automatic Adjustment of LSI Bit Rate is  
Possible.................................................................................................................105  
Rev. 3.00 Sep. 14, 2006 Page xxv of xxviii  
Table 7.4  
Table 7.5  
Table 7.6  
Reprogram Data Computation Table.................................................................... 109  
Additional-Program Data Computation Table...................................................... 109  
Programming Time............................................................................................... 109  
Section 10 Timer B1  
Table 10.1  
Timer B1 Operating Modes.................................................................................. 143  
Section 11 Timer V  
Table 11.1  
Table 11.2  
Pin Configuration.................................................................................................. 147  
Clock Signals to Input to TCNTV and Counting Conditions ............................... 149  
Section 12 Timer W  
Table 12.1  
Table 12.2  
Timer W Functions............................................................................................... 160  
Pin Configuration.................................................................................................. 162  
Section 14 Serial Communication Interface 3 (SCI3)  
Table 14.1  
Table 14.2  
Table 14.3  
Table 14.4  
Pin Configuration.................................................................................................. 199  
Examples of BRR Settings for Various Bit Rates (Asynchronous Mode)............ 207  
Maximum Bit Rate for Each Frequency (Asynchronous Mode) .......................... 209  
Examples of BRR Settings for Various Bit Rates  
(Clocked Synchronous Mode) .............................................................................. 210  
SSR Status Flags and Receive Data Handling...................................................... 217  
SCI3 Interrupt Requests........................................................................................ 235  
Table 14.5  
Table 14.6  
Section 15 I2C Bus Interface 2 (IIC2)  
Table 15.1  
Table 15.2  
Table 15.3  
Table 15.4  
Pin Configuration.................................................................................................. 241  
Transfer Rate ........................................................................................................ 244  
Interrupt Requests................................................................................................. 270  
Time for Monitoring SCL..................................................................................... 271  
Section 16 A/D Converter  
Table 16.1  
Table 16.2  
Table 16.3  
Pin Configuration.................................................................................................. 275  
Analog Input Channels and Corresponding ADDR Registers.............................. 276  
A/D Conversion Time (Single Mode)................................................................... 281  
Section 17 Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuits  
Table 17.1 LVDCR Settings and Select Functions................................................................. 289  
Section 20 Electrical Characteristics  
Table 20.1  
Table 20.2  
Table 20.2  
Table 20.3  
Table 20.4  
Absolute Maximum Ratings ................................................................................. 313  
DC Characteristics (1) .......................................................................................... 316  
DC Characteristics (2) .......................................................................................... 320  
AC Characteristics................................................................................................ 321  
I2C Bus Interface Timing...................................................................................... 323  
Rev. 3.00 Sep. 14, 2006 Page xxvi of xxviii  
Table 20.5  
Table 20.6  
Table 20.7  
Table 20.8  
Table 20.9  
Table 20.10  
Table 20.11  
Table 20.12  
Table 20.12  
Table 20.13  
Table 20.14  
Table 20.15  
Table 20.16  
Table 20.17  
Table 20.18  
Table 20.19  
Table 20.20  
Serial Interface (SCI3) Timing .............................................................................324  
A/D Converter Characteristics..............................................................................325  
Watchdog Timer Characteristics...........................................................................326  
Power-Supply-Voltage Detection Circuit Characteristics.....................................327  
LVDI External Voltage Detection Circuit Characteristics....................................327  
Power-On Reset Circuit Characteristics............................................................328  
Flash Memory Characteristics ..........................................................................329  
DC Characteristics (1).......................................................................................333  
DC Characteristics (2).......................................................................................337  
AC Characteristics ............................................................................................338  
I2C Bus Interface Timing..................................................................................340  
Serial Interface (SCI3) Timing .........................................................................341  
A/D Converter Characteristics..........................................................................342  
Watchdog Timer Characteristics.......................................................................343  
Power-Supply-Voltage Detection Circuit Characteristics.................................344  
LVDI External Voltage Detection Circuit Characteristics................................344  
Power-On Reset Circuit Characteristics............................................................345  
Appendix  
Table A.1  
Table A.2  
Table A.2  
Table A.2  
Table A.3  
Table A.4  
Table A.5  
Instruction Set.......................................................................................................351  
Operation Code Map (1).......................................................................................364  
Operation Code Map (2).......................................................................................365  
Operation Code Map (3).......................................................................................366  
Number of Cycles in Each Instruction..................................................................368  
Number of Cycles in Each Instruction..................................................................369  
Combinations of Instructions and Addressing Modes ..........................................378  
Rev. 3.00 Sep. 14, 2006 Page xxvii of xxviii  
Rev. 3.00 Sep. 14, 2006 Page xxviii of xxviii  
Section 1 Overview  
Section 1 Overview  
1.1  
Features  
High-speed H8/300H central processing unit with an internal 16-bit architecture  
Upward-compatible with H8/300 CPU on an object level  
Sixteen 16-bit general registers  
62 basic instructions  
Various peripheral functions  
Timer B1* (8-bit timer)  
Timer V (8-bit timer)  
Timer W (16-bit timer)  
Watchdog timer  
SCI3 (Asynchronous or clocked synchronous serial communication interface)  
10-bit A/D converter  
I2C bus interface* (conforms to the Philips I2C bus interface functions)  
POR/LVD (Power-on reset and low-voltage detection circuits)  
Address break  
Note: * Available for the H8/36912 Group only.  
On-chip memory  
Product Classification  
Type  
ROM  
RAM  
Remarks  
Flash memory  
version  
(F-ZTATTM  
H8/36912F HD64F36912G  
H8/36902F HD64F36902G  
8 kbytes  
8 kbytes  
1,536 bytes  
1,536 bytes  
version)  
Masked ROM  
version  
H8/36912  
H8/36911  
H8/36902  
H8/36901  
H8/36900  
HD64336912G  
HD64336911G  
HD64336902G  
HD64336901G  
HD64336900G  
8 kbytes  
4 kbytes  
8 kbytes  
4 kbytes  
2 kbytes  
512 bytes  
256 bytes  
512 bytes  
256 bytes  
256 bytes  
Note: F-ZTATTM is a trademark of Renesas Technology Corp.  
Rev. 3.00 Sep. 14, 2006 Page 1 of 408  
REJ09B0105-0300  
Section 1 Overview  
General I/O ports  
Eighteen I/O pins, including five large-current ports (IOL = 20 mA, @VOL = 1.5 V,  
IOH = 4 mA, @VOH = Vcc 1.0 V)  
Four input only pins (also used for analog input)  
On-chip oscillator  
Frequency accuracy:  
8MHz 1% (Typ.)  
Vcc = 5.0 V, Ta = 25°C  
(Flash memory version): 8MHz 3%  
Vcc = 4.0 to 5.0 V, Ta = −20 to 75°C  
10MHz 4% (Typ.) Vcc = 4.0 to 5.0 V, Ta = −20 to 75°C  
Supports various power-down modes  
Compact package  
Package  
Code  
Body Size  
Pin Pitch  
0.8 mm  
Remarks  
LQFP-32  
SOP-32  
FP-32A  
FP-32D  
32P4B  
7.0 × 7.0 mm  
11.3 × 20.45 mm  
400 mil  
1.27 mm  
1.78 mm  
SDIP-32*  
Note:  
*
Flash memory version only  
Rev. 3.00 Sep. 14, 2006 Page 2 of 408  
REJ09B0105-0300  
Section 1 Overview  
1.2  
Internal Block Diagram  
E10T_0*  
E10T_1*  
E10T_2*  
System  
On-chip  
clock  
CPU  
H8/300H  
oscillator  
generator  
Data bus (lower)  
P17/IRQ3/TRGV  
P14/IRQ0  
P76/TMOV  
P75/TMCIV  
P74/TMRIV  
ROM  
RAM  
SCI3  
IIC2  
Timer W  
Timer V  
P84/FTIOD  
P83/FTIOC  
P82/FTIOB  
P81/FTIOA  
P80/FTCI  
P22/TXD  
P21/RXD  
P20/SCK3  
Watchdog  
timer  
Timer B1  
P57/SCL  
P56/SDA  
A/D  
converter  
POR & LVD  
P55/WKP5/ADTRG  
Port C  
Port B  
Note: * Can also be used for the E7 or E8 emulator.  
Figure 1.1 Internal Block Diagram of H8/36912 Group  
Rev. 3.00 Sep. 14, 2006 Page 3 of 408  
REJ09B0105-0300  
Section 1 Overview  
E10T_0*  
E10T_1*  
E10T_2*  
System  
clock  
generator  
On-chip  
oscillator  
CPU  
H8/300H  
Data bus (lower)  
P17/IRQ3/TRGV  
P14/IRQ0  
P76/TMOV  
P75/TMCIV  
P74/TMRIV  
ROM  
RAM  
SCI3  
P22/TXD  
P21/RXD  
P20/SCK3  
Timer W  
Timer V  
P84/FTIOD  
P83/FTIOC  
P82/FTIOB  
P81/FTIOA  
P80/FTCI  
Watchdog  
timer  
P57  
P56  
A/D  
converter  
POR & LVD  
P55/WKP5/ADTRG  
Port C  
Port B  
Note: * Can also be used for the E7 or E8 emulator.  
Figure 1.2 Internal Block Diagram of H8/36902 Group  
Rev. 3.00 Sep. 14, 2006 Page 4 of 408  
REJ09B0105-0300  
Section 1 Overview  
1.3  
Pin Arrangement  
P84/FTIOD  
P74/TMRIV  
P75/TMCIV  
P76/TMOV  
PB3/AN3/ExtU  
PB2/AN2/ExtD  
PB1/AN1  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
P14/IRQ0  
P56/SDA  
P57/SCL  
E10T_2*  
E10T_1*  
E10T_0*  
H8/36912 Group  
(Top view)  
P17/IRQ3/TRGV  
PB0/AN0  
NMI  
Note: * Can also be used for the E7 or E8 emulator.  
Figure 1.3 Pin Arrangement of H8/36912 Group (FP-32A)  
Rev. 3.00 Sep. 14, 2006 Page 5 of 408  
REJ09B0105-0300  
Section 1 Overview  
P84/FTIOD  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
P14/IRQ0  
P56  
P74/TMRIV  
P75/TMCIV  
P76/TMOV  
PB3/AN3/ExtU  
PB2/AN2/ExtD  
PB1/AN1  
P57  
E10T_2*  
E10T_1*  
E10T_0*  
P17/IRQ3/TRGV  
NMI  
H8/36902 Group  
(Top view)  
PB0/AN0  
Note: * Can also be used for the E7 or E8 emulator.  
Figure 1.4 Pin Arrangement of H8/36902 Group (FP-32A)  
Rev. 3.00 Sep. 14, 2006 Page 6 of 408  
REJ09B0105-0300  
Section 1 Overview  
PB3/AN3/ExtU  
PB2/AN2/ExtD  
PB1/AN1  
P76/TMOV  
P75/TMCIV  
P74/TMRIV  
P84/FTIOD  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
2
3
PB0/AN0  
4
AVcc  
P83/FTIOC  
P82/FTIOB  
P81/FTIOA  
P80/FTCI  
5
Vcc  
RES  
6
7
TEST  
H8/36912 Group  
(Top view)  
8
Vss  
P22/TXD  
P21/RXD  
P20/SCK3  
9
PC1/OSC2/CLKOUT  
PC0/OSC1  
10  
11  
12  
13  
14  
15  
16  
VCL  
P55/WKP5/ADTRG  
P14/IRQ0  
NMI  
P17/IRQ3/TRGV  
P56/SDA  
P57/SCL  
E10T_0*  
E10T_1*  
E10T_2*  
Note: * Can also be used for the E7 or E8 emulator.  
Figure 1.5 Pin Arrangement of H8/36912 Group (FP-32D, 32P4B)  
Rev. 3.00 Sep. 14, 2006 Page 7 of 408  
REJ09B0105-0300  
Section 1 Overview  
PB3/AN3/ExtU  
PB2/AN2/ExtD  
PB1/AN1  
P76/TMOV  
P75/TMCIV  
P74/TMRIV  
P84/FTIOD  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
2
3
PB0/AN0  
4
AVcc  
P83/FTIOC  
P82/FTIOB  
P81/FTIOA  
P80/FTCI  
5
Vcc  
RES  
6
7
TEST  
H8/36902 Group  
(Top view)  
8
Vss  
P22/TXD  
P21/RXD  
P20/SCK3  
9
PC1/OSC2/CLKOUT  
PC0/OSC1  
10  
11  
12  
13  
14  
15  
16  
VCL  
P55/WKP5/ADTRG  
P14/IRQ0  
NMI  
P17/IRQ3/TRGV  
P56  
P57  
E10T_0*  
E10T_1*  
E10T_2*  
Note: * Can also be used for the E7 or E8 emulator.  
Figure 1.6 Pin Arrangement of H8/36902 Group (FP-32D, 32P4B)  
Rev. 3.00 Sep. 14, 2006 Page 8 of 408  
REJ09B0105-0300  
Section 1 Overview  
1.4  
Pin Functions  
Table 1.1 Pin Functions  
Pin No.  
FP-32D,  
Type  
Symbol  
32P4B  
FP-32A  
I/O  
Functions  
Power  
source  
VCC  
6
2
Input  
Power supply pin. Connect this pin  
to the system power supply.  
VSS  
9
5
5
1
Input  
Input  
Ground pin. Connect this pin to the  
system power supply (0 V).  
AVCC  
Analog power supply pin for the  
A/D converter. When the A/D  
converter is not used, connect this  
pin to the system power supply.  
VCL  
12  
8
Input  
Internal step-down power supply  
pin. Connect a capacitor of around  
0.1 µF between this pin and the Vss  
pin for stabilization.  
Clock  
OSC1  
11  
10  
7
6
Input  
These pins are connected to a  
crystal or ceramic resonator for  
system clocks, or can be used to  
input an external clock. When an  
on-chip oscillator is used, system  
clocks can be output to OSC2. See  
section 5, Clock Pulse Generators,  
for a typical connection.  
OSC2/  
CLKOUT  
Output  
System  
control  
RES  
7
3
Input  
Reset pin. The pull-up resistor (typ.  
150 k) is incorporated. When  
driven low, the chip is reset.  
TEST  
8
4
9
Input  
Input  
Test pin. Connect this pin to Vss.  
External  
interrupt  
NMI  
13  
Non-maskable interrupt request  
input pin. Be sure to pull-up by a  
pull-up resistor.  
IRQ0,  
20, 14  
21  
16, 10  
17  
Input  
Input  
External interrupt request input  
pins. Can select the rising or falling  
edge.  
IRQ3  
WKP5  
External interrupt request input pin.  
Can select the rising or falling edge.  
Rev. 3.00 Sep. 14, 2006 Page 9 of 408  
REJ09B0105-0300  
Section 1 Overview  
Pin No.  
FP-32D,  
32P4B  
Type  
Symbol  
FP-32A  
I/O  
Output TMOV is an output pin for  
waveforms generated by the output  
Functions  
Timer V  
TMOV  
32  
28  
compare function.  
TMCIV  
TMRIV  
TRGV  
FTCI  
31  
27  
Input  
Input  
Input  
Input  
I/O  
External event input pin  
Counter reset input pin  
Counter start trigger input pin  
External event input pin  
30  
26  
14  
10  
Timer W  
25  
21  
FTIOA to  
FTIOD  
26 to 29  
22 to 25  
Output compare output/ input  
capture input/ PWM output common  
pins  
I2C bus  
interface 2*  
SDA  
SCL  
19  
18  
15  
14  
I/O  
I/O  
I2C data I/O pin. NMOS open drain  
output can directly drive the bus.  
I2C clock I/O pin. NMOS open drain  
output can directly drive the bus.  
Serial  
communi-  
cation  
TXD  
24  
23  
22  
20  
19  
18  
Output Transmit data output pin  
RXD  
SCK3  
Input  
I/O  
Receive data input pin  
Clock I/O pin  
interface  
A/D  
converter  
AN3 to AN0 1 to 4  
29 to 32  
17  
Input  
Input  
I/O  
Analog input pin  
A/D converter trigger input pin  
2-bit I/O port  
ADTRG  
21  
I/O ports  
P17, P14  
14, 20  
10, 16  
20 to 18  
P22 to P20 24 to 22  
I/O  
3-bit I/O port  
P57 to P55 18, 19, 21 14, 15, 17 I/O  
3-bit I/O port  
P76 to P74 32 to 30  
P84 to P80 29 to 25  
PB3 to PB0 1 to 4  
28 to 26  
25 to 21  
29 to 32  
6, 7  
I/O  
3-bit I/O port  
I/O  
5-bit I/O port  
Input  
I/O  
4-bit input port  
2-bit I/O port  
PC1, PC0  
10, 11  
Low voltage ExtU, ExtD 1, 2  
detection  
circuit  
29, 30  
Input  
External input pins for the detection  
voltage used in the low-voltage  
detection circuit  
E7, E8  
E10T_0,  
E10T_1,  
E10T_2  
15, 16, 17 11, 12, 13   
Interface pins for the E7 or E8  
emulator  
Note:  
*
Available for the H8/36912 Group only.  
Rev. 3.00 Sep. 14, 2006 Page 10 of 408  
REJ09B0105-0300  
Section 2 CPU  
Section 2 CPU  
This LSI has an H8/300H CPU with an internal 32-bit architecture that is upward-compatible with  
the H8/300 CPU, and supports only normal mode, which has a 64-kbyte address space.  
Upward-compatible with H8/300 CPUs  
Can execute H8/300 CPUs object programs  
Additional eight 16-bit extended registers  
32-bit transfer and arithmetic and logic instructions are added  
Signed multiply and divide instructions are added.  
General-register architecture  
Sixteen 16-bit general registers also usable as sixteen 8-bit registers or eight 32-bit registers  
Sixty-two basic instructions  
8/16/32-bit data transfer and arithmetic and logic instructions  
Multiply and divide instructions  
Powerful bit-manipulation instructions  
Eight addressing modes  
Register direct [Rn]  
Register indirect [@ERn]  
Register indirect with displacement [@(d:16,ERn) or @(d:24,ERn)]  
Register indirect with post-increment or pre-decrement [@ERn+ or @–ERn]  
Absolute address [@aa:8, @aa:16, @aa:24]  
Immediate [#xx:8, #xx:16, or #xx:32]  
Program-counter relative [@(d:8,PC) or @(d:16,PC)]  
Memory indirect [@@aa:8]  
64-kbyte address space  
High-speed operation  
All frequently-used instructions execute in two or four states  
8/16/32-bit register-register add/subtract  
8 × 8-bit register-register multiply : 14 states  
16 ÷ 8-bit register-register divide : 14 states  
: 2 state  
16 × 16-bit register-register multiply : 22 states  
32 ÷ 16-bit register-register divide : 22 states  
Power-down state  
Transition to power-down state by SLEEP instruction  
CPU30H2E_000120030300  
Rev. 3.00 Sep. 14, 2006 Page 11 of 408  
REJ09B0105-0300  
Section 2 CPU  
2.1  
Address Space and Memory Map  
The address space of this LSI is 64 kbytes, which includes the program area and the data area. The  
following two figures show the memory map, respectively.  
H8/36912F  
H8/36902F  
(Flash memory version)  
H8/36912  
H8/36902  
(Masked ROM version)  
H'0000  
H'0045  
H'0046  
H'0000  
H'0045  
H'0046  
Interrupt vector  
Interrupt vector  
On-chip ROM  
(8 kbytes)  
On-chip ROM  
(8 kbytes)  
H'1FFF  
H'2000  
H'1FFF  
E7 or E8 control  
program area  
(4 kbytes)  
H'2FFF  
Not used  
Not used  
H'F600  
H'F77F  
H'F600  
H'F77F  
Internal I/O register  
Not used  
Internal I/O register  
Not used  
H'F980  
(E7 or E8 work area,  
for flash memory  
programming:  
1 kbyte)  
On-chip RAM  
(1.5 kbytes)  
H'FD7F  
H'FD80  
H'FD80  
On-chip RAM  
user area  
On-chip RAM  
user area  
(512 bytes)  
(512 bytes)  
H'FF7F  
H'FF80  
H'FF7F  
H'FF80  
Internal I/O register  
Internal I/O register  
H'FFFF  
H'FFFF  
Figure 2.1 Memory Map (1)  
Rev. 3.00 Sep. 14, 2006 Page 12 of 408  
REJ09B0105-0300  
Section 2 CPU  
H8/36911  
H8/36901  
H8/36900  
(Masked ROM version)  
(Masked ROM version)  
H'0000  
H'0045  
H'0046  
H'0000  
H'0045  
H'0046  
Interrupt vector  
Interrupt vector  
On-chip ROM  
(2 kbytes)  
On-chip ROM  
(4 kbytes)  
H'07FF  
H'0FFF  
Not used  
Not used  
H'F600  
H'F77F  
H'F600  
H'F77F  
Internal I/O register  
Not used  
Internal I/O register  
Not used  
H'FE80  
H'FE80  
On-chip RAM  
user area  
On-chip RAM  
user area  
(256 bytes)  
(256 bytes)  
H'FF7F  
H'FF80  
H'FF7F  
H'FF80  
Internal I/O register  
Internal I/O register  
H'FFFF  
H'FFFF  
Figure 2.1 Memory Map (2)  
Rev. 3.00 Sep. 14, 2006 Page 13 of 408  
REJ09B0105-0300  
Section 2 CPU  
2.2  
Register Configuration  
The H8/300H CPU has the internal registers shown in figure 2.2. There are two types of registers;  
general registers and control registers. The control registers are a 24-bit program counter (PC), and  
an 8-bit condition code register (CCR).  
General registers (ERn)  
15  
0 7  
0 7  
0
ER0  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
R0H  
R1H  
R2H  
R3H  
R4H  
R5H  
R6H  
R7H  
R0L  
R1L  
R2L  
R3L  
R4L  
R5L  
R6L  
R7L  
ER1  
ER2  
ER3  
ER4  
ER5  
ER6  
ER7 (SP)  
Control registers (CR)  
23  
0
0
PC  
7
6 5 4 3 2 1  
CCR  
I UI H U N Z V C  
[Legend]  
SP:  
PC:  
Stack pointer  
Program counter  
H: Half-carry flag  
U: User bit  
CCR: Condition-code register  
N: Negative flag  
Z: Zero flag  
V: Overflow flag  
C: Carry flag  
I:  
Interrupt mask bit  
User bit  
UI:  
Figure 2.2 CPU Registers  
Rev. 3.00 Sep. 14, 2006 Page 14 of 408  
REJ09B0105-0300  
Section 2 CPU  
2.2.1  
General Registers  
The H8/300H CPU has eight 32-bit general registers. These general registers are all functionally  
identical and can be used as both address registers and data registers. When a general register is  
used as a data register, it can be accessed as a 32-bit, 16-bit, or 8-bit register. Figure 2.3 illustrates  
the usage of the general registers. When the general registers are used as 32-bit registers or address  
registers, they are designated by the letters ER (ER0 to ER7).  
The ER registers divide into 16-bit general registers designated by the letters E (E0 to E7) and R  
(R0 to R7). These registers are functionally equivalent, providing a maximum of sixteen 16-bit  
registers. The E registers (E0 to E7) are also referred to as extended registers.  
The R registers divide into 8-bit registers designated by the letters RH (R0H to R7H) and RL (R0L  
to R7L). These registers are functionally equivalent, providing a maximum of sixteen 8-bit  
registers.  
The usage of each register can be selected independently.  
• Address registers  
• 32-bit registers  
• 16-bit registers  
• 8-bit registers  
E registers (extended registers)  
(E0 to E7)  
ER registers  
(ER0 to ER7)  
RH registers  
(R0H to R7H)  
R registers  
(R0 to R7)  
RL registers  
(R0L to R7L)  
Figure 2.3 Usage of General Registers  
Rev. 3.00 Sep. 14, 2006 Page 15 of 408  
REJ09B0105-0300  
Section 2 CPU  
General register ER7 has the function of stack pointer (SP) in addition to its general-register  
function, and is used implicitly in exception handling and subroutine calls. Figure 2.4 shows the  
stack.  
Free area  
SP (ER7)  
Stack area  
Figure 2.4 Relationship between Stack Pointer and Stack Area  
2.2.2  
Program Counter (PC)  
This 24-bit counter indicates the address of the next instruction the CPU will execute. The length  
of all CPU instructions is 2 bytes (one word), so the least significant PC bit is ignored. (When an  
instruction is fetched, the least significant PC bit is regarded as 0). The PC is initialized when the  
start address is loaded by the vector address generated during reset exception-handling sequence.  
2.2.3  
Condition-Code Register (CCR)  
This 8-bit register contains internal CPU status information, including an interrupt mask bit (I) and  
half-carry (H), negative (N), zero (Z), overflow (V), and carry (C) flags. The I bit is initialized to 1  
by reset exception-handling sequence, but other bits are not initialized.  
Some instructions leave flag bits unchanged. Operations can be performed on the CCR bits by the  
LDC, STC, ANDC, ORC, and XORC instructions. The N, Z, V, and C flags are used as branching  
conditions for conditional branch (Bcc) instructions.  
For the action of each instruction on the flag bits, see appendix A.1, Instruction List.  
Rev. 3.00 Sep. 14, 2006 Page 16 of 408  
REJ09B0105-0300  
Section 2 CPU  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
I
1
R/W  
Interrupt Mask Bit  
Masks interrupts other than NMI when set to 1. NMI is  
accepted regardless of the I bit setting. The I bit is set to  
1 at the start of an exception-handling sequence.  
6
5
UI  
H
Undefined R/W  
Undefined R/W  
User Bit  
Can be written and read by software using the LDC, STC,  
ANDC, ORC, and XORC instructions.  
Half-Carry Flag  
When the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B, or  
NEG.B instruction is executed, this flag is set to 1 if there  
is a carry or borrow at bit 3, and cleared to 0 otherwise.  
When the ADD.W, SUB.W, CMP.W, or NEG.W  
instruction is executed, the H flag is set to 1 if there is a  
carry or borrow at bit 11, and cleared to 0 otherwise.  
When the ADD.L, SUB.L, CMP.L, or NEG.L instruction is  
executed, the H flag is set to 1 if there is a carry or  
borrow at bit 27, and cleared to 0 otherwise.  
4
3
2
1
0
U
N
Z
Undefined R/W  
Undefined R/W  
Undefined R/W  
Undefined R/W  
Undefined R/W  
User Bit  
Can be written and read by software using the LDC, STC,  
ANDC, ORC, and XORC instructions.  
Negative Flag  
Stores the value of the most significant bit of data as a  
sign bit.  
Zero Flag  
Set to 1 to indicate zero data, and cleared to 0 to indicate  
non-zero data.  
V
C
Overflow Flag  
Set to 1 when an arithmetic overflow occurs, and cleared  
to 0 at other times.  
Carry Flag  
Set to 1 when a carry occurs, and cleared to 0 otherwise.  
Used by:  
Add instructions, to indicate a carry  
Subtract instructions, to indicate a borrow  
Shift and rotate instructions, to indicate a carry  
The carry flag is also used as a bit accumulator by bit  
manipulation instructions.  
Rev. 3.00 Sep. 14, 2006 Page 17 of 408  
REJ09B0105-0300  
Section 2 CPU  
2.3  
Data Formats  
The H8/300H CPU can process 1-bit, 4-bit (BCD), 8-bit (byte), 16-bit (word), and 32-bit  
(longword) data. Bit-manipulation instructions operate on 1-bit data by accessing bit n (n = 0, 1, 2,  
…, 7) of byte operand data. The DAA and DAS decimal-adjust instructions treat byte data as two  
digits of 4-bit BCD data.  
2.3.1  
General Register Data Formats  
Figure 2.5 shows the data formats in general registers.  
Data Type  
1-bit data  
General Register  
RnH  
Data Format  
7
0
Don't care  
7
6
5
4
3
2
1 0  
7
0
Don't care  
4 3  
RnL  
RnH  
RnL  
RnH  
RnL  
7
6
5
4
3
2
1 0  
1-bit data  
7
0
4-bit BCD data  
Upper  
Lower  
Don't care  
4 3  
7
0
4-bit BCD data  
Byte data  
Don't care  
Upper  
Lower  
7
0
Don't care  
MSB  
LSB  
7
0
Byte data  
Don't care  
MSB  
LSB  
Figure 2.5 General Register Data Formats (1)  
Rev. 3.00 Sep. 14, 2006 Page 18 of 408  
REJ09B0105-0300  
Section 2 CPU  
Data Type  
Word data  
General  
Register  
Data Format  
Rn  
15  
0
MSB  
LSB  
Word data  
En  
15  
0
MSB  
31  
LSB  
Longword  
data  
ERn  
16 15  
0
MSB  
LSB  
[Legend]  
ERn: General register ER  
En:  
Rn:  
General register E  
General register R  
RnH: General register RH  
RnL: General register RL  
MSB: Most significant bit  
LSB: Least significant bit  
Figure 2.5 General Register Data Formats (2)  
Rev. 3.00 Sep. 14, 2006 Page 19 of 408  
REJ09B0105-0300  
Section 2 CPU  
2.3.2  
Memory Data Formats  
Figure 2.6 shows the data formats in memory. The H8/300H CPU can access word data and  
longword data in memory, however word or longword data must begin at an even address. If an  
attempt is made to access word or longword data at an odd address, an address error does not  
occur, however the least significant bit of the address is regarded as 0, so access begins the  
preceding address. This also applies to instruction fetches.  
When ER7 (SP) is used as an address register to access the stack, the operand size should be word  
or longword.  
Data Type  
Address  
Data Format  
7
7
0
0
1-bit data  
Byte data  
Word data  
Address L  
Address L  
6
5
4
3
2
1
MSB  
MSB  
LSB  
LSB  
Address 2M  
Address 2M+1  
Longword data  
Address 2N  
MSB  
Address 2N+1  
Address 2N+2  
Address 2N+3  
LSB  
Figure 2.6 Memory Data Formats  
Rev. 3.00 Sep. 14, 2006 Page 20 of 408  
REJ09B0105-0300  
Section 2 CPU  
2.4  
Instruction Set  
2.4.1  
Table of Instructions Classified by Function  
The H8/300H CPU has 62 instructions. Tables 2.2 to 2.9 summarize the instructions in each  
functional category. The notation used in tables 2.2 to 2.9 is defined below.  
Table 2.1 Operation Notation  
Symbol  
Rd  
Rs  
Rn  
ERn  
(EAd)  
(EAs)  
CCR  
N
Description  
General register (destination)*  
General register (source)*  
General register*  
General register (32-bit register or address register)  
Destination operand  
Source operand  
Condition-code register  
N (negative) flag in CCR  
Z (zero) flag in CCR  
V (overflow) flag in CCR  
C (carry) flag in CCR  
Program counter  
Stack pointer  
Z
V
C
PC  
SP  
#IMM  
disp  
+
Immediate data  
Displacement  
Addition  
Subtraction  
×
Multiplication  
÷
Division  
Logical AND  
Logical OR  
Logical XOR  
Move  
¬
NOT (logical complement)  
Rev. 3.00 Sep. 14, 2006 Page 21 of 408  
REJ09B0105-0300  
Section 2 CPU  
Symbol  
Description  
:3/:8/:16/:24  
3-, 8-, 16-, or 24-bit length  
Note:  
*
General registers include 8-bit registers (R0H to R7H, R0L to R7L), 16-bit registers (R0  
to R7, E0 to E7), and 32-bit registers/address registers (ER0 to ER7).  
Table 2.2 Data Transfer Instructions  
Instruction  
Size*  
Function  
MOV  
B/W/L  
(EAs) Rd, Rs (EAd)  
Moves data between two general registers or between a general register  
and memory, or moves immediate data to a general register.  
MOVFPE  
MOVTPE  
POP  
B
(EAs) Rd, Cannot be used in this LSI.  
Rs (EAs) Cannot be used in this LSI.  
B
W/L  
@SP+ Rn  
Pops a general register from the stack. POP.W Rn is identical to MOV.W  
@SP+, Rn. POP.L ERn is identical to MOV.L @SP+, ERn.  
PUSH  
W/L  
Rn @–SP  
Pushes a general register onto the stack. PUSH.W Rn is identical to  
MOV.W Rn, @–SP. PUSH.L ERn is identical to MOV.L ERn, @–SP.  
Note:  
*
Refers to the operand size.  
B:  
W:  
L:  
Byte  
Word  
Longword  
Rev. 3.00 Sep. 14, 2006 Page 22 of 408  
REJ09B0105-0300  
Section 2 CPU  
Table 2.3 Arithmetic Operations Instructions (1)  
Instruction  
Size*  
Function  
ADD  
SUB  
B/W/L  
Rd Rs Rd, Rd #IMM Rd  
Performs addition or subtraction on data in two general registers, or on  
immediate data and data in a general register (immediate byte data  
cannot be subtracted from byte data in a general register. Use the SUBX  
or ADD instruction.)  
ADDX  
SUBX  
B
Rd Rs C Rd, Rd #IMM C Rd  
Performs addition or subtraction with carry on byte data in two general  
registers, or on immediate data and data in a general register.  
INC  
DEC  
B/W/L  
Rd 1 Rd, Rd 2 Rd  
Increments or decrements a general register by 1 or 2. (Byte operands  
can be incremented or decremented by 1 only.)  
ADDS  
SUBS  
L
Rd 1 Rd, Rd 2 Rd, Rd 4 Rd  
Adds or subtracts the value 1, 2, or 4 to or from data in a 32-bit register.  
DAA  
DAS  
B
Rd decimal adjust Rd  
Decimal-adjusts an addition or subtraction result in a general register by  
referring to the CCR to produce 4-bit BCD data.  
MULXU  
MULXS  
DIVXU  
B/W  
B/W  
B/W  
Rd × Rs Rd  
Performs unsigned multiplication on data in two general registers: either  
8 bits × 8 bits 16 bits or 16 bits × 16 bits 32 bits.  
Rd × Rs Rd  
Performs signed multiplication on data in two general registers: either 8  
bits × 8 bits 16 bits or 16 bits × 16 bits 32 bits.  
Rd ÷ Rs Rd  
Performs unsigned division on data in two general registers: either 16  
bits ÷ 8 bits 8-bit quotient and 8-bit remainder or 32 bits ÷ 16 bits →  
16-bit quotient and 16-bit remainder.  
Note:  
*
Refers to the operand size.  
B:  
W:  
L:  
Byte  
Word  
Longword  
Rev. 3.00 Sep. 14, 2006 Page 23 of 408  
REJ09B0105-0300  
Section 2 CPU  
Table 2.3 Arithmetic Operations Instructions (2)  
Instruction  
Size*  
Function  
DIVXS  
B/W  
Rd ÷ Rs Rd  
Performs signed division on data in two general registers: either 16 bits ÷  
8 bits 8-bit quotient and 8-bit remainder or 32 bits ÷ 16 bits 16-bit  
quotient and 16-bit remainder.  
CMP  
NEG  
EXTU  
B/W/L  
B/W/L  
W/L  
Rd – Rs, Rd – #IMM  
Compares data in a general register with data in another general register  
or with immediate data, and sets CCR bits according to the result.  
0 – Rd Rd  
Takes the two's complement (arithmetic complement) of data in a  
general register.  
Rd (zero extension) Rd  
Extends the lower 8 bits of a 16-bit register to word size, or the lower 16  
bits of a 32-bit register to longword size, by padding with zeros on the  
left.  
EXTS  
W/L  
Rd (sign extension) Rd  
Extends the lower 8 bits of a 16-bit register to word size, or the lower 16  
bits of a 32-bit register to longword size, by extending the sign bit.  
Note:  
*
Refers to the operand size.  
B:  
W:  
L:  
Byte  
Word  
Longword  
Rev. 3.00 Sep. 14, 2006 Page 24 of 408  
REJ09B0105-0300  
Section 2 CPU  
Table 2.4 Logic Operations Instructions  
Instruction  
Size*  
Function  
AND  
B/W/L  
Rd Rs Rd, Rd #IMM Rd  
Performs a logical AND operation on a general register and another  
general register or immediate data.  
OR  
B/W/L  
B/W/L  
B/W/L  
Rd Rs Rd, Rd #IMM Rd  
Performs a logical OR operation on a general register and another  
general register or immediate data.  
XOR  
NOT  
Rd Rs Rd, Rd #IMM Rd  
Performs a logical exclusive OR operation on a general register and  
another general register or immediate data.  
¬ (Rd) (Rd)  
Takes the one's complement of general register contents.  
Note:  
*
Refers to the operand size.  
B:  
W:  
L:  
Byte  
Word  
Longword  
Table 2.5 Shift Instructions  
Instruction  
Size*  
Function  
SHAL  
SHAR  
B/W/L  
Rd (shift) Rd  
Performs an arithmetic shift on general register contents.  
SHLL  
SHLR  
B/W/L  
B/W/L  
B/W/L  
Rd (shift) Rd  
Performs a logical shift on general register contents.  
ROTL  
ROTR  
Rd (rotate) Rd  
Rotates general register contents.  
ROTXL  
ROTXR  
Rd (rotate) Rd  
Rotates general register contents through the carry flag.  
Note:  
*
Refers to the operand size.  
B:  
W:  
L:  
Byte  
Word  
Longword  
Rev. 3.00 Sep. 14, 2006 Page 25 of 408  
REJ09B0105-0300  
Section 2 CPU  
Table 2.6 Bit Manipulation Instructions (1)  
Instruction  
Size*  
Function  
BSET  
B
1 (<bit-No.> of <EAd>)  
Sets a specified bit in a general register or memory operand to 1. The bit  
number is specified by 3-bit immediate data or the lower three bits of a  
general register.  
BCLR  
BNOT  
BTST  
B
B
B
0 (<bit-No.> of <EAd>)  
Clears a specified bit in a general register or memory operand to 0. The  
bit number is specified by 3-bit immediate data or the lower three bits of  
a general register.  
¬ (<bit-No.> of <EAd>) (<bit-No.> of <EAd>)  
Inverts a specified bit in a general register or memory operand. The bit  
number is specified by 3-bit immediate data or the lower three bits of a  
general register.  
¬ (<bit-No.> of <EAd>) Z  
Tests a specified bit in a general register or memory operand and sets or  
clears the Z flag accordingly. The bit number is specified by 3-bit  
immediate data or the lower three bits of a general register.  
BAND  
B
B
C (<bit-No.> of <EAd>) C  
ANDs the carry flag with a specified bit in a general register or memory  
operand and stores the result in the carry flag.  
BIAND  
C ¬ (<bit-No.> of <EAd>) C  
ANDs the carry flag with the inverse of a specified bit in a general  
register or memory operand and stores the result in the carry flag.  
The bit number is specified by 3-bit immediate data.  
BOR  
B
B
C (<bit-No.> of <EAd>) C  
ORs the carry flag with a specified bit in a general register or memory  
operand and stores the result in the carry flag.  
BIOR  
C ¬ (<bit-No.> of <EAd>) C  
ORs the carry flag with the inverse of a specified bit in a general register  
or memory operand and stores the result in the carry flag.  
The bit number is specified by 3-bit immediate data.  
Note:  
*
Refers to the operand size.  
B: Byte  
Rev. 3.00 Sep. 14, 2006 Page 26 of 408  
REJ09B0105-0300  
Section 2 CPU  
Table 2.6 Bit Manipulation Instructions (2)  
Instruction  
Size*  
Function  
BXOR  
B
C (<bit-No.> of <EAd>) C  
XORs the carry flag with a specified bit in a general register or memory  
operand and stores the result in the carry flag.  
BIXOR  
B
C ¬ (<bit-No.> of <EAd>) C  
XORs the carry flag with the inverse of a specified bit in a general  
register or memory operand and stores the result in the carry flag.  
The bit number is specified by 3-bit immediate data.  
BLD  
B
B
(<bit-No.> of <EAd>) C  
Transfers a specified bit in a general register or memory operand to the  
carry flag.  
BILD  
¬ (<bit-No.> of <EAd>) C  
Transfers the inverse of a specified bit in a general register or memory  
operand to the carry flag.  
The bit number is specified by 3-bit immediate data.  
BST  
B
B
C (<bit-No.> of <EAd>)  
Transfers the carry flag value to a specified bit in a general register or  
memory operand.  
BIST  
¬ C (<bit-No.> of <EAd>)  
Transfers the inverse of the carry flag value to a specified bit in a general  
register or memory operand.  
The bit number is specified by 3-bit immediate data.  
Note:  
*
Refers to the operand size.  
B: Byte  
Rev. 3.00 Sep. 14, 2006 Page 27 of 408  
REJ09B0105-0300  
Section 2 CPU  
Table 2.7 Branch Instructions  
Instruction  
Size  
Function  
Bcc*  
Branches to a specified address if a specified condition is true. The  
branching conditions are listed below.  
Mnemonic  
BRA(BT)  
BRN(BF)  
BHI  
Description  
Always (true)  
Never (false)  
High  
Condition  
Always  
Never  
C Z = 0  
C Z = 1  
C = 0  
BLS  
Low or same  
BCC(BHS)  
Carry clear  
(high or same)  
BCS(BLO)  
BNE  
BEQ  
BVC  
BVS  
Carry set (low)  
Not equal  
C = 1  
Z = 0  
Equal  
Z = 1  
Overflow clear  
Overflow set  
Plus  
V = 0  
V = 1  
BPL  
N = 0  
BMI  
Minus  
N = 1  
BGE  
BLT  
Greater or equal  
Less than  
N V = 0  
N V = 1  
Z(N V) = 0  
Z(N V) = 1  
BGT  
BLE  
Greater than  
Less or equal  
JMP  
BSR  
JSR  
RTS  
Branches unconditionally to a specified address.  
Branches to a subroutine at a specified address.  
Branches to a subroutine at a specified address.  
Returns from a subroutine  
Note:  
*
Bcc is the general name for conditional branch instructions.  
Rev. 3.00 Sep. 14, 2006 Page 28 of 408  
REJ09B0105-0300  
Section 2 CPU  
Table 2.8 System Control Instructions  
Instruction  
TRAPA  
RTE  
Size*  
Function  
Starts trap-instruction exception handling.  
Returns from an exception-handling routine.  
Causes a transition to a power-down state.  
(EAs) CCR  
SLEEP  
LDC  
B/W  
Moves the source operand contents to the CCR. The CCR size is one  
byte, but in transfer from memory, data is read by word access.  
STC  
B/W  
CCR (EAd), EXR (EAd)  
Transfers the CCR contents to a destination location. The condition code  
register size is one byte, but in transfer to memory, data is written by  
word access.  
ANDC  
ORC  
B
CCR #IMM CCR, EXR #IMM EXR  
Logically ANDs the CCR with immediate data.  
B
CCR #IMM CCR, EXR #IMM EXR  
Logically ORs the CCR with immediate data.  
XORC  
NOP  
B
CCR #IMM CCR, EXR #IMM EXR  
Logically XORs the CCR with immediate data.  
PC + 2 PC  
Only increments the program counter.  
Note:  
*
Refers to the operand size.  
B:  
Byte  
W:  
Word  
Rev. 3.00 Sep. 14, 2006 Page 29 of 408  
REJ09B0105-0300  
Section 2 CPU  
Table 2.9 Block Data Transfer Instructions  
Instruction  
Size  
Function  
EEPMOV.B  
if R4L 0 then  
Repeat @ER5+ @ER6+,  
R4L–1 R4L  
Until R4L = 0  
else next;  
EEPMOV.W  
if R4 0 then  
Repeat @ER5+ @ER6+,  
R4–1 R4  
Until R4 = 0  
else next;  
Transfers a data block. Starting from the address set in ER5, transfers  
data for the number of bytes set in R4L or R4 to the address location set  
in ER6.  
Execution of the next instruction begins as soon as the transfer is  
completed.  
2.4.2  
Basic Instruction Formats  
H8/300H CPU instructions consist of 2-byte (1-word) units. An instruction consists of an  
operation field (op field), a register field (r field), an effective address extension (EA field), and a  
condition field (cc).  
Figure 2.7 shows examples of instruction formats.  
(1) Operation Field  
Indicates the function of the instruction, the addressing mode, and the operation to be carried out  
on the operand. The operation field always includes the first four bits of the instruction. Some  
instructions have two operation fields.  
(2) Register Field  
Specifies a general register. Address registers are specified by 3 bits, and data registers by 3 bits or  
4 bits. Some instructions have two register fields. Some have no register field.  
Rev. 3.00 Sep. 14, 2006 Page 30 of 408  
REJ09B0105-0300  
Section 2 CPU  
(3) Effective Address Extension  
8, 16, or 32 bits specifying immediate data, an absolute address, or a displacement. A24-bit  
address or displacement is treated as a 32-bit data in which the first 8 bits are 0 (H'00).  
(4) Condition Field  
Specifies the branching condition of Bcc instructions.  
(1) Operation field only  
op  
NOP, RTS, etc.  
(2) Operation field and register fields  
op  
rm  
rn  
ADD.B Rn, Rm, etc.  
(3) Operation field, register fields, and effective address extension  
op  
rn  
rm  
MOV.B @(d:16, Rn), Rm  
EA(disp)  
(4) Operation field, effective address extension, and condition field  
op cc EA(disp) BRA d:8  
Figure 2.7 Instruction Formats  
Rev. 3.00 Sep. 14, 2006 Page 31 of 408  
REJ09B0105-0300  
Section 2 CPU  
2.5  
Addressing Modes and Effective Address Calculation  
The following describes the H8/300H CPU. In this LSI, the upper eight bits are ignored in the  
generated 24-bit address, so the effective address is 16 bits.  
2.5.1  
Addressing Modes  
The H8/300H CPU supports the eight addressing modes listed in table 2.10. Each instruction uses  
a subset of these addressing modes. Addressing modes that can be used differ depending on the  
instruction. For details, refer to appendix A.4, Combinations of Instructions and Addressing  
Modes.  
Arithmetic and logic instructions can use the register direct and immediate modes. Data transfer  
instructions can use all addressing modes except program-counter relative and memory indirect.  
Bit manipulation instructions use register direct, register indirect, or the absolute addressing mode  
to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instructions) or  
immediate (3-bit) addressing mode to specify a bit number in the operand.  
Table 2.10 Addressing Modes  
No.  
1
Addressing Mode  
Symbol  
Register direct  
Rn  
2
Register indirect  
@ERn  
3
Register indirect with displacement  
@(d:16,ERn)/@(d:24,ERn)  
4
Register indirect with post-increment  
Register indirect with pre-decrement  
@ERn+  
@–ERn  
5
6
7
8
Absolute address  
Immediate  
@aa:8/@aa:16/@aa:24  
#xx:8/#xx:16/#xx:32  
@(d:8,PC)/@(d:16,PC)  
@@aa:8  
Program-counter relative  
Memory indirect  
(1) Register Direct—Rn  
The register field of the instruction specifies an 8-, 16-, or 32-bit general register containing the  
operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and E0 to E7  
can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers.  
Rev. 3.00 Sep. 14, 2006 Page 32 of 408  
REJ09B0105-0300  
Section 2 CPU  
(2) Register Indirect—@ERn  
The register field of the instruction code specifies an address register (ERn), the lower 24 bits of  
which contain the address of the operand on memory.  
(3) Register Indirect with Displacement—@(d:16, ERn) or @(d:24, ERn)  
A 16-bit or 24-bit displacement contained in the instruction is added to an address register (ERn)  
specified by the register field of the instruction, and the lower 24 bits of the sum the address of a  
memory operand. A 16-bit displacement is sign-extended when added.  
(4) Register Indirect with Post-Increment or Pre-Decrement—@ERn+ or @-ERn  
Register indirect with post-increment—@ERn+  
The register field of the instruction code specifies an address register (ERn) the lower 24 bits  
of which contains the address of a memory operand. After the operand is accessed, 1, 2, or 4 is  
added to the address register contents (32 bits) and the sum is stored in the address register.  
The value added is 1 for byte access, 2 for word access, or 4 for longword access. For the word  
or longword access, the register value should be even.  
Register indirect with pre-decrement—@-ERn  
The value 1, 2, or 4 is subtracted from an address register (ERn) specified by the register field  
in the instruction code, and the lower 24 bits of the result is the address of a memory operand.  
The result is also stored in the address register. The value subtracted is 1 for byte access, 2 for  
word access, or 4 for longword access. For the word or longword access, the register value  
should be even.  
(5) Absolute Address—@aa:8, @aa:16, @aa:24  
The instruction code contains the absolute address of a memory operand. The absolute address  
may be 8 bits long (@aa:8), 16 bits long (@aa:16), 24 bits long (@aa:24)  
For an 8-bit absolute address, the upper 16 bits are all assumed to be 1 (H'FFFF). For a 16-bit  
absolute address the upper 8 bits are a sign extension. A 24-bit absolute address can access the  
entire address space.  
The access ranges of absolute addresses for the group of this LSI are those shown in table 2.11,  
because the upper 8 bits are ignored.  
Rev. 3.00 Sep. 14, 2006 Page 33 of 408  
REJ09B0105-0300  
Section 2 CPU  
Table 2.11 Absolute Address Access Ranges  
Absolute Address  
8 bits (@aa:8)  
Access Range  
H'FF00 to H'FFFF  
H'0000 to H'FFFF  
H'0000 to H'FFFF  
16 bits (@aa:16)  
24 bits (@aa:24)  
(6) Immediate—#xx:8, #xx:16, or #xx:32  
The instruction contains 8-bit (#xx:8), 16-bit (#xx:16), or 32-bit (#xx:32) immediate data as an  
operand.  
The ADDS, SUBS, INC, and DEC instructions contain immediate data implicitly. Some bit  
manipulation instructions contain 3-bit immediate data in the instruction code, specifying a bit  
number. The TRAPA instruction contains 2-bit immediate data in its instruction code, specifying a  
vector address.  
(7) Program-Counter Relative—@(d:8, PC) or @(d:16, PC)  
This mode is used in the BSR instruction. An 8-bit or 16-bit displacement contained in the  
instruction is sign-extended and added to the 24-bit PC contents to generate a branch address. The  
PC value to which the displacement is added is the address of the first byte of the next instruction,  
so the possible branching range is –126 to +128 bytes (–63 to +64 words) or –32766 to +32768  
bytes (–16383 to +16384 words) from the branch instruction. The resulting value should be an  
even number.  
(8) Memory Indirect—@@aa:8  
This mode can be used by the JMP and JSR instructions. The instruction code contains an 8-bit  
absolute address specifying a memory operand. This memory operand contains a branch address.  
The memory operand is accessed by longword access. The first byte of the memory operand is  
ignored, generating a 24-bit branch address. Figure 2.8 shows how to specify branch address for in  
memory indirect mode. The upper bits of the absolute address are all assumed to be 0, so the  
address range is 0 to 255 (H'0000 to H'00FF).  
Note that the first part of the address range is also the exception vector area.  
Rev. 3.00 Sep. 14, 2006 Page 34 of 408  
REJ09B0105-0300  
Section 2 CPU  
Specified  
by @aa:8  
Dummy  
Branch address  
Figure 2.8 Branch Address Specification in Memory Indirect Mode  
Effective Address Calculation  
2.5.2  
Table 2.12 indicates how effective addresses are calculated in each addressing mode. In this LSI,  
the upper 8 bits of the effective address are ignored in order to generate a 16-bit effective address.  
Table 2.12 Effective Address Calculation (1)  
No  
1
Addressing Mode and Instruction Format  
Register direct(Rn)  
Effective Address Calculation  
Effective Address (EA)  
Operand is general register contents.  
op  
rm rn  
2
3
Register indirect(@ERn)  
31  
0
23  
0
General register contents  
General register contents  
op  
r
Register indirect with displacement  
@(d:16,ERn) or @(d:24,ERn)  
31  
31  
0
0
23  
0
op  
r
disp  
disp  
Sign extension  
Register indirect with post-increment or  
pre-decrement  
•Register indirect with post-increment @ERn+  
4
31  
31  
0
0
23  
0
General register contents  
op  
r
1, 2, or 4  
•Register indirect with pre-decrement @-ERn  
General register contents  
23  
0
op  
r
1, 2, or 4  
The value to be added or subtracted is 1 when the  
operand is byte size, 2 for word size, and 4 for  
longword size.  
Rev. 3.00 Sep. 14, 2006 Page 35 of 408  
REJ09B0105-0300  
Section 2 CPU  
Table 2.12 Effective Address Calculation (2)  
No  
5
Addressing Mode and Instruction Format  
Effective Address Calculation  
Effective Address (EA)  
Absolute address  
@aa:8  
23  
8 7  
0
0
op  
abs  
H'FFFF  
@aa:16  
23  
16 15  
op  
op  
abs  
Sign extension  
@aa:24  
23  
0
abs  
6
7
Immediate  
#xx:8/#xx:16/#xx:32  
op  
Operand is immediate data.  
IMM  
disp  
23  
0
0
Program-counter relative  
@(d:8,PC) @(d:16,PC)  
PC contents  
op  
23  
Sign  
disp  
extension  
23  
0
8
Memory indirect @@aa:8  
23  
8
7
0
0
op  
abs  
abs  
H'0000  
15  
23  
16 15  
H'00  
0
Memory contents  
[Legend]  
r, rm,rn : Register field  
op :  
Operation field  
Displacement  
Immediate data  
Absolute address  
disp :  
IMM :  
abs :  
Rev. 3.00 Sep. 14, 2006 Page 36 of 408  
REJ09B0105-0300  
Section 2 CPU  
2.6  
Basic Bus Cycle  
CPU operation is synchronized by a system clock (φ). The period from a rising edge of φ to the  
next rising edge is called one state. A bus cycle consists of two states or three states. The cycle  
differs depending on whether access is to on-chip memory or to on-chip peripheral modules.  
2.6.1  
Access to On-Chip Memory (RAM, ROM)  
Access to on-chip memory takes place in two states. The data bus width is 16 bits, allowing access  
in byte or word size. Figure 2.9 shows the on-chip memory access cycle.  
Bus cycle  
T1 state  
T2 state  
φ
Internal address bus  
Address  
Internal read signal  
Internal data bus  
(read access)  
Read data  
Internal write signal  
Internal data bus  
(write access)  
Write data  
Figure 2.9 On-Chip Memory Access Cycle  
Rev. 3.00 Sep. 14, 2006 Page 37 of 408  
REJ09B0105-0300  
Section 2 CPU  
2.6.2  
On-Chip Peripheral Modules  
On-chip peripheral modules are accessed in two states or three states. The data bus width is 8 bits  
or 16 bits depending on the register. For description on the data bus width and number of  
accessing states of each register, refer to section 19.1, Register Addresses (Address Order).  
Registers with 16-bit data bus width can be accessed by word size only. Registers with 8-bit data  
bus width can be accessed by byte or word size. When a register with 8-bit data bus width is  
accessed by word size, a bus cycle occurs twice. In two-state access, the operation timing is the  
same as that for on-chip memory.  
Figure 2.10 shows the operation timing in the case of three-state access to an on-chip peripheral  
module.  
Bus cycle  
T1 state  
T2 state  
T3 state  
φ
Internal  
address bus  
Address  
Internal  
read signal  
Internal  
data bus  
Read data  
(read access)  
Internal  
write signal  
Internal  
data bus  
Write data  
(write access)  
Figure 2.10 On-Chip Peripheral Module Access Cycle (3-State Access)  
Rev. 3.00 Sep. 14, 2006 Page 38 of 408  
REJ09B0105-0300  
Section 2 CPU  
2.7  
CPU States  
There are four CPU states: the reset state, program execution state, program halt state, and  
exception-handling state. The program execution state includes active mode. In the program halt  
state there are a sleep mode, and standby mode. These states are shown in figure 2.11. Figure 2.12  
shows the state transitions. For details on program execution state and program halt state, refer to  
section 6, Power-Down Modes. For details on exception processing, refer to section 3, Exception  
Handling.  
CPU state  
Reset state  
The CPU is initialized  
Program  
execution state  
Active  
(high speed) mode  
The CPU executes successive program  
instructions at high speed,  
synchronized by the system clock  
Sleep mode  
Program halt state  
Power-down  
modes  
A state in which some  
or all of the chip  
functions are stopped  
to conserve power  
Standby mode  
Exception-  
handling state  
A transient state in which the CPU changes  
the processing flow due to a reset or an interrupt  
Figure 2.11 CPU Operation States  
Rev. 3.00 Sep. 14, 2006 Page 39 of 408  
REJ09B0105-0300  
Section 2 CPU  
Reset cleared  
Reset occurs  
Reset state  
Exception-handling state  
Reset  
occurs  
Interrupt  
source  
Reset  
occurs  
Interrupt  
source  
Exception-  
handling  
complete  
Program halt state  
Program execution state  
SLEEP instruction executed  
Figure 2.12 State Transitions  
2.8  
Usage Notes  
2.8.1  
Notes on Data Access to Empty Areas  
The address space of this LSI includes empty areas in addition to the ROM, RAM, and on-chip  
I/O registers areas available to the user. When data is transferred from CPU to empty areas, the  
transferred data will be lost. This action may also cause the CPU to malfunction. When data is  
transferred from an empty area to CPU, the contents of the data cannot be guaranteed.  
2.8.2  
EEPMOV Instruction  
EEPMOV is a block-transfer instruction and transfers the byte size of data indicated by R4L,  
which starts from the address indicated by R5, to the address indicated by R6. Set R4L and R6 so  
that the end address of the destination address (value of R6 + R4L) does not exceed H'FFFF (the  
value of R6 must not change from H'FFFF to H'0000 during execution).  
2.8.3  
Bit Manipulation Instruction  
The BSET, BCLR, BNOT, BST, and BIST instructions read data from the specified address in  
byte units, manipulate the data of the target bit, and write data to the same address again in byte  
units. Special care is required when using these instructions in cases where two registers are  
assigned to the same address or when a bit is directly manipulated for a port, because this may  
rewrite data of a bit other than the bit to be manipulated.  
Rev. 3.00 Sep. 14, 2006 Page 40 of 408  
REJ09B0105-0300  
Section 2 CPU  
(1) Bit Manipulation for Two Registers Assigned to the Same Address  
Example 1: Bit manipulation for the timer load register and timer counter  
(Applicable to timer B1, not available for the H8/36902 Group.)  
Figure 2.13 shows an example of a timer in which two timer registers are assigned to the same  
address. When a bit manipulation instruction accesses the timer load register and timer counter of  
a reloadable timer, since these two registers share the same address, the following operations takes  
place.  
1. Data is read in byte units.  
2. The CPU sets or resets the bit to be manipulated with the bit manipulation instruction.  
3. The written data is written again in byte units to the timer load register.  
The timer is counting, so the value read is not necessarily the same as the value in the timer load  
register. As a result, bits other than the intended bit in the timer counter may be modified and the  
modified value may be written to the timer load register.  
Read  
Count clock  
Timer counter  
Reload  
Write  
Timer load register  
Internal bus  
Figure 2.13 Example of Timer Configuration with Two Registers Allocated to  
Same Address  
Rev. 3.00 Sep. 14, 2006 Page 41 of 408  
REJ09B0105-0300  
Section 2 CPU  
Example 2: The BSET instruction is executed for port 5.  
P57 and P56 are input pins, with a low-level signal input at P57 and a high-level signal input at  
P56. P55 to P50 are output pins and output low-level signals. An example to output a high-level  
signal at P50 with a BSET instruction is shown below.  
[Prior to executing BSET]  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
PCR5  
PDR5  
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
[BSET instruction executed]  
BSET #0, @PDR5  
The BSET instruction is executed for port 5.  
[After executing BSET]  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
High  
level  
PCR5  
PDR5  
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
1
[Description on operation]  
1. When the BSET instruction is executed, first the CPU reads port 5. Since P57 and P56 are  
input pins, the CPU reads the pin states (low-level and high-level input).  
P55 to P50 are output pins, so the CPU reads the value in PDR5. In this example PDR5 has a  
value of H'80, but the value read by the CPU is H'40.  
2. Next, the CPU sets bit 0 of the read data to 1, changing the PDR5 data to H'41.  
3. Finally, the CPU writes H'41 to PDR5, completing execution of BSET.  
Rev. 3.00 Sep. 14, 2006 Page 42 of 408  
REJ09B0105-0300  
Section 2 CPU  
As a result of the BSET instruction, bit 0 in PDR5 becomes 1, and P50 outputs a high-level signal.  
However, bits 7 and 6 of PDR5 end up with different values. To prevent this problem, store a copy  
of the PDR5 data in a work area in memory. Perform the bit manipulation on the data in the work  
area, then write this data to PDR5.  
[Prior to executing BSET]  
MOV.B  
MOV.B  
MOV.B  
#80, R0L  
R0L, @RAM0  
R0L, @PDR5  
The PDR5 value (H'80) is written to a work area in  
memory (RAM0) as well as to PDR5.  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
PCR5  
PDR5  
RAM0  
0
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
[BSET instruction executed]  
BSET  
#0,  
@RAM0  
The BSET instruction is executed designating the PDR5  
work area (RAM0).  
[After executing BSET]  
MOV.B  
MOV.B  
@RAM0, R0L  
R0L, @PDR5  
The work area (RAM0) value is written to PDR5.  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
High  
level  
PCR5  
PDR5  
RAM0  
0
1
1
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
1
Rev. 3.00 Sep. 14, 2006 Page 43 of 408  
REJ09B0105-0300  
Section 2 CPU  
(2) Bit Manipulation in a Register Containing a Write-Only Bit  
Example 3: BCLR instruction executed designating port 5 control register PCR5  
P57 and P56 are input pins, with a low-level signal input at P57 and a high-level signal input at  
P56. P55 to P50 are output pins that output low-level signals. An example of setting the P50 pin as  
an input pin by the BCLR instruction is shown below. It is assumed that a high-level signal will be  
input to this input pin.  
[Prior to executing BCLR]  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
PCR5  
PDR5  
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
[BCLR instruction executed]  
BCLR #0, @PCR5  
The BCLR instruction is executed for PCR5.  
[After executing BCLR]  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
High  
level  
PCR5  
PDR5  
1
1
1
0
1
0
1
0
1
0
1
0
1
0
0
0
[Description on operation]  
1. When the BCLR instruction is executed, first the CPU reads PCR5. Since PCR5 is a write-only  
register, the CPU reads a value of H'FF, even though the PCR5 value is actually H'3F.  
2. Next, the CPU clears bit 0 in the read data to 0, changing the data to H'FE.  
3. Finally, H'FE is written to PCR5 and BCLR instruction execution ends.  
Rev. 3.00 Sep. 14, 2006 Page 44 of 408  
REJ09B0105-0300  
Section 2 CPU  
As a result of this operation, bit 0 in PCR5 becomes 0, making P50 an input port. However, bits 7  
and 6 in PCR5 change to 1, so that P57 and P56 change from input pins to output pins. To prevent  
this problem, store a copy of the PCR5 data in a work area in memory and manipulate data of the  
bit in the work area, then write this data to PCR5.  
[Prior to executing BCLR]  
MOV.B  
MOV.B  
MOV.B  
#3F, R0L  
R0L, @RAM0  
R0L, @PCR5  
The PCR5 value (H'3F) is written to a work area in  
memory (RAM0) as well as to PCR5.  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
PCR5  
PDR5  
RAM0  
0
1
0
0
0
0
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
[BCLR instruction executed]  
BCLR #0, @RAM0  
The BCLR instructions executed for the PCR5 work area  
(RAM0).  
[After executing BCLR]  
MOV.B  
MOV.B  
@RAM0, R0L  
R0L, @PCR5  
The work area (RAM0) value is written to PCR5.  
P57  
P56  
P55  
P54  
P53  
P52  
P51  
P50  
Input/output  
Pin state  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
level  
High  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
Low  
level  
High  
level  
PCR5  
PDR5  
RAM0  
0
1
0
0
0
0
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
0
0
Rev. 3.00 Sep. 14, 2006 Page 45 of 408  
REJ09B0105-0300  
Section 2 CPU  
Rev. 3.00 Sep. 14, 2006 Page 46 of 408  
REJ09B0105-0300  
Section 3 Exception Handling  
Section 3 Exception Handling  
Exception handling may be caused by a reset, a trap instruction (TRAPA), or interrupts.  
Reset  
A reset has the highest exception priority. Exception handling starts as soon as the reset is  
cleared by the RES pin. The chip is also reset when the watchdog timer overflows, and  
exception handling starts. Exception handling is the same as exception handling by the RES  
pin.  
Trap Instruction  
Exception handling starts when a trap instruction (TRAPA) is executed. The TRAPA  
instruction generates a vector address corresponding to a vector number from 0 to 3, as  
specified in the instruction code. Exception handling can be executed at all times in the  
program execution state.  
Interrupts  
External interrupts other than NMI and internal interrupts other than address break are masked  
by the I bit in CCR, and kept masked while the I bit is set to 1. Exception handling starts when  
the current instruction or exception handling ends, if an interrupt request has been issued.  
3.1  
Exception Sources and Vector Address  
Table 3.1 shows the vector addresses and priority of each exception handling. When more than  
one interrupt is requested, handling is performed from the interrupt with the highest priority.  
Table 3.1 Exception Sources and Vector Address  
Vector  
Relative Module  
RES pin  
Exception Sources  
Number  
Vector Address  
Priority  
Reset  
0
H'0000 to H'0001  
High  
Watchdog timer  
Reserved for system use  
NMI  
1 to 6  
7
H'0002 to H'000D  
H'000E to H'000F  
External interrupt  
pin  
CPU  
Trap instruction #0  
Trap instruction #1  
Trap instruction #2  
Trap instruction #3  
8
H'0010 to H'0011  
H'0012 to H'0013  
H'0014 to H'0015  
H'0016 to H'0017  
9
10  
11  
Low  
Rev. 3.00 Sep. 14, 2006 Page 47 of 408  
REJ09B0105-0300  
Section 3 Exception Handling  
Vector  
Relative Module  
Address break  
CPU  
Exception Sources  
Number  
Vector Address  
H'0018 to H'0019  
H'001A to H'001B  
Priority  
Break conditions satisfied  
12  
13  
High  
Direct transition by executing  
the SLEEP instruction  
External interrupt  
pin  
IRQ0, low-voltage detection  
interrupt  
14  
H'001C to H'001D  
Reserved for system use  
15, 16  
17  
H'001E to H'0021  
H'0022 to H'0023  
H'0024 to H'0025  
H'0026 to H'0029  
H'002A to H'002B  
External interrupt  
pin  
IRQ3  
WKP  
18  
Reserved for system use  
19, 20  
21  
Timer W  
Timer W input capture A/  
compare match A  
Timer W input capture B/  
compare match B  
Timer W input capture C/  
compare match C  
Timer W input capture D/  
compare match D  
Timer W overflow  
Timer V  
SCI3  
Timer V compare match A  
Timer V compare match B  
Timer V overflow  
22  
23  
H'002C to H'002D  
H'002E to H'002F  
SCI3 receive data full  
SCI3 transmit data empty  
SCI3 transmit end  
SCI3 receive error  
IIC2*  
IIC_2 transmit data empty  
IIC_2 transmit end  
24  
H'0030 to H'0031  
IIC_2 receive error  
A/D converter  
A/D conversion end  
25  
H'0032 to H'0033  
H'0034 to H'0039  
H'003A to H'003B  
H'003C to H'0043  
H'0044 to H'0045  
Reserved for system use  
Timer B1 overflow  
26 to 28  
29  
Timer B1*  
Reserved for system use  
30 to 33  
Clock switch  
Clock switch (external clock to 34  
on-chip oscillator clock)  
Low  
Note:  
*
Available for the H8/36912 Group only.  
Rev. 3.00 Sep. 14, 2006 Page 48 of 408  
REJ09B0105-0300  
Section 3 Exception Handling  
3.2  
Register Descriptions  
Interrupts are controlled by the following registers.  
Interrupt edge select register 1 (IEGR1)  
Interrupt edge select register 2 (IEGR2)  
Interrupt enable register 1 (IENR1)  
Interrupt enable register 2 (IENR2)  
Interrupt flag register 1 (IRR1)  
Interrupt flag register 2 (IRR2)  
Wakeup interrupt flag register (IWPR)  
3.2.1  
Interrupt Edge Select Register 1 (IEGR1)  
IEGR1 selects the direction of an edge that generates interrupt requests of the IRQ3 and IRQ0  
pins.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
0
Reserved  
This bit is always read as 0.  
Reserved  
6 to 4  
3
All 1  
0
These bits are always read as 1.  
IRQ3 Edge Select  
IEG3  
R/W  
0: Falling edge of IRQ3 pin input is detected  
1: Rising edge of IRQ3 pin input is detected  
Reserved  
2, 1  
0
All 0  
0
These bits are always read as 0.  
IRQ0 Edge Select  
IEG0  
R/W  
0: Falling edge of IRQ0 pin input is detected  
1: Rising edge of IRQ0 pin input is detected  
Rev. 3.00 Sep. 14, 2006 Page 49 of 408  
REJ09B0105-0300  
Section 3 Exception Handling  
3.2.2  
Interrupt Edge Select Register 2 (IEGR2)  
IEGR2 selects the direction of an edge that generates interrupt requests of the ADTRG and WKP5  
pins.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7, 6  
All 1  
0
Reserved  
These bits are always read as 1.  
WKP5 Edge Select  
5
WPEG5  
R/W  
0: Falling edge of WKP5 (ADTRG) pin input is detected  
1: Rising edge of WKP5 (ADTRG) pin input is detected  
Reserved  
4 to 0  
All 0  
These bits are always read as 0.  
3.2.3  
Interrupt Enable Register 1 (IENR1)  
IENR1 enables direct transition interrupts and external pin interrupts.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
IENDT  
0
R/W  
Direct Transfer Interrupt Enable  
When this bit is set to 1, direct transition interrupt  
requests are enabled.  
6
5
0
0
Reserved  
This bit is always read as 0.  
Wakeup Interrupt Enable  
IENWP  
R/W  
This bit is an enable bit of the WKP5 pin. When this bit is  
set to 1, interrupt requests are enabled.  
4
3
1
0
Reserved  
This bit is always read as 1.  
IRQ3 Interrupt Enable  
IEN3  
R/W  
When this bit is set to 1, interrupt requests of the IRQ3  
pin are enabled.  
2, 1  
All 0  
Reserved  
These bits are always read as 0.  
Rev. 3.00 Sep. 14, 2006 Page 50 of 408  
REJ09B0105-0300  
Section 3 Exception Handling  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
0
IEN0  
0
R/W  
IRQ0 Interrupt Enable  
When this bit is set to 1, interrupt requests of the IRQ0  
pin are enabled.  
3.2.4  
Interrupt Enable Register 2 (IENR2)  
IENR2 enables timer B1 interrupts.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
0
0
Reserved  
This bit is always read as 0.  
Reserved  
6
R/W  
R/W  
Although this bit is readable/writable, it should not be set  
to 1.  
5
IENTB1  
0
Timer B1 Interrupt Enable  
When this bit is set to 1, overflow interrupt requests of  
timer B1 are enabled.  
4 to 0  
All 1  
Reserved  
These bits are always read as 1.  
When disabling interrupts by clearing bits in an interrupt enable register, or when clearing bits in  
an interrupt flag register, always do so while interrupts are masked (I = 1). If the above clear  
operations are performed while I = 0, and as a result a conflict arises between the clear instruction  
and an interrupt request, exception handling for the interrupt will be executed after the clear  
instruction has been executed.  
Rev. 3.00 Sep. 14, 2006 Page 51 of 408  
REJ09B0105-0300  
Section 3 Exception Handling  
3.2.5  
Interrupt Flag Register 1 (IRR1)  
IRR1 is a status flag register for direct transition interrupts, and IRQ3 and IRQ0 interrupt requests.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
IRRDT  
0
R/W  
Direct Transfer Interrupt Request Flag  
[Setting condition]  
When a direct transfer is made by executing a SLEEP  
instruction while DTON in SYSCR2 is set to 1.  
[Clearing condition]  
When IRRDT is cleared by writing 0  
6
0
Reserved  
This bit is always read as 0.  
Reserved  
5, 4  
3
All 1  
0
These bits are always read as 1.  
IRQ3 Interrupt Request Flag  
[Setting condition]  
IRRI3  
R/W  
When IRQ3 pin is designated for interrupt input and  
the designated signal edge is detected  
[Clearing condition]  
When IRRI3 is cleared by writing 0  
2, 1  
0
All 0  
0
Reserved  
These bits are always read as 0.  
IRQ0 Interrupt Request Flag  
[Setting condition]  
IRRl0  
R/W  
When IRQ0 pin is designated for interrupt input and  
the designated signal edge is detected  
[Clearing condition]  
When IRRI0 is cleared by writing 0  
Rev. 3.00 Sep. 14, 2006 Page 52 of 408  
REJ09B0105-0300  
Section 3 Exception Handling  
3.2.6  
Interrupt Flag Register 2 (IRR2)  
IRR2 is a status flag register for timer B1 interrupt requests.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
0
Reserved  
This bit is always read as 0.  
Reserved  
6
5
IRRTB1  
0
R/W  
Timer B1 Interrupt Request Flag  
[Setting condition]  
When timer B1 overflows  
[Clearing condition]  
When IRRTB1 is cleared by writing 0  
4 to 0  
All 1  
Reserved  
These bits are always read as 1.  
3.2.7  
Wakeup Interrupt Flag Register (IWPR)  
IWPR is a status flag register for WKP5 interrupt requests.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7, 6  
All 1  
0
Reserved  
These bits are always read as 1.  
WKP5 Interrupt Request Flag  
[Setting condition]  
5
IWPF5  
R/W  
When WKP5 pin is designated for interrupt input and  
the designated signal edge is detected.  
[Clearing condition]  
When IWPF5 is cleared by writing 0  
4 to 0  
All 0  
Reserved  
These bits are always read as 0.  
Rev. 3.00 Sep. 14, 2006 Page 53 of 408  
REJ09B0105-0300  
Section 3 Exception Handling  
3.3  
Reset Exception Handling  
When the RES pin goes low, all processing halts and this LSI enters the reset. The internal state of  
the CPU and the registers of the on-chip peripheral modules are initialized by the reset. To ensure  
that this LSI is reset at power-up, hold the RES pin low for the specified period. To reset the chip  
during operation, hold the RES pin low for the specified period. For details, refer to section 17,  
Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuits. When the RES pin goes  
high after being held low for a certain period, this LSI starts reset exception handling. The reset  
exception handling sequence is shown in figure 3.1.  
The reset exception handling sequence is as follows.  
1. Set the I bit in the condition code register (CCR) to 1.  
2. The CPU generates a reset exception handling vector address (from H'0000 to H'0001), the  
data in that address is sent to the program counter (PC) as the start address, and program  
execution starts from that address.  
Rev. 3.00 Sep. 14, 2006 Page 54 of 408  
REJ09B0105-0300  
Section 3 Exception Handling  
3.4  
Interrupt Exception Handling  
3.4.1  
External Interrupts  
As external interrupts, there are NMI, IRQ3, IRQ0, and WKP5 interrupts.  
(1) NMI Interrupt  
NMI interrupt is requested by input falling edge to the NMI pin. NMI is the highest interrupt, and  
can always be accepted without depending on the I bit value in CCR.  
(2) IRQ3 and IRQ0 Interrupts  
IRQ3 and IRQ0 interrupts are requested by input signals to the IRQ3 and IRQ0 pins. These  
interrupts are given different vector addresses, and are detected individually by either rising edge  
sensing or falling edge sensing, depending on the settings of the IEG3 and IEG0 bits in IEGR1.  
When the IRQ3 and IRQ0 pins are designated for interrupt input in PMR1 and the designated  
signal edge is input, the corresponding bit in IRR1 is set to 1, requesting the CPU of an interrupt.  
These interrupts can be masked by setting the IEN3 and IEN0 bits in IENR1.  
(3) WKP Interrupt  
WKP interrupt is requested by an input signal to the WKP5 pin. This interrupt is detected by either  
rising edge sensing or falling edge sensing, depending on the setting of the WPEG5 bit in IEGR2.  
When the WKP5 pin is designated for interrupt input in PMR5 and the designated signal edge is  
input, the corresponding bit in IWPR is set to 1, requesting the CPU of an interrupt. This interrupt  
can be masked by setting the IENWP bit in IENR1.  
Rev. 3.00 Sep. 14, 2006 Page 55 of 408  
REJ09B0105-0300  
Section 3 Exception Handling  
Reset cleared  
Initial program  
instruction prefetch  
Vector fetch Internal  
processing  
RES  
φ
Internal  
address bus  
(1)  
(2)  
Internal read  
signal  
Internal write  
signal  
Internal data  
bus (16 bits)  
(2)  
(3)  
(1) Reset exception handling vector address (H'0000)  
(2) Program start address  
(3) Initial program instruction  
Figure 3.1 Reset Sequence  
3.4.2  
Internal Interrupts  
Each on-chip peripheral module has a flag to show the interrupt request status and the enable bit to  
enable or disable the interrupt. For direct transfer interrupt requests generated by execution of a  
SLEEP instruction, this function is included in IRR1 and IENR1.  
When an on-chip peripheral module requests an interrupt, the corresponding interrupt request  
status flag is set to 1, requesting the CPU of an interrupt. When this interrupt is accepted, the I bit  
is set to 1 in CCR. These interrupts can be masked by writing 0 to clear the corresponding enable  
bit.  
Rev. 3.00 Sep. 14, 2006 Page 56 of 408  
REJ09B0105-0300  
Section 3 Exception Handling  
3.4.3  
Interrupt Handling Sequence  
Interrupts are controlled by an interrupt controller.  
Interrupt operation is described as follows.  
1. If an interrupt occurs while the NMI or interrupt enable bit is set to 1, an interrupt request  
signal is sent to the interrupt controller.  
2. When multiple interrupt requests are generated, the interrupt controller requests to the CPU for  
the interrupt handling with the highest priority at that time according to table 3.1. Other  
interrupt requests are held pending.  
3. The CPU accepts the NMI or address break without depending on the I bit value. Other  
interrupt requests are accepted, if the I bit is cleared to 0 in CCR; if the I bit is set to 1, the  
interrupt request is held pending.  
4. If the CPU accepts the interrupt after processing of the current instruction is completed,  
interrupt exception handling will begin. First, both PC and CCR are pushed onto the stack. The  
state of the stack at this time is shown in figure 3.2. The PC value pushed onto the stack is the  
address of the first instruction to be executed upon return from interrupt handling.  
5. Then, the I bit of CCR is set to 1, masking further interrupts excluding the NMI and address  
break. Upon return from interrupt handling, the values of I bit and other bits in CCR will be  
restored and returned to the values prior to the start of interrupt exception handling.  
6. Next, the CPU generates the vector address corresponding to the accepted interrupt, and  
transfers the address to PC as a start address of the interrupt handling-routine. Then a program  
starts executing from the address indicated in PC.  
Rev. 3.00 Sep. 14, 2006 Page 57 of 408  
REJ09B0105-0300  
Section 3 Exception Handling  
Figure 3.3 shows a typical interrupt sequence where the program area is in the on-chip ROM and  
the stack area is in the on-chip RAM.  
Reset cleared  
Initial program  
instruction prefetch  
Vector fetch Internal  
processing  
RES  
φ
Internal  
address bus  
(1)  
(2)  
Internal read  
signal  
Internal write  
signal  
Internal data  
bus (16 bits)  
(2)  
(3)  
(1) Reset exception handling vector address (H'0000)  
(2) Program start address  
(3) Initial program instruction  
Figure 3.2 Stack Status after Exception Handling  
Rev. 3.00 Sep. 14, 2006 Page 58 of 408  
REJ09B0105-0300  
Section 3 Exception Handling  
3.4.4  
Interrupt Response Time  
Table 3.2 shows the number of wait states after an interrupt request flag is set until the first  
instruction of the interrupt handling-routine is executed.  
Table 3.2 Interrupt Wait States  
Item  
States  
Total  
Waiting time for completion of executing instruction*  
Saving of PC and CCR to stack  
Vector fetch  
1 to 23  
15 to 37  
4
2
4
4
Instruction fetch  
Internal processing  
Note:  
*
EEPMOV instruction is not included.  
Rev. 3.00 Sep. 14, 2006 Page 59 of 408  
REJ09B0105-0300  
Section 3 Exception Handling  
Figure 3.3 Interrupt Sequence  
Rev. 3.00 Sep. 14, 2006 Page 60 of 408  
REJ09B0105-0300  
Section 3 Exception Handling  
3.5  
Usage Notes  
3.5.1  
Interrupts after Reset  
If an interrupt is accepted after a reset and before the stack pointer (SP) is initialized, the PC and  
CCR will not be saved correctly, leading to a program crash. To prevent this, all interrupt requests,  
including NMI, are disabled immediately after a reset. Since the first instruction of a program is  
always executed immediately after the reset state ends, make sure that this instruction initializes  
the stack pointer (example: MOV.W #xx: 16, SP).  
3.5.2  
Notes on Stack Area Use  
When word data is accessed, the least significant bit of the address is regarded as 0. Access to the  
stack always takes place in word size, so the stack pointer (SP: R7) should never indicate an odd  
address. Use PUSH Rn (MOV.W Rn, @–SP) or POP Rn (MOV.W @SP+, Rn) to save or restore  
register values.  
3.5.3  
Notes on Rewriting Port Mode Registers  
When a port mode register is rewritten to switch the functions of external interrupt pins, IRQ3,  
IRQ0, and WKP5, the interrupt request flag may be set to 1.  
When switching a pin function, mask the interrupt before setting the bit in the port mode register.  
After accessing the port mode register, execute at least one instruction (e.g., NOP), then clear the  
interrupt request flag from 1 to 0.  
Figure 3.4 shows a port mode register setting and interrupt request flag clearing procedure.  
Interrupts masked. (Another possibility  
is to disable the relevant interrupt in  
interrupt enable register 1.)  
CCR I bit  
1
Set port mode register bit  
After setting the port mode register bit,  
first execute at least one instruction  
(e.g., NOP), then clear the interrupt  
request flag to 0  
Execute NOP instruction  
Clear interrupt request flag to 0  
Interrupt mask cleared  
CCR I bit  
0
Figure 3.4 Port Mode Register Setting and Interrupt Request Flag Clearing Procedure  
Rev. 3.00 Sep. 14, 2006 Page 61 of 408  
REJ09B0105-0300  
Section 3 Exception Handling  
Rev. 3.00 Sep. 14, 2006 Page 62 of 408  
REJ09B0105-0300  
Section 4 Address Break  
Section 4 Address Break  
The address break simplifies on-board program debugging. It requests an address break interrupt  
when the set break condition is satisfied. The interrupt request is not affected by the I bit of CCR.  
Break conditions that can be set include instruction execution at a specific address and a  
combination of access and data at a specific address. With the address break function, the  
execution start point of a program containing a bug is detected and execution is branched to the  
correcting program. Figure 4.1 shows a block diagram of the address break.  
Internal address bus  
Comparator  
BARH  
BARL  
ABRKCR  
ABRKSR  
Interrupt  
generation  
control circuit  
BDRH  
BDRL  
Comparator  
Interrupt  
[Legend]  
BARH, BARL: Break address register  
BDRH, BDRL: Break data register  
ABRKCR:  
ABRKSR:  
Address break control register  
Address break status register  
Figure 4.1 Block Diagram of Address Break  
ABK0001A_000020020200  
Rev. 3.00 Sep. 14, 2006 Page 63 of 408  
REJ09B0105-0300  
Section 4 Address Break  
4.1  
Register Descriptions  
Address break has the following registers.  
Address break control register (ABRKCR)  
Address break status register (ABRKSR)  
Break address register (BARH, BARL)  
Break data register (BDRH, BDRL)  
4.1.1  
Address Break Control Register (ABRKCR)  
ABRKCR sets address break conditions.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
RTINTE  
1
R/W  
RTE Interrupt Enable  
When this bit is 0, the interrupt immediately after  
executing RTE is masked and then one instruction must  
be executed. When this bit is 1, the interrupt is not  
masked.  
6
5
CSEL1  
CSEL0  
0
0
R/W  
R/W  
Condition Select 1 and 0  
These bits set address break conditions.  
00: Instruction execution cycle  
01: CPU data read cycle  
10: CPU data write cycle  
11: CPU data read/write cycle  
Address Compare Condition Select 2 to 0  
4
3
2
ACMP2  
ACMP1  
ACMP0  
0
0
0
R/W  
R/W  
R/W  
These bits comparison condition between the address set  
in BAR and the internal address bus.  
000: Compares 16-bit addresses  
001: Compares upper 12-bit addresses  
010: Compares upper 8-bit addresses  
011: Compares upper 4-bit addresses  
1XX: Reserved (setting prohibited)  
Rev. 3.00 Sep. 14, 2006 Page 64 of 408  
REJ09B0105-0300  
Section 4 Address Break  
Initial  
Bit  
1
Bit Name Value  
R/W  
R/W  
R/W  
Description  
DCMP1  
DCMP0  
0
0
Data Compare Condition Select 1 and 0  
0
These bits set the comparison condition between the data  
set in BDR and the internal data bus.  
00: No data comparison  
01: Compares lower 8-bit data between BDRL and data  
bus  
10: Compares upper 8-bit data between BDRH and data  
bus  
11: Compares 16-bit data between BDR and data bus  
[Legend]  
X:  
Don't care  
When an address break is set in the data read cycle or data write cycle, the data bus used will  
depend on the combination of the byte/word access and address. Table 4.1 shows the access and  
data bus used. When an I/O register space with an 8-bit data bus width is accessed in word size, a  
byte access is generated twice. For details on data widths of each register, see section 19.1,  
Register Addresses (Address Order).  
Table 4.1 Access and Data Bus Used  
Word Access  
Byte Access  
Even Address Odd Address Even Address Odd Address  
ROM space  
RAM space  
Upper 8 bits  
Upper 8 bits  
Lower 8 bits  
Lower 8 bits  
Upper 8 bits  
Upper 8 bits  
Upper 8 bits  
Upper 8 bits  
Upper 8 bits  
Upper 8 bits  
Upper 8 bits  
I/O register with 8-bit data bus Upper 8 bits  
width  
I/O register with 16-bit data  
bus width  
Upper 8 bits  
Lower 8 bits  
Rev. 3.00 Sep. 14, 2006 Page 65 of 408  
REJ09B0105-0300  
Section 4 Address Break  
4.1.2  
Address Break Status Register (ABRKSR)  
ABRKSR consists of the address break interrupt flag and the address break interrupt enable bit.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
ABIF  
0
R/W  
Address Break Interrupt Flag  
[Setting condition]  
When the condition set in ABRKCR is satisfied  
[Clearing condition]  
When 0 is written after ABIF=1 is read  
6
ABIE  
0
R/W  
Address Break Interrupt Enable  
When this bit is 1, an address break interrupt request is  
enabled.  
5 to 0  
All 1  
Reserved  
These bits are always read as 1.  
4.1.3  
Break Address Registers (BARH, BARL)  
BARH and BARL are 16-bit read/write registers that set the address for generating an address  
break interrupt. When setting the address break condition to the instruction execution cycle, set the  
first byte address of the instruction. The initial value of this register is H'FFFF.  
4.1.4  
Break Data Registers (BDRH, BDRL)  
BDRH and BDRL are 16-bit read/write registers that set the data for generating an address break  
interrupt. BDRH is compared with the upper 8-bit data bus. BDRL is compared with the lower 8-  
bit data bus. When memory or registers are accessed by byte, the upper 8-bit data bus is used for  
even and odd addresses in the data transmission. Therefore, comparison data must be set in BDRH  
for byte access. For word access, the data bus used depends on the address. See section 4.1.1,  
Address Break Control Register (ABRKCR), for details. The initial value of this register is  
undefined.  
Rev. 3.00 Sep. 14, 2006 Page 66 of 408  
REJ09B0105-0300  
Section 4 Address Break  
4.2  
Operation  
When the ABIF and ABIE bits in ABRKSR are set to 1, the address break function generates an  
interrupt request to the CPU. The ABIF bit in ABRKSR is set to 1 by the combination of the  
address set in BAR, the data set in BDR, and the conditions set in ABRKCR. When the interrupt  
request is accepted, interrupt exception handling starts after the instruction being executed ends.  
The address break interrupt is not masked because of the I bit in CCR of the CPU.  
The following figures show the operation examples of the address break interrupt setting.  
When the address break is specified in instruction execution cycle  
Register setting  
• ABRKCR = H'80  
• BAR = H'025A  
Program  
0258 NOP  
* 025A NOP  
025C MOV.W @H'025A,R0  
0260 NOP  
Underline indicates the address  
to be stacked.  
0262 NOP  
:
:
NOP  
NOP  
MOV  
MOV  
instruc- instruc- instruc- instruc-  
tion  
tion  
tion 1  
tion 2  
Internal  
prefetch prefetch prefetch prefetch processing  
Stack save  
φ
Address  
bus  
0258  
025A  
025C  
025E  
SP-2  
SP-4  
Interrupt  
request  
Interrupt acceptance  
Figure 4.2 Address Break Interrupt Operation Example (1)  
Rev. 3.00 Sep. 14, 2006 Page 67 of 408  
REJ09B0105-0300  
Section 4 Address Break  
When the address break is specified in the data read cycle  
Register setting  
• ABRKCR = H'A0  
• BAR = H'025A  
Program  
0258 NOP  
025A NOP  
* 025C MOV.W @H'025A,R0  
0260 NOP  
0262 NOP  
Underline indicates the address  
to be stacked.  
:
:
MOV  
MOV  
NOP  
MOV  
NOP  
Next  
instruc- instruc- instruc- instruc- instruc- instruc-  
tion 1  
tion 2  
tion  
tion  
tion  
tion  
Internal Stack  
prefetch prefetch prefetch execution prefetch prefetch processing save  
φ
Address  
bus  
025C  
025E  
0260  
025A  
0262  
0264  
SP-2  
Interrupt  
request  
Interrupt acceptance  
Figure 4.2 Address Break Interrupt Operation Example (2)  
Rev. 3.00 Sep. 14, 2006 Page 68 of 408  
REJ09B0105-0300  
Section 5 Clock Pulse Generators  
Section 5 Clock Pulse Generators  
Clock oscillator circuitry (CPG: clock pulse generator) consists of an external oscillator, an on-  
chip oscillator, a duty correction circuit, a clock select circuit, and system clock dividers.  
Figure 5.1 shows a block diagram of the clock pulse generator.  
Duty  
correction  
circuit  
System  
clock  
oscillator  
φOSC  
OSC1  
OSC2  
φ
φOSC  
φ/8  
Clock  
select  
circuit  
System  
clock  
divider  
φ
φ/16  
φ/32  
φ/64  
φ
R
OSC  
ROSC  
R
OSC  
OSC  
φRC  
/2  
/4  
φ/2  
On-chip  
oscillator  
Clock  
divider  
Prescaler S  
(13 bits)  
to  
R
φ/8192  
Figure 5.1 Block Diagram of Clock Pulse Generators  
The system clock (φ) is a basic clock on which the CPU and on-chip peripheral modules operate.  
The system clock is divided into φ/2 to φ/8192 by prescaler S and the divided clocks are supplied  
to respective peripheral modules.  
CPG0200A_000020020200  
Rev. 3.00 Sep. 14, 2006 Page 69 of 408  
REJ09B0105-0300  
Section 5 Clock Pulse Generators  
5.1  
Features  
Choice of two clock sources  
On-chip oscillator clock  
External oscillator clock  
Choice of two types of on-chip oscillation frequency by the user software  
8MHz  
10MHz  
Frequency trimming  
Users can adjust the on-chip oscillation frequency by rewriting the trimming registers.  
Interrupt can be requested to the CPU when the system clock is changed from the external  
clock to the on-chip oscillator clock.  
Rev. 3.00 Sep. 14, 2006 Page 70 of 408  
REJ09B0105-0300  
Section 5 Clock Pulse Generators  
5.2  
Register Descriptions  
Clock oscillators are controlled by the following registers.  
RC control register (RCCR)  
RC trimming data protect register (RCTRMDPR)  
RC trimming data register (RCTRMDR)  
Clock control/status register (CKCSR)  
5.2.1  
RC Control Register (RCCR)  
RCCR controls the on-chip oscillator.  
Initial  
Bit  
Bit Name Value R/W  
Description  
7
RCSTP  
0
R/W  
On-chip Oscillator Standby  
The internal on-chip oscillator standby state is entered by  
setting this bit to 1.  
6
5
FSEL  
0
R/W  
Frequency Select for On-chip Oscillator  
0: 8MHz  
1: 10MHz  
VCLSEL  
0
R/W  
Power Supply Select for On-chip Oscillator  
0: Selects VBGR  
1: Selects VCL  
When VCL is selected, the accuracy of the on-chip  
oscillator frequency cannot be guaranteed.  
4 to 2  
All 0  
Reserved  
These bits are always read as 0.  
Division Ratio Select for On-chip Oscillator  
1
0
RCPSC1  
RCPSC0  
0
0
R/W  
R/W  
The division ratio of ROSC changes right after rewriting this  
bit.  
These bits can be written to only when the CKSTA bit in  
CKCSR is 0.  
0X: ROSC (not divided)  
10: ROSC/2  
11: ROSC/4  
Rev. 3.00 Sep. 14, 2006 Page 71 of 408  
REJ09B0105-0300  
Section 5 Clock Pulse Generators  
5.2.2  
RC Trimming Data Protect Register (RCTRMDPR)  
RCTRMDPR controls RCTRMDPR itself and writing to RCTRMDR. Use the MOV instruction to  
rewrite this register. Bit manipulation instruction cannot change the settings.  
Initial  
Bit  
Bit Name Value R/W  
Description  
7
WRI  
1
W
Write Inhibit  
Only when writing 0 to this bit, this register can be written  
to. This bit is always read as 1.  
6
PRWE  
0
R/W  
Protect Information Write Enable  
Bits 5 and 4 can be written to when this bit is set to 1.  
[Setting condition]  
When writing 0 to the WRI bit and writing 1 to the  
PRWE bit  
[Clearing conditions]  
Reset  
When writing 0 to the WRI bit and writing 0 to the  
PRWE bit  
5
LOCKDW  
0
R/W  
Trimming Data Register Lock Down  
The RC trimming data register (RCTRMDR) cannot be  
written to when this bit is set to 1. Once this bit is set to 1,  
this register cannot be written to until a reset is input even  
if 0 is written to this bit.  
[Setting condition]  
When writing 0 to the WRI bit and writing 1 to the  
LOCKDW bit while the PRWE bit is 1  
[Clearing condition]  
Reset  
Rev. 3.00 Sep. 14, 2006 Page 72 of 408  
REJ09B0105-0300  
Section 5 Clock Pulse Generators  
Initial  
Bit  
Bit Name Value R/W  
Description  
4
TRMDRWE  
0
R/W  
Trimming Date Register Write Enable  
This register can be written to when the LOCKDW bit is 0  
and this bit is 1.  
[Setting condition]  
When writing 0 to the WRI bit while writing 1 to the  
TRMDRWE bit while the PRWE bit is 1  
[Clearing conditions]  
Reset  
When writing 0 to the WRI bit and writing 0 to the  
TRMDRWE bit while the PRWE bit is 1  
3 to 0  
All 1  
Reserved  
These bits are always read as 1  
5.2.3  
RC Trimming Data Register (RCTRMDR)  
RCTRMDR stores the trimming data of the on-chip oscillator frequency.  
Initial  
Bit  
7
Bit Name Value R/W  
Description  
TRMD7  
TRMD6  
TRMD5  
TRMD4  
TRMD3  
TRMD2  
TRMD1  
TRMD0  
(0)*  
(0)*  
(0)*  
(0)*  
(0)*  
(0)*  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Trimming Data  
6
In the flash memory version, the trimming data is loaded  
from the flash memory to this register right after a reset.  
These bits are always read as undefined value.  
5
4
As for the masked ROM version, the on-chip oscillator  
frequency can be trimmed by rewriting these bits. The  
frequency generated in the on-chip oscillator changes  
right after rewriting these bits. These bits are initialized to  
H'00.  
3
2
1
0
0
R
Frequency variation is expressed as follows (the TRMD7  
bit is a sign bit):  
(Min.) H'80 H'FC H'00 H'04 H'7C (Max.)  
Note:  
*
The initial value differs from product to product in the flash memory version.  
Rev. 3.00 Sep. 14, 2006 Page 73 of 408  
REJ09B0105-0300  
Section 5 Clock Pulse Generators  
5.2.4  
Clock Control/Status Register (CKCSR)  
CKCSR selects the port C function, controls switching the system clocks, and indicates the system  
clock state.  
Initial  
Bit  
7
Bit Name Value R/W  
Description  
PMRC1  
PMRC0  
0
0
R/W  
R/W  
Port C Function Select 1 and 0  
6
PMRC1 PMRC0 PC1  
PC0  
I/O  
CLKOUT I/O  
0
1
0
1
0
0
1
1
I/O  
I/O  
OSC1 (external clock input)  
OSC1  
OSC2  
5
4
0
0
R/W  
R/W  
Reserved  
Although this bit is readable/writable, it should not be set  
to 1.  
OSCSEL  
LSI Operation Clock Select  
This bit forcibly selects the system clock of this LSI.  
0: Selects the on-chip oscillator clock as the system clock.  
1: Selects the external clock as the system clock.  
Clock Switch Interrupt Enable  
3
2
CKSWIE  
CKSWIF  
0
0
R/W  
R/W  
Setting this bit to 1 enables the clock switch interrupt  
request.  
Clock Switch Interrupt Request Flag  
[Setting condition]  
When the external clock is switched to the on-chip  
oscillator clock  
[Clearing condition]  
When writing 0 after reading 1  
1
0
1
0
R
R
Reserved  
This bit is always read as 1.  
LSI Operating Clock Status  
CKSTA  
0: This LSI operates on on-chip oscillator clock.  
1: This LSI operates on external clock.  
Rev. 3.00 Sep. 14, 2006 Page 74 of 408  
REJ09B0105-0300  
Section 5 Clock Pulse Generators  
5.3  
System Clock Select Operation  
Figure 5.2 shows the state transition of the system clock.  
LSI operates on on-chip oscillator clock  
Reset release  
Reset state  
On-chip oscillator: Operated  
External oscillator: Halted  
Switching to  
Switching to  
on-chip oscillator  
external clock  
On-chip oscillator halted  
On-chip oscillator: Halted  
External oscillator: Operated  
On-chip oscillator: Operated  
External oscillator: Operated  
On-chip oscillator operated  
LSI operates on external oscillator  
Figure 5.2 State Transition of System Clock  
Rev. 3.00 Sep. 14, 2006 Page 75 of 408  
REJ09B0105-0300  
Section 5 Clock Pulse Generators  
5.3.1  
Clock Control Operation  
The LSI system clock is generated by the on-chip oscillator clock after a reset. The on-chip  
oscillator clock is switched to the external clock by the user software.  
LSI operates on on-chip oscillator RC clock  
[1] External oscillation starts when pins PC1 and PC0  
are selected as external oscillation pins. Write 0 to  
bit PMRC1 to input the external clock.  
Start (reset)  
[2] After writing 1 to the OSCSEL bit, this LSI waits  
until the oscillation of the external oscillator  
settles. The correspondence between Nwait,  
which is the number of wait cycles for oscillation  
settling, and Nstby, which is the number of wait  
cycles for oscillation settling when returning from  
standby mode, is as follows:  
Write 1 to PMRC0 in CKCSR  
Write 1 to PMRC1 in CKCSR  
[1]  
Nstby Nwait 2 × Nstby  
Nstby is set by bits STS 2 to 0 in SYSCR1.  
For details, see section 6.1.1, System Control  
Register 1 (SYSCR1).  
Write 0 to CKSWIE in CKCSR  
[3] While the system is waiting for the external  
oscillation settling, this LSI is not halted but  
continues to operate on the on-chip oscillator clock.  
Read the value of the CKSTA bit in CKCSR to  
ensure that the system clocks are switched.  
Write 1 to OSCSEL in CKCSR [2]  
[3]  
No  
Switched to  
external clock? (CKSTA in  
CKCSR is 1)  
Yes  
LSI operates on external oscillator  
Figure 5.3 Flowchart of Clock Switching On-chip Oscillator  
Clock to External Clock (1)  
Rev. 3.00 Sep. 14, 2006 Page 76 of 408  
REJ09B0105-0300  
Section 5 Clock Pulse Generators  
LSI operates on  
external clock  
[1] When 0 is written to the OSCSEL bit, this LSI  
switches the external clock to the on-chip oscillator  
clock after the φ stop duration. Seven rising edges  
of the φRC clock after the OSCSEL bit becomes 0  
are included in the φ stop duration.  
Start  
(LSI operates on external clock)  
[2] Writing 0 to PMRC0 stops the external oscillation.  
Write 0 to RCSTP in RCCR  
Write 1 to CKSWIE in CKCSR  
if necessary  
Write 0 to OSCSEL in CKCSR  
LSI operates on  
[1]  
on-chip oscillator clock  
When CKSWIE = 1  
Exception handling  
for clock switching  
Write 0 to PMRC0 in CKCSR  
[2]  
if necessary  
LSI operates on on-chip  
oscillator  
Figure 5.4 Flowchart of Clock Switching External  
Clock to On-chip Oscillator Clock (2)  
Rev. 3.00 Sep. 14, 2006 Page 77 of 408  
REJ09B0105-0300  
Section 5 Clock Pulse Generators  
5.3.2  
Clock Change Timing  
The timing for changing clocks are shown in figures 5.5 and 5.6.  
φOSC  
φRC  
φ
OSCSEL  
PHISTOP  
(Internal signal)  
CKSTA  
φ halt*  
On-chip oscillator clock operation  
External clock operation  
Wait for external  
oscillation settling  
Nwait  
[Legend]  
φOSC:  
φRC:  
φ:  
External clock  
On-chip oscillator clock  
System clock  
OSCSEL: Bit 4 in CKCSR  
PHISTOP: System clock stop control signal  
CKSTA:  
Bit 0 in CKCSR  
Note: * The φ halt duration is the duration from the timing when the φ clock stops to the first  
rising edge of the φOSC clock after six clock cycles of the φRC clock have elapsed.  
Figure 5.5 Timing Chart of Switching On-chip Oscillator Clock to External Clock  
Rev. 3.00 Sep. 14, 2006 Page 78 of 408  
REJ09B0105-0300  
Section 5 Clock Pulse Generators  
φOSC  
φRC  
φ
OSCSEL  
PHISTOP  
(Internal signal)  
CKSTA  
CKSWIF  
On-chip oscillator  
clock operation  
External clock operation  
φ halt*  
Wait for external  
oscillation settling  
Nwait  
[Legend]  
φOSC:  
φRC:  
φ:  
External clock  
On-chip oscillator clock  
System clock  
OSCSEL: Bit 4 in CKCSR  
PHISTOP: System clock stop control signal  
CKSTA:  
Bit 0 in CKCSR  
CKSWIF: Bit 2 in CKCSR  
Note: * The φ halt duration is the duration from the timing when the φ clock stops to the  
seventh rising edge of the φRC clock.  
Figure 5.6 Timing Chart to Switch External Clock to On-chip Oscillator Clock  
Rev. 3.00 Sep. 14, 2006 Page 79 of 408  
REJ09B0105-0300  
Section 5 Clock Pulse Generators  
5.4  
Trimming of On-chip Oscillator Frequency  
Users can trim the on-chip oscillator frequency, supplying the external reference pulses with the  
input capture function in internal timer W. An example of trimming flow and a timing chart are  
shown in figures 5.7 and 5.8, respectively. Because RCTRMDR is initialized by a reset, when  
users have trimmed the oscillators, some operations after a reset are necessary, such as trimming it  
again or saving the trimming value in an external device for later reloading.  
Start  
Setting timer W  
GRA: Input capture  
GRC: Buffer of GRA  
Set RCTRMD to H'00  
Input reference pulses to  
pin P81/FTIOA  
Capture 1  
Modify RCTRMDR*  
Capture 2  
Frequency calculation  
Within  
desired frequency  
range?  
No  
Yes  
End  
Note: * Comparing the difference between the measured frequency and the desired frequency,  
individual bits of RCTRMDR are decided from the MSB bit by bit.  
Figure 5.7 Example of Trimming Flow for On-chip Oscillator Frequency  
Rev. 3.00 Sep. 14, 2006 Page 80 of 408  
REJ09B0105-0300  
Section 5 Clock Pulse Generators  
φRC  
FTIOA input  
capture input  
tA (µs)  
Timer W  
TCNT  
M + α  
M
N
M + 1  
M
M - 1  
M + α  
GRA  
GRC  
N
M
Capture 1  
Capture 2  
Figure 5.8 Timing Chart of Trimming of On-chip Oscillator Frequency  
The on-chip oscillator frequency is gained by the expression below. Since the input-capture input  
is sampled by the φRC clock, the calculated result may include a sampling error of 1 cycle of the  
φRC clock.  
(M + α) - M  
(MHz)  
φRC =  
tA  
φRC: Frequency of on-chip oscillator (MHz)  
t :  
M:  
Period of reference clock (µs)  
Timer W counter value  
A
Rev. 3.00 Sep. 14, 2006 Page 81 of 408  
REJ09B0105-0300  
Section 5 Clock Pulse Generators  
5.5  
External Oscillators  
This LSI has two methods to supply external clock pulses into it: connecting a crystal or ceramic  
resonator, and an external clock. Oscillation pins OSC1 and OSC2 are common with general ports  
PC0 and PC1, respectively. To set pins PC0 and PC1 as crystal resonator or external clock input  
ports, refer to section 5.3, System Clock Select Operation.  
5.5.1  
Connecting Crystal Resonator  
Figure 5.9 shows an example of connecting a crystal resonator. An AT-cut parallel-resonance  
crystal resonator should be used. Figure 5.12 shows the equivalent circuit of a crystal resonator. A  
resonator having the characteristics given in table 5.1 should be used.  
C1  
PC0/OSC1  
C2  
C1 = C2 = 10 to 22 pF  
PC1/OSC2/CLKOUT  
Figure 5.9 Example of Connection to Crystal Resonator  
LS  
RS  
CS  
PC0/OSC1  
PC1/OSC2/CLKOUT  
C0  
Figure 5.10 Equivalent Circuit of Crystal Resonator  
Table 5.1 Crystal Resonator Parameters  
Frequency (MHz)  
RS (Max.)  
2
4
8
10  
12  
500 Ω  
120 Ω  
80 Ω  
60 Ω  
50 Ω  
C0 (Max.)  
70 pF  
Rev. 3.00 Sep. 14, 2006 Page 82 of 408  
REJ09B0105-0300  
Section 5 Clock Pulse Generators  
5.5.2  
Connecting Ceramic Resonator  
Figure 5.11 shows an example of connecting a ceramic resonator.  
C1  
PC0/OSC1  
C2  
C1 = C2 = 5 to 30 pF  
PC1/OSC2/CLKOUT  
Figure 5.11 Example of Connection to Ceramic Resonator  
External Clock Input Method  
5.5.3  
To use the external clock, input the external clock on pin OSC1. Figure 5.12 shows an example of  
connection. The duty cycle of the external clock signal must be 45 to 55%.  
PC0/OSC1  
External clock input  
PC1/OSC2/CLKOUT  
General port  
Figure 5.12 Example of External Clock Input  
5.6  
Prescaler  
5.6.1  
Prescaler S  
Prescaler S is a 13-bit counter using the system clock (φ) as its input clock. The outputs, which are  
divided clocks, are used as internal clocks by the on-chip peripheral modules. Prescaler S is  
initialized to H'0000 by a reset, and starts counting on exit from the reset state. In standby mode  
and subsleep mode, the system clock pulse generator stops. Prescaler S also stops and is initialized  
to H'0000. It cannot be read from or written to by the CPU.  
The outputs from prescaler S is shared by the on-chip peripheral modules. The division ratio can  
be set separately for each on-chip peripheral module. In active mode and sleep mode, the clock  
input to prescaler S is a system clock with the division ratio specified by bits MA2 to MA0 in  
SYSCR2.  
Rev. 3.00 Sep. 14, 2006 Page 83 of 408  
REJ09B0105-0300  
Section 5 Clock Pulse Generators  
5.7  
Usage Notes  
5.7.1  
Note on Resonators  
Resonator characteristics are closely related to board design and should be carefully evaluated by  
the user, referring to the examples shown in this section. Resonator circuit parameters will differ  
depending on the resonator element, stray capacitance of the PCB, and other factors. Suitable  
values should be determined in consultation with the resonator element manufacturer. Design the  
circuit so that the resonator element never receives voltages exceeding its maximum rating.  
5.7.2  
Notes on Board Design  
When using a crystal resonator (ceramic resonator), place the resonator and its load capacitors as  
close as possible to pins OSC1 and OSC2. Other signal lines should be routed away from the  
oscillator circuit to prevent induction from interfering with correct oscillation (see figure 5.13).  
Prohibited  
Signal A Signal B  
C1  
C2  
PC0/OSC1  
PC1/OSC2/CLKOUT  
Figure 5.13 Example of Incorrect Board Design  
Rev. 3.00 Sep. 14, 2006 Page 84 of 408  
REJ09B0105-0300  
Section 6 Power-Down Modes  
Section 6 Power-Down Modes  
For operating modes after a reset, this LSI has not only a normal active mode but also three  
power-down modes in which power consumption is significantly reduced. In addition, there is also  
a module standby function which reduces power consumption by individually stopping on-chip  
peripheral modules.  
Active mode  
The CPU and all on-chip peripheral modules are operable on the system clock. The system  
clock frequency can be selected from φosc, φosc/8, φosc/16, φosc/32, and φosc/64.  
Sleep mode  
The CPU halts. On-chip peripheral modules are operable on the system clock.  
Standby mode  
The CPU and all on-chip peripheral modules halt.  
Subsleep mode  
The CPU and all on-chip peripheral modules halt. I/O ports keep the same states as before the  
transition.  
Module standby function  
Independent of the above modes, power consumption can be reduced by halting on-chip  
peripheral modules that are not used in module units.  
6.1  
Register Descriptions  
The registers related to power-down modes are listed below.  
System control register 1 (SYSCR1)  
System control register 2 (SYSCR2)  
Module standby control register 1 (MSTCR1)  
Module standby control register 2 (MSTCR2)  
LPW3003A_000020020200  
Rev. 3.00 Sep. 14, 2006 Page 85 of 408  
REJ09B0105-0300  
Section 6 Power-Down Modes  
6.1.1  
System Control Register 1 (SYSCR1)  
SYSCR1 controls the power-down modes, as well as SYSCR2.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
SSBY  
0
R/W  
Software Standby  
Specifies the operating mode to be entered after  
executing the SLEEP instruction.  
0: Shifts to sleep mode.  
1: Shifts to standby mode.  
For details, see table 6.2.  
Standby Timer Select 2 to 0  
6
5
4
STS2  
STS1  
STS0  
0
0
0
R/W  
R/W  
R/W  
These bits set the wait time from when the system clock  
oscillator starts functioning until the clock is supplied, in  
shifting from standby mode, to active mode or sleep  
mode. During the wait time, this LSI automatically selects  
the on-chip oscillator clock as its system clock and counts  
the number of wait states. Select a wait time of 6.5 ms  
(oscillation stabilization time) or longer, depending on the  
operating frequency. Table 6.1 shows the relationship  
between the STS2 to STS0 values and the wait time.  
When using an external clock, set the wait time to be  
100 µs or longer in the F-ZTAT version. In the masked  
ROM version, the minimum value (STS2 = STS1 = STS0  
= 1) is recommended.  
These bits also set the wait states for external oscillation  
stabilization when system clock is switched from the on-  
chip oscillator clock to the external clock by user  
software.  
The relationship between Nwait (number of wait states for  
oscillation stabilization) and Nstby (number of wait states  
for recovering to the standby mode) is as follows.  
Nstby Nwait 2 × Nstby  
Reserved  
3 to 0  
All 0  
These bits are always read as 0.  
Rev. 3.00 Sep. 14, 2006 Page 86 of 408  
REJ09B0105-0300  
Section 6 Power-Down Modes  
Table 6.1 Operating Frequency and Wait Time  
Bit Name  
Operating Frequency  
STS2 STS1 STS0 Wait Time  
10 MHz  
0.8  
8 MHz  
1.0  
5 MHz  
1.6  
4 MHz  
2.0  
2.5 MHz  
3.3  
2 MHz  
4.1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
8,192 states  
16,384 states  
32,768 states  
65,536 states  
1.6  
2.0  
3.3  
4.1  
6.6  
8.2  
3.3  
4.1  
6.6  
8.2  
13.1  
26.2  
52.4  
0.42  
0.05  
0.00  
16.4  
32.8  
65.5  
0.51  
0.06  
0.01  
6.6  
8.2  
13.1  
26.2  
0.21  
0.03  
0.00  
16.4  
32.8  
0.26  
0.03  
0.00  
131,072 states 13.1  
16.4  
0.13  
0.02  
0.00  
1,024 states  
128 states  
16 states  
0.10  
0.01  
0.00  
Notes: 1. Time unit is ms.  
2. The on-chip oscillator clock counts the wait states, even when the external clock is used  
as system clock.  
Rev. 3.00 Sep. 14, 2006 Page 87 of 408  
REJ09B0105-0300  
Section 6 Power-Down Modes  
6.1.2  
System Control Register 2 (SYSCR2)  
SYSCR2 controls the power-down modes, as well as SYSCR1.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
SMSEL  
0
R/W  
Sleep Mode Selection  
This bit specifies the mode to be entered after executing  
the SLEEP instruction, as well as the SSBY bit in  
SYSCR1. For details, see table 6.2.  
6
5
0
0
Reserved  
This bit is always read as 0.  
Direct Transfer on Flag  
DTON  
R/W  
This bit specifies the mode to be entered after executing  
the SLEEP instruction, as well as the SSBY bit in  
SYSCR1. For details, see table 6.2.  
4
3
2
MA2  
MA1  
MA0  
0
0
0
R/W  
R/W  
R/W  
Active Mode Clock Select 2 to 0  
These bits select the operating clock frequency in active  
and sleep modes. The operating clock frequency  
changes to the set frequency after the SLEEP instruction  
is executed.  
0XX: φ  
100: φ /8  
101: φ/16  
110: φ/32  
111: φ/64  
1, 0  
All 0  
Reserved  
These bits are always read as 0.  
[Legend]  
X:  
Don't care  
Rev. 3.00 Sep. 14, 2006 Page 88 of 408  
REJ09B0105-0300  
Section 6 Power-Down Modes  
6.1.3  
Module Standby Control Register 1 (MSTCR1)  
MSTCR1 allows the on-chip peripheral modules to enter a standby state in module units.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
0
0
0
0
Reserved  
This bit is always read as 0.  
IIC2 Module Standby  
6
5
4
MSTIIC  
MSTS3  
MSTAD  
R/W  
R/W  
R/W  
IIC2 enters standby mode when this bit is set to 1.  
SCI3 Module Standby  
SCI3 enters standby mode when this bit is set to 1.  
A/D Converter Module Standby  
A/D converter enters standby mode when this bit is set  
to 1.  
3
MSTWD  
0
R/W  
Watchdog Timer Module Standby  
Watchdog timer enters standby mode when this bit is set  
to 1. (When the internal oscillator is selected for the  
watchdog timer clock, the watchdog timer operates  
regardless of the setting of this bit.)  
2
1
0
MSTTW  
MSTTV  
0
0
0
R/W  
R/W  
Timer W Module Standby  
Timer W enters standby mode when this bit is set to 1.  
Timer V Module Standby  
Timer V enters standby mode when this bit is set to 1.  
Reserved  
This bit is always read as 0.  
Rev. 3.00 Sep. 14, 2006 Page 89 of 408  
REJ09B0105-0300  
Section 6 Power-Down Modes  
6.1.4  
Module Standby Control Register 2 (MSTCR2)  
MSTCR2 allows the on-chip peripheral modules to enter a standby state in module units.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7 to 5  
All 0  
0
Reserved  
These bits are always read as 0.  
Timer B1 Module Standby  
Timer B1 enters standby mode when this bit is set to 1.  
Reserved  
4
MSTTB1  
R/W  
3 to 0  
All 0  
These bits are always read as 0.  
Rev. 3.00 Sep. 14, 2006 Page 90 of 408  
REJ09B0105-0300  
Section 6 Power-Down Modes  
6.2  
Mode Transitions and States of LSI  
Figure 6.1 shows the possible transitions among these operating modes. A transition is made from  
the program execution state to the program halt state of the program by executing a SLEEP  
instruction. Interrupts allow for returning from the program halt state to the program execution  
state of the program. A direct transition from active mode to active mode changes the operating  
frequency. RES input enables transitions from a mode to the reset state. Table 6.2 shows the  
transition conditions of each mode after the SLEEP instruction is executed and a mode to return  
by an interrupt. Table 6.3 shows the internal states of the LSI in each mode.  
Reset state  
Program halt state  
Standby mode  
Program execution state  
Active mode  
Program halt state  
Sleep mode  
Direct transition  
interrupt  
SLEEP  
instruction  
SLEEP  
instruction  
Interrupt  
Interrupt  
SLEEP  
instruction  
Interrupt  
Subsleep mode  
Notes: 1. To make a transition to another mode by an interrupt, make sure interrupt handling is after the interrupt  
is accepted.  
2. Details on the mode transition conditions are given in table 6.2.  
Figure 6.1 Mode Transition Diagram  
Rev. 3.00 Sep. 14, 2006 Page 91 of 408  
REJ09B0105-0300  
Section 6 Power-Down Modes  
Table 6.2 Transition Mode after SLEEP Instruction Execution and Interrupt Handling  
Transition Mode after SLEEP Transition Mode due to  
DTON  
SSBY  
SMSEL  
Instruction Execution  
Interrupt  
Active mode  
Active mode  
Active mode  
0
0
0
1
X
0
Sleep mode  
1
Subsleep mode  
X
0*  
Standby mode  
1
Active mode (direct transition)  
[Legend]  
X:  
Don’t care  
Note:  
*
When a state transition is performed while SMSEL is 1, timer V, SCI3, and the A/D  
converter are reset, and all registers are set to their initial values. To use these  
functions after entering active mode, reset the registers.  
Table 6.3 Internal State in Each Operating Mode  
Function  
Active Mode  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Sleep Mode  
Functioning  
Halted  
Subsleep Mode  
Halted  
Standby Mode  
Halted  
System clock oscillator  
CPU  
operations  
Instructions  
Registers  
Halted  
Halted  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
RAM  
IO ports  
Register contents are  
retained, but output is the  
high-impedance state.  
External  
interrupts  
IRQ3, IRQ0  
WKP5  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Retained  
Reset  
Functioning  
Functioning  
Retained  
Reset  
Peripheral Timer B1  
modules  
Timer V  
Timer W  
Retained  
Retained  
Watchdog  
timer  
Retained  
(Functioning if the internal oscillator is selected  
as a count clock.)  
SCI3  
IIC2  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Functioning  
Reset  
Reset  
Retained  
Reset  
Retained  
Reset  
A/D converter Functioning  
LVD Functioning  
Functioning  
Functioning  
Rev. 3.00 Sep. 14, 2006 Page 92 of 408  
REJ09B0105-0300  
Section 6 Power-Down Modes  
6.2.1  
Sleep Mode  
In sleep mode, CPU operation is halted but the on-chip peripheral modules function at the clock  
frequency set by the MA2 to MA0 bits in SYSCR2. CPU register contents are retained. When an  
interrupt is requested, sleep mode is cleared and the CPU starts interrupt exception handling. Sleep  
mode is not cleared if the I bit in the condition code register (CCR) is set to 1 or the requested  
interrupt is disabled by the interrupt enable bit. When the RES pin is driven low in sleep mode, the  
CPU goes into the reset state and sleep mode is cleared.  
6.2.2  
Standby Mode  
In standby mode, the system clock oscillator is halted, and operation of the CPU and on-chip  
peripheral modules is halted. However, as long as the rated voltage is supplied, the contents of  
CPU registers, on-chip RAM, and some on-chip peripheral module registers are retained. On-chip  
RAM contents will be retained as long as the voltage set by the RAM data retention voltage is  
provided. The I/O ports go to the high-impedance state.  
Standby mode is cleared by an interrupt. When an interrupt is requested, the on-chip oscillator  
starts functioning. The external oscillator also starts functioning when used. After the time set by  
the STS2 to STS0 bits in SYSCR1 has elapsed, standby mode is cleared and the CPU starts  
interrupt exception handling. Standby mode is not cleared if the I bit in the condition code register  
(CCR) is set to 1 or the requested interrupt is disabled by the interrupt enable bit.  
When the RES pin is driven low in standby mode, the on-chip oscillator starts functioning. The  
system clock is supplied to the entire chip as soon as the on-chip oscillator starts functioning. The  
RES pin must be kept low for the rated period. On driving the RES pin high, after the oscillation  
stabilization time set by the power-on reset circuit has elapsed, the internal reset signal is cleared  
and the CPU starts reset exception handling.  
Rev. 3.00 Sep. 14, 2006 Page 93 of 408  
REJ09B0105-0300  
Section 6 Power-Down Modes  
6.2.3  
Subsleep Mode  
In subsleep mode, the system clock oscillator is halted, and operation of the CPU and on-chip  
peripheral modules is halted. However, as long as the rated voltage is supplied, the contents of  
CPU registers, the on-chip RAM, and some on-chip peripheral module registers are retained. The  
I/O ports keep the same states as before the transition.  
Subsleep mode is cleared by an interrupt. When an interrupt is requested, the on-chip oscillator  
starts functioning. The external oscillator also starts functioning when used. After the time set by  
the STS2 to STS0 bits in SYSCR1 has elapsed, subsleep mode is cleared and the CPU starts  
interrupt exception handling. Subsleep mode is not cleared if the I bit in the condition code  
register (CCR) is set to 1 or the requested interrupt is disabled by the interrupt enable bit.  
When the RES pin is driven low in subsleep mode, the on-chip oscillator starts functioning. The  
system clock is supplied to the entire chip as soon as the on-chip oscillator starts functioning. The  
RES pin must be kept low for the rated period. On driving the RES pin high, after the oscillation  
stabilization time set by the power-on reset circuit has elapsed, the internal reset signal is cleared  
and the CPU starts reset exception handling.  
6.3  
Operating Frequency in Active Mode  
Operation in active mode is clocked at the frequency designated by the MA2 to MA0 bits in  
SYSCR2. The operating frequency changes to the set frequency after SLEEP instruction  
execution.  
6.4  
Direct Transition  
The CPU can execute programs in active mode. The operating frequency can be changed by  
making a transition directly from active mode to active mode. A direct transition can be made by  
executing a SLEEP instruction while the DTON bit in SYSCR2 is set to 1. If the direct transition  
interrupt is disabled by the interrupt enable register 1, a transition is made instead to sleep mode or  
subsleep mode. Note that if a direct transition is attempted while the I bit in condition code  
register (CCR) is set to 1, sleep mode or subsleep mode will be entered though that mode cannot  
be cleared by means of an interrupt.  
Rev. 3.00 Sep. 14, 2006 Page 94 of 408  
REJ09B0105-0300  
Section 6 Power-Down Modes  
6.5  
Module Standby Function  
The module standby function can be set to any peripheral module. In module standby mode, the  
clock supply to the specified module stops and the module enters the power-down mode. Module  
standby mode enables each on-chip peripheral module to enter the standby state by setting a bit  
that corresponds to each module in MSTCR1 and MSTCR2 to 1 and cancels the mode by clearing  
the bit to 0.  
Rev. 3.00 Sep. 14, 2006 Page 95 of 408  
REJ09B0105-0300  
Section 6 Power-Down Modes  
Rev. 3.00 Sep. 14, 2006 Page 96 of 408  
REJ09B0105-0300  
Section 7 ROM  
Section 7 ROM  
The features of the 12-kbyte (including 4 kbytes as the E7 or E8 control program area) flash  
memory built into the HD64F36912G and HD64F36902G are summarized below.  
Programming/erase methods  
The flash memory is programmed in 64-byte units at a time. Erase is performed in single-  
block units. The flash memory is configured as follows: 1 kbyte × 4 blocks and 4 kbytes ×  
2 blocks. To erase the entire flash memory, each block must be erased in turn.  
Reprogramming capability  
The flash memory can be reprogrammed up to 1,000 times.  
On-board programming  
On-board programming/erasing can be done in boot mode, in which the boot program built  
into the chip is started to erase or program of the entire flash memory. In normal user  
program mode, individual blocks can be erased or programmed.  
Automatic bit rate adjustment  
For data transfer in boot mode, this LSI's bit rate can be automatically adjusted to match  
the transfer bit rate of the host.  
Programming/erasing protection  
Sets software protection against flash memory programming/erasing.  
7.1  
Block Configuration  
Figure 7.1 shows the block configuration of 12-kbyte flash memory. The thick lines indicate  
erasing units, the narrow lines indicate programming units, and the values are addresses. The flash  
memory is divided into 1 kbyte × 4 blocks and 4 kbytes × 2 blocks. Erasing is performed in these  
units. Programming is performed in 64-byte units starting from an address with lower eight bits  
H'00, H'40, H'80, or H'C0.  
ROM3321A_000120030300  
Rev. 3.00 Sep. 14, 2006 Page 97 of 408  
REJ09B0105-0300  
Section 7 ROM  
H'0000  
H'0040  
H'0001  
H'0041  
H'0002  
H'0042  
H'003F  
H'007F  
Programming unit: 64 bytes  
Programming unit: 64 bytes  
Programming unit: 64 bytes  
Erase unit  
1 kbyte  
H'03C0  
H'0400  
H'03C1  
H'0401  
H'0441  
H'03C2  
H'0402  
H'0442  
H'03FF  
H'043F  
H'047F  
Erase unit H'0440  
1 kbyte  
H'07C0  
H'0800  
H'07C1  
H'0801  
H'0841  
H'07C2  
H'0802  
H'0842  
H'07FF  
H'083F  
H'087F  
Erase unit  
1 kbyte  
H'0840  
H'0BC0  
H'0C00  
H'0C40  
H'0BC1  
H'0C01  
H'0C41  
H'0BC2  
H'0C02  
H'0C42  
H'0BFF  
H'0C3F  
H'0C7F  
Programming unit: 64 bytes  
Erase unit  
1 kbyte  
H'0FC0  
H'1000  
H'1040  
H'0FC1  
H'1001  
H'1041  
H'0FC2  
H'1002  
H'1042  
H'0FFF  
H'103F  
H'107F  
Programming unit: 64 bytes  
Erase unit  
4 kbytes  
H'1FC0  
H'2000  
H'1FC1  
H'2001  
H'1FC2  
H'2002  
H'1FFF  
H'203F  
Programming unit: 64 bytes  
Erase unit  
4 kbytes  
H'2040  
H'2041  
H'2042  
H'207F  
H'2FC0  
H'2FC1  
H'2FC2  
H'2FFF  
Figure 7.1 Flash Memory Block Configuration  
Rev. 3.00 Sep. 14, 2006 Page 98 of 408  
REJ09B0105-0300  
Section 7 ROM  
7.2  
Register Descriptions  
The flash memory has the following registers.  
Flash memory control register 1 (FLMCR1)  
Flash memory control register 2 (FLMCR2)  
Erase block register 1 (EBR1)  
Flash memory enable register (FENR)  
7.2.1  
Flash Memory Control Register 1 (FLMCR1)  
FLMCR1 is a register that makes the flash memory change to program mode, program-verify  
mode, erase mode, or erase-verify mode. For details on register setting, refer to section 7.4, Flash  
Memory Programming/Erasing.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
0
0
Reserved  
This bit is always read as 0.  
Software Write Enable  
6
5
4
3
SWE  
R/W  
R/W  
R/W  
R/W  
When this bit is set to 1, flash memory  
programming/erasing is enabled. When this bit is cleared  
to 0, other FLMCR1 register bits and all EBR1 bits cannot  
be set.  
ESU  
PSU  
EV  
0
0
0
Erase Setup  
When this bit is set to 1, the flash memory changes to the  
erase setup state. When it is cleared to 0, the erase setup  
state is cancelled. Set this bit to 1 before setting the E bit  
to 1 in FLMCR1.  
Program Setup  
When this bit is set to 1, the flash memory changes to the  
program setup state. When it is cleared to 0, the program  
setup state is cancelled. Set this bit to 1 before setting the  
P bit in FLMCR1.  
Erase-Verify  
When this bit is set to 1, the flash memory changes to  
erase-verify mode. When it is cleared to 0, erase-verify  
mode is cancelled.  
Rev. 3.00 Sep. 14, 2006 Page 99 of 408  
REJ09B0105-0300  
Section 7 ROM  
Initial  
Bit Name Value  
Bit  
R/W  
Description  
2
PV  
0
0
0
R/W  
Program-Verify  
When this bit is set to 1, the flash memory changes to  
program-verify mode. When it is cleared to 0, program-  
verify mode is cancelled.  
1
0
E
R/W  
R/W  
Erase  
When this bit is set to 1 while SWE = 1 and ESU = 1, the  
flash memory changes to erase mode. When it is cleared  
to 0, erase mode is cancelled.  
P
Program  
When this bit is set to 1 while SWE = 1 and PSU = 1, the  
flash memory changes to program mode. When it is  
cleared to 0, program mode is cancelled.  
7.2.2  
Flash Memory Control Register 2 (FLMCR2)  
FLMCR2 is a register that displays the state of flash memory programming/erasing. FLMCR2 is a  
read-only register, and should not be written to.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
FLER  
0
R
Flash Memory Error  
Indicates that an error has occurred during an operation  
on flash memory (programming or erasing). When FLER  
is set to 1, flash memory goes to the error-protection  
state.  
See section 7.5.3, Error Protection, for details.  
Reserved  
6 to 0  
All 0  
These bits are always read as 0.  
Rev. 3.00 Sep. 14, 2006 Page 100 of 408  
REJ09B0105-0300  
Section 7 ROM  
7.2.3  
Erase Block Register 1 (EBR1)  
EBR1 specifies the flash memory erase area block. EBR1 is initialized to H'00 when the SWE bit  
in FLMCR1 is 0. Do not set more than one bit at a time, as this will cause all the bits in EBR1 to  
be automatically cleared to 0.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7, 6  
All 0  
Reserved  
These bits are always read as 0.  
5
4
3
2
1
0
EB5  
EB4  
EB3  
EB2  
EB1  
EB0  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
When this bit is set to 1, 4 kbytes of H'2000 to H'2FFF will  
be erased.  
When this bit is set to 1, 4 kbytes of H'1000 to H'1FFF will  
be erased.  
When this bit is set to 1, 1 kbyte of H'0C00 to H'0FFF will  
be erased.  
When this bit is set to 1, 1 kbyte of H'0800 to H'0BFF will  
be erased.  
When this bit is set to 1, 1 kbyte of H'0400 to H'07FF will  
be erased.  
When this bit is set to 1, 1 kbyte of H'0000 to H'03FF will  
be erased.  
7.2.4  
Flash Memory Enable Register (FENR)  
Bit 7 (FLSHE) in FENR enables or disables the CPU access to the flash memory control registers,  
FLMCR1, FLMCR2, and EBR1.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
FLSHE  
0
R/W  
Flash Memory Control Register Enable  
Flash memory control registers can be accessed when  
this bit is set to 1. Flash memory control registers cannot  
be accessed when this bit is set to 0.  
6 to 0  
All 0  
Reserved  
These bits are always read as 0.  
Rev. 3.00 Sep. 14, 2006 Page 101 of 408  
REJ09B0105-0300  
Section 7 ROM  
7.3  
On-Board Programming Modes  
There is a mode for programming/erasing of the flash memory; boot mode, which enables on-  
board programming/erasing. On-board programming/erasing can also be performed in user  
program mode. At reset-start in reset mode, this LSI changes to a mode depending on the TEST  
pin settings, NMI pin settings, and input level of each port, as shown in table 7.1. The input level  
of each pin must be defined four states before the reset ends.  
When changing to boot mode, the boot program built into this LSI is initiated. The boot program  
transfers the programming control program from the externally-connected host to on-chip RAM  
via SCI3. After erasing the entire flash memory, the programming control program is executed.  
This can be used for programming initial values in the on-board state or for a forcible return when  
programming/erasing can no longer be done in user program mode. In user program mode,  
individual blocks can be erased and programmed by branching to the user program/erase control  
program prepared by the user.  
Table 7.1 Setting Programming Modes  
TEST  
NMI  
1
E10T_0  
LSI State after Reset End  
User mode  
0
X
1
0
0
Boot mode  
[Legend]  
X:  
Don’t care  
7.3.1  
Boot Mode  
Table 7.2 shows the boot mode operations between reset end and branching to the programming  
control program.  
1. When boot mode is used, the flash memory programming control program must be prepared in  
the host beforehand. Prepare a programming control program in accordance with the  
description in section 7.4, Flash Memory Programming/Erasing.  
2. SCI3 should be set to asynchronous mode, and the transfer format as follows: 8-bit data, 1 stop  
bit, and no parity.  
Rev. 3.00 Sep. 14, 2006 Page 102 of 408  
REJ09B0105-0300  
Section 7 ROM  
3. When the boot program is initiated, the chip measures the low-level period of asynchronous  
SCI communication data (H'00) transmitted continuously from the host. The chip then  
calculates the bit rate of transmission from the host, and adjusts the SCI3 bit rate to match that  
of the host. The reset should end with the RxD pin high. The RxD and TxD pins should be  
pulled up on the board if necessary. After the reset is complete, it takes approximately 100  
states before the chip is ready to measure the low-level period.  
4. After matching the bit rates, the chip transmits one H'00 byte to the host to indicate the  
completion of bit rate adjustment. The host should confirm that this adjustment end indication  
(H'00) has been received normally, and transmit one H'55 byte to the chip. If reception could  
not be performed normally, initiate boot mode again by a reset. Depending on the host's  
transfer bit rate and system clock frequency of this LSI, there will be a discrepancy between  
the bit rates of the host and the chip. To operate the SCI properly, set the host's transfer bit rate  
and system clock frequency of this LSI within the ranges listed in table 7.3.  
5. In boot mode, a part of the on-chip RAM area is used by the boot program. The area H'F980 to  
H'FEEF is the area to which the programming control program is transferred from the host.  
The boot program area cannot be used until the execution state in boot mode switches to the  
programming control program.  
6. Before branching to the programming control program, the chip terminates transfer operations  
by SCI3 (by clearing the RE and TE bits in SCR3 to 0), however the adjusted bit rate value  
remains set in BRR. Therefore, the programming control program can still use it for transfer of  
write data or verify data with the host. The TxD pin is high (PCR22 = 1, P22 = 1). The  
contents of the CPU general registers are undefined immediately after branching to the  
programming control program. These registers must be initialized at the beginning of the  
programming control program, as the stack pointer (SP), in particular, is used implicitly in  
subroutine calls, etc.  
7. Boot mode can be cleared by a reset. End the reset after driving the reset pin low, waiting at  
least 20 states, and then setting the TEST pin and NMI pin. Boot mode is also cleared when a  
WDT overflow occurs.  
8. Do not change the TEST pin and NMI pin input levels in boot mode.  
Rev. 3.00 Sep. 14, 2006 Page 103 of 408  
REJ09B0105-0300  
Section 7 ROM  
Table 7.2 Boot Mode Operation  
Host Operation  
Communication Contents  
LSI Operation  
Processing Contents  
Processing Contents  
Branches to boot program at reset-start.  
Boot program initiation  
. . .  
H'00, H'00  
H'00  
Continuously transmits data H'00  
at specified bit rate.  
• Measures low-level period of receive data  
H'00.  
• Calculates bit rate and sets BRR in SCI3.  
• Transmits data H'00 to host as adjustment  
end indication.  
H'00  
Transmits data H'55 when data H'00  
is received error-free.  
H'55  
H'55 reception.  
H'FF  
H'AA  
Boot program  
erase error  
Checks flash memory data, erases all flash  
memory blocks in case of written data  
existing, and transmits data H'AA to host.  
(If erase could not be done, transmits data  
H'FF to host and aborts operation.)  
H'AA reception  
Upper bytes, lower bytes  
Echoback  
Transmits number of bytes (N) of  
programming control program to be  
transferred as 2-byte data  
(low-order byte following high-order  
byte)  
Echobacks the 2-byte data  
received to host.  
Echobacks received data to host and also  
transfers it to RAM.  
(repeated for N times)  
H'XX  
Transmits 1-byte of programming  
control program (repeated for N times)  
Echoback  
H'AA  
Transmits data H'AA to host.  
H'AA reception  
Branches to programming control program  
transferred to on-chip RAM and starts  
execution.  
Rev. 3.00 Sep. 14, 2006 Page 104 of 408  
REJ09B0105-0300  
Section 7 ROM  
Table 7.3 System Clock Frequencies for which Automatic Adjustment of LSI Bit Rate is  
Possible  
Host Bit Rate  
9,600 bps  
System Clock Frequency Range of LSI  
8 MHz (on-chip oscillator clock)  
8 MHz (on-chip oscillator clock)  
8 MHz (on-chip oscillator clock)  
4,800 bps  
2,400 bps  
Rev. 3.00 Sep. 14, 2006 Page 105 of 408  
REJ09B0105-0300  
Section 7 ROM  
7.3.2  
Programming/Erasing in User Program Mode  
On-board programming/erasing of an individual flash memory block can also be performed in user  
program mode by branching to a user program/erase control program. The user must set branching  
conditions and provide on-board means of supplying programming data. The flash memory must  
contain the user program/erase control program or a program that provides the user program/erase  
control program from external memory. As the flash memory itself cannot be read during  
programming/erasing, transfer the user program/erase control program to on-chip RAM, as in boot  
mode. Figure 7.2 shows a sample procedure for programming/erasing in user program mode.  
Prepare a user program/erase control program in accordance with the description in section 7.4,  
Flash Memory Programming/Erasing.  
Reset-start  
No  
Program/erase?  
Yes  
Transfer user program/erase control  
program to RAM  
Branch to flash memory application  
program  
Branch to user program/erase control  
program in RAM  
Execute user program/erase control  
program (flash memory rewrite)  
Branch to flash memory application  
program  
Figure 7.2 Programming/Erasing Flowchart Example in User Program Mode  
Rev. 3.00 Sep. 14, 2006 Page 106 of 408  
REJ09B0105-0300  
Section 7 ROM  
7.4  
Flash Memory Programming/Erasing  
A software method using the CPU is employed to program and erase flash memory in the on-  
board programming modes. Depending on the FLMCR1 setting, the flash memory operates in one  
of the following four modes: Program mode, program-verify mode, erase mode, and erase-verify  
mode. The programming control program in boot mode and the user program/erase control  
program in user program mode use these operating modes in combination to perform  
programming/erasing. Flash memory programming and erasing should be performed in  
accordance with the descriptions in section 7.4.1, Program/Program-Verify and section 7.4.2,  
Erase/Erase-Verify, respectively.  
7.4.1  
Program/Program-Verify  
When writing data or programs to the flash memory, the program/program-verify flowchart shown  
in figure 7.3 should be followed. Performing programming operations according to this flowchart  
will enable data or programs to be written to the flash memory without subjecting the chip to  
voltage stress or sacrificing program data reliability.  
1. Programming must be done to an empty address. Do not reprogram an address to which  
programming has already been performed.  
2. Programming should be carried out 64 bytes at a time. A 64-byte data transfer must be  
performed even if writing fewer than 64 bytes. In this case, H'FF data must be written to the  
extra addresses.  
3. Prepare the following data storage areas in RAM: A 64-byte programming data area, a 64-byte  
reprogramming data area, and a 64-byte additional-programming data area. Perform  
reprogramming data computation according to table 7.4, and additional programming data  
computation according to table 7.5.  
4. Consecutively transfer 64 bytes of data in byte units from the reprogramming data area or  
additional-programming data area to the flash memory. The program address and 64-byte data  
are latched in the flash memory. The lower 8 bits of the start address in the flash memory  
destination area must be H'00, H'40, H'80, or H'C0.  
5. The time during which the P bit is set to 1 is the programming time. Table 7.6 shows the  
allowable programming times.  
6. The watchdog timer (WDT) is set to prevent overprogramming due to program runaway, etc.  
An overflow cycle of approximately 6.6 ms is allowed.  
7. For a dummy write to a verify address, write 1-byte data H'FF to an even address. Verify data  
can be read in words from the address to which a dummy write was performed.  
8. The maximum number of repetitions of the program/program-verify sequence of the same bit  
is 1,000.  
Rev. 3.00 Sep. 14, 2006 Page 107 of 408  
REJ09B0105-0300  
Section 7 ROM  
START  
Write pulse application subroutine  
Disable WDT  
*2  
Apply Write Pulse  
Set SWE bit in FLMCR1  
WDT enable  
Wait 1 µs  
Set PSU bit in FLMCR1  
Store 64-byte program data in program  
data area and reprogram data area  
*1  
Wait 50 µs  
n = 1  
m= 0  
Set P bit in FLMCR1  
Wait (Wait time = Programming time)  
Write 64-byte data in RAM reprogram  
data area consecutively to flash memory  
Clear P bit in FLMCR1  
Wait 5 µs  
Apply Write pulse  
Set PV bit in FLMCR1  
Clear PSU bit in FLMCR1  
Wait 5 µs  
Wait 4 µs  
Set block start address as  
verify address  
Disable WDT  
n n + 1  
H'FF dummy write to verify address  
End Sub  
Wait 2 µs  
*
1
Read verify data  
Increment address  
Verify data =  
Write data?  
No  
m = 1  
Yes  
No  
n 6 ?  
Yes  
Additional-programming data computation  
Reprogram data computation  
64-byte  
data verification completed?  
No  
Yes  
Clear PV bit in FLMCR1  
Wait 2 µs  
No  
n 6?  
Yes  
Successively write 64-byte data from additional-  
programming data area in RAM to flash memory  
Sub-Routine-Call  
Apply Write Pulse  
No  
Yes  
m = 0 ?  
n 1000 ?  
Yes  
No  
Clear SWE bit in FLMCR1  
Clear SWE bit in FLMCR1  
Wait 100 µs  
Wait 100 µs  
End of programming  
Programming failure  
Notes: 1. The RTS instruction must not be used during the following (1) and (2) periods.  
(1) A period between 64-byte data programming to flash memory and the P bit clearing  
(2) A period between dummy writing of H'FF to a verify address and verify data reading  
2. When WDT is in use, disable it once.  
Figure 7.3 Program/Program-Verify Flowchart  
Rev. 3.00 Sep. 14, 2006 Page 108 of 408  
REJ09B0105-0300  
Section 7 ROM  
Table 7.4 Reprogram Data Computation Table  
Program Data  
Verify Data  
Reprogram Data  
Comments  
0
0
1
1
0
1
0
1
1
0
1
1
Programming completed  
Reprogram bit  
Remains in erased state  
Table 7.5 Additional-Program Data Computation Table  
Additional-Program  
Reprogram Data  
Verify Data  
Data  
Comments  
0
0
1
1
0
1
0
1
0
1
1
1
Additional-program bit  
No additional programming  
No additional programming  
No additional programming  
Table 7.6 Programming Time  
n
Programming  
In Additional  
Programming  
(Number of Writes) Time  
Comments  
1 to 6  
30  
10  
7 to 1,000  
200  
Note: Time shown in µs.  
7.4.2  
Erase/Erase-Verify  
When erasing flash memory, the erase/erase-verify flowchart shown in figure 7.4 should be  
followed.  
1. Prewriting (setting erase block data to all 0s) is not necessary.  
2. Erasing is performed in block units. Make only a single-bit specification in the erase block  
register (EBR1). To erase multiple blocks, each block must be erased in turn.  
3. The time during which the E bit is set to 1 is the flash memory erase time.  
4. The watchdog timer (WDT) is set to prevent overerasing due to program runaway, etc. An  
overflow cycle of approximately 19.8 ms is allowed.  
5. For a dummy write to a verify address, write 1-byte data H'FF to an even address. Verify data  
can be read in words from the address to which a dummy write was performed.  
Rev. 3.00 Sep. 14, 2006 Page 109 of 408  
REJ09B0105-0300  
Section 7 ROM  
6. If the read data is not erased successfully, set erase mode again, and repeat the erase/erase-  
verify sequence as before. The maximum number of repetitions of the erase/erase-verify  
sequence is 100.  
7.4.3  
Interrupt Handling when Programming/Erasing Flash Memory  
All interrupts, including the NMI interrupt, are disabled while flash memory is being programmed  
or erased, or while the boot program is executing, for the following three reasons:  
1. Interrupt during programming/erasing may cause a violation of the programming or erasing  
algorithm, with the result that normal operation cannot be assured.  
2. If interrupt exception handling starts before the vector address is written or during  
programming/erasing, a correct vector cannot be fetched and the CPU malfunctions.  
3. If an interrupt occurs during boot program execution, normal boot mode sequence cannot be  
carried out.  
Rev. 3.00 Sep. 14, 2006 Page 110 of 408  
REJ09B0105-0300  
Section 7 ROM  
Erase start  
*2  
Disable WDT  
SWE bit 1  
Wait 1 µs  
n 1  
Set EBR1  
Enable WDT  
ESU bit 1  
Wait 100 µs  
E bit 1  
Wait 10 ms  
E bit 0  
Wait 10 µs  
ESU bit 10  
Wait 10 µs  
Disable WDT  
EV bit 1  
Wait 20 µs  
Set block start address as verify address  
H'FF dummy write to verify address  
Wait 2 µs  
*1  
n n + 1  
Read verify data  
No  
Verify data = all 1s ?  
Yes  
Increment address  
No  
Last address of block ?  
Yes  
EV bit 0  
Wait 4 µs  
EV bit 0  
Wait 4µs  
No  
Yes  
n 100 ?  
All erase block erased ?  
Yes  
No  
Yes  
SWE bit 0  
SWE bit 0  
Wait 100 µs  
Wait 100 µs  
End of erasing  
Erase failure  
Notes: 1. The RTS instruction must not be used during a period between dummy writing of H'FF to a verify address and verify data reading.  
2. When WDT is in use, disable it once.  
Figure 7.4 Erase/Erase-Verify Flowchart  
Rev. 3.00 Sep. 14, 2006 Page 111 of 408  
REJ09B0105-0300  
Section 7 ROM  
7.5  
Program/Erase Protection  
There are three kinds of flash memory program/erase protection; hardware protection, software  
protection, and error protection.  
7.5.1  
Hardware Protection  
Hardware protection refers to a state in which programming/erasing of flash memory is forcibly  
disabled or aborted because of a transition to reset, subsleep mode or standby mode. Flash  
memory control register 1 (FLMCR1), flash memory control register 2 (FLMCR2), and erase  
block register 1 (EBR1) are initialized. In a reset via the RES pin, the reset state is not entered  
unless the RES pin is held low until oscillation stabilizes after powering on. In the case of a reset  
during operation, hold the RES pin low for the RES pulse width specified in the AC  
Characteristics section.  
7.5.2  
Software Protection  
Software protection can be implemented against programming/erasing of all flash memory blocks  
by clearing the SWE bit in FLMCR1. When software protection is in effect, setting the P or E bit  
in FLMCR1 does not cause a transition to program mode or erase mode. By setting the erase block  
register 1 (EBR1), erase protection can be set for individual blocks. When EBR1 is set to H'00,  
erase protection is set for all blocks.  
7.5.3  
Error Protection  
In error protection, an error is detected when CPU runaway occurs during flash memory  
programming/erasing, or operation is not performed in accordance with the program/erase  
algorithm, and the program/erase operation is aborted. Aborting the program/erase operation  
prevents damage to the flash memory due to overprogramming or overerasing.  
When the following errors are detected during programming/erasing of flash memory, the FLER  
bit in FLMCR2 is set to 1, and the error protection state is entered.  
When the flash memory of the relevant address area is read during programming/erasing  
(including vector read and instruction fetch)  
Immediately after exception handling excluding a reset during programming/erasing  
When a SLEEP instruction is executed during programming/erasing  
Rev. 3.00 Sep. 14, 2006 Page 112 of 408  
REJ09B0105-0300  
Section 7 ROM  
The FLMCR1, FLMCR2, and EBR1 settings are retained, however program mode or erase mode  
is aborted at the point at which the error occurred. Program mode or erase mode cannot be re-  
entered by re-setting the P or E bit. However, PV and EV bit setting is enabled, and a transition  
can be made to verify mode. Error protection can be cleared only by a reset.  
Rev. 3.00 Sep. 14, 2006 Page 113 of 408  
REJ09B0105-0300  
Section 7 ROM  
Rev. 3.00 Sep. 14, 2006 Page 114 of 408  
REJ09B0105-0300  
Section 8 RAM  
Section 8 RAM  
The H8/36912F and H8/36902F have 1536 bytes, the H8/36912 and H8/36902 have 512 bytes,  
and the H8/36911, H8/36901, and H8/36900 have 256 bytes of on-chip high-speed static RAM,  
respectively. The RAM is connected to the CPU by a 16-bit data bus, enabling two-state access by  
the CPU to both byte data and word data.  
Product Classification  
RAM Size  
RAM Address  
Flash memory version  
H8/36912F  
1536 bytes H'F980 to H'FF7F*  
1536 bytes H'F980 to H'FF7F*  
H8/36902F  
Masked ROM version  
H8/36912, H8/36902  
H8/36911, H8/36901  
H8/36900  
512 bytes  
256 bytes  
256 bytes  
H'FD80 to H'FF7F  
H'FE80 to H'FF7F  
H'FE80 to H'FF7F  
Note:  
*
When the E7 or E8 is used, area H'F980 to H'FD7F must not be accessed.  
RAM0400A_000020020200  
Rev. 3.00 Sep. 14, 2006 Page 115 of 408  
REJ09B0105-0300  
Section 8 RAM  
Rev. 3.00 Sep. 14, 2006 Page 116 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
Section 9 I/O Ports  
The LSI of the H8/36912 Group and H8/36902 Group has 18 general I/O ports. Port 8 (P84 to  
P80) is a large current port, which can drive 20 mA (@VOL = 1.5 V) when a low level signal is  
output. Any of these ports can become an input port immediately after a reset. They can also be  
used as I/O pins of the on-chip peripheral modules or external interrupt input pins, and these  
functions can be switched depending on the register settings. The registers for selecting these  
functions can be divided into two types: those included in I/O ports and those included in each on-  
chip peripheral module. General I/O ports are comprised of the port control register for controlling  
inputs/outputs and the port data register for storing output data and can select inputs/outputs in bit  
units. For functions in each port, see appendix B.1, I/O Port Block Diagrams. For the execution of  
bit manipulation instructions to the port control register and port data register, see section 2.8.3,  
Bit Manipulation Instruction.  
9.1  
Port 1  
Port 1 is a general I/O port also functioning as an IRQ interrupt input pin and timer V input pin.  
Figure 9.1 shows its pin configuration.  
P17/IRQ3/TRGV  
Port 1  
P14/IRQ0  
Figure 9.1 Port 1 Pin Configuration  
Port 1 has the following registers.  
Port mode register 1 (PMR1)  
Port control register 1 (PCR1)  
Port data register 1 (PDR1)  
Port pull-up control register 1 (PUCR1)  
Rev. 3.00 Sep. 14, 2006 Page 117 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
9.1.1  
Port Mode Register 1 (PMR1)  
PMR1 switches the functions of pins in port 1 and port 2.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
IRQ3  
0
R/W  
P17/IRQ3/TRGV Pin Function Switch  
Selects whether pin P17/IRQ3/TRGV is used as P17 or  
as IRQ3/TRGV.  
0: General I/O port  
1: IRQ3/TRGV input pin  
Reserved  
6, 5  
4
All 0  
0
These bits are always read as 0.  
IRQ0  
R/W  
P14/IRQ0 Pin Function Switch  
Selects whether pin P14/IRQ0 is used as P14 or as  
IRQ0.  
0: General I/O port  
1: IRQ0 input pin  
3, 2  
1
All 0  
0
Reserved  
These bits are always read as 0.  
P22/TXD Pin Function Switch  
Selects whether pin P22/TXD is used as P22 or as TXD.  
0: General I/O port  
TXD  
R/W  
1: TXD output pin  
0
0
Reserved  
This bit is always read as 0.  
Rev. 3.00 Sep. 14, 2006 Page 118 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
9.1.2  
Port Control Register 1 (PCR1)  
PCR1 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 1.  
Initial  
Bit  
7
Bit Name Value  
R/W  
W
Description  
PCR17  
0
When the corresponding pin is designated in PMR1 as a  
general I/O pin, setting a PCR1 bit to 1 makes the  
corresponding pin an output port, while clearing the bit to  
0 makes the pin an input port.  
6
0
W
5
4
PCR14  
Bits 6, 5, and 3 to 0 are reserved.  
3
2
1
0
9.1.3  
Port Data Register 1 (PDR1)  
PDR1 is a general I/O port data register of port 1.  
Initial  
Bit  
7
Bit Name Value  
R/W  
R/W  
Description  
P17  
0
1
1
0
1
1
1
1
These bits store output data for port 1 pins.  
6
If PDR1 is read while PCR1 bits are set to 1, the value  
stored in PDR1 are read. If PDR1 is read while PCR1 bits  
are cleared to 0, the pin states are read regardless of the  
value stored in PDR1.  
5
4
P14  
R/W  
3
Bits 6, 5, and 3 to 0 are reserved. These bits are always  
read as 1.  
2
1
0
Rev. 3.00 Sep. 14, 2006 Page 119 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
9.1.4  
Port Pull-Up Control Register 1 (PUCR1)  
PUCR1 controls the pull-up MOS in bit units of the pins set as the input ports.  
Initial  
Bit  
7
Bit Name Value  
R/W  
R/W  
Description  
PUCR17  
0
1
1
0
1
1
1
1
Only bits for which PCR1 is cleared are valid.  
6
The pull-up MOS of the P17 and P14 pins enter the on-  
state when these bits are set to 1, while they enter the  
off-state when these bits are cleared to 0.  
5
4
PUCR14  
R/W  
Bits 6, 5, and 3 to 0 are reserved. These bits are always  
read as 1.  
3
2
1
0
9.1.5  
Pin Functions  
The correspondence between the register specification and the port functions is shown below.  
P17/IRQ3/TRGV pin  
Register  
Bit Name  
PMR1  
IRQ3  
PCR1  
PCR17  
Pin Function  
Setting value 0  
0
1
X
P17 input pin  
P17 output pin  
1
IRQ3 input/TRGV input pin  
[Legend]  
X:  
Don't care  
Rev. 3.00 Sep. 14, 2006 Page 120 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
P14/IRQ0 pin  
Register  
Bit Name  
PMR1  
IRQ0  
PCR1  
PCR14  
Pin Function  
P14 input pin  
P14 output pin  
IRQ0 input pin  
Setting value 0  
0
1
X
1
[Legend]  
X:  
Don't care  
9.2  
Port 2  
Port 2 is a general I/O port also functioning as a SCI3 I/O pin. Each pin of the port 2 is shown in  
figure 9.2. The register settings of PMR1 and SCI3 have priority for functions of the pins for both  
uses.  
P22/TXD  
P21/RXD  
Port 2  
P20/SCK3  
Figure 9.2 Port 2 Pin Configuration  
Port 2 has the following registers.  
Port control register 2 (PCR2)  
Port data register 2 (PDR2)  
Rev. 3.00 Sep. 14, 2006 Page 121 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
9.2.1  
Port Control Register 2 (PCR2)  
PCR2 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 2.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7 to 3  
0
Reserved  
2
1
0
PCR22  
PCR21  
PCR20  
W
When each of the port 2 pins, P22 to P20, functions as an  
general I/O port, setting a PCR2 bit to 1 makes the  
corresponding pin an output port, while clearing the bit to  
0 makes the pin an input port.  
0
W
0
W
9.2.2  
Port Data Register 2 (PDR2)  
PDR2 is a general I/O port data register of port 2.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7 to 3  
All 1  
Reserved  
These bits are always read as 1.  
These bits store output data for port 2 pins.  
2
1
0
P22  
P21  
P20  
0
0
0
R/W  
R/W  
R/W  
If PDR2 is read while PCR2 bits are set to 1, the value  
stored in PDR2 is read. If PDR2 is read while PCR2 bits  
are cleared to 0, the pin states are read regardless of the  
value stored in PDR2.  
Rev. 3.00 Sep. 14, 2006 Page 122 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
9.2.3  
The correspondence between the register specification and the port functions is shown below.  
P22/TXD pin  
Pin Functions  
Register  
PMR1  
TXD  
0
PCR2  
PCR22  
0
Bit Name  
Pin Function  
Setting  
value  
P22 input pin  
1
P22 output pin  
TXD output pin  
1
X
[Legend]  
X:  
Don't care  
P21/RXD pin  
Register  
Bit Name  
SCR3  
RE  
PCR2  
PCR21  
0
Pin Function  
Setting  
value  
0
P21 input pin  
1
P21 output pin  
RXD input pin  
1
X
[Legend]  
X:  
Don't care  
P20/SCK3 pin  
Register  
Bit Name  
SCR3  
CKE1  
SMR  
COM  
0
PCR2  
CKE0  
PCR20  
Pin Function  
P20 input pin  
Setting value 0  
0
0
1
P20 output pin  
SCK3 output pin  
SCK3 output pin  
SCK3 input pin  
0
0
1
X
1
X
X
X
0
X
X
1
[Legend]  
X:  
Don't care  
Rev. 3.00 Sep. 14, 2006 Page 123 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
9.3  
Port 5  
Port 5 is a general I/O port also functioning as an I2C bus interface I/O pin*, A/D trigger input pin,  
and wakeup interrupt input pin. Each pin of the port 5 is shown in figure 9.3. The register setting  
of the I2C bus interface has priority for functions of the P57/SCL and P56/SDA pins.  
Note: * Supported only by the H8/36912 Group.  
P57/SCL  
Port 5  
P56/SDA  
P55/WKP5/ADTRG  
Figure 9.3 Port 5 Pin Configuration  
Port 5 has the following registers.  
Port mode register 5 (PMR5)  
Port control register 5 (PCR5)  
Port data register 5 (PDR5)  
Port pull-up control register 5 (PUCR5)  
Rev. 3.00 Sep. 14, 2006 Page 124 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
9.3.1  
Port Mode Register 5 (PMR5)  
PMR5 switches the functions of pins in port 5.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7, 6  
All 0  
0
Reserved  
These bits are always read as 0.  
5
WKP5  
R/W  
P55/WKP5/ADTRG Pin Function Switch  
Selects whether pin P55/WKP5/ADTRG is used as P55  
or as WKP5/ADTRG.  
0: General I/O port  
1: WKP5/ADTRG input pin  
Reserved  
4 to 0  
All 0  
These bits are always read as 0.  
9.3.2  
Port Control Register 5 (PCR5)  
PCR5 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 5.  
Initial  
Bit  
7
Bit Name Value  
R/W  
W
Description  
PCR57  
PCR56  
PCR55  
0
0
0
When each of the port 5 pins, P57 to P55, functions as an  
general I/O port, setting a PCR5 bit to 1 makes the  
corresponding pin an output port, while clearing the bit to  
0 makes the pin an input port.  
6
W
5
W
4 to 0  
Reserved  
Rev. 3.00 Sep. 14, 2006 Page 125 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
9.3.3  
Port Data Register 5 (PDR5)  
PDR5 is a general I/O port data register of port 5.  
Initial  
Bit  
7
Bit Name Value  
R/W  
R/W  
R/W  
R/W  
Description  
P57  
P56  
P55  
0
0
0
These bits store output data for port 5 pins.  
6
If PDR5 is read while PCR5 bits are set to 1, the value  
stored in PDR5 are read. If PDR5 is read while PCR5 bits  
are cleared to 0, the pin states are read regardless of the  
value stored in PDR5.  
5
4 to 0  
All 1  
Reserved  
These bits are always read as 1.  
9.3.4  
Port Pull-Up Control Register 5 (PUCR5)  
PUCR5 controls the pull-up MOS in bit units of the pins set as the input ports.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7, 6  
All 0  
0
Reserved  
These bits are always read as 0.  
Only bits for which PCR5 is cleared are valid.  
5
PUCR55  
R/W  
The pull-up MOS of the corresponding pins enter the on-  
state when this bit is set to 1, while they enter the off-  
state when this bit is cleared to 0.  
4 to 0  
All 0  
Reserved  
These bits are always read as 0.  
Rev. 3.00 Sep. 14, 2006 Page 126 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
9.3.5  
The correspondence between the register specification and the port functions is shown below.  
P57/SCL pin  
Pin Functions  
Register  
Bit Name  
ICCR  
ICE  
PCR5  
PCR57  
Pin Function  
P57 input pin  
P57 output pin  
SCL I/O pin*  
Setting value 0  
0
1
X
1
[Legend]  
X:  
Note: As the SCL output form is NMOS open-drain, direct bus drive is enabled.  
Supported only by the H8/36912 Group.  
Don't care  
*
P56/SDA pin  
Register  
Bit Name  
ICCR  
ICE  
PCR5  
PCR56  
Pin Function  
P56 input pin  
P56 output pin  
SDA I/O pin*  
Setting value 0  
0
1
X
1
[Legend]  
X:  
Note: As the SDA output form is NMOS open-drain, direct bus drive is enabled.  
Supported only by the H8/36912 Group.  
Don't care  
*
P55/WKP5/ADTRG pin  
Register  
Bit Name  
PMR5  
WKP5  
PCR5  
PCR55  
Pin Function  
Setting value 0  
0
1
X
P55 input pin  
P55 output pin  
1
WKP5/ADTRG input pin  
[Legend]  
X:  
Don't care  
Rev. 3.00 Sep. 14, 2006 Page 127 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
9.4  
Port 7  
Port 7 is a general I/O port also functioning as a timer V I/O pin. Each pin of the port 7 is shown  
in figure 9.4. The register setting of TCSRV in timer V has priority for functions of the  
P76/TMOV pin. The pins, P75/TMCIV and P74/TMRIV, are also functioning as timer V input  
ports that are connected to the timer V regardless of the register setting of port 7.  
P76/TMOV  
P75/TMCIV  
P74/TMRIV  
Port 7  
Figure 9.4 Port 7 Pin Configuration  
Port 7 has the following registers.  
Port control register 7 (PCR7)  
Port data register 7 (PDR7)  
9.4.1  
Port Control Register 7 (PCR7)  
PCR7 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 7.  
Initial  
Bit  
7
Bit Name Value  
R/W  
Description  
0
Reserved  
6
PCR76  
PCR75  
PCR74  
W
Setting a PCR7 bit to 1 makes the corresponding pin an  
output port, while clearing the bit to 0 makes the pin an  
input port. Note that the TCSRV setting of the timer V has  
priority for deciding input/output direction of the  
P76/TMOV pin.  
5
0
W
4
0
W
3 to 0  
Reserved  
Rev. 3.00 Sep. 14, 2006 Page 128 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
9.4.2  
Port Data Register 7 (PDR7)  
PDR7 is a general I/O port data register of port 7.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
1
Reserved  
This bit is always read as 1.  
6
5
4
P76  
P75  
P74  
0
0
0
R/W  
R/W  
R/W  
These bits store output data for port 7 pins.  
If PDR7 is read while PCR7 bits are set to 1, the value  
stored in PDR7 is read. If PDR7 is read while PCR7 bits  
are cleared to 0, the pin states are read regardless of the  
value stored in PDR7.  
3 to 0  
All 1  
Reserved  
These bits are always read as 1.  
9.4.3  
Pin Functions  
The correspondence between the register specification and the port functions is shown below.  
P76/TMOV pin  
Register  
Bit Name  
Setting value 0000  
TCSRV  
PCR7  
OS3 to OS0 PCR76  
Pin Function  
P76 input pin  
0
1
X
P76 output pin  
TMOV output pin  
Other than  
the above  
values  
[Legend]  
X: Don't care  
Rev. 3.00 Sep. 14, 2006 Page 129 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
P75/TMCIV pin  
Register  
Bit Name  
PCR7  
PCR75  
Pin Function  
Setting value 0  
1
P75 input/TMCIV input pin  
P75 output/TMCIV input pin  
P74/TMRIV pin  
Register  
Bit Name  
PCR7  
PCR74  
Pin Function  
Setting value 0  
1
P74 input/TMRIV input pin  
P74 output/TMRIV input pin  
9.5  
Port 8  
Port 8 is a general I/O port also functioning as a timer W I/O pin. Each pin of the port 8 is shown  
in figure 9.5. The register setting of the timer W has priority for functions of the P84/FTIOD,  
P83/FTIOC, P82/FTIOB, and P81/FTIOA pins. The P80/FTCI pin also functions as a timer W  
input port that is connected to the timer W regardless of the register setting of port 8.  
P84/FTIOD  
P83/FTIOC  
Port 8  
P82/FTIOB  
P81/FTIOA  
P80/FTCI  
Figure 9.5 Port 8 Pin Configuration  
Port 8 has the following registers.  
Port control register 8 (PCR8)  
Port data register 8 (PDR8)  
Rev. 3.00 Sep. 14, 2006 Page 130 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
9.5.1  
Port Control Register 8 (PCR8)  
PCR8 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 8.  
Initial  
Bit  
Bit Name Value  
R/W  
W
Description  
7 to 5  
0
Reserved  
4
3
2
1
0
PCR84  
PCR83  
PCR82  
PCR81  
PCR80  
When each of the port 8 pins, P84 to P80, functions as an  
general I/O port, setting a PCR8 bit to 1 makes the  
corresponding pin an output port, while clearing the bit to  
0 makes the pin an input port.  
0
W
0
W
0
W
0
W
9.5.2  
Port Data Register 8 (PDR8)  
PDR8 is a general I/O port data register of port 8.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7 to 5  
All 0  
Reserved  
4
3
2
1
0
P84  
P83  
P82  
P81  
P80  
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
These bits store output data for port 8 pins.  
If PDR8 is read while PCR8 bits are set to 1, the value  
stored in PDR8 is read. If PDR8 is read while PCR8 bits  
are cleared to 0, the pin states are read regardless of the  
value stored in PDR8.  
Rev. 3.00 Sep. 14, 2006 Page 131 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
9.5.3  
Pin Functions  
The correspondence between the register specification and the port functions is shown below.  
P84/FTIOD pin  
Register TMRW  
Bit Name PWMD  
TIOR1  
IOD1  
PCR8  
IOD2  
IOD0  
PCR84 Pin Function  
Setting  
value  
0
0
0
0
0
P84 input/FTIOD input pin  
1
X
X
0
1
X
P84 output/FTIOD input pin  
FTIOD output pin  
0
0
1
0
1
X
1
X
X
FTIOD output pin  
P84 input/FTIOD input pin  
P84 output/FTIOD input pin  
PWM output pin  
1
X
X
X
[Legend]  
X:  
Don't care  
P83/FTIOC pin  
Register TMRW  
Bit Name PWMC  
TIOR1  
PCR8  
PCR83  
0
IOC2  
IOC1  
IOC0  
Pin Function  
Setting  
value  
0
0
0
0
P83 input/FTIOC input pin  
1
X
X
0
1
X
P83 output/FTIOC input pin  
FTIOC output pin  
0
0
1
0
1
X
1
X
X
FTIOC output pin  
P83 input/FTIOC input pin  
P83 output/FTIOC input pin  
PWM output pin  
1
X
X
X
[Legend]  
X:  
Don't care  
Rev. 3.00 Sep. 14, 2006 Page 132 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
P82/FTIOB pin  
Register TMRW  
Bit Name PWMB  
TIOR0  
IOB1  
PCR8  
IOB2  
IOB0  
PCR82 Pin Function  
Setting  
value  
0
0
0
0
0
P82 input/FTIOB input pin  
1
X
X
0
1
X
P82 output/FTIOB input pin  
FTIOB output pin  
0
0
1
0
1
X
1
X
X
FTIOB output pin  
P82 input/FTIOB input pin  
P82 output/FTIOB input pin  
PWM output pin  
1
X
X
X
[Legend]  
X:  
Don't care  
P81/FTIOA pin  
Register  
Bit Name  
TIOR0  
IOA1  
PCR8  
IOA2  
IOA0  
PCR81  
Pin Function  
Setting value 0  
0
0
0
1
X
X
0
1
P81 input/FTIOA input pin  
P81 output/FTIOA input pin  
FTIOA output pin  
0
0
1
0
1
X
1
X
X
FTIOA output pin  
P81 input/FTIOA input pin  
P81 output/FTIOA input pin  
[Legend]  
X:  
Don't care  
P80/FTCI pin  
Register  
Bit Name  
PCR8  
PCR80  
Pin Function  
Setting value 0  
1
P80 input/FTCI input pin  
P80 output/FTCI input pin  
Rev. 3.00 Sep. 14, 2006 Page 133 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
9.6  
Port B  
Port B is an input port also functioning as an A/D converter analog input pin and LVD external  
comparison voltage input pin. Each pin of the port B is shown in figure 9.6.  
PB3/AN3/ExtU  
PB2/AN2/ExtD  
Port B  
PB1/AN1  
PB0/AN0  
Figure 9.6 Port B Pin Configuration  
Port B has the following register.  
Port data register B (PDRB)  
9.6.1 Port Data Register B (PDRB)  
PDRB is a general input-only port data register of port B.  
Initial  
Bit  
Bit Name Value  
R/W  
R
Description  
7 to 4  
Reserved  
3
2
1
0
PB3  
PB2  
PB1  
PB0  
The input value of each pin is read by reading this  
register.  
R
However, if a port B pin is designated as an analog input  
channel by ADCSR in A/D converter or external  
comparison voltage input pin by LVDCR in low-voltage  
detection circuit, 0 is read.  
R
R
Rev. 3.00 Sep. 14, 2006 Page 134 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
9.6.2  
The correspondence between the register specification and the port functions is shown below.  
PB3/AN3/ExtU pin  
Pin Functions  
Register  
Bit Name  
Setting value 0  
ADCSR  
CH1  
LVDCR  
CH2  
CH0  
VDDII  
Pin Function  
1
1
1
0
1
0
AN3 input pin  
AN3 input/ExtU input pin  
PB3 input pin  
Other than the above values  
PB3 input/ExtU input pin  
PB2/AN2/ExtD pin  
Register  
Bit Name  
ADCSR  
LVDCR  
CH2  
SCAN  
CH1  
CH0  
0
VDDII  
Pin Function  
Setting value 0  
0
0
1
1
1
1
0
1
0
AN2 input pin  
X
AN2 input/ExtD input pin  
PB2 input pin  
Other than the above values  
PB2 input/ExtD input pin  
[Legend]  
X:  
Don't care  
PB1/AN1 pin  
Register  
Bit Name  
ADCSR  
CH2  
SCAN  
CH1  
CH0  
1
Pin Function  
Setting value 0  
0
X
1
0
1
AN1 input pin  
X
Other than the above values  
PB1 input pin  
[Legend]  
X: Don't care  
Rev. 3.00 Sep. 14, 2006 Page 135 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
PB0/AN0 pin  
Register  
ADCSR  
Bit Name  
CH2  
SCAN  
CH1  
0
CH0  
0
Pin Function  
Setting  
value  
0
0
0
1
AN0 input pin  
X
X
Other than the above values  
PB0 input pin  
[Legend]  
X:  
Don't care  
9.7  
Port C  
Port C is a general I/O port also functioning as an external oscillation pin and clock output pin.  
Each pin of the port C is shown in figure 9.7. The register setting of CKCSR has priority for  
functions of the pins for both uses.  
PC1/OSC2/CLKOUT  
Port C  
PC0/OSC1  
Figure 9.7 Port C Pin Configuration  
Port C has the following registers.  
Port control register C (PCRC)  
Port data register C (PDRC)  
Rev. 3.00 Sep. 14, 2006 Page 136 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
9.7.1  
Port Control Register C (PCRC)  
PCRC selects inputs/outputs in bit units for pins to be used as general I/O ports of port C.  
Initial  
Bit  
7 to 2  
1
Bit Name Value  
R/W  
Description  
0
Reserved  
PCRC1  
PCRC0  
W
When each of the port C pins, PC1 and PC0, functions as  
an general I/O port, setting a PCRC bit to 1 makes the  
corresponding pin an output port, while clearing the bit to  
0 makes the pin an input port.  
0
0
W
9.7.2  
Port Data Register C (PDRC)  
PDRC is a general I/O port data register of port C.  
Initial  
Bit  
7 to 2  
1
Bit Name Value  
R/W  
Description  
0
Reserved  
PC1  
PC0  
R/W  
R/W  
These bits store output data for port C pins.  
0
0
If PDRC is read while PCRC bits are set to 1, the value  
stored in PDRC is read. If PDRC is read while PCRC bits  
are cleared to 0, the pin states are read regardless of the  
value stored in PDRC.  
Rev. 3.00 Sep. 14, 2006 Page 137 of 408  
REJ09B0105-0300  
Section 9 I/O Ports  
9.7.3  
Pin Functions  
The correspondence between the register specification and the port functions is shown below.  
PC1/OSC2/CLKOUT pin  
Register  
Bit Name  
CKCSR  
PMRC0  
PCRC  
PMRC1  
PCRC1  
Pin Function  
Setting value  
0
X
0
1
X
X
PC1 input pin  
PC1 output pin  
1
0
1
CLKOUT output pin  
OSC2 oscillation pin  
[Legend]  
X:  
Don't care  
PC0/OSC1 pin  
Register  
Bit Name  
CKCSR  
PMRC0  
PCRC  
PCRC0  
Pin Function  
PC0 input pin  
PC0 output pin  
Setting value 0  
0
1
X
1
OSC1 oscillation pin  
[Legend]  
X:  
Don't care  
Rev. 3.00 Sep. 14, 2006 Page 138 of 408  
REJ09B0105-0300  
Section 10 Timer B1  
Section 10 Timer B1  
Timer B1 is an 8-bit timer that increments each time a clock pulse is input. This timer has two  
operating modes, interval and auto reload. Figure 10.1 shows a block diagram of timer B1.  
10.1  
Features  
Selection of seven internal clock sources (φ/8192, φ/2048, φ/512, φ/256, φ/64, φ/16, and φ/4)  
An interrupt is generated when the counter overflows.  
TMB1  
φ
PSS  
TCB1  
TLB1  
[Legend]  
TMB1:  
TCB1:  
TLB1:  
Timer mode register B1  
Timer counter B1  
Timer load register B1  
IRRTB1  
IRRTB1: Timer B1 interrupt request flag  
PSS: Prescaler S  
Figure 10.1 Block Diagram of Timer B1  
TIM08B0A_000020020200  
Rev. 3.00 Sep. 14, 2006 Page 139 of 408  
REJ09B0105-0300  
Section 10 Timer B1  
10.2  
Register Descriptions  
The timer B1 has the following registers.  
Timer mode register B1 (TMB1)  
Timer counter B1 (TCB1)  
Timer load register B1 (TLB1)  
10.2.1 Timer Mode Register B1 (TMB1)  
TMB1 selects the auto-reload function and input clock.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
TMB17  
0
R/W  
Auto-Reload Function Select  
0: Interval timer function selected  
1: Auto-reload function selected  
Reserved  
6
1
R/W  
Although this bit is readable/writable, it should not be set  
to 0.  
5 to 3  
All 1  
Reserved  
These bits are always read as 1.  
2
1
0
TMB12  
TMB11  
TMB10  
0
0
0
R/W  
R/W  
R/W  
Clock Select  
000: Internal clock: φ/8192  
001: Internal clock: φ/2048  
010: Internal clock: φ/512  
011: Internal clock: φ/256  
100: Internal clock: φ/64  
101: Internal clock: φ/16  
110: Internal clock: φ/4  
111: Reserved (setting prohibited)  
Rev. 3.00 Sep. 14, 2006 Page 140 of 408  
REJ09B0105-0300  
Section 10 Timer B1  
10.2.2 Timer Counter B1 (TCB1)  
TCB1 is an 8-bit read-only up-counter, which is incremented by internal clock input. The clock  
source for input to this counter is selected by bits TMB12 to TMB10 in TMB1. TCB1 values can  
be read by the CPU at any time. When TCB1 overflows from H'FF to H'00 or to the value set in  
TLB1, the IRRTB1 flag in IRR2 is set to 1. TCB1 is allocated to the same address as TLB1.  
10.2.3 Timer Load Register B1 (TLB1)  
TLB1 is an 8-bit write-only register for setting the reload value of TCB1. When a reload value is  
set in TLB1, the same value is loaded into TCB1 as well, and TCB1 starts counting up from that  
value. When TCB1 overflows during operation in auto-reload mode, the TLB1 value is loaded  
into TCB1. Accordingly, overflow periods can be set within the range of 1 to 256 input clocks.  
TLB1 is allocated to the same address as TCB1.  
Rev. 3.00 Sep. 14, 2006 Page 141 of 408  
REJ09B0105-0300  
Section 10 Timer B1  
10.3  
Operation  
10.3.1 Interval Timer Operation  
When bit TMB17 in TMB1 is cleared to 0, timer B1 functions as an 8-bit interval timer. Upon  
reset, TCB1 is cleared to H'00 and bit TMB17 is cleared to 0, so up-counting and interval timing  
resume immediately. The operating clock of timer B1 is selected from seven internal clock signals  
output by prescaler S. The selection is made by the TMB12 to TMB10 bits in TMB1.  
After the count value in TMB1 reaches H'FF, the next clock signal input causes timer B1 to  
overflow, setting flag IRRTB1 in IRR2 to 1. If IENTB1 in IENR2 is 1, an interrupt is requested to  
the CPU.  
At overflow, TCB1 returns to H'00 and starts counting up again. During interval timer operation  
(TMB17 = 0), when a value is set in TLB1, the same value is set in TCB1.  
10.3.2 Auto-Reload Timer Operation  
Setting bit TMB17 in TMB1 to 1 causes timer B1 to function as an 8-bit auto-reload timer. When  
a reload value is set in TLB1, the same value is loaded into TCB1, becoming the value from which  
TCB1 starts its count. After the count value in TCB1 reaches H'FF, the next clock signal input  
causes timer B1 to overflow. The TLB1 value is then loaded into TCB1, and the count continues  
from that value. The overflow period can be set within a range from 1 to 256 input clocks,  
depending on the TLB1 value.  
The clock sources and interrupts in auto-reload mode are the same as in interval mode. In auto-  
reload mode (TMB17 = 1), when a new value is set in TLB1, the TLB1 value is also loaded into  
TCB1.  
Rev. 3.00 Sep. 14, 2006 Page 142 of 408  
REJ09B0105-0300  
Section 10 Timer B1  
10.4  
Timer B1 Operating Modes  
Table 10.1 shows the timer B1 operating modes.  
Table 10.1 Timer B1 Operating Modes  
Operating Mode  
Reset  
Active  
Sleep  
Subsleep  
Halted  
Standby  
Halted  
TCB1  
Interval  
Reset  
Functions  
Functions  
Functions  
Functions  
Functions  
Retained  
Auto-reload Reset  
Reset  
Halted  
Halted  
TMB1  
Retained  
Retained  
Rev. 3.00 Sep. 14, 2006 Page 143 of 408  
REJ09B0105-0300  
Section 10 Timer B1  
Rev. 3.00 Sep. 14, 2006 Page 144 of 408  
REJ09B0105-0300  
Section 11 Timer V  
Section 11 Timer V  
Timer V is an 8-bit timer based on an 8-bit counter. Timer V counts external events. Compare-  
match signals with two registers can also be used to reset the counter, request an interrupt, or  
output a pulse signal with an arbitrary duty cycle. Counting can be initiated by a trigger input at  
the TRGV pin, enabling pulse output control to be synchronized to the trigger, with an arbitrary  
delay from the trigger input. Figure 11.1 shows a block diagram of timer V.  
11.1  
Features  
Choice of seven clock signals is available.  
Choice of six internal clock sources (φ/128, φ/64, φ/32, φ/16, φ/8, φ/4) or an external clock.  
Counter can be cleared by compare match A or B, or by an external reset signal. If the count  
stop function is selected, the counter can be halted when cleared.  
Timer output is controlled by two independent compare match signals, enabling pulse output  
with an arbitrary duty cycle, PWM output, and other applications.  
Three interrupt sources: compare match A, compare match B, timer overflow  
Counting can be initiated by trigger input at the TRGV pin. The rising edge, falling edge, or  
both edges of the TRGV input can be selected.  
TIM08V0A_000120030300  
Rev. 3.00 Sep. 14, 2006 Page 145 of 408  
REJ09B0105-0300  
Section 11 Timer V  
TCRV1  
TCORB  
Trigger  
control  
TRGV  
TMCIV  
φ
Comparator  
Clock select  
TCNTV  
Comparator  
TCORA  
PSS  
Clear  
control  
TCRV0  
TMRIV  
Interrupt  
request  
control  
Output  
control  
TCSRV  
TMOV  
CMIA  
CMIB  
OVI  
[Legend]  
TCORA:  
TCORB:  
TCNTV:  
TCSRV:  
TCRV0:  
TCRV1:  
PSS:  
Time constant register A  
Time constant register B  
Timer counter V  
Timer control/status register V  
Timer control register V0  
Timer control register V1  
Prescaler S  
CMIA:  
CMIB:  
OVI:  
Compare-match interrupt A  
Compare-match interrupt B  
Overflow interrupt  
Figure 11.1 Block Diagram of Timer V  
Rev. 3.00 Sep. 14, 2006 Page 146 of 408  
REJ09B0105-0300  
Section 11 Timer V  
11.2  
Input/Output Pins  
Table 11.1 shows the timer V pin configuration.  
Table 11.1 Pin Configuration  
Name  
Abbreviation I/O  
Function  
Timer V output  
Timer V clock input  
Timer V reset input  
Trigger input  
TMOV  
TMCIV  
TMRIV  
TRGV  
Output  
Input  
Input  
Input  
Timer V waveform output  
Clock input to TCNTV  
External input to reset TCNTV  
Trigger input to initiate counting  
11.3  
Register Descriptions  
Time V has the following registers.  
Timer counter V (TCNTV)  
Timer constant register A (TCORA)  
Timer constant register B (TCORB)  
Timer control register V0 (TCRV0)  
Timer control/status register V (TCSRV)  
Timer control register V1 (TCRV1)  
11.3.1 Timer Counter V (TCNTV)  
TCNTV is an 8-bit up-counter. The clock source is selected by bits CKS2 to CKS0 in timer  
control register V0 (TCRV0). The TCNTV value can be read and written by the CPU at any time.  
TCNTV can be cleared by an external reset input signal, or by compare match A or B. The  
clearing signal is selected by bits CCLR1 and CCLR0 in TCRV0.  
When TCNTV overflows, OVF is set to 1 in timer control/status register V (TCSRV).  
TCNTV is initialized to H'00.  
Rev. 3.00 Sep. 14, 2006 Page 147 of 408  
REJ09B0105-0300  
Section 11 Timer V  
11.3.2 Time Constant Registers A and B (TCORA, TCORB)  
TCORA and TCORB have the same function.  
TCORA and TCORB are 8-bit read/write registers.  
TCORA and TCNTV are compared at all times. When the TCORA and TCNTV contents match,  
CMFA is set to 1 in TCSRV. If CMIEA is also set to 1 in TCRV0, a CPU interrupt is requested.  
Note that they must not be compared during the T3 state of a TCORA write cycle.  
Timer output from the TMOV pin can be controlled by the identifying signal (compare match A)  
and the settings of bits OS3 to OS0 in TCSRV.  
TCORA and TCORB are initialized to H'FF.  
11.3.3 Timer Control Register V0 (TCRV0)  
TCRV0 selects the input clock signals of TCNTV, specifies the clearing conditions of TCNTV,  
and controls each interrupt request.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
CMIEB  
CMIEA  
OVIE  
0
0
0
R/W  
Compare Match Interrupt Enable B  
When this bit is set to 1, interrupt request from the CMFB  
bit in TCSRV is enabled.  
6
5
R/W  
R/W  
Compare Match Interrupt Enable A  
When this bit is set to 1, interrupt request from the CMFA  
bit in TCSRV is enabled.  
Timer Overflow Interrupt Enable  
When this bit is set to 1, interrupt request from the OVF  
bit in TCSRV is enabled.  
Rev. 3.00 Sep. 14, 2006 Page 148 of 408  
REJ09B0105-0300  
Section 11 Timer V  
Initial  
Bit  
4
Bit Name Value  
R/W  
R/W  
R/W  
Description  
CCLR1  
CCLR0  
0
0
Counter Clear 1 and 0  
3
These bits specify the clearing conditions of TCNTV.  
00: Clearing is disabled  
01: Cleared by compare match A  
10: Cleared by compare match B  
11: Cleared on the rising edge of the TMRIV pin.  
The operation of TCNTV after clearing depends on TRGE  
in TCRV1.  
2
1
0
CKS2  
CKS1  
CKS0  
0
0
0
R/W  
R/W  
R/W  
Clock Select 2 to 0  
These bits select clock signals to input to TCNTV and the  
counting condition in combination with ICKS0 in TCRV1.  
Refer to table 11.2.  
Table 11.2 Clock Signals to Input to TCNTV and Counting Conditions  
TCRV0  
Bit 1  
TCRV1  
Bit 2  
CKS2  
0
Bit 0  
CKS0  
0
Bit 0  
CKS1  
ICKS0  
Description  
0
0
Clock input prohibited  
1
Internal clock: counts on φ/4, falling edge  
Internal clock: counts on φ/8, falling edge  
Internal clock: counts on φ/16, falling edge  
Internal clock: counts on φ/32, falling edge  
Internal clock: counts on φ/64, falling edge  
Internal clock: counts on φ/128, falling edge  
Clock input prohibited  
1
1
0
1
0
1
0
1
1
0
1
0
1
0
1
External clock: counts on rising edge  
External clock: counts on falling edge  
External clock: counts on rising and falling  
edge  
Rev. 3.00 Sep. 14, 2006 Page 149 of 408  
REJ09B0105-0300  
Section 11 Timer V  
11.3.4 Timer Control/Status Register V (TCSRV)  
TCSRV indicates the status flag and controls outputs by using a compare match.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
CMFB  
CMFA  
OVF  
0
0
0
1
R/W  
Compare Match Flag B  
[Setting condition]  
When the TCNTV value matches the TCORB value  
[Clearing condition]  
After reading CMFB = 1, cleared by writing 0 to CMFB  
6
5
4
R/W  
R/W  
Compare Match Flag A  
[Setting condition]  
When the TCNTV value matches the TCORA value  
[Clearing condition]  
After reading CMFA = 1, cleared by writing 0 to CMFA  
Timer Overflow Flag  
[Setting condition]  
When TCNTV overflows from H'FF to H'00  
[Clearing condition]  
After reading OVF = 1, cleared by writing 0 to OVF  
Reserved  
This bit is always read as 1.  
Output Select 3 and 2  
3
2
OS3  
OS2  
0
0
R/W  
R/W  
These bits select an output method for the TMOV pin by  
the compare match of TCORB and TCNTV.  
00: No change  
01: 0 output  
10: 1 output  
11: Output toggles  
Rev. 3.00 Sep. 14, 2006 Page 150 of 408  
REJ09B0105-0300  
Section 11 Timer V  
Initial  
Bit  
1
Bit Name Value  
R/W  
R/W  
R/W  
Description  
OS1  
OS0  
0
0
Output Select 1 and 0  
0
These bits select an output method for the TMOV pin by  
the compare match of TCORA and TCNTV.  
00: No change  
01: 0 output  
10: 1 output  
11: Output toggles  
OS3 and OS2 select the output level for compare match B. OS1 and OS0 select the output level  
for compare match A. The two output levels can be controlled independently. After a reset, the  
timer output is 0 until the first compare match.  
11.3.5 Timer Control Register V1 (TCRV1)  
TCRV1 selects the edge at the TRGV pin, enables TRGV input, and selects the clock input to  
TCNTV.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7 to 5  
All 1  
Reserved  
These bits are always read as 1.  
TRGV Input Edge Select  
4
3
TVEG1  
TVEG0  
0
0
R/W  
R/W  
These bits select the TRGV input edge.  
00: TRGV trigger input is prohibited  
01: Rising edge is selected  
10: Falling edge is selected  
11: Rising and falling edges are both selected  
2
TRGE  
0
R/W  
TCNT starts counting up by the input of the edge which is  
selected by TVEG1 and TVEG0.  
0: Disables starting counting-up TCNTV by the input of  
the TRGV pin and halting counting-up TCNTV when  
TCNTV is cleared by a compare match.  
1: Enables starting counting-up TCNTV by the input of  
the TRGV pin and halting counting-up TCNTV when  
TCNTV is cleared by a compare match.  
Rev. 3.00 Sep. 14, 2006 Page 151 of 408  
REJ09B0105-0300  
Section 11 Timer V  
Initial  
Bit Name Value  
Bit  
R/W  
Description  
1
1
Reserved  
This bit is always read as 1.  
Internal Clock Select 0  
0
ICKS0  
0
R/W  
This bit selects clock signals to input to TCNTV in  
combination with CKS2 to CKS0 in TCRV0.  
Refer to table 11.2.  
11.4  
Operation  
11.4.1 Timer V Operation  
1. According to table 11.2, six internal/external clock signals output by prescaler S can be  
selected as the timer V operating clock signals. When the operating clock signal is selected,  
TCNTV starts counting-up. Figure 11.2 shows the count timing with an internal clock signal  
selected, and figure 11.3 shows the count timing with both edges of an external clock signal  
selected.  
2. When TCNTV overflows (changes from H'FF to H'00), the overflow flag (OVF) in TCRV0  
will be set. The timing at this time is shown in figure 11.4. An interrupt request is sent to the  
CPU when OVIE in TCRV0 is 1.  
3. TCNTV is constantly compared with TCORA and TCORB. Compare match flag A or B  
(CMFA or CMFB) is set to 1 when TCNTV matches TCORA or TCORB, respectively. The  
compare-match signal is generated in the last state in which the values match. Figure 11.5  
shows the timing. An interrupt request is generated for the CPU when CMIEA or CMIEB in  
TCRV0 is 1.  
4. When a compare match A or B is generated, the TMOV responds with the output value  
selected by bits OS3 to OS0 in TCSRV. Figure 11.6 shows the timing when the output is  
toggled by compare match A.  
5. When CCLR1 or CCLR0 in TCRV0 is 01 or 10, TCNTV can be cleared by the corresponding  
compare match. Figure 11.7 shows the timing.  
6. When CCLR1 or CCLR0 in TCRV0 is 11, TCNTV can be cleared by the rising edge of the  
input of TMRIV pin. A TMRIV input pulse-width of at least 1.5 system clocks is necessary.  
Figure 11.8 shows the timing.  
7. When a counter-clearing source is generated with TRGE in TCRV1 set to 1, the counting-up is  
halted as soon as TCNTV is cleared. TCNTV resumes counting-up when the edge selected by  
TVEG1 or TVEG0 in TCRV1 is input from the TGRV pin.  
Rev. 3.00 Sep. 14, 2006 Page 152 of 408  
REJ09B0105-0300  
Section 11 Timer V  
φ
Internal clock  
TCNTV input  
clock  
N – 1  
N
N + 1  
TCNTV  
Figure 11.2 Increment Timing with Internal Clock  
φ
TMCIV  
(External clock  
input pin)  
TCNTV input  
clock  
N – 1  
N
N + 1  
TCNTV  
Figure 11.3 Increment Timing with External Clock  
φ
TCNTV  
H'FF  
H'00  
Overflow signal  
OVF  
Figure 11.4 OVF Set Timing  
Rev. 3.00 Sep. 14, 2006 Page 153 of 408  
REJ09B0105-0300  
Section 11 Timer V  
φ
TCNTV  
N
N
N+1  
TCORA or  
TCORB  
Compare match  
signal  
CMFA or  
CMFB  
Figure 11.5 CMFA and CMFB Set Timing  
φ
Compare match  
A signal  
Timer V output  
pin  
Figure 11.6 TMOV Output Timing  
φ
Compare match  
A signal  
N
H'00  
TCNTV  
Figure 11.7 Clear Timing by Compare Match  
Rev. 3.00 Sep. 14, 2006 Page 154 of 408  
REJ09B0105-0300  
Section 11 Timer V  
φ
TMRIV  
(External counter  
reset input pin)  
TCNTV reset signal  
TCNTV  
N – 1  
N
H'00  
Figure 11.8 Clear Timing by TMRIV Input  
11.5  
Timer V Application Examples  
11.5.1 Pulse Output with Arbitrary Duty Cycle  
Figure 11.9 shows an example of output of pulses with an arbitrary duty cycle.  
1. Set bits CCLR1 and CCLR0 in TCRV0 so that TCNTV will be cleared by compare match with  
TCORA.  
2. Set bits OS3 to OS0 in TCSRV so that the output will go to 1 at compare match with TCORA  
and to 0 at compare match with TCORB.  
3. Set bits CKS2 to CKS0 in TCRV0 and bit ICKS0 in TCRV1 to select the desired clock source.  
4. With these settings, a waveform is output without further software intervention, with a period  
determined by TCORA and a pulse width determined by TCORB.  
TCNTV value  
H'FF  
Counter cleared  
TCORA  
TCORB  
H'00  
Time  
TMOV  
Figure 11.9 Pulse Output Example  
Rev. 3.00 Sep. 14, 2006 Page 155 of 408  
REJ09B0105-0300  
Section 11 Timer V  
11.5.2 Pulse Output with Arbitrary Pulse Width and Delay from TRGV Input  
The trigger function can be used to output a pulse with an arbitrary pulse width at an arbitrary  
delay from the TRGV input, as shown in figure 11.10. To set up this output:  
1. Set bits CCLR1 and CCLR0 in TCRV0 so that TCNTV will be cleared by compare match with  
TCORB.  
2. Set bits OS3 to OS0 in TCSRV so that the output will go to 1 at compare match with TCORA  
and to 0 at compare match with TCORB.  
3. Set bits TVEG1 and TVEG0 in TCRV1 and set TRGE to select the falling edge of the TRGV  
input.  
4. Set bits CKS2 to CKS0 in TCRV0 and bit ICKS0 in TCRV1 to select the desired clock source.  
5. After these settings, a pulse waveform will be output without further software intervention,  
with a delay determined by TCORA from the TRGV input, and a pulse width determined by  
(TCORB to TCORA).  
TCNTV value  
H'FF  
Counter cleared  
TCORB  
TCORA  
H'00  
Time  
TRGV  
TMOV  
Compare match A  
Compare match B  
Compare match A  
Compare match B  
clears TCNTV and  
halts count-up  
clears TCNTV and  
halts count-up  
Figure 11.10 Example of Pulse Output Synchronized to TRGV Input  
Rev. 3.00 Sep. 14, 2006 Page 156 of 408  
REJ09B0105-0300  
Section 11 Timer V  
11.6  
Usage Notes  
The following types of contention or operation can occur in timer V operation.  
1. Writing to registers is performed in the T3 state of a TCNTV write cycle. If a TCNTV clear  
signal is generated in the T3 state of a TCNTV write cycle, as shown in figure 11.11, clearing  
takes precedence and the write to the counter is not carried out. If counting-up is generated in  
the T3 state of a TCNTV write cycle, writing takes precedence.  
2. If a compare match is generated in the T3 state of a TCORA or TCORB write cycle, the write  
to TCORA or TCORB takes precedence and the compare match signal is inhibited. Figure  
11.12 shows the timing.  
3. If compare matches A and B occur simultaneously, any conflict between the output selections  
for compare match A and compare match B is resolved by the following priority: toggle  
output > output 1 > output 0.  
4. Depending on the timing, TCNTV may be incremented by a switch between different internal  
clock sources. When TCNTV is internally clocked, an increment pulse is generated from the  
falling edge of an internal clock signal, that is divided system clock (φ). Therefore, as shown  
in figure 11.13 the switch is from a high clock signal to a low clock signal, the switchover is  
seen as a falling edge, causing TCNTV to increment. TCNTV can also be incremented by a  
switch between internal and external clocks.  
TCNTV write cycle by CPU  
T1  
T2  
T3  
φ
Address  
TCNTV address  
Internal write signal  
Counter clear signal  
TCNTV  
N
H'00  
Figure 11.11 Contention between TCNTV Write and Clear  
Rev. 3.00 Sep. 14, 2006 Page 157 of 408  
REJ09B0105-0300  
Section 11 Timer V  
TCORA write cycle by CPU  
T1 T2 T3  
φ
Address  
TCORA address  
Internal write signal  
TCNTV  
TCORA  
N
N
N+1  
M
TCORA write data  
Compare match signal  
Inhibited  
Figure 11.12 Contention between TCORA Write and Compare Match  
Clock before  
switching  
Clock after  
switching  
Count clock  
TCNTV  
N
N+1  
N+2  
Write to CKS1 and CKS0  
Figure 11.13 Internal Clock Switching and TCNTV Operation  
Rev. 3.00 Sep. 14, 2006 Page 158 of 408  
REJ09B0105-0300  
Section 12 Timer W  
Section 12 Timer W  
The timer W has a 16-bit timer having output compare and input capture functions. The timer W  
can count external events and output pulses with an arbitrary duty cycle by compare match  
between the timer counter and four general registers. Thus, it can be applied to various systems.  
12.1  
Features  
Selection of five counter clock sources: four internal clocks (φ, φ/2, φ/4, and φ/8) and an  
external clock (external events can be counted)  
Capability to process up to four pulse outputs or four pulse inputs  
Four general registers:  
Independently assignable output compare or input capture functions  
Usable as two pairs of registers; one register of each pair operates as a buffer for the output  
compare or input capture register  
Four selectable operating modes:  
Waveform output by compare match  
Selections of 0 output, 1 output, or toggle output  
Input capture function  
Rising edge, falling edge, or both edges  
Counter clearing function  
Counters can be cleared by compare match  
PWM mode  
Up to three-phase PWM output can be provided with desired duty ratio.  
Any initial timer output value can be set  
Five interrupt sources  
Four compare match/input capture interrupts and an overflow interrupt.  
TIM08W0A_000020020200  
Rev. 3.00 Sep. 14, 2006 Page 159 of 408  
REJ09B0105-0300  
Section 12 Timer W  
Table 12.1 summarizes the timer W functions, and figure 12.1 shows a block diagram of the timer  
W.  
Table 12.1 Timer W Functions  
Input/Output Pins  
Item  
Counter  
FTIOA  
FTIOB  
FTIOC  
FTIOD  
Count clock  
Internal clocks: φ, φ/2, φ/4, φ/8  
External clock: FTCI  
General registers  
(output compare/input  
capture registers)  
Period  
specified in  
GRA  
GRA  
GRB  
GRC (buffer GRD (buffer  
register for  
GRA in  
register for  
GRB in buffer  
buffer mode) mode)  
Counter clearing function GRA  
compare  
GRA  
compare  
match  
match  
Initial output value  
setting function  
Yes  
Yes  
Yes  
Yes  
Buffer function  
Yes  
Yes  
Compare  
match output  
0
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1
Yes  
Yes  
Yes  
Toggle  
Yes  
Yes  
Yes  
Input capture function  
PWM mode  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Interrupt sources  
Overflow  
Compare  
Compare  
Compare  
Compare  
match/input match/input match/input match/input  
capture capture capture capture  
Rev. 3.00 Sep. 14, 2006 Page 160 of 408  
REJ09B0105-0300  
Section 12 Timer W  
FTIOA  
Internal clock:  
φ
φ
φ
φ
/2  
/4  
/8  
Clock  
selector  
FTIOB  
FTIOC  
FTIOD  
IRRTW  
Control logic  
External clock: FTCI  
Comparator  
Internal  
data bus  
[Legend]  
TMRW: Timer mode register W (8 bits)  
TCRW: Timer control register W (8 bits)  
TIERW: Timer interrupt enable register W (8 bits)  
TSRW: Timer status register W (8 bits)  
TIOR:  
Timer I/O control register (8 bits)  
TCNT: Timer counter (16 bits)  
GRA:  
GRB:  
GRC:  
GRD:  
General register A (input capture/output compare register: 16 bits)  
General register B (input capture/output compare register: 16 bits)  
General register C (input capture/output compare register: 16 bits)  
General register D (input capture/output compare register: 16 bits)  
IRRTW: Timer W interrupt request  
Figure 12.1 Timer W Block Diagram  
Rev. 3.00 Sep. 14, 2006 Page 161 of 408  
REJ09B0105-0300  
Section 12 Timer W  
12.2  
Input/Output Pins  
Table 12.2 summarizes the timer W pins.  
Table 12.2 Pin Configuration  
Name  
Abbreviation Input/Output  
Function  
External clock input  
FTCI  
Input  
External clock input pin  
Input capture/output  
compare A  
FTIOA  
Input/output  
Output pin for GRA output compare or  
input pin for GRA input capture  
Input capture/output  
compare B  
FTIOB  
FTIOC  
FTIOD  
Input/output  
Input/output  
Input/output  
Output pin for GRB output compare,  
input pin for GRB input capture, or  
PWM output pin in PWM mode  
Input capture/output  
compare C  
Output pin for GRC output compare,  
input pin for GRC input capture, or  
PWM output pin in PWM mode  
Input capture/output  
compare D  
Output pin for GRD output compare,  
input pin for GRD input capture, or  
PWM output pin in PWM mode  
12.3  
Register Descriptions  
The timer W has the following registers.  
Timer mode register W (TMRW)  
Timer control register W (TCRW)  
Timer interrupt enable register W (TIERW)  
Timer status register W (TSRW)  
Timer I/O control register 0 (TIOR0)  
Timer I/O control register 1 (TIOR1)  
Timer counter (TCNT)  
General register A (GRA)  
General register B (GRB)  
General register C (GRC)  
General register D (GRD)  
Rev. 3.00 Sep. 14, 2006 Page 162 of 408  
REJ09B0105-0300  
Section 12 Timer W  
12.3.1 Timer Mode Register W (TMRW)  
TMRW selects the general register functions and the timer output mode.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
CTS  
0
R/W  
Counter Start  
The counter operation is halted when this bit is 0, while it  
can be performed when this bit is 1.  
6
5
1
0
Reserved  
This bit is always read as 1.  
Buffer Operation B  
Selects the GRD function.  
BUFEB  
R/W  
0: GRD operates as an input capture/output compare  
register  
1: GRD operates as the buffer register for GRB  
Buffer Operation A  
4
BUFEA  
0
R/W  
Selects the GRC function.  
0: GRC operates as an input capture/output compare  
register  
1: GRC operates as the buffer register for GRA  
Reserved  
3
2
1
0
This bit is always read as 1.  
PWM Mode D  
PWMD  
R/W  
Selects the output mode of the FTIOD pin.  
0: FTIOD operates normally (output compare output)  
1: PWM output  
1
0
PWMC  
PWMB  
0
0
R/W  
R/W  
PWM Mode C  
Selects the output mode of the FTIOC pin.  
0: FTIOC operates normally (output compare output)  
1: PWM output  
PWM Mode B  
Selects the output mode of the FTIOB pin.  
0: FTIOB operates normally (output compare output)  
1: PWM output  
Rev. 3.00 Sep. 14, 2006 Page 163 of 408  
REJ09B0105-0300  
Section 12 Timer W  
12.3.2 Timer Control Register W (TCRW)  
TCRW selects the timer counter clock source, selects a clearing condition, and specifies the timer  
output levels.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
CCLR  
0
R/W  
Counter Clear  
The TCNT value is cleared by compare match A when  
this bit is 1. When it is 0, TCNT operates as a free-  
running counter.  
6
5
4
CKS2  
CKS1  
CKS0  
0
0
0
R/W  
R/W  
R/W  
Clock Select 2 to 0  
Select the TCNT clock source.  
000: Internal clock: counts on φ  
001: Internal clock: counts on φ/2  
010: Internal clock: counts on φ/4  
011: Internal clock: counts on φ/8  
1XX: Counts on rising edges of the external event (FTCI)  
When the internal clock source (φ) is selected, subclock  
sources are counted in subactive and subsleep modes.  
3
2
1
TOD  
TOC  
TOB  
0
0
0
R/W  
R/W  
R/W  
Timer Output Level Setting D  
Sets the output value of the FTIOD pin until the first  
compare match D is generated.  
0: Output value is 0*  
1: Output value is 1*  
Timer Output Level Setting C  
Sets the output value of the FTIOC pin until the first  
compare match C is generated.  
0: Output value is 0*  
1: Output value is 1*  
Timer Output Level Setting B  
Sets the output value of the FTIOB pin until the first  
compare match B is generated.  
0: Output value is 0*  
1: Output value is 1*  
Rev. 3.00 Sep. 14, 2006 Page 164 of 408  
REJ09B0105-0300  
Section 12 Timer W  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
0
TOA  
0
R/W  
Timer Output Level Setting A  
Sets the output value of the FTIOA pin until the first  
compare match A is generated.  
0: Output value is 0*  
1: Output value is 1*  
[Legend]  
X:  
Don't care  
The change of the setting is immediately reflected in the output value.  
Note:  
*
12.3.3 Timer Interrupt Enable Register W (TIERW)  
TIERW controls the timer W interrupt request.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
OVIE  
0
R/W  
Timer Overflow Interrupt Enable  
When this bit is set to 1, FOVI interrupt requested by OVF  
flag in TSRW is enabled.  
6 to 4  
3
All 1  
0
Reserved  
These bits are always read as 1.  
Input Capture/Compare Match Interrupt Enable D  
IMIED  
R/W  
When this bit is set to 1, IMID interrupt requested by  
IMFD flag in TSRW is enabled.  
2
1
0
IMIEC  
IMIEB  
IMIEA  
0
0
0
R/W  
R/W  
R/W  
Input Capture/Compare Match Interrupt Enable C  
When this bit is set to 1, IMIC interrupt requested by  
IMFC flag in TSRW is enabled.  
Input Capture/Compare Match Interrupt Enable B  
When this bit is set to 1, IMIB interrupt requested by  
IMFB flag in TSRW is enabled.  
Input Capture/Compare Match Interrupt Enable A  
When this bit is set to 1, IMIA interrupt requested by  
IMFA flag in TSRW is enabled.  
Rev. 3.00 Sep. 14, 2006 Page 165 of 408  
REJ09B0105-0300  
Section 12 Timer W  
12.3.4 Timer Status Register W (TSRW)  
TSRW shows the status of interrupt requests.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
OVF  
0
R/W  
Timer Overflow Flag  
[Setting condition]  
When TCNT overflows from H'FFFF to H'0000  
[Clearing condition]  
Read OVF when OVF = 1, then write 0 in OVF  
6 to 4  
3
All 1  
0
Reserved  
These bits are always read as 1.  
Input Capture/Compare Match Flag D  
[Setting conditions]  
IMFD  
R/W  
TCNT = GRD when GRD functions as an output  
compare register  
The TCNT value is transferred to GRD by an input  
capture signal when GRD functions as an input  
capture register  
[Clearing condition]  
Read IMFD when IMFD = 1, then write 0 in IMFD  
2
IMFC  
0
R/W  
Input Capture/Compare Match Flag C  
[Setting conditions]  
TCNT = GRC when GRC functions as an output  
compare register  
The TCNT value is transferred to GRC by an input  
capture signal when GRC functions as an input  
capture register  
[Clearing condition]  
Read IMFC when IMFC = 1, then write 0 in IMFC  
Rev. 3.00 Sep. 14, 2006 Page 166 of 408  
REJ09B0105-0300  
Section 12 Timer W  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
1
IMFB  
0
R/W  
Input Capture/Compare Match Flag B  
[Setting conditions]  
TCNT = GRB when GRB functions as an output  
compare register  
The TCNT value is transferred to GRB by an input  
capture signal when GRB functions as an input  
capture register  
[Clearing condition]  
Read IMFB when IMFB = 1, then write 0 in IMFB  
0
IMFA  
0
R/W  
Input Capture/Compare Match Flag A  
[Setting conditions]  
TCNT = GRA when GRA functions as an output  
compare register  
The TCNT value is transferred to GRA by an input  
capture signal when GRA functions as an input  
capture register  
[Clearing condition]  
Read IMFA when IMFA = 1, then write 0 in IMFA  
Rev. 3.00 Sep. 14, 2006 Page 167 of 408  
REJ09B0105-0300  
Section 12 Timer W  
12.3.5 Timer I/O Control Register 0 (TIOR0)  
TIOR0 selects the functions of GRA and GRB, and specifies the functions of the FTIOA and  
FTIOB pins.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
1
0
Reserved  
This bit is always read as 1.  
I/O Control B2  
6
IOB2  
R/W  
Selects the GRB function.  
0: GRB functions as an output compare register  
1: GRB functions as an input capture register  
I/O Control B1 and B0  
5
4
IOB1  
IOB0  
0
0
R/W  
R/W  
When IOB2 = 0,  
00: No output at compare match  
01: 0 output to the FTIOB pin at GRB compare match  
10: 1 output to the FTIOB pin at GRB compare match  
11: Output toggles to the FTIOB pin at GRB compare  
match  
When IOB2 = 1,  
00: Input capture at rising edge at the FTIOB pin  
01: Input capture at falling edge at the FTIOB pin  
1X: Input capture at rising and falling edges of the FTIOB  
pin  
3
2
1
0
Reserved  
This bit is always read as 1.  
I/O Control A2  
IOA2  
R/W  
Selects the GRA function.  
0: GRA functions as an output compare register  
1: GRA functions as an input capture register  
Rev. 3.00 Sep. 14, 2006 Page 168 of 408  
REJ09B0105-0300  
Section 12 Timer W  
Initial  
Bit  
1
Bit Name Value  
R/W  
R/W  
R/W  
Description  
IOA1  
IOA0  
0
0
I/O Control A1 and A0  
When IOA2 = 0,  
0
00: No output at compare match  
01: 0 output to the FTIOA pin at GRA compare match  
10: 1 output to the FTIOA pin at GRA compare match  
11: Output toggles to the FTIOA pin at GRA compare  
match  
When IOA2 = 1,  
00: Input capture at rising edge of the FTIOA pin  
01: Input capture at falling edge of the FTIOA pin  
1X: Input capture at rising and falling edges of the FTIOA  
pin  
[Legend]  
X:  
Don't care  
12.3.6 Timer I/O Control Register 1 (TIOR1)  
TIOR1 selects the functions of GRC and GRD, and specifies the functions of the FTIOC and  
FTIOD pins.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
1
0
Reserved  
This bit is always read as 1.  
I/O Control D2  
6
IOD2  
R/W  
Selects the GRD function.  
0: GRD functions as an output compare register  
1: GRD functions as an input capture register  
When GRB buffer operation has been selected by  
BUFEB in TMRW, select the same function as GRB.  
Rev. 3.00 Sep. 14, 2006 Page 169 of 408  
REJ09B0105-0300  
Section 12 Timer W  
Initial  
Bit Name Value  
Bit  
5
R/W  
R/W  
R/W  
Description  
IOD1  
IOD0  
0
0
I/O Control D1 and D0  
4
When IOD2 = 0,  
00: No output at compare match  
01: 0 output to the FTIOD pin at GRD compare match  
10: 1 output to the FTIOD pin at GRD compare match  
11: Output toggles to the FTIOD pin at GRD compare  
match  
When IOD2 = 1,  
00: Input capture at rising edge at the FTIOD pin  
01: Input capture at falling edge at the FTIOD pin  
1X: Input capture at rising and falling edges at the FTIOD  
pin  
3
2
1
0
Reserved  
This bit is always read as 1.  
I/O Control C2  
IOC2  
R/W  
Selects the GRC function.  
0: GRC functions as an output compare register  
1: GRC functions as an input capture register  
When GRA buffer operation has been selected by  
BUFEA in TMRW, select the same function as GRA.  
1
0
IOC1  
IOC0  
0
0
R/W  
R/W  
I/O Control C1 and C0  
When IOC2 = 0,  
00: No output at compare match  
01: 0 output to the FTIOC pin at GRC compare match  
10: 1 output to the FTIOC pin at GRC compare match  
11: Output toggles to the FTIOC pin at GRC compare  
match  
When IOC2 = 1,  
00: Input capture to GRC at rising edge of the FTIOC pin  
01: Input capture to GRC at falling edge of the FTIOC pin  
1X: Input capture to GRC at rising and falling edges of  
the FTIOC pin  
[Legend]  
X:  
Don't care  
Rev. 3.00 Sep. 14, 2006 Page 170 of 408  
REJ09B0105-0300  
Section 12 Timer W  
12.3.7 Timer Counter (TCNT)  
TCNT is a 16-bit readable/writable up-counter. The clock source is selected by bits CKS2 to  
CKS0 in TCRW. TCNT can be cleared to H'0000 through a compare match with GRA by setting  
the CCLR in TCRW to 1. When TCNT overflows (changes from H'FFFF to H'0000), the OVF  
flag in TSRW is set to 1. If OVIE in TIERW is set to 1 at this time, an interrupt request is  
generated. TCNT must always be read or written in 16-bit units; 8-bit access is not allowed.  
TCNT is initialized to H'0000 by a reset.  
12.3.8 General Registers A to D (GRA to GRD)  
Each general register is a 16-bit readable/writable register that can function as either an output-  
compare register or an input-capture register. The function is selected by settings in TIOR0 and  
TIOR1.  
When a general register is used as an input-compare register, its value is constantly compared with  
the TCNT value. When the two values match (a compare match), the corresponding flag (IMFA,  
IMFB, IMFC, or IMFD) in TSRW is set to 1. An interrupt request is generated at this time, when  
IMIEA, IMIEB, IMIEC, or IMIED is set to 1. Compare match output can be selected in TIOR.  
When a general register is used as an input-capture register, an external input-capture signal is  
detected and the current TCNT value is stored in the general register. The corresponding flag  
(IMFA, IMFB, IMFC, or IMFD) in TSRW is set to 1. If the corresponding interrupt-enable bit  
(IMIEA, IMIEB, IMIEC, or IMIED) in TSRW is set to 1 at this time, an interrupt request is  
generated. The edge of the input-capture signal is selected in TIOR.  
GRC and GRD can be used as buffer registers of GRA and GRB, respectively, by setting BUFEA  
and BUFEB in TMRW.  
For example, when GRA is set as an output-compare register and GRC is set as the buffer register  
for GRA, the value in the buffer register GRC is sent to GRA whenever compare match A is  
generated.  
When GRA is set as an input-capture register and GRC is set as the buffer register for GRA, the  
value in TCNT is transferred to GRA and the value in the buffer register GRC is transferred to  
GRA whenever an input capture is generated.  
GRA to GRD must be written or read in 16-bit units; 8-bit access is not allowed. GRA to GRD are  
initialized to H'FFFF by a reset.  
Rev. 3.00 Sep. 14, 2006 Page 171 of 408  
REJ09B0105-0300  
Section 12 Timer W  
12.4  
Operation  
The timer W has the following operating modes.  
Normal Operation  
PWM Operation  
12.4.1 Normal Operation  
TCNT performs free-running or periodic counting operations. After a reset, TCNT is set as a free-  
running counter. When the CTS bit in TMRW is set to 1, TCNT starts incrementing the count.  
When the count overflows from H'FFFF to H'0000, the OVF flag in TSRW is set to 1. If the OVIE  
in TIERW is set to 1, an interrupt request is generated. Figure 12.2 shows free-running counting.  
TCNT value  
H'FFFF  
H'0000  
CTS bit  
Time  
Flag cleared  
by software  
OVF  
Figure 12.2 Free-Running Counter Operation  
Rev. 3.00 Sep. 14, 2006 Page 172 of 408  
REJ09B0105-0300  
Section 12 Timer W  
Periodic counting operation can be performed when GRA is set as an output compare register and  
bit CCLR in TCRW is set to 1. When the count matches GRA, TCNT is cleared to H'0000, the  
IMFA flag in TSRW is set to 1. If the corresponding IMIEA bit in TIERW is set to 1, an interrupt  
request is generated. TCNT continues counting from H'0000. Figure 12.3 shows periodic  
counting.  
TCNT value  
GRA  
H'0000  
CTS bit  
Time  
Flag cleared  
by software  
IMFA  
Figure 12.3 Periodic Counter Operation  
By setting a general register as an output compare register, compare match A, B, C, or D can  
cause the output at the FTIOA, FTIOB, FTIOC, or FTIOD pin to output 0, output 1, or toggle.  
Figure 12.4 shows an example of 0 and 1 output when TCNT operates as a free-running counter, 1  
output is selected for compare match A, and 0 output is selected for compare match B. When  
signal is already at the selected output level, the signal level does not change at compare match.  
TCNT value  
H'FFFF  
GRA  
GRB  
Time  
No change  
No change  
H'0000  
FTIOA  
FTIOB  
No change  
No change  
Figure 12.4 0 and 1 Output Example (TOA = 0, TOB = 1)  
Rev. 3.00 Sep. 14, 2006 Page 173 of 408  
REJ09B0105-0300  
Section 12 Timer W  
Figure 12.5 shows an example of toggle output when TCNT operates as a free-running counter,  
and toggle output is selected for both compare match A and B.  
TCNT value  
H'FFFF  
GRA  
GRB  
Time  
H'0000  
FTIOA  
FTIOB  
Toggle output  
Toggle output  
Figure 12.5 Toggle Output Example (TOA = 0, TOB = 1)  
Figure 12.6 shows another example of toggle output when TCNT operates as a periodic counter,  
cleared by compare match A. Toggle output is selected for both compare match A and B.  
TCNT value  
Counter cleared by compare match with GRA  
H'FFFF  
GRA  
GRB  
Time  
H'0000  
FTIOA  
Toggle  
output  
Toggle  
output  
FTIOB  
Figure 12.6 Toggle Output Example (TOA = 0, TOB = 1)  
Rev. 3.00 Sep. 14, 2006 Page 174 of 408  
REJ09B0105-0300  
Section 12 Timer W  
The TCNT value can be captured into a general register (GRA, GRB, GRC, or GRD) when a  
signal level changes at an input-capture pin (FTIOA, FTIOB, FTIOC, or FTIOD). Capture can  
take place on the rising edge, falling edge, or both edges. By using the input-capture function, the  
pulse width and periods can be measured. Figure 12.7 shows an example of input capture when  
both edges of FTIOA and the falling edge of FTIOB are selected as capture edges. TCNT operates  
as a free-running counter.  
TCNT value  
H'FFFF  
H'F000  
H'AA55  
H'55AA  
H'1000  
H'0000  
Time  
FTIOA  
GRA  
H'1000  
H'F000  
H'55AA  
FTIOB  
GRB  
H'AA55  
Figure 12.7 Input Capture Operating Example  
Rev. 3.00 Sep. 14, 2006 Page 175 of 408  
REJ09B0105-0300  
Section 12 Timer W  
Figure 12.8 shows an example of buffer operation when the GRA is set as an input-capture  
register and GRC is set as the buffer register for GRA. TCNT operates as a free-running counter,  
and FTIOA captures both rising and falling edge of the input signal. Due to the buffer operation,  
the GRA value is transferred to GRC by input-capture A and the TCNT value is stored in GRA.  
TCNT value  
H'FFFF  
H'DA91  
H'5480  
H'0245  
H'0000  
Time  
FTIOA  
H'0245  
H'5480  
H'0245  
H'DA91  
H'5480  
GRA  
GRC  
Figure 12.8 Buffer Operation Example (Input Capture)  
12.4.2 PWM Operation  
In PWM mode, PWM waveforms are generated by using GRA as the period register and GRB,  
GRC, and GRD as duty registers. PWM waveforms are output from the FTIOB, FTIOC, and  
FTIOD pins. Up to three-phase PWM waveforms can be output. In PWM mode, a general register  
functions as an output compare register automatically. The output level of each pin depends on the  
corresponding timer output level set bit (TOB, TOC, and TOD) in TCRW. When TOB is 1, the  
FTIOB output goes to 1 at compare match A and to 0 at compare match B. When TOB is 0, the  
FTIOB output goes to 0 at compare match A and to 1 at compare match B. Thus the compare  
match output level settings in TIOR0 and TIOR1 are ignored for the output pin set to PWM mode.  
If the same value is set in the cycle register and the duty register, the output does not change when  
a compare match occurs.  
Figure 12.9 shows an example of operation in PWM mode. The output signals go to 1 and TCNT  
is cleared at compare match A, and the output signals go to 0 at compare match B, C, and D  
(TOB, TOC, and TOD = 1: initial output values are set to 1).  
Rev. 3.00 Sep. 14, 2006 Page 176 of 408  
REJ09B0105-0300  
Section 12 Timer W  
TCNT value  
Counter cleared by compare match A  
GRA  
GRB  
GRC  
GRD  
H'0000  
Time  
FTIOB  
FTIOC  
FTIOD  
Figure 12.9 PWM Mode Example (1)  
Figure 12.10 shows another example of operation in PWM mode. The output signals go to 0 and  
TCNT is cleared at compare match A, and the output signals go to 1 at compare match B, C, and  
D (TOB, TOC, and TOD = 0: initial output values are set to 1).  
TCNT value  
Counter cleared by compare match A  
GRA  
GRB  
GRC  
GRD  
H'0000  
Time  
FTIOB  
FTIOC  
FTIOD  
Figure 12.10 PWM Mode Example (2)  
Rev. 3.00 Sep. 14, 2006 Page 177 of 408  
REJ09B0105-0300  
Section 12 Timer W  
Figure 12.11 shows an example of buffer operation when the FTIOB pin is set to PWM mode and  
GRD is set as the buffer register for GRB. TCNT is cleared by compare match A, and FTIOB  
outputs 1 at compare match B and 0 at compare match A.  
Due to the buffer operation, the FTIOB output level changes and the value of buffer register GRD  
is transferred to GRB whenever compare match B occurs. This procedure is repeated every time  
compare match B occurs.  
TCNT value  
GRA  
H'0520  
H'0450  
H'0200  
GRB  
Time  
H'0000  
GRD  
H'0200  
H'0450  
H'0520  
H'0200  
H'0450  
H'0520  
GRB  
FTIOB  
Figure 12.11 Buffer Operation Example (Output Compare)  
Rev. 3.00 Sep. 14, 2006 Page 178 of 408  
REJ09B0105-0300  
Section 12 Timer W  
Figures 12.12 and 12.13 show examples of the output of PWM waveforms with duty cycles of 0%  
and 100%.  
TCNT value  
Write to GRB  
GRA  
GRB  
Write to GRB  
H'0000  
Time  
Duty 0%  
FTIOB  
Output does not change when cycle register  
and duty register compare matches occur  
simultaneously.  
TCNT value  
Write to GRB  
GRA  
Write to GRB  
Write to GRB  
Duty 100%  
GRB  
H'0000  
Time  
FTIOB  
Output does not change when cycle register  
and duty register compare matches occur  
simultaneously.  
TCNT value  
Write to GRB  
GRA  
Write to GRB  
Write to GRB  
Time  
GRB  
H'0000  
Duty 100%  
Duty 0%  
FTIOB  
Figure 12.12 PWM Mode Example  
(TOB, TOC, and TOD = 0: Initial Output Values are Set to 0)  
Rev. 3.00 Sep. 14, 2006 Page 179 of 408  
REJ09B0105-0300  
Section 12 Timer W  
TCNT value  
GRA  
Write to GRB  
GRB  
Write to GRB  
H'0000  
Time  
Duty 100%  
FTIOB  
Output does not change when cycle register  
and duty register compare matches occur  
simultaneously.  
TCNT value  
Write to GRB  
GRA  
Write to GRB  
Write to GRB  
Duty 0%  
GRB  
H'0000  
Time  
FTIOB  
Output does not change when cycle register  
and duty register compare matches occur  
simultaneously.  
TCNT value  
Write to GRB  
GRA  
Write to GRB  
Write to GRB  
Time  
GRB  
H'0000  
Duty 0%  
Duty 100%  
FTIOB  
Figure 12.13 PWM Mode Example  
(TOB, TOC, and TOD = 1: Initial Output Values are Set to 1)  
Rev. 3.00 Sep. 14, 2006 Page 180 of 408  
REJ09B0105-0300  
Section 12 Timer W  
12.5  
Operation Timing  
12.5.1 TCNT Count Timing  
Figure 12.14 shows the TCNT count timing when the internal clock source is selected. Figure  
12.15 shows the timing when the external clock source is selected. The pulse width of the external  
clock signal must be at least two system clock (φ) cycles; shorter pulses will not be counted  
correctly.  
φ
Internal  
clock  
Rising edge  
TCNT input  
clock  
TCNT  
N
N+1  
N+2  
Figure 12.14 Count Timing for Internal Clock Source  
φ
External  
clock  
Rising edge  
Rising edge  
TCNT input  
clock  
TCNT  
N
N+1  
N+2  
Figure 12.15 Count Timing for External Clock Source  
Rev. 3.00 Sep. 14, 2006 Page 181 of 408  
REJ09B0105-0300  
Section 12 Timer W  
12.5.2 Output Compare Output Timing  
The compare match signal is generated in the last state in which TCNT and GR match (when  
TCNT changes from the matching value to the next value). When the compare match signal is  
generated, the output value selected in TIOR is output at the compare match output pin (FTIOA,  
FTIOB, FTIOC, or FTIOD).  
When TCNT matches GR, the compare match signal is generated only after the next counter clock  
pulse is input.  
Figure 12.16 shows the output compare timing.  
φ
TCNT input  
clock  
N
N
N+1  
TCNT  
GRA to GRD  
Compare  
match signal  
FTIOA to FTIOD  
Figure 12.16 Output Compare Output Timing  
Rev. 3.00 Sep. 14, 2006 Page 182 of 408  
REJ09B0105-0300  
Section 12 Timer W  
12.5.3 Input Capture Timing  
Input capture on the rising edge, falling edge, or both edges can be selected through settings in  
TIOR0 and TIOR1. Figure 12.17 shows the timing when the falling edge is selected. The pulse  
width of the input capture signal must be at least two system clock (φ) cycles; shorter pulses will  
not be detected correctly.  
φ
Input capture  
input  
Input capture  
signal  
N–1  
N
N+1  
N
N+2  
TCNT  
GRA to GRD  
Figure 12.17 Input Capture Input Signal Timing  
12.5.4 Timing of Counter Clearing by Compare Match  
Figure 12.18 shows the timing when the counter is cleared by compare match A. When the GRA  
value is N, the counter counts from 0 to N, and its cycle is N + 1.  
φ
Compare  
match signal  
N
N
H'0000  
TCNT  
GRA  
Figure 12.18 Timing of Counter Clearing by Compare Match  
Rev. 3.00 Sep. 14, 2006 Page 183 of 408  
REJ09B0105-0300  
Section 12 Timer W  
12.5.5 Buffer Operation Timing  
Figures 12.19 and 12.20 show the buffer operation timing.  
φ
Compare  
match signal  
N
N+1  
TCNT  
M
GRC, GRD  
GRA, GRB  
M
Figure 12.19 Buffer Operation Timing (Compare Match)  
φ
Input capture  
signal  
N
N+1  
TCNT  
GRA, GRB  
M
N
N+1  
N
GRC, GRD  
M
Figure 12.20 Buffer Operation Timing (Input Capture)  
Rev. 3.00 Sep. 14, 2006 Page 184 of 408  
REJ09B0105-0300  
Section 12 Timer W  
12.5.6 Timing of IMFA to IMFD Flag Setting at Compare Match  
If a general register (GRA, GRB, GRC, or GRD) is used as an output compare register, the  
corresponding IMFA, IMFB, IMFC, or IMFD flag is set to 1 when TCNT matches the general  
register.  
The compare match signal is generated in the last state in which the values match (when TCNT is  
updated from the matching count to the next count). Therefore, when TCNT matches a general  
register, the compare match signal is generated only after the next TCNT clock pulse is input.  
Figure 12.21 shows the timing of the IMFA to IMFD flag setting at compare match.  
φ
TCNT input  
clock  
TCNT  
N
N
N+1  
GRA to GRD  
Compare  
match signal  
IMFA to IMFD  
IRRTW  
Figure 12.21 Timing of IMFA to IMFD Flag Setting at Compare Match  
Rev. 3.00 Sep. 14, 2006 Page 185 of 408  
REJ09B0105-0300  
Section 12 Timer W  
12.5.7 Timing of IMFA to IMFD Setting at Input Capture  
If a general register (GRA, GRB, GRC, or GRD) is used as an input capture register, the  
corresponding IMFA, IMFB, IMFC, or IMFD flag is set to 1 when an input capture occurs. Figure  
12.22 shows the timing of the IMFA to IMFD flag setting at input capture.  
φ
Input capture  
signal  
TCNT  
N
GRA to GRD  
IMFA to IMFD  
IRRTW  
N
Figure 12.22 Timing of IMFA to IMFD Flag Setting at Input Capture  
12.5.8 Timing of Status Flag Clearing  
When the CPU reads a status flag while it is set to 1, then writes 0 in the status flag, the status flag  
is cleared. Figure 12.23 shows the status flag clearing timing.  
TSRW write cycle  
T1  
T2  
φ
TSRW address  
Address  
Write signal  
IMFA to IMFD  
IRRTW  
Figure 12.23 Timing of Status Flag Clearing by CPU  
Rev. 3.00 Sep. 14, 2006 Page 186 of 408  
REJ09B0105-0300  
Section 12 Timer W  
12.6  
Usage Notes  
The following types of contention or operation can occur in timer W operation.  
1. The pulse width of the input clock signal and the input capture signal must be at least two  
system clock (φ) cycles; shorter pulses will not be detected correctly.  
2. Writing to registers is performed in the T2 state of a TCNT write cycle.  
If counter clear signal occurs in the T2 state of a TCNT write cycle, clearing of the counter  
takes priority and the write is not performed, as shown in figure 12.24. If counting-up is  
generated in the TCNT write cycle to contend with the TCNT counting-up, writing takes  
precedence.  
3. Depending on the timing, TCNT may be incremented by a switch between different internal  
clock sources. When TCNT is internally clocked, an increment pulse is generated from the  
rising edge of an internal clock signal, that is divided system clock (φ). Therefore, as shown in  
figure 12.25 the switch is from a low clock signal to a high clock signal, the switchover is seen  
as a rising edge, causing TCNT to increment.  
4. If timer W enters module standby mode while an interrupt request is generated, the interrupt  
request cannot be cleared. Before entering module standby mode, disable interrupt requests.  
5. The TOA to TOD bits in TCRW decide the value of the FTIO pin, which is output until the  
first compare match occurs. Once a compare match occurs and this compare match changes the  
values of FTIOA to FTIOD output, the values of the FTIOA to FTIOD pin output and the  
values read from the TOA to TOD bits may differ. Moreover, when the writing to TCRW and  
the generation of the compare match A to D occur at the same timing, the writing to TCRW  
has the priority. Thus, output change due to the compare match is not reflected to the FTIOA  
to FTIOD pins. Therefore, when bit manipulation instruction is used to write to TCRW, the  
values of the FTIOA to FTIOD pin output may result in an unexpected result. When TCRW is  
to be written to while compare match is operating, stop the counter once before accessing to  
TCRW, read the port 8 state to reflect the values of FTIOA to FTIOD output, to TOA to TOD,  
and then restart the counter. Figure 12.26 shows an example when the compare match and the  
bit manipulation instruction to TCRW occur at the same timing.  
Rev. 3.00 Sep. 14, 2006 Page 187 of 408  
REJ09B0105-0300  
Section 12 Timer W  
TCNT write cycle  
T1 T2  
φ
TCNT address  
Address  
Write signal  
Counter clear  
signal  
N
H'0000  
TCNT  
Figure 12.24 Contention between TCNT Write and Clear  
Clock before switching  
Clock after switching  
Count clock  
N
N+1  
N+2  
N+3  
TCNT  
The change in signal level at clock switching is  
assumed to be a rising edge, and TCNT  
increments the count.  
Figure 12.25 Internal Clock Switching and TCNT Operation  
Rev. 3.00 Sep. 14, 2006 Page 188 of 408  
REJ09B0105-0300  
Section 12 Timer W  
TCRW has been set to H'06. Compare match B and compare match C are used. The FTIOB pin is in the 1 output state,  
and is set to the toggle output or the 0 output by compare match B.  
When BCLR#2, @TCRW is executed to clear the TOC bit (the FTIOC signal is low) and compare match B occurs  
at the same timing as shown below, the H'02 writing to TCRW has priority and compare match B does not drive the FTIOB signal low;  
the FTIOB signal remains high.  
7
6
5
4
3
2
1
0
Bit  
TCRW  
Set value  
CCLR  
0
CKS2  
0
CKS1  
0
CKS0  
0
TOD  
0
TOC  
1
TOB  
1
TOA  
0
BCLR#2, @TCRW  
(1) TCRW read operation: Read H'06  
(2) Modify operation: Modify H'06 to H'02  
(3) Write operation to TCRW: Write H'02  
φ
TCRW  
write signal  
Compare match  
signal B  
FTIOB pin  
Expected output  
Remains high because the 1 writing to TOB has priority  
Figure 12.26 When Compare Match and Bit Manipulation Instruction to TCRW  
Occur at the Same Timing  
Rev. 3.00 Sep. 14, 2006 Page 189 of 408  
REJ09B0105-0300  
Section 12 Timer W  
Rev. 3.00 Sep. 14, 2006 Page 190 of 408  
REJ09B0105-0300  
Section 13 Watchdog Timer  
Section 13 Watchdog Timer  
The watchdog timer is an 8-bit timer that can generate an internal reset signal for this LSI if a  
system crash prevents the CPU from writing to the timer counter, thus allowing it to overflow.  
The block diagram of the watchdog timer is shown in figure 13.1.  
CLK  
PSS  
WDT dedicated  
internal oscillator  
TCSRWD  
TCWD  
φ
TMWD  
[Legend]  
Internal reset  
signal  
TCSRWD: Timer control/status register WD  
TCWD:  
PSS:  
Timer counter WD  
Prescaler S  
TMWD:  
Timer mode register WD  
Figure 13.1 Block Diagram of Watchdog Timer  
13.1  
Features  
Selectable from nine counter input clocks.  
Eight clock sources (φ/64, φ/128, φ/256, φ/512, φ/1024, φ/2048, φ/4096, and φ/8192) or the  
WDT dedicated internal oscillator can be selected as the timer-counter clock. When the WDT  
dedicated internal oscillator is selected, it can operate as the watchdog timer in any operating  
mode.  
Reset signal generated on counter overflow  
An overflow period of 1 to 256 times the selected clock can be set.  
The watchdog timer is enabled in the initial state.  
It starts operating after the reset state is canceled.  
WDT0110A_000020030300  
Rev. 3.00 Sep. 14, 2006 Page 191 of 408  
REJ09B0105-0300  
Section 13 Watchdog Timer  
13.2  
Register Descriptions  
The watchdog timer has the following registers.  
Timer control/status register WD (TCSRWD)  
Timer counter WD (TCWD)  
Timer mode register WD (TMWD)  
13.2.1 Timer Control/Status Register WD (TCSRWD)  
TCSRWD performs the TCSRWD and TCWD write control. TCSRWD also controls the  
watchdog timer operation and indicates the operating state. TCSRWD must be rewritten by using  
the MOV instruction. The bit manipulation instruction cannot be used to change the setting value.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
B6WI  
1
R/W  
Bit 6 Write Inhibit  
The TCWE bit can be written only when the write value of  
the B6WI bit is 0.  
This bit is always read as 1.  
6
TCWE  
0
R/W  
Timer Counter WD Write Enable  
TCWD can be written when the TCWE bit is set to 1.  
When writing data to this bit, the value for bit 7 must be 0.  
Bit 4 Write Inhibit  
5
4
B4WI  
1
0
R/W  
R/W  
The TCSRWE bit can be written only when the write  
value of the B4WI bit is 0. This bit is always read as 1.  
TCSRWE  
Timer Control/Status Register WD Write Enable  
The WDON and WRST bits can be written when the  
TCSRWE bit is set to 1.  
When writing data to this bit, the value for bit 5 must be 0.  
Bit 2 Write Inhibit  
3
B2WI  
1
R/W  
This bit can be written to the WDON bit only when the  
write value of the B2WI bit is 0.  
This bit is always read as 1.  
Rev. 3.00 Sep. 14, 2006 Page 192 of 408  
REJ09B0105-0300  
Section 13 Watchdog Timer  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
2
WDON  
1
R/W  
Watchdog Timer On  
TCWD starts counting up when the WDON bit is set to 1  
and halts when the WDON bit is cleared to 0. The  
watchdog timer is enabled in the initial state. When the  
watchdog timer is not used, clear the WDON bit to 0.  
[Setting conditions]  
Reset  
When 1 is written to the WDON bit and 0 is written to  
the B2WI bit while the TCSRWE bit = 1  
[Clearing conditions]  
When 0 is written to the WDON bit and 0 is written to  
the B2WI bit while the TCSRWE bit = 1  
1
0
B0WI  
1
0
R/W  
R/W  
Bit 0 Write Inhibit  
This bit can be written to the WRST bit only when the  
write value of the B0WI bit is 0. This bit is always read as  
1.  
WRST*  
Watchdog Timer Reset  
[Setting condition]  
When TCWD overflows and an internal reset signal is  
generated  
[Clearing conditions]  
Reset by the RES pin  
When 0 is written to the WRST bit and 0 is written to  
the B0WI bit while the TCSRWE bit = 1  
Note:  
*
The WRST bit cannot be modified to 1.  
Rev. 3.00 Sep. 14, 2006 Page 193 of 408  
REJ09B0105-0300  
Section 13 Watchdog Timer  
13.2.2 Timer Counter WD (TCWD)  
TCWD is an 8-bit readable/writable up-counter. When TCWD overflows from H'FF to H'00, the  
internal reset signal is generated and the WRST bit in TCSRWD is set to 1. TCWD is initialized to  
H'00.  
13.2.3 Timer Mode Register WD (TMWD)  
TMWD selects the input clock.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7 to 4  
All 1  
Reserved  
These bits are always read as 1.  
Clock Select 3 to 0  
3
2
1
0
CKS3  
CKS2  
CKS1  
CKS0  
1
1
1
1
R/W  
R/W  
R/W  
R/W  
Select the clock to be input to TCWD.  
1000: Internal clock: counts on φ/64  
1001: Internal clock: counts on φ/128  
1010: Internal clock: counts on φ/256  
1011: Internal clock: counts on φ/512  
1100: Internal clock: counts on φ/1024  
1101: Internal clock: counts on φ/2048  
1110: Internal clock: counts on φ/4096  
1111: Internal clock: counts on φ8192  
0XXX: WDT dedicated internal oscillator  
For the overflow periods of the WDT dedicated internal  
oscillator, see section 20, Electrical Characteristics.  
[Legend]  
X:  
Don't care  
Rev. 3.00 Sep. 14, 2006 Page 194 of 408  
REJ09B0105-0300  
Section 13 Watchdog Timer  
13.3  
Operation  
The watchdog timer is provided with an 8-bit counter. After the reset state is released, TCWD  
starts counting up. When the TCWD count value overflows H'FF, an internal reset signal is  
generated. The internal reset signal is output for a period of 256 φRC clock cycles. As TCWD is a  
writable counter, it starts counting from the value set in TCWD. An overflow period in the range  
of 1 to 256 input clock cycles can therefore be set, according to the TCWD set value. When the  
watchdog timer is not used, stop TCWD counting by writing 0 to B2WI and WDON  
simultaneously while the TCSRWE bit in TCSRWD is set to 1. (To stop the watchdog timer, two  
write accesses to TCSRWD are required.)  
Figure 13.2 shows an example of watchdog timer operation.  
Example: With 30ms overflow period when φ = 4 MHz  
4 × 106  
8192  
× 30 × 10–3 = 14.6  
Therefore, 256 – 15 = 241 (H'F1) is set in TCW.  
TCWD overflow  
H'FF  
H'F1  
TCWD  
count value  
H'00  
H'F1 written H'F1 written to TCWD  
to TCWD  
Reset generated  
Internal reset  
signal  
256 φRC clock cycles  
Figure 13.2 Watchdog Timer Operation Example  
Rev. 3.00 Sep. 14, 2006 Page 195 of 408  
REJ09B0105-0300  
Section 13 Watchdog Timer  
Rev. 3.00 Sep. 14, 2006 Page 196 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Section 14 Serial Communication Interface 3 (SCI3)  
This LSI includes serial communication interface 3 (SCI3). SCI3 can handle both asynchronous  
and clocked synchronous serial communication. In asynchronous mode, serial data  
communication can be carried out using standard asynchronous communication chips such as a  
Universal Asynchronous Receiver/Transmitter (UART) or an Asynchronous Communication  
Interface Adapter (ACIA). A function is also provided for serial communication between  
processors (multiprocessor communication function).  
Figure 14.1 is a block diagram of SCI3.  
14.1  
Features  
Choice of asynchronous or clocked synchronous serial communication mode  
Full-duplex communication capability  
The transmitter and receiver are mutually independent, enabling transmission and reception to  
be executed simultaneously.  
Double-buffering is used in both the transmitter and the receiver, enabling continuous  
transmission and continuous reception of serial data.  
On-chip baud rate generator allows any bit rate to be selected  
External clock or on-chip baud rate generator can be selected as a transfer clock source.  
Six interrupt sources  
Transmit-end, transmit-data-empty, receive-data-full, overrun error, framing error, and parity  
error.  
Internal noise filter circuit (available for asynchronous serial communication only)  
Asynchronous mode  
Data length: 7 or 8 bits  
Stop bit length: 1 or 2 bits  
Parity: Even, odd, or none  
Receive error detection: Parity, overrun, and framing errors  
Break detection: Break can be detected by reading the RXD pin level directly in the case of a  
framing error  
SCI0010A_000120030300  
Rev. 3.00 Sep. 14, 2006 Page 197 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Clocked synchronous mode  
Data length: 8 bits  
Receive error detection: Overrun errors  
External  
SCK3  
Internal clock (φ/64,φ/16, φ/4, φ)  
clock  
Baud rate  
generator  
BRC  
BRR  
Clock  
SMR  
SCR3  
SSR  
Transmit/receive  
control circuit  
SPMR  
TXD  
RXD  
TSR  
RSR  
TDR  
RDR  
Noise  
filter circuit  
Interrupt request  
(TEI, TXI, RXI, ERI)  
[Legend]  
RSR:  
RDR:  
TSR:  
TDR:  
SMR:  
Receive shift register  
Receive data register  
Transmit shift register  
Transmit data register  
Serial mode register  
SCR3: Serial control register 3  
SSR:  
BRR:  
BRC:  
Serial status register  
Bit rate register  
Bit rate counter  
SPMR: Sampling mode register  
Figure 14.1 Block Diagram of SCI3  
Rev. 3.00 Sep. 14, 2006 Page 198 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.2  
Input/Output Pins  
Table 14.1 shows the SCI3 pin configuration.  
Table 14.1 Pin Configuration  
Pin Name  
Abbreviation  
SCK3  
I/O  
Function  
SCI3 clock  
Input/output  
Input  
SCI3 clock input/output  
SCI3 receive data input  
SCI3 transmit data output  
SCI3 receive data input  
RXD  
SCI3 transmit data output TXD  
Output  
14.3  
Register Descriptions  
SCI3 has the following registers for each channel.  
Receive shift register (RSR)  
Receive data register (RDR)  
Transmit shift register (TSR)  
Transmit data register (TDR)  
Serial mode register (SMR)  
Serial control register 3 (SCR3)  
Serial status register (SSR)  
Bit rate register (BRR)  
Sampling mode register (SPMR)  
Rev. 3.00 Sep. 14, 2006 Page 199 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.3.1 Receive Shift Register (RSR)  
RSR is a shift register that is used to receive serial data input from the RXD pin and convert it into  
parallel data. When one frame of data has been received, it is transferred to RDR automatically.  
RSR cannot be directly accessed by the CPU.  
14.3.2 Receive Data Register (RDR)  
RDR is an 8-bit register that stores received data. When SCI3 has received one frame of serial  
data, it transfers the received serial data from RSR to RDR, where it is stored. After this, RSR is  
receive-enabled. As RSR and RDR function as a double buffer in this way, continuous receive  
operations are possible. After confirming that the RDRF bit in SSR is set to 1, read RDR only  
once. RDR cannot be written to by the CPU. RDR is initialized to H'00.  
14.3.3 Transmit Shift Register (TSR)  
TSR is a shift register that transmits serial data. To perform serial data transmission, SCI3 first  
transfers transmit data from TDR to TSR automatically, then sends the data that starts from the  
LSB to the TXD pin. TSR cannot be directly accessed by the CPU.  
14.3.4 Transmit Data Register (TDR)  
TDR is an 8-bit register that stores data for transmission. When SCI3 detects that TSR is empty, it  
transfers the transmit data written in TDR to TSR and starts transmission. The double-buffered  
structure of TDR and TSR enables continuous serial transmission. If the next transmit data has  
already been written to TDR during transmission of one-frame data, SCI3 transfers the written  
data to TSR to continue transmission. To achieve reliable serial transmission, write transmit data  
to TDR only once after confirming that the TDRE bit in SSR is set to 1. TDR is initialized to  
H'FF.  
Rev. 3.00 Sep. 14, 2006 Page 200 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.3.5 Serial Mode Register (SMR)  
SMR is used to set the SCI3’s serial transfer format and select the baud rate generator clock  
source.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
COM  
CHR  
PE  
0
0
0
R/W  
Communication Mode  
0: Asynchronous mode  
1: Clocked synchronous mode  
Character Length (enabled only in asynchronous mode)  
0: Selects 8 bits as the data length.  
1: Selects 7 bits as the data length.  
Parity Enable (enabled only in asynchronous mode)  
6
5
R/W  
R/W  
When this bit is set to 1, the parity bit is added to transmit  
data before transmission, and the parity bit is checked in  
reception.  
4
3
PM  
0
0
R/W  
R/W  
Parity Mode (enabled only when the PE bit is 1 in  
asynchronous mode)  
0: Selects even parity.  
1: Selects odd parity.  
STOP  
Stop Bit Length (enabled only in asynchronous mode)  
Selects the stop bit length in transmission.  
0: 1 stop bit  
1: 2 stop bits  
For reception, only the first stop bit is checked, regardless  
of the value in the bit. If the second stop bit is 0, it is  
treated as the start bit of the next transmit character.  
2
MP  
0
R/W  
Multiprocessor Mode  
When this bit is set to 1, the multiprocessor  
communication function is enabled. The PE bit and PM  
bit settings are invalid in multiprocessor mode. In clocked  
synchronous mode, clear this bit to 0.  
Rev. 3.00 Sep. 14, 2006 Page 201 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Initial  
Bit  
1
Bit Name Value  
R/W  
R/W  
R/W  
Description  
CKS1  
CKS0  
0
0
Clock Select 0 and 1  
0
These bits select the clock source for the baud rate  
generator.  
00: φ clock (n = 0)  
01: φ/4 clock (n = 1)  
10: φ/16 clock (n = 2)  
11: φ/64 clock (n = 3)  
For the relationship between the bit rate register setting  
and the baud rate, see section 14.3.8, Bit Rate Register  
(BRR). n is the decimal representation of the value of n in  
BRR (see section 14.3.8, Bit Rate Register (BRR)).  
14.3.6 Serial Control Register 3 (SCR3)  
SCR3 is a register that enables or disables SCI3 transfer operations and interrupt requests, and is  
also used to select the transfer clock source. For details on interrupt requests, refer to section 14.7,  
Interrupts.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
TIE  
0
R/W  
Transmit Interrupt Enable  
When this bit is set to 1, the TXI interrupt request is  
enabled.  
6
RIE  
0
R/W  
Receive Interrupt Enable  
When this bit is set to 1, RXI and ERI interrupt requests  
are enabled.  
5
4
TE  
RE  
0
0
R/W  
R/W  
Transmit Enable  
When this bit s set to 1, transmission is enabled.  
Receive Enable  
When this bit is set to 1, reception is enabled.  
Rev. 3.00 Sep. 14, 2006 Page 202 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
3
MPIE  
0
R/W  
Multiprocessor Interrupt Enable (enabled only when the  
MP bit in SMR is 1 in asynchronous mode)  
When this bit is set to 1, receive data in which the  
multiprocessor bit is 0 is skipped, and setting of the  
RDRF, FER, and OER status flags in SSR is disabled.  
On receiving data in which the multiprocessor bit is 1, this  
bit is automatically cleared and normal reception is  
resumed. For details, refer to section 14.6, Multiprocessor  
Communication Function.  
2
TEIE  
0
R/W  
Transmit End Interrupt Enable  
When this bit is set to 1, TEI interrupt request is enabled.  
Clock Enable 0 and 1  
1
0
CKE1  
CKE0  
0
0
R/W  
R/W  
Selects the clock source.  
Asynchronous mode  
00: On-chip baud rate generator  
01: On-chip baud rate generator  
Outputs a clock of the same frequency as the bit rate  
from the SCK3 pin.  
10: External clock  
Inputs a clock with a frequency 16 times the bit rate  
from the SCK3 pin.  
11:Reserved  
Clocked synchronous mode  
00: On-chip clock (SCK3 pin functions as clock output)  
01:Reserved  
10: External clock (SCK3 pin functions as clock input)  
11:Reserved  
Rev. 3.00 Sep. 14, 2006 Page 203 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.3.7 Serial Status Register (SSR)  
SSR is a register containing status flags of SCI3 and multiprocessor bits for transfer. 1 cannot be  
written to flags TDRE, RDRF, OER, PER, and FER; they can only be cleared.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
TDRE 1  
R/W  
Transmit Data Register Empty  
Indicates whether TDR contains transmit data.  
[Setting conditions]  
When the TE bit in SCR3 is 0  
When data is transferred from TDR to TSR  
[Clearing conditions]  
When 0 is written to TDRE after reading TDRE = 1  
When the transmit data is written to TDR  
6
RDRF  
0
R/W  
Receive Data Register Full  
Indicates that the received data is stored in RDR.  
[Setting condition]  
When serial reception ends normally and receive data  
is transferred from RSR to RDR  
[Clearing conditions]  
When 0 is written to RDRF after reading RDRF = 1  
When data is read from RDR  
5
4
OER  
FER  
0
0
R/W  
R/W  
Overrun Error  
[Setting condition]  
When an overrun error occurs in reception  
[Clearing condition]  
When 0 is written to OER after reading OER = 1  
Framing Error  
[Setting condition]  
When a framing error occurs in reception  
[Clearing condition]  
When 0 is written to FER after reading FER = 1  
Rev. 3.00 Sep. 14, 2006 Page 204 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
3
PER  
0
R/W  
Parity Error  
[Setting condition]  
When a parity error is detected during reception  
[Clearing condition]  
When 0 is written to PER after reading PER = 1  
2
TEND  
1
R
Transmit End  
[Setting conditions]  
When the TE bit in SCR3 is 0  
When TDRE = 1 at transmission of the last bit of a 1-  
frame serial transmit character  
[Clearing conditions]  
When 0 is written to TDRE after reading TDRE = 1  
When the transmit data is written to TDR  
1
0
MPBR  
MPBT  
0
0
R
Multiprocessor Bit Receive  
MPBR stores the multiprocessor bit in the receive  
character data. When the RE bit in SCR3 is cleared to 0,  
its state is retained.  
R/W  
Multiprocessor Bit Transfer  
MPBT stores the multiprocessor bit to be added to the  
transmit character data.  
Rev. 3.00 Sep. 14, 2006 Page 205 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.3.8 Bit Rate Register (BRR)  
BRR is an 8-bit register that adjusts the bit rate. The initial value of BRR is H'FF. Table 14.2  
shows the relationship between the N setting in BRR and the n setting in bits CKS1 and CKS0 of  
SMR in asynchronous mode. Table 14.3 shows the maximum bit rate for each frequency in  
asynchronous mode. The values shown in both tables 14.2 and 14.3 are values in active (high-  
speed) mode. Table 14.4 shows the relationship between the N setting in BRR and the n setting in  
bits CKS1 and CKS0 of SMR in clocked synchronous mode. The values shown in table 14.5 are  
values in active (high-speed) mode. The N setting in BRR and error for other operating  
frequencies and bit rates can be obtained by the following formulas:  
[Asynchronous Mode]  
φ
× 106 – 1  
N =  
64 × 22n–1 × B  
φ × 106  
(N + 1) × B × 64 × 22n–1  
Error (%) =  
– 1 × 100  
[Clocked Synchronous Mode]  
φ
× 106 – 1  
N =  
8 × 22n–1 × B  
Legend B: Bit rate (bit/s)  
N: BRR setting for baud rate generator (0 N 255)  
φ: Operating frequency (MHz)  
n: CSK1 and CSK0 settings in SMR (0 n 3)  
Rev. 3.00 Sep. 14, 2006 Page 206 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Table 14.2 Examples of BRR Settings for Various Bit Rates (Asynchronous Mode)  
Operating Frequency φ (MHz)  
2
2.097152  
Error  
(%)  
2.4576  
Error  
(%)  
3
Bit Rate  
(bits/s)  
Error  
(%)  
Error  
(%)  
n
1
1
0
0
0
0
0
0
0
0
0
N
n
1
1
0
0
0
0
0
0
0
0
0
N
n
1
1
0
0
0
0
0
0
0
0
0
N
n
1
1
1
0
0
0
0
0
0
0
N
110  
141 0.03  
103 0.16  
207 0.16  
103 0.16  
148 –0.04  
108 0.21  
217 0.21  
108 0.21  
174 –0.26  
127 0.00  
255 0.00  
127 0.00  
212 0.03  
155 0.16  
150  
300  
77  
0.16  
600  
155 0.16  
1200  
2400  
4800  
9600  
19200  
31250  
38400  
51  
25  
12  
6
0.16  
54  
26  
13  
6
–0.70  
1.14  
63  
31  
15  
7
0.00  
0.00  
0.00  
0.00  
0.00  
22.88  
0.00  
77  
38  
19  
9
0.16  
0.16  
–2.34  
–2.34  
–2.34  
0.00  
0.16  
0.16  
–2.48  
–2.48  
13.78  
4.86  
–6.99  
8.51  
2
2
3
4
1
0.00  
1
1
2
1
–18.62  
1
–14.67  
1
Rev. 3.00 Sep. 14, 2006 Page 207 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Operating Frequency φ (MHz)  
4.9152  
Error  
3.6864  
Error  
4
5
Bit Rate  
(bits/s)  
Error  
(%)  
Error  
(%)  
n
2
1
1
0
0
0
0
0
0
0
N
(%)  
n
2
1
1
0
0
0
0
0
0
0
0
N
n
2
1
1
0
0
0
0
0
0
0
0
N
(%)  
n
2
2
1
1
0
0
0
0
0
0
0
N
110  
64  
0.70  
70  
0.03  
86  
0.31  
88  
64  
–0.25  
0.16  
150  
191 0.00  
95 0.00  
191 0.00  
207 0.16  
103 0.16  
207 0.16  
103 0.16  
255 0.00  
127 0.00  
255 0.00  
127 0.00  
300  
129 0.16  
64 0.16  
129 0.16  
600  
1200  
2400  
4800  
9600  
19200  
31250  
38400  
[Legend]  
95  
47  
23  
11  
5
0.00  
0.00  
0.00  
0.00  
0.00  
51  
25  
12  
6
0.16  
0.16  
0.16  
–6.99  
0.00  
8.51  
63  
31  
15  
7
0.00  
0.00  
0.00  
0.00  
–1.70  
0.00  
64  
32  
15  
7
0.16  
–1.36  
1.73  
1.73  
0.00  
1.73  
2
3
4
4
0.00  
2
3
3
:  
A setting is available but error occurs  
Operating Frequency φ (MHz)  
6
6.144  
7.3728  
Bit Rate  
(bit/s)  
Error  
(%)  
Error  
(%)  
Error  
(%)  
n
2
2
1
1
0
0
0
0
0
0
0
N
n
2
2
1
1
0
0
0
0
0
0
0
N
n
2
2
1
1
0
0
0
0
0
0
0
N
110  
106  
77  
155  
77  
155  
77  
38  
19  
9
–0.44  
0.16  
108  
79  
159  
79  
159  
79  
39  
19  
9
0.08  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
2.40  
0.00  
130  
95  
191  
95  
191  
95  
47  
23  
11  
6
–0.07  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
5.33  
0.00  
150  
300  
0.16  
600  
0.16  
1200  
2400  
4800  
9600  
19200  
31250  
38400  
0.16  
0.16  
0.16  
–2.34  
–2.34  
0.00  
5
5
4
–2.34  
4
5
Rev. 3.00 Sep. 14, 2006 Page 208 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Operating Frequency φ (MHz)  
9.8304  
Error (%)  
8
10  
Bit Rate  
(bit/s)  
n
2
2
1
1
0
0
0
0
0
0
0
N
Error (%)  
0.03  
n
2
2
1
1
0
0
0
0
0
0
0
N
n
2
2
2
1
1
0
0
0
0
0
0
N
Error (%)  
110  
141  
103  
207  
103  
207  
103  
51  
174 –0.26  
127 0.00  
255 0.00  
127 0.00  
255 0.00  
127 0.00  
177 –0.25  
129 0.16  
150  
0.16  
300  
0.16  
64  
129 0.16  
64 0.16  
129 0.16  
0.16  
600  
0.16  
1200  
2400  
4800  
9600  
19200  
31250  
38400  
0.16  
0.16  
0.16  
63  
31  
15  
9
0.00  
0.00  
0.00  
–1.70  
0.00  
64  
32  
15  
9
0.16  
–1.36  
1.73  
0.00  
1.73  
25  
0.16  
12  
0.16  
7
0.00  
6
-6.99  
7
7
Table 14.3 Maximum Bit Rate for Each Frequency (Asynchronous Mode)  
Maximum Bit  
φ (MHz) Rate (bit/s)  
Maximum Bit  
Rate (bit/s)  
n
0
0
0
0
0
0
0
N
0
0
0
0
0
0
0
φ (MHz)  
5
n
N
0
0
0
0
0
0
0
2
62500  
156250  
187500  
192000  
230400  
250000  
307200  
312500  
0
0
0
0
0
0
0
2.097152 65536  
6
2.4576  
3
76800  
6.144  
7.3728  
8
93750  
3.6864  
4
115200  
125000  
153600  
9.8304  
10  
4.9152  
Rev. 3.00 Sep. 14, 2006 Page 209 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Table 14.4 Examples of BRR Settings for Various Bit Rates (Clocked Synchronous Mode)  
Operating Frequency φ (MHz)  
2
4
8
10  
Bit Rate  
(bit/s)  
n
3
2
1
1
0
0
0
0
0
0
0
0
N
n
2
2
1
1
0
0
0
0
0
0
0
0
N
n
3
2
2
1
1
0
0
0
0
0
0
0
0
N
n
N
110  
250  
500  
1k  
70  
124  
249  
124  
199  
99  
49  
19  
9
1
249  
124  
249  
99  
49  
24  
9
249  
124  
249  
99  
199  
99  
39  
19  
9
124  
249  
124  
199  
99  
199  
79  
39  
19  
7
2.5k  
5k  
1
10k  
0
25k  
0
50k  
0
100k  
250k  
500k  
1M  
4
0
1
3
0
0*  
1
3
0
4
0*  
1
0
0*  
2M  
0*  
2.5M  
4M  
[Legend]  
Blank: No setting is available.  
—:  
A setting is available but error occurs.  
Continuous transfer is not possible.  
*:  
Rev. 3.00 Sep. 14, 2006 Page 210 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.3.9 Sampling Mode Register (SPMR)  
SPMR controls the serial communication function.  
Initial  
Bit  
Bit Name  
Value  
R/W  
Description  
7 to 3  
All 1  
Reserved  
These bits are always read as 1.  
Noise Filter Function Select  
2
STDSPM  
1
R/W  
Selects the noise filter function for the RXD pin in  
asynchronous mode.  
0: Noise filter circuit is enabled  
1: Noise filter circuit is disabled  
Reserved  
1, 0  
All 1  
These bits are always read as 1.  
Noise Filter Circuit  
The RXD input signal is latched through the noise filter circuit. The noise filter circuit  
comprises a series of three latch circuits and a match detection circuit. The RXD input signal is  
sampled by the basic clock with the 16 times the transfer clock frequency. If three latch  
outputs match, its level is transferred to the next stage. If not, the circuit holds the previous  
value.  
That is, when the incoming signal holds the same level for three clock cycles, it is regarded as  
the proper signal. If the levels of the signal is less than three clock cycles, the signal is  
regarded as a noise.  
Sampling clock  
C
C
C
Internal RXD  
signal shown  
in figure 14.1  
Match  
detection  
circuit  
SPMR  
(STDSPM)  
D
Q
D
Q
D
Q
RXD input signal  
Latch  
Latch  
Latch  
Internal basic clock cycle  
Sampling clock  
Figure 14.2 Block Diagram of Noise Filter Circuit  
Rev. 3.00 Sep. 14, 2006 Page 211 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.4  
Operation in Asynchronous Mode  
Figure 14.3 shows the general format for asynchronous serial communication. One character (or  
frame) consists of a start bit (low level), followed by data (in LSB-first order), a parity bit (high or  
low level), and finally stop bits (high level). Inside the SCI3, the transmitter and receiver are  
independent units, enabling full-duplex. Both the transmitter and the receiver also have a double-  
buffered structure, so data can be read or written during transmission or reception, enabling  
continuous data transfer.  
LSB  
MSB  
1
Serial  
data  
Parity  
bit  
Start  
bit  
Mark state  
Transmit/receive data  
7 or 8 bits  
Stop bit  
1 bit  
1 bit,  
1 or  
or none  
2 bits  
One unit of transfer data (character or frame)  
Figure 14.3 Data Format in Asynchronous Communication  
14.4.1 Clock  
Either an internal clock generated by the on-chip baud rate generator or an external clock input at  
the SCK3 pin can be selected as the SCI3’s serial clock, according to the setting of the COM bit in  
SMR and the CKE0 and CKE1 bits in SCR3. When an external clock is input at the SCK3 pin, the  
clock frequency should be 16 times the bit rate used.  
When SCI3 is operated on an internal clock, the clock can be output from the SCK3 pin. The  
frequency of the clock output in this case is equal to the bit rate, and the phase is such that the  
rising edge of the clock is in the middle of the transmit data, as shown in figure 14.4.  
Clock  
1
1
0
D0 D1 D2 D3 D4 D5 D6 D7 0/1  
1 character (frame)  
Serial data  
Figure 14.4 Relationship between Output Clock and Transfer Data Phase  
(Asynchronous Mode) (Example with 8-Bit Data, Parity, Two Stop Bits)  
Rev. 3.00 Sep. 14, 2006 Page 212 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.4.2 SCI3 Initialization  
Before transmitting and receiving data, you should first clear the TE and RE bits in SCR3 to 0,  
then initialize SCI3 as described below. When the operating mode, or transfer format, is changed  
for example, the TE and RE bits must be cleared to 0 before making the change using the  
following procedure. When the TE bit is cleared to 0, the TDRE flag is set to 1. Note that clearing  
the RE bit to 0 does not initialize the contents of the RDRF, PER, FER, and OER flags, or the  
contents of RDR. When the external clock is used in asynchronous mode, the clock must be  
supplied even during initialization.  
[1] Set the clock selection in SCR3.  
Be sure to clear bits RIE, TIE, TEIE, and  
MPIE, and bits TE and RE, to 0.  
Start initialization  
When the clock output is selected in  
asynchronous mode, clock is output  
immediately after CKE1 and CKE0  
settings are made. When the clock  
output is selected at reception in clocked  
synchronous mode, clock is output  
immediately after CKE1, CKE0, and RE  
are set to 1.  
Clear TE and RE bits in SCR3 to 0  
Set CKE1 and CKE0 bits in SCR3  
Set data transfer format in SMR  
[1]  
[2]  
[3]  
[2] Set the data transfer format in SMR.  
Set value in BRR  
Wait  
[3] Write a value corresponding to the bit  
rate to BRR. Not necessary if an  
external clock is used.  
No  
1-bit interval elapsed?  
Yes  
[4] Wait at least one bit interval, then set the  
TE bit or RE bit in SCR3 to 1. RE  
settings enable the RXD pin to be used.  
For transmission, set the TXD bit in  
PMR1 to 1 to enable the TXD output pin  
to be used. Also set the RIE, TIE, TEIE,  
and MPIE bits, depending on whether  
interrupts are required. In asynchronous  
mode, the bits are marked at  
Set TE and RE bits in  
SCR3 to 1, and set RIE, TIE, TEIE,  
and MPIE bits. For transmit (TE=1),  
also set the TxD bit in PMR1.  
[4]  
transmission and idled at reception to  
wait for the start bit.  
<Initialization completion>  
For transmission, set the TE bit to 1 and  
then output 1 for one frame to enable.  
Figure 14.5 Sample SCI3 Initialization Flowchart  
Rev. 3.00 Sep. 14, 2006 Page 213 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.4.3 Data Transmission  
Figure 14.6 shows an example of operation for transmission in asynchronous mode. In  
transmission, SCI3 operates as described below.  
1. SCI3 monitors the TDRE flag in SSR. If the flag is cleared to 0, SCI3 recognizes that data has  
been written to TDR, and transfers the data from TDR to TSR.  
2. After transferring data from TDR to TSR, SCI3 sets the TDRE flag to 1 and starts  
transmission. If the TIE bit is set to 1 at this time, a TXI interrupt request is generated.  
Continuous transmission is possible because the TXI interrupt routine writes next transmit data  
to TDR before transmission of the current transmit data has been completed.  
3. SCI3 checks the TDRE flag at the timing for sending the stop bit.  
4. If the TDRE flag is 0, the data is transferred from TDR to TSR, the stop bit is sent, and then  
serial transmission of the next frame is started.  
5. If the TDRE flag is 1, the TEND flag in SSR is set to 1, the stop bit is sent, and then the “mark  
state” is entered, in which 1 is output. If the TEIE bit in SCR3 is set to 1 at this time, a TEI  
interrupt request is generated.  
6. Figure 14.7 shows a sample flowchart for transmission in asynchronous mode.  
Start  
bit  
Transmit  
data  
Parity Stop Start  
Transmit  
data  
Parity Stop  
Mark  
state  
bit  
bit bit  
bit  
bit  
Serial  
data  
1
0
D0 D1  
D7 0/1  
1
0
D0 D1  
1 frame  
D7 0/1  
1
1
1 frame  
TDRE  
TEND  
LSI  
TXI interrupt  
TDRE flag  
cleared to 0  
TXI interrupt request generated  
TEI interrupt request  
generated  
operation request  
generated  
User  
processing  
Data written  
to TDR  
Figure 14.6 Example of SCI3 Transmission in Asynchronous Mode  
(8-Bit Data, Parity, One Stop Bit)  
Rev. 3.00 Sep. 14, 2006 Page 214 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Start transmission  
[1] Read SSR and check that the  
TDRE flag is set to 1, then write  
transmit data to TDR. When data is  
written to TDR, the TDRE flag is  
automaticaly cleared to 0.  
[1]  
Read TDRE flag in SSR  
[2] To continue serial transmission,  
read 1 from the TDRE flag to  
confirm that writing is possible,  
then write data to TDR. When data  
is written to TDR, the TDRE flag is  
automaticaly cleared to 0.  
No  
TDRE = 1  
Yes  
Write transmit data to TDR  
[3] To output a break in serial  
transmission, after setting PCR to 1  
and PDR to 0, clear TxD in PMR1  
to 0, then clear the TE bit in SCR3  
to 0.  
Yes  
[2]  
All data transmitted?  
No  
Read TEND flag in SSR  
No  
No  
TEND = 1  
Yes  
[3]  
Break output?  
Yes  
Clear PDR to 0 and  
set PCR to 1  
Clear TE bit in SCR3 to 0  
<End>  
Figure 14.7 Sample Serial Transmission Data Flowchart (Asynchronous Mode)  
Rev. 3.00 Sep. 14, 2006 Page 215 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.4.4 Serial Data Reception  
Figure 14.8 shows an example of operation for reception in asynchronous mode. In serial  
reception, SCI3 operates as described below.  
1. SCI3 monitors the communication line. If a start bit is detected, SCI3 performs internal  
synchronization, receives receive data in RSR, and checks the parity bit and stop bit.  
2. If an overrun error occurs (when reception of the next data is completed while the RDRF flag  
is still set to 1), the OER bit in SSR is set to 1. If the RIE bit in SCR3 is set to 1 at this time, an  
ERI interrupt request is generated. Receive data is not transferred to RDR.  
3. If a parity error is detected, the PER bit in SSR is set to 1 and receive data is transferred to  
RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interrupt request is generated.  
4. If a framing error is detected (when the stop bit is 0), the FER bit in SSR is set to 1 and receive  
data is transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interrupt  
request is generated.  
5. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive data is  
transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt request is  
generated. Continuous reception is possible because the RXI interrupt routine reads the receive  
data transferred to RDR before reception of the next receive data has been completed.  
Start  
bit  
Receive  
data  
Parity Stop Start  
Receive  
data  
Parity Stop Mark state  
bit  
bit bit  
bit  
bit  
(idle state)  
Serial  
data  
1
0
D0 D1  
D7 0/1  
1
0
D0 D1  
1 frame  
D7 0/1  
0
1
1 frame  
RDRF  
FER  
LSI  
operation  
RXI request RDRF  
cleared to 0  
0 stop bit  
detected  
ERI request in  
response to  
framing error  
User  
processing  
RDR data read  
Framing error  
processing  
Figure 14.8 Example of SCI3 Reception in Asynchronous Mode  
(8-Bit Data, Parity, One Stop Bit)  
Rev. 3.00 Sep. 14, 2006 Page 216 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Table 14.5 shows the states of the SSR status flags and receive data handling when a receive error  
is detected. If a receive error is detected, the RDRF flag retains its state before receiving data.  
Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear the OER,  
FER, PER, and RDRF bits to 0 before resuming reception. Figure 14.9 shows a sample flow chart  
for serial data reception.  
Table 14.5 SSR Status Flags and Receive Data Handling  
SSR Status Flag  
RDRF* OER  
FER  
0
PER  
Receive Data  
Lost  
Receive Error Type  
Overrun error  
1
0
0
1
1
0
1
1
0
0
1
1
0
1
0
0
1
0
1
1
1
1
Transferred to RDR  
Transferred to RDR  
Lost  
Framing error  
0
Parity error  
1
Overrun error + framing error  
Overrun error + parity error  
Framing error + parity error  
0
Lost  
1
Transferred to RDR  
Lost  
1
Overrun error + framing error +  
parity error  
Note:  
*
The RDRF flag retains the state it had before data reception.  
Rev. 3.00 Sep. 14, 2006 Page 217 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Start reception  
[1] Read the OER, PER, and FER flags in  
SSR to identify the error. If a receive  
error occurs, performs the appropriate  
error processing.  
[2] Read SSR and check that RDRF = 1,  
then read the receive data in RDR.  
The RDRF flag is cleared automatically.  
[3] To continue serial reception, before the  
stop bit for the current frame is  
Read OER, PER, and  
[1]  
FER flags in SSR  
Yes  
OER+PER+FER = 1  
[4]  
received, read the RDRF flag and read  
RDR.  
No  
Error processing  
The RDRF flag is cleared automatically.  
[4] If a receive error occurs, read the OER,  
PER, and FER flags in SSR to identify  
the error. After performing the  
(Continued on next page)  
[2]  
Read RDRF flag in SSR  
appropriate error processing, ensure  
that the OER, PER, and FER flags are  
all cleared to 0. Reception cannot be  
resumed if any of these flags are set to  
1. In the case of a framing error, a  
break can be detected by reading the  
value of the input port corresponding to  
the RxD pin.  
No  
RDRF = 1  
Yes  
Read receive data in RDR  
Yes  
All data received?  
No  
[3]  
(A)  
Clear RE bit in SCR3 to 0  
<End>  
Figure 14.9 Sample Serial Reception Data Flowchart (Asynchronous Mode)  
Rev. 3.00 Sep. 14, 2006 Page 218 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.5  
Operation in Clocked Synchronous Mode  
Figure 14.10 shows the general format for clocked synchronous communication. In clocked  
synchronous mode, data is transmitted or received synchronous with clock pulses. A single  
character in the transmit data consists of the 8-bit data starting from the LSB. In clocked  
synchronous serial communication, data on the transmission line is output from one falling edge of  
the synchronization clock to the next. In clocked synchronous mode, SCI3 receives data in  
synchronous with the rising edge of the synchronization clock. After 8-bit data is output, the  
transmission line holds the MSB state. In clocked synchronous mode, no parity or multiprocessor  
bit is added. Inside the SCI3, the transmitter and receiver are independent units, enabling full-  
duplex communication through the use of a common clock. Both the transmitter and the receiver  
also have a double-buffered structure, so data can be read or written during transmission or  
reception, enabling continuous data transfer.  
8-bit  
One unit of transfer data (character or frame)  
*
*
Synchronization  
clock  
LSB  
Bit 0  
MSB  
Bit 7  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Serial data  
Don’t care  
Note: * High except in continuous transfer  
Don’t care  
Figure 14.10 Data Format in Clocked Synchronous Communication  
14.5.1 Clock  
Either an internal clock generated by the on-chip baud rate generator or an external  
synchronization clock input at the SCK3 pin can be selected, according to the setting of the COM  
bit in SMR and CKE0 and CKE1 bits in SCR3. When SCI3 is operated on an internal clock, the  
synchronization clock is output from the SCK3 pin. Eight synchronization clock pulses are output  
in the transfer of one character, and when no transfer is performed the clock is fixed high.  
Rev. 3.00 Sep. 14, 2006 Page 219 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.5.2 SCI3 Initialization  
Before transmitting and receiving data, SCI3 should be initialized as described in a sample  
flowchart in figure 14.5.  
14.5.3 Serial Data Transmission  
Figure 14.11 shows an example of SCI3 operation for transmission in clocked synchronous mode.  
In serial transmission, SCI3 operates as described below.  
1. SCI3 monitors the TDRE flag in SSR, and if the flag is 0, SCI3 recognizes that data has been  
written to TDR, and transfers the data from TDR to TSR.  
2. SCI3 sets the TDRE flag to 1 and starts transmission. If the TIE bit in SCR3 is set to 1 at this  
time, a transmit data empty interrupt (TXI) is generated.  
3. 8-bit data is sent from the TXD pin synchronized with the output clock when output clock  
mode has been specified, and synchronized with the input clock when use of an external clock  
has been specified. Serial data is transmitted sequentially from the LSB (bit 0), from the TXD  
pin.  
4. SCI3 checks the TDRE flag at the timing for sending the MSB (bit 7).  
5. If the TDRE flag is cleared to 0, data is transferred from TDR to TSR, and serial transmission  
of the next frame is started.  
6. If the TDRE flag is set to 1, the TEND flag in SSR is set to 1, and the TDRE flag maintains the  
output state of the last bit. If the TEIE bit in SCR3 is set to 1 at this time, a TEI interrupt  
request is generated.  
7. The SCK3 pin is fixed high at the end of transmission.  
Rev. 3.00 Sep. 14, 2006 Page 220 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Figure 14.12 shows a sample flow chart for serial data transmission. Even if the TDRE flag is  
cleared to 0, transmission will not start while a receive error flag (OER, FER, or PER) is set to 1.  
Make sure that the receive error flags are cleared to 0 before starting transmission.  
Serial  
clock  
Serial  
data  
Bit 0  
Bit 1  
Bit 7  
Bit 0  
Bit 1  
Bit 6  
Bit 7  
1 frame  
1 frame  
TDRE  
TEND  
LSI  
TXI interrupt  
TDRE flag  
cleared  
to 0  
TXI interrupt request generated  
TEI interrupt request  
generated  
operation request  
generated  
User  
processing  
Data written  
to TDR  
Figure 14.11 Example of SCI3 Transmission in Clocked Synchronous Mode  
Rev. 3.00 Sep. 14, 2006 Page 221 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Start transmission  
[1] Read SSR and check that the TDRE flag is  
set to 1, then write transmit data to TDR.  
When data is written to TDR, the TDRE flag  
is automatically cleared to 0 and clocks are  
output to start the data transmission.  
[1]  
Read TDRE flag in SSR  
[2] To continue serial transmission, be sure to  
read 1 from the TDRE flag to confirm that  
writing is possible, then write data to TDR.  
When data is written to TDR, the TDRE flag  
is automatically cleared to 0.  
No  
TDRE = 1  
Yes  
Write transmit data to TDR  
Yes  
All data transmitted?  
No  
[2]  
Read TEND flag in SSR  
No  
TEND = 1  
Yes  
Clear TE bit in SCR3 to 0  
<End>  
Figure 14.12 Sample Serial Transmission Flowchart (Clocked Synchronous Mode)  
Rev. 3.00 Sep. 14, 2006 Page 222 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.5.4 Serial Data Reception (Clocked Synchronous Mode)  
Figure 14.13 shows an example of SCI3 operation for reception in clocked synchronous mode. In  
serial reception, SCI3 operates as described below.  
1. SCI3 performs internal initialization synchronous with a synchronization clock input or  
output, starts receiving data.  
2. SCI3 stores the receive data in RSR.  
3. If an overrun error occurs (when reception of the next data is completed while the RDRF flag  
in SSR is still set to 1), the OER bit in SSR is set to 1. If the RIE bit in SCR3 is set to 1 at this  
time, an ERI interrupt request is generated, receive data is not transferred to RDR, and the  
RDRF flag remains to be set to 1.  
4. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive data is  
transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt request is  
generated.  
Serial  
clock  
Serial  
data  
Bit 7  
Bit 0  
Bit 7  
Bit 0  
Bit 1  
Bit 6  
Bit 7  
1 frame  
1 frame  
RDRF  
OER  
LSI  
RXI interrupt RDRF flag  
RXI interrupt request generated  
ERI interrupt request  
operation  
request  
generated  
cleared  
to 0  
generated by  
overrun error  
User  
processing  
RDR data read  
RDR data has  
not been read  
(RDRF = 1)  
Overrun error  
processing  
Figure 14.13 Example of SCI3 Reception in Clocked Synchronous Mode  
Rev. 3.00 Sep. 14, 2006 Page 223 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Reception cannot be resumed while a receive error flag is set to 1. Accordingly, clear the OER,  
FER, PER, and RDRF bits to 0 before resuming reception. Figure 14.14 shows a sample flow  
chart for serial data reception.  
Start reception  
[1] Read the OER flag in SSR to determine if  
there is an error. If an overrun error has  
[1]  
occurred, execute overrun error processing.  
[2] Read SSR and check that the RDRF flag is  
set to 1, then read the receive data in RDR.  
When data is read from RDR, the RDRF  
flag is automatically cleared to 0.  
Read OER flag in SSR  
Yes  
OER = 1  
No  
[4]  
[3] To continue serial reception, before the  
MSB (bit 7) of the current frame is received,  
reading the RDRF flag and reading RDR  
should be finished. When data is read from  
RDR, the RDRF flag is automatically  
cleared to 0.  
Error processing  
(Continued below)  
Read RDRF flag in SSR  
[2]  
[4] If an overrun error occurs, read the OER  
flag in SSR, and after performing the  
appropriate error processing, clear the OER  
flag to 0. Reception cannot be resumed if  
the OER flag is set to 1.  
No  
RDRF = 1  
Yes  
Read receive data in RDR  
Yes  
All data received?  
No  
[3]  
Clear RE bit in SCR3 to 0  
<End>  
[4]  
Error processing  
Overrun error processing  
Clear OER flag in SSR to 0  
<End>  
Figure 14.14 Sample Serial Reception Flowchart (Clocked Synchronous Mode)  
Rev. 3.00 Sep. 14, 2006 Page 224 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.5.5 Simultaneous Serial Data Transmission and Reception  
Figure 14.15 shows a sample flowchart for simultaneous serial transmit and receive operations.  
The following procedure should be used for simultaneous serial data transmit and receive  
operations. To switch from transmit mode to simultaneous transmit and receive mode, after  
checking that SCI3 has finished transmission and the TDRE and TEND flags are set to 1, clear TE  
to 0. Then simultaneously set TE and RE to 1 with a single instruction. To switch from receive  
mode to simultaneous transmit and receive mode, after checking that SCI3 has finished reception,  
clear RE to 0. Then after checking that the RDRF and receive error flags (OER, FER, and PER)  
are cleared to 0, simultaneously set TE and RE to 1 with a single instruction.  
Rev. 3.00 Sep. 14, 2006 Page 225 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Start transmission/reception  
[1] Read SSR and check that the TDRE  
flag is set to 1, then write transmit  
data to TDR.  
When data is written to TDR, the  
TDRE flag is automatically cleared to  
0.  
Read TDRE flag in SSR  
[1]  
[2] Read SSR and check that the RDRF  
flag is set to 1, then read the receive  
data in RDR.  
No  
TDRE = 1  
Yes  
When data is read from RDR, the  
RDRF flag is automatically cleared to  
0.  
[3] To continue serial transmission/  
reception, before the MSB (bit 7) of  
the current frame is received, finish  
reading the RDRF flag, reading RDR.  
Also, before the MSB (bit 7) of the  
current frame is transmitted, read 1  
from the TDRE flag to confirm that  
writing is possible. Then write data to  
TDR.  
Write transmit data to TDR  
Read OER flag in SSR  
Yes  
OER = 1  
No  
When data is written to TDR, the  
TDRE flag is automatically cleared to  
0. When data is read from RDR, the  
RDRF flag is automatically cleared to  
0.  
Read RDRF flag in SSR  
[2]  
[4] If an overrun error occurs, read the  
OER flag in SSR, and after  
performing the appropriate error  
processing, clear the OER flag to 0.  
Transmission/reception cannot be  
resumed if the OER flag is set to 1.  
For overrun error processing, see  
figure 14.14.  
No  
[4]  
RDRF = 1  
Yes  
Overrun error  
processing  
Read receive data in RDR  
Yes  
All data received?  
No  
[3]  
Clear TE and RE bits in SCR to 0  
<End>  
Figure 14.15 Sample Flowchart of Simultaneous Serial Transmit and Receive Operations  
(Clocked Synchronous Mode)  
Rev. 3.00 Sep. 14, 2006 Page 226 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.6  
Multiprocessor Communication Function  
Use of the multiprocessor communication function enables data transfer between a number of  
processors sharing communication lines by asynchronous serial communication using the  
multiprocessor format, in which a multiprocessor bit is added to the transfer data. When  
multiprocessor communication is performed, each receiving station is addressed by a unique ID  
code. The serial communication cycle consists of two component cycles; an ID transmission cycle  
that specifies the receiving station, and a data transmission cycle. The multiprocessor bit is used to  
differentiate between the ID transmission cycle and the data transmission cycle. If the  
multiprocessor bit is 1, the cycle is an ID transmission cycle; if the multiprocessor bit is 0, the  
cycle is a data transmission cycle. Figure 14.16 shows an example of inter-processor  
communication using the multiprocessor format. The transmitting station first sends the ID code  
of the receiving station with which it wants to perform serial communication as data with a 1  
multiprocessor bit added. It then sends transmit data as data with a 0 multiprocessor bit added.  
When data with a 1 multiprocessor bit is received, the receiving station compares that data with its  
own ID. The station whose ID matches then receives the data sent next. Stations whose IDs do not  
match continue to skip data until data with a 1 multiprocessor bit is again received.  
SCI3 uses the MPIE bit in SCR3 to implement this function. When the MPIE bit is set to 1,  
transfer of receive data from RSR to RDR, error flag detection, and setting the SSR status flags,  
RDRF, FER, and OER, to 1, are inhibited until data with a 1 multiprocessor bit is received. On  
reception of a receive character with a 1 multiprocessor bit, the MPBR bit in SSR is set to 1 and  
the MPIE bit is automatically cleared, thus normal reception is resumed. If the RIE bit in SCR3 is  
set to 1 at this time, an RXI interrupt is generated.  
When the multiprocessor format is selected, the parity bit setting is rendered invalid. All other bit  
settings are the same as those in normal asynchronous mode. The clock used for multiprocessor  
communication is the same as that in normal asynchronous mode.  
Rev. 3.00 Sep. 14, 2006 Page 227 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Transmitting  
station  
Serial transmission line  
Receiving  
station A  
Receiving  
station B  
Receiving  
station C  
Receiving  
station D  
(ID = 01)  
(ID = 02)  
(ID = 03)  
(ID = 04)  
Serial  
data  
H'01  
H'AA  
(MPB = 1)  
(MPB = 0)  
ID transmission cycle = Data transmission cycle =  
receiving station  
specification  
Data transmission to  
receiving station specified by ID  
[Legend]  
MPB: Multiprocessor bit  
Figure 14.16 Example of Inter-Processor Communication Using Multiprocessor Format  
(Transmission of Data H'AA to Receiving Station A)  
Rev. 3.00 Sep. 14, 2006 Page 228 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.6.1 Multiprocessor Serial Data Transmission  
Figure 14.17 shows a sample flowchart for multiprocessor serial data transmission. For an ID  
transmission cycle, set the MPBT bit in SSR to 1 before transmission. For a data transmission  
cycle, clear the MPBT bit in SSR to 0 before transmission. All other SCI3 operations are the same  
as those in asynchronous mode.  
Rev. 3.00 Sep. 14, 2006 Page 229 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Start transmission  
[1] Read SSR and check that the TDRE  
flag is set to 1, set the MPBT bit in  
SSR to 0 or 1, then write transmit  
data to TDR. When data is written to  
TDR, the TDRE flag is automatically  
cleared to 0.  
[1]  
Read TDRE flag in SSR  
No  
TDRE = 1  
Yes  
[2] To continue serial transmission, be  
sure to read 1 from the TDRE flag to  
confirm that writing is possible, then  
write data to TDR. When data is  
written to TDR, the TDRE flag is  
automatically cleared to 0.  
Set MPBT bit in SSR  
[3] To output a break in serial  
transmission, set the port PCR to 1,  
clear PDR to 0, then clear the TE bit  
in SCR3 to 0.  
Write transmit data to TDR  
Yes  
[2]  
All data transmitted?  
No  
Read TEND flag in SSR  
No  
No  
TEND = 1  
Yes  
Break output?  
Yes  
[3]  
Clear PDR to 0 and set PCR to 1  
Clear TE bit in SCR3 to 0  
<End>  
Figure 14.17 Sample Multiprocessor Serial Transmission Flowchart  
Rev. 3.00 Sep. 14, 2006 Page 230 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.6.2 Multiprocessor Serial Data Reception  
Figure 14.18 shows a sample flowchart for multiprocessor serial data reception. If the MPIE bit in  
SCR3 is set to 1, data is skipped until data with a 1 multiprocessor bit is sent. On receiving data  
with a 1 multiprocessor bit, the receive data is transferred to RDR. An RXI interrupt request is  
generated at this time. All other SCI3 operations are the same as those in asynchronous mode.  
Figure 14.19 shows an example of SCI3 operation for multiprocessor format reception.  
Rev. 3.00 Sep. 14, 2006 Page 231 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Start reception  
[1] Set the MPIE bit in SCR3 to 1.  
[2] Read OER and FER in SSR to check for  
errors. Receive error processing is performed  
in cases where a receive error occurs.  
[3] Read SSR and check that the RDRF flag is  
set to 1, then read the receive data in RDR  
and compare it with this station’s ID.  
If the data is not this station’s ID, set the MPIE  
bit to 1 again.  
Set MPIE bit in SCR3 to 1  
[1]  
[2]  
Read OER and FER flags in SSR  
Yes  
FER+OER = 1  
When data is read from RDR, the RDRF flag  
is automatically cleared to 0.  
No  
Read RDRF flag in SSR  
[3]  
[4] Read SSR and check that the RDRF flag is  
set to 1, then read the data in RDR.  
[5] If a receive error occurs, read the OER and  
FER flags in SSR to identify the error. After  
performing the appropriate error processing,  
ensure that the OER and FER flags are all  
cleared to 0.  
No  
No  
RDRF = 1  
Yes  
Read receive data in RDR  
Reception cannot be resumed if either of  
these flags is set to 1.  
This station’s ID?  
Yes  
In the case of a framing error, a break can be  
detected by reading the RxD pin value.  
Read OER and FER flags in SSR  
Yes  
FER+OER = 1  
No  
Read RDRF flag in SSR  
[4]  
No  
[5]  
RDRF = 1  
Error processing  
Yes  
(Continued on  
next page)  
Read receive data in RDR  
Yes  
All data received?  
No  
[A]  
Clear RE bit in SCR3 to 0  
<End>  
Figure 14.18 Sample Multiprocessor Serial Reception Flowchart (1)  
Rev. 3.00 Sep. 14, 2006 Page 232 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
[5]  
Error processing  
No  
OER = 1  
Yes  
Overrun error processing  
No  
FER = 1  
Yes  
Yes  
Break?  
No  
[A]  
Framing error processing  
Clear OER, and  
FER flags in SSR to 0  
<End>  
Figure 14.18 Sample Multiprocessor Serial Reception Flowchart (2)  
Rev. 3.00 Sep. 14, 2006 Page 233 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Start  
bit  
Receive  
data (ID1)  
Stop Start  
bit bit  
Receive data  
(Data1)  
Stop Mark state  
bit  
(idle state)  
MPB  
1
MPB  
0
Serial  
data  
1
0
D0 D1  
D7  
1
0
D0 D1  
1 frame  
D7  
1
1
1 frame  
MPIE  
RDRF  
RDR  
value  
ID1  
LSI  
operation  
RXI interrupt  
request  
MPIE cleared  
to 0  
RDRF flag  
cleared  
to 0  
RXI interrupt request  
is not generated, and  
RDR retains its state  
User  
processing  
RDR data read  
When data is not  
this station's ID,  
MPIE is set to 1  
again  
(a) When data does not match this receiver's ID  
Start  
bit  
Receive  
data (ID2)  
Stop Start  
bit bit  
Receive data  
(Data2)  
Stop Mark state  
bit  
(idle state)  
MPB  
1
MPB  
0
Serial  
data  
1
0
D0 D1  
D7  
1
0
D0 D1  
1 frame  
D7  
1
1
1 frame  
MPIE  
RDRF  
RDR  
value  
ID1  
ID2  
Data2  
LSI  
operation  
RXI interrupt  
request  
MPIE cleared  
to 0  
RDRF flag  
cleared  
to 0  
RXI interrupt RDRF flag  
request  
cleared  
to 0  
User  
processing  
RDR data read  
When data is  
this station's  
ID, reception  
is continued  
RDR data read  
MPIE set to 1  
again  
(b) When data matches this receiver's ID  
Figure 14.19 Example of SCI3 Reception Using Multiprocessor Format  
(Example with 8-Bit Data, Multiprocessor Bit, One Stop Bit)  
Rev. 3.00 Sep. 14, 2006 Page 234 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.7  
Interrupts  
SCI3 creates the following six interrupt requests: transmission end, transmit data empty, receive  
data full, and receive errors (overrun error, framing error, and parity error). Table 14.6 shows the  
interrupt sources.  
Table 14.6 SCI3 Interrupt Requests  
Interrupt Requests  
Receive Data Full  
Transmit Data Empty  
Transmission End  
Receive Error  
Abbreviation  
Interrupt Sources  
RXI  
TXI  
TEI  
ERI  
Setting RDRF in SSR  
Setting TDRE in SSR  
Setting TEND in SSR  
Setting OER, FER, and PER in SSR  
The initial value of the TDRE flag in SSR is 1. Thus, when the TIE bit in SCR3 is set to 1 before  
transferring the transmit data to TDR, a TXI interrupt request is generated even if the transmit data  
is not ready. The initial value of the TEND flag in SSR is 1. Thus, when the TEIE bit in SCR3 is  
set to 1 before transferring the transmit data to TDR, a TEI interrupt request is generated even if  
the transmit data has not been sent. It is possible to make use of the most of these interrupt  
requests efficiently by transferring the transmit data to TDR in the interrupt routine. To prevent  
the generation of these interrupt requests (TXI and TEI), set the enable bits (TIE and TEIE) that  
correspond to these interrupt requests to 1, after transferring the transmit data to TDR.  
Rev. 3.00 Sep. 14, 2006 Page 235 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.8  
Usage Notes  
14.8.1 Break Detection and Processing  
When framing error detection is performed, a break can be detected by reading the RXD pin value  
directly. In a break, the input from the RXD pin becomes all 0s, setting the FER flag, and possibly  
the PER flag. Note that as SCI3 continues the receive operation after receiving a break, even if the  
FER flag is cleared to 0, it will be set to 1 again.  
14.8.2 Mark State and Break Sending  
When the TXD bit in PMR1 is 1, the TxD pin is used as an I/O port whose direction (input or  
output) and level are determined by PCR and PDR. This can be used to set the TxD pin to mark  
state (high level) or send a break during serial data transmission. To maintain the communication  
line at mark state until TE is set to 1, set PCR and PDR to 1 respectively, and also set the TXD bit  
to 1. At this time, the TxD pin becomes an I/O port, and 1 is output from the TxD pin. To send a  
break during serial data transmission, first set PCR to 1 and clear PDR to 0, and then set the TXD  
bit to 1. Regardless of the current transmission state, the TxD pin becomes an I/O port, and 0 is  
output from the TxD pin.  
14.8.3 Receive Error Flags and Transmit Operations (Clocked Synchronous Mode Only)  
Transmission cannot be started when a receive error flag (OER, PER, or FER) is set to 1, even if  
the TDRE flag is cleared to 0. Be sure to clear the receive error flags to 0 before starting  
transmission. Note also that receive error flags cannot be cleared to 0 even if the RE bit is cleared  
to 0.  
Rev. 3.00 Sep. 14, 2006 Page 236 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
14.8.4 Receive Data Sampling Timing and Reception Margin in Asynchronous Mode  
In asynchronous mode, SCI3 operates on a basic clock with a frequency of 16 times the transfer  
rate. In reception, SCI3 samples the falling edge of the start bit using the basic clock, and performs  
internal synchronization. Receive data is latched internally at the rising edge of the 8th pulse of the  
basic clock as shown in figure 14.20. Thus, the reception margin in asynchronous mode is given  
by formula (1) below.  
1
D – 0.5  
N
M = (0.5 –  
) –  
– (L – 0.5) F × 100(%)  
2N  
... Formula (1)  
Legend N : Ratio of bit rate to clock (N = 16)  
D : Clock duty (D = 0.5 to 1.0)  
L : Frame length (L = 9 to 12)  
F : Absolute value of clock rate deviation  
Assuming values of F (absolute value of clock rate deviation) = 0 and D (clock duty) = 0.5 in  
formula (1), the reception margin can be given by the formula.  
M = {0.5 – 1/(2 × 16)} × 100 [%] = 46.875%  
However, this is only the computed value, and a margin of 20% to 30% should be allowed for in  
system design.  
16 clocks  
8 clocks  
0
7
15  
0
7
15 0  
Internal basic  
clock  
Receive data  
(RxD)  
Start bit  
D0  
D1  
Synchronization  
sampling timing  
Data sampling  
timing  
Figure 14.20 Receive Data Sampling Timing in Asynchronous Mode  
Rev. 3.00 Sep. 14, 2006 Page 237 of 408  
REJ09B0105-0300  
Section 14 Serial Communication Interface 3 (SCI3)  
Rev. 3.00 Sep. 14, 2006 Page 238 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
Section 15 I2C Bus Interface 2 (IIC2)  
The I2C bus interface 2 conforms to and provides a subset of the Philips I2C bus (inter-IC bus)  
interface functions. The register configuration that controls the I2C bus differs partly from the  
Philips configuration, however.  
Figure 15.1 shows a block diagram of the I2C bus interface 2.  
Figure 15.2 shows an example of I/O pin connections to external circuits.  
15.1  
Features  
Selection of I2C format or clocked synchronous serial format  
Continuous transmission/reception  
Since the shift register, transmit data register, and receive data register are independent from  
each other, the continuous transmission/reception can be performed.  
I2C bus format:  
Start and stop conditions generated automatically in master mode  
Selection of acknowledge output levels when receiving  
Automatic loading of acknowledge bit when transmitting  
Bit synchronization/wait function  
In master mode, the state of SCL is monitored per bit, and the timing is synchronized  
automatically.  
If transmission/reception is not yet possible, set the SCL to low until preparations are  
completed.  
Six interrupt sources  
Transmit data empty (including slave-address match), transmit end, receive data full (including  
slave-address match), arbitration lost, NACK detection, and stop condition detection  
Direct bus drive  
Two pins, SCL and SDA pins, function as NMOS open-drain outputs when the bus drive  
function is selected.  
Clocked synchronous format:  
Four interrupt sources  
Transmit-data-empty, transmit-end, receive-data-full, and overrun error  
IFIIC10A_000020030300  
Rev. 3.00 Sep. 14, 2006 Page 239 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
Transfer clock  
generation  
circuit  
Transmit/  
receive  
control circuit  
ICCR1  
ICCR2  
ICMR  
Output  
control  
SCL  
Noise canceler  
ICDRT  
SAR  
Output  
control  
ICDRS  
SDA  
Address  
comparator  
Noise canceler  
ICDRR  
Bus state  
decision circuit  
Arbitration  
decision circuit  
ICSR  
ICIER  
[Legend]  
ICCR1: I2C bus control register 1  
ICCR2: I2C bus control register 2  
ICMR: I2C bus mode register  
Interrupt  
generator  
Interrupt request  
ICSR:  
I2C bus status register  
ICIER: I2C bus interrupt enable register  
ICDRT: I2C bus transmit data register  
ICDRR: I2C bus receive data register  
ICDRS: I2C bus shift register  
SAR:  
Slave address register  
Figure 15.1 Block Diagram of I2C Bus Interface 2  
Rev. 3.00 Sep. 14, 2006 Page 240 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
Vcc  
Vcc  
SCL  
SDA  
SCL  
SDA  
SCL in  
SCL out  
SDA in  
SDA out  
SCL in  
SCL in  
(Master)  
SCL out  
SCL out  
SDA in  
SDA in  
SDA out  
SDA out  
(Slave 1)  
(Slave 2)  
Figure 15.2 External Circuit Connections of I/O Pins  
15.2  
Input/Output Pins  
Table 15.1 summarizes the input/output pins used by the I2C bus interface 2.  
Table 15.1 Pin Configuration  
Name  
Abbreviation  
SCL  
I/O  
I/O  
I/O  
Function  
Serial clock  
Serial data  
I2C serial clock input/output  
I2C serial data input/output  
SDA  
Rev. 3.00 Sep. 14, 2006 Page 241 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
15.3  
Register Descriptions  
The I2C bus interface 2 has the following registers.  
I2C bus control register 1 (ICCR1)  
I2C bus control register 2 (ICCR2)  
I2C bus mode register (ICMR)  
I2C bus interrupt enable register (ICIER)  
I2C bus status register (ICSR)  
I2C bus slave address register (SAR)  
I2C bus transmit data register (ICDRT)  
I2C bus receive data register (ICDRR)  
I2C bus shift register (ICDRS)  
15.3.1 I2C Bus Control Register 1 (ICCR1)  
ICCR1 enables or disables the I2C bus interface 2, controls transmission or reception, and selects  
master or slave mode, transmission or reception, and transfer clock frequency in master mode.  
Bit  
Bit Name Initial Value R/W Description  
7
ICE  
0
R/W I2C Bus Interface Enable  
0: This module is halted. (SCL and SDA pins are set to  
port function.)  
1: This bit is enabled for transfer operations. (SCL and  
SDA pins are bus drive state.)  
6
RCVD  
0
R/W Reception Disable  
This bit enables or disables the next operation when TRS  
is 0 and ICDRR is read.  
0: Enables next reception  
1: Disables next reception  
Rev. 3.00 Sep. 14, 2006 Page 242 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
Bit  
5
Bit Name Initial Value R/W Description  
MST  
TRS  
0
0
R/W Master/Slave Select  
4
R/W Transmit/Receive Select  
In master mode with the I2C bus format, when arbitration is  
lost, MST and TRS are both reset by hardware, causing a  
transition to slave receive mode. Modification of the TRS  
bit should be made between transfer frames.  
After data receive has been started in slave receive mode,  
when the first seven bits of the receive data agree with the  
slave address that is set to SAR and the eighth bit is 1,  
TRS is automatically set to 1. If an overrun error occurs in  
master mode with the clock synchronous serial format,  
MST is cleared to 0 and slave receive mode is entered.  
Operating modes are described below according to MST  
and TRS combination. When clocked synchronous serial  
format is selected and MST is 1, clock is output.  
00: Slave receive mode  
01: Slave transmit mode  
10: Master receive mode  
11: Master transmit mode  
R/W Transfer Clock Select 3 to 0  
3 to 0 CKS3 to All 0  
CKS0  
These bits should be set according to the necessary  
transfer rate (see table 15.2) in master mode. In slave  
mode, these bits are used reservation of the set up time in  
transmit mode. The time is 10tcyc when CKS3 = 0, and  
20tcyc when CKS3 = 1.  
Rev. 3.00 Sep. 14, 2006 Page 243 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
Table 15.2 Transfer Rate  
Bit 3 Bit 2  
Bit 1  
Bit 0  
Transfer Rate  
φ = 8 MHz  
286 kHz  
Clock  
CKS3 CKS2 CKS1  
CKS0  
φ = 5 MHz  
179 kHz  
125 kHz  
104 kHz  
78.1 kHz  
62.5 kHz  
50.0 kHz  
44.6 kHz  
39.1 kHz  
89.3 kHz  
62.5 kHz  
52.1 kHz  
39.1 kHz  
31.3 kHz  
25.0 kHz  
22.3 kHz  
19.5 kHz  
φ = 10 MHz  
357 kHz  
250 kHz  
208 kHz  
156 kHz  
125 kHz  
100 kHz  
89.3 kHz  
78.1 kHz  
179 kHz  
125 kHz  
104 kHz  
78.1 kHz  
62.5 kHz  
50.0 kHz  
44.6 kHz  
39.1 kHz  
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
φ/28  
φ/40  
200 kHz  
φ/48  
167 kHz  
φ/64  
125 kHz  
φ/80  
100 kHz  
φ/100  
φ/112  
φ/128  
φ/56  
80.0 kHz  
71.4 kHz  
62.5 kHz  
143 kHz  
1
φ/80  
100 kHz  
φ/96  
83.3 kHz  
62.5 kHz  
50.0 kHz  
40.0 kHz  
35.7 kHz  
31.3 kHz  
φ/128  
φ/160  
φ/200  
φ/224  
φ/256  
Rev. 3.00 Sep. 14, 2006 Page 244 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
15.3.2 I2C Bus Control Register 2 (ICCR2)  
ICCR2 issues start/stop conditions, manipulates the SDA pin, monitors the SCL pin, and controls  
reset in the control part of the I2C bus interface 2.  
Bit Bit Name Initial Value R/W Description  
7
BBSY  
0
R/W Bus Busy  
This bit enables to confirm whether the I2C bus is occupied or  
released and to issue start/stop conditions in master mode.  
With the clocked synchronous serial format, this bit has no  
meaning. With the I2C bus format, this bit is set to 1 when the  
SDA level changes from high to low under the condition of  
SCL = high, assuming that the start condition has been  
issued. This bit is cleared to 0 when the SDA level changes  
from low to high under the condition of SCL = high, assuming  
that the stop condition has been issued. Write 1 to BBSY and  
0 to SCP to issue a start condition. Follow this procedure  
when also re-transmitting a start condition. Write 0 in BBSY  
and 0 in SCP to issue a stop condition. To issue start/stop  
conditions, use the MOV instruction.  
6
5
SCP  
1
1
R/W Start/Stop Issue Condition Disable  
The SCP bit controls the issue of start/stop conditions in  
master mode.  
To issue a start condition, write 1 in BBSY and 0 in SCP. A  
retransmit start condition is issued in the same way. To issue  
a stop condition, write 0 in BBSY and 0 in SCP. This bit is  
always read as 1. If 1 is written, the data is not stored.  
SDAO  
R/W SDA Output Value Control  
This bit is used with SDAOP when modifying output level of  
SDA. This bit should not be manipulated during transfer.  
0: When reading, SDA pin outputs low.  
When writing, SDA pin is changed to output low.  
1: When reading, SDA pin outputs high.  
When writing, SDA pin is changed to output Hi-Z (outputs  
high by external pull-up resistance).  
4
SDAOP  
1
R/W SDAO Write Protect  
This bit controls change of output level of the SDA pin by  
modifying the SDAO bit. To change the output level, clear  
SDAO and SDAOP to 0 or set SDAO to 1 and clear SDAOP  
to 0 by the MOV instruction. This bit is always read as 1.  
Rev. 3.00 Sep. 14, 2006 Page 245 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
Bit Bit Name Initial Value R/W Description  
3
SCLO  
1
R
This bit monitors SCL output level. When SCLO is 1, SCL pin  
outputs high. When SCLO is 0, SCL pin outputs low.  
2
1
Reserved  
This bit is always read as 1.  
1
0
IICRST  
0
1
R/W IIC Control Part Reset  
This bit resets the control part except for I2C registers. If this  
bit is set to 1 when hang-up occurs because of  
communication failure during I2C operation, I2C control part  
can be reset without setting ports and initializing registers.  
Reserved  
This bit is always read as 1.  
15.3.3 I2C Bus Mode Register (ICMR)  
ICMR selects whether the MSB or LSB is transferred first, performs master mode wait control,  
and selects the transfer bit count.  
Bit Bit Name Initial Value R/W Description  
7
MLS  
0
R/W MSB-First/LSB-First Select  
0: MSB-first  
1: LSB-first  
Set this bit to 0 when the I2C bus format is used.  
6
WAIT  
0
R/W Wait Insertion Bit  
In master mode with the I2C bus format, this bit selects  
whether to insert a wait after data transfer except the  
acknowledge bit. When WAIT is set to 1, after the fall of the  
clock for the final data bit, low period is extended for two  
transfer clocks. If WAIT is cleared to 0, data and  
acknowledge bits are transferred consecutively with no wait  
inserted.  
The setting of this bit is invalid in slave mode with the I2C bus  
format or with the clocked synchronous serial format.  
5, 4   
All 1  
Reserved  
These bits are always read as 1.  
Rev. 3.00 Sep. 14, 2006 Page 246 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
Bit Bit Name Initial Value R/W Description  
3
BCWP  
1
R/W BC Write Protect  
This bit controls the BC2 to BC0 modifications. When  
modifying BC2 to BC0, this bit should be cleared to 0 and  
use the MOV instruction. In clock synchronous serial mode,  
BC should not be modified.  
0: When writing, values of BC2 to BC0 are set.  
1: When reading, 1 is always read.  
When writing, settings of BC2 to BC0 are invalid.  
R/W Bit Counter 2 to 0  
2
1
0
BC2  
BC1  
BC0  
0
0
0
R/W These bits specify the number of bits to be transferred next.  
When read, the remaining number of transfer bits is  
R/W  
indicated. With the I2C bus format, the data is transferred with  
one addition acknowledge bit. Bit BC2 to BC0 settings should  
be made during an interval between transfer frames. If bits  
BC2 to BC0 are set to a value other than 000, the setting  
should be made while the SCL pin is low. The value returns  
to 000 at the end of a data transfer, including the  
acknowledge bit. With the clock synchronous serial format,  
these bits should not be modified.  
I2C Bus Format  
000: 9 bits  
001: 2 bits  
010: 3 bits  
011: 4 bits  
100: 5 bits  
101: 6 bits  
110: 7 bits  
111: 8 bits  
Clock Synchronous Serial Format  
000: 8 bits  
001: 1 bits  
010: 2 bits  
011: 3 bits  
100: 4 bits  
101: 5 bits  
110: 6 bits  
111: 7 bits  
Rev. 3.00 Sep. 14, 2006 Page 247 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
15.3.4 I2C Bus Interrupt Enable Register (ICIER)  
ICIER enables or disables interrupt sources and acknowledge bits, sets acknowledge bits to be  
transferred, and confirms acknowledge bits to be received.  
Bit Bit Name Initial Value R/W Description  
7
6
TIE  
0
0
R/W Transmit Interrupt Enable  
When the TDRE bit in ICSR is set to 1, this bit enables or  
disables the transmit data empty interrupt (TXI).  
0: Transmit data empty interrupt request (TXI) is disabled.  
1: Transmit data empty interrupt request (TXI) is enabled.  
R/W Transmit End Interrupt Enable  
TEIE  
This bit enables or disables the transmit end interrupt (TEI) at  
the rising of the ninth clock while the TDRE bit in ICSR is 1.  
TEI can be canceled by clearing the TEND bit or the TEIE bit  
to 0.  
0: Transmit end interrupt request (TEI) is disabled.  
1: Transmit end interrupt request (TEI) is enabled.  
R/W Receive Interrupt Enable  
5
RIE  
0
This bit enables or disables the receive data full interrupt  
request (RXI) and the overrun error interrupt request (ERI)  
with the clocked synchronous format, when a receive data is  
transferred from ICDRS to ICDRR and the RDRF bit in ICSR  
is set to 1. RXI can be canceled by clearing the RDRF or RIE  
bit to 0.  
0: Receive data full interrupt request (RXI) and overrun error  
interrupt request (ERI) with the clocked synchronous  
format are disabled.  
1: Receive data full interrupt request (RXI) and overrun error  
interrupt request (ERI) with the clocked synchronous  
format are enabled.  
Rev. 3.00 Sep. 14, 2006 Page 248 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
Bit Bit Name Initial Value R/W Description  
4
NAKIE  
0
R/W NACK Receive Interrupt Enable  
This bit enables or disables the NACK receive interrupt  
request (NAKI) and the overrun error (setting of the OVE bit  
in ICSR) interrupt request (ERI) with the clocked  
synchronous format, when the NACKF and AL bits in ICSR  
are set to 1. NAKI can be canceled by clearing the NACKF,  
OVE, or NAKIE bit to 0.  
0: NACK receive interrupt request (NAKI) is disabled.  
1: NACK receive interrupt request (NAKI) is enabled.  
R/W Stop Condition Detection Interrupt Enable  
3
2
1
STIE  
0
0
0
0: Stop condition detection interrupt request (STPI) is  
disabled.  
1: Stop condition detection interrupt request (STPI) is  
enabled.  
ACKE  
ACKBR  
R/W Acknowledge Bit Judgement Select  
0: The value of the receive acknowledge bit is ignored, and  
continuous transfer is performed.  
1: If the receive acknowledge bit is 1, continuous transfer is  
halted.  
R
Receive Acknowledge  
In transmit mode, this bit stores the acknowledge data that  
are returned by the receive device. This bit cannot be  
modified.  
0: Receive acknowledge = 0  
1: Receive acknowledge = 1  
0
ACKBT  
0
R/W Transmit Acknowledge  
In receive mode, this bit specifies the bit to be sent at the  
acknowledge timing.  
0: 0 is sent at the acknowledge timing.  
1: 1 is sent at the acknowledge timing.  
Rev. 3.00 Sep. 14, 2006 Page 249 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
15.3.5 I2C Bus Status Register (ICSR)  
ICSR performs confirmation of interrupt request flags and status.  
Bit Bit Name Initial Value R/W Description  
7
TDRE  
0
R/W Transmit Data Register Empty  
[Setting conditions]  
When data is transferred from ICDRT to ICDRS and  
ICDRT becomes empty  
When TRS is set  
When a start condition (including re-transfer) has been  
issued  
When transmit mode is entered from receive mode in  
slave mode  
[Clearing conditions]  
When 0 is written in TDRE after reading TDRE = 1  
When data is written to ICDRT with an instruction  
6
TEND  
0
R/W Transmit End  
[Setting conditions]  
When the ninth clock of SCL rises with the I2C bus format  
while the TDRE flag is 1  
When the final bit of transmit frame is sent with the clock  
synchronous serial format  
[Clearing conditions]  
When 0 is written in TEND after reading TEND = 1  
When data is written to ICDRT with an instruction  
5
RDRF  
0
R/W Receive Data Register Full  
[Setting condition]  
When a receive data is transferred from ICDRS to ICDRR  
[Clearing conditions]  
When 0 is written in RDRF after reading RDRF = 1  
When ICDRR is read with an instruction  
Rev. 3.00 Sep. 14, 2006 Page 250 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
Bit Bit Name Initial Value R/W Description  
4
NACKF  
0
R/W No Acknowledge Detection Flag  
[Setting condition]  
When no acknowledge is detected from the receive  
device in transmission while the ACKE bit in ICIER is 1  
[Clearing condition]  
When 0 is written in NACKF after reading NACKF = 1  
3
STOP  
0
R/W Stop Condition Detection Flag  
[Setting conditions]  
In master mode, when a stop condition is detected after  
frame transfer  
In slave mode, when a stop condition is detected  
after the general call address or the first byte slave  
address, next to detection of start condition, accords  
with the address set in SAR  
[Clearing condition]  
When 0 is written in STOP after reading STOP = 1  
2
AL/OVE  
0
R/W Arbitration Lost Flag/Overrun Error Flag  
This flag indicates that arbitration was lost in master mode  
with the I2C bus format and that the final bit has been  
received while RDRF = 1 with the clocked synchronous  
format.  
When two or more master devices attempt to seize the bus  
at nearly the same time, if the I2C bus interface detects data  
differing from the data it sent, it sets AL to 1 to indicate that  
the bus has been taken by another master.  
[Setting conditions]  
If the internal SDA and SDA pin disagree at the rise of  
SCL in master transmit mode  
When the SDA pin outputs high in master mode while a  
start condition is detected  
When the final bit is received with the clocked  
synchronous format while RDRF = 1  
[Clearing condition]  
When 0 is written in AL/OVE after reading AL/OVE=1  
Rev. 3.00 Sep. 14, 2006 Page 251 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
Bit Bit Name Initial Value R/W Description  
1
AAS  
0
R/W Slave Address Recognition Flag  
In slave receive mode, this flag is set to 1 if the first frame  
following a start condition matches bits SVA6 to SVA0 in  
SAR.  
[Setting conditions]  
When the slave address is detected in slave receive  
mode  
When the general call address is detected in slave  
receive mode.  
[Clearing condition]  
When 0 is written in AAS after reading AAS=1  
0
ADZ  
0
R/W General Call Address Recognition Flag  
This bit is valid in I2C bus format slave receive mode.  
[Setting condition]  
When the general call address is detected in slave  
receive mode  
[Clearing condition]  
When 0 is written in ADZ after reading ADZ=1  
15.3.6 Slave Address Register (SAR)  
SAR selects the communication format and sets the slave address. When the chip is in slave mode  
with the I2C bus format, if the upper 7 bits of SAR match the upper 7 bits of the first frame  
received after a start condition, the chip operates as the slave device.  
Bit  
Bit Name Initial Value R/W Description  
7 to 1 SVA6 to All 0  
SVA0  
R/W Slave Address 6 to 0  
These bits set a unique address in bits SVA6 to SVA0,  
differing form the addresses of other slave devices  
connected to the I2C bus.  
0
FS  
0
R/W Format Select  
0: I2C bus format is selected.  
1: Clocked synchronous serial format is selected.  
Rev. 3.00 Sep. 14, 2006 Page 252 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
15.3.7 I2C Bus Transmit Data Register (ICDRT)  
ICDRT is an 8-bit readable/writable register that stores the transmit data. When ICDRT detects the  
space in the shift register (ICDRS), it transfers the transmit data which is written in ICDRT to  
ICDRS and starts transferring data. If the next transfer data is written to ICDRT during  
transferring data of ICDRS, continuous transfer is possible. If the MLS bit of ICMR is set to 1 and  
when the data is written to ICDRT, the MSB/LSB inverted data is read. The initial value of  
ICDRT is H'FF.  
15.3.8 I2C Bus Receive Data Register (ICDRR)  
ICDRR is an 8-bit register that stores the receive data. When data of one byte is received, ICDRR  
transfers the receive data from ICDRS to ICDRR and the next data can be received. ICDRR is a  
receive-only register, therefore the CPU cannot write to this register. The initial value of ICDRR  
is H'FF.  
15.3.9 I2C Bus Shift Register (ICDRS)  
ICDRS is a register that is used to transfer/receive data. In transmission, data is transferred from  
ICDRT to ICDRS and the data is sent from the SDA pin. In reception, data is transferred from  
ICDRS to ICDRR after data of one byte is received. This register cannot be read directly from the  
CPU.  
Rev. 3.00 Sep. 14, 2006 Page 253 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
15.4  
Operation  
The I2C bus interface can communicate either in I2C bus mode or clocked synchronous serial mode  
by setting FS in SAR.  
15.4.1 I2C Bus Format  
Figure 15.3 shows the I2C bus formats. Figure 15.4 shows the I2C bus timing. The first frame  
following a start condition always consists of 8 bits.  
(a) I2C bus format (FS = 0)  
S
1
SLA  
7
R/W  
A
1
DATA  
n
A
1
A/A  
P
1
1
1
n: Transfer bit count  
(n = 1 to 8)  
1
m
m: Transfer frame count  
(m 1)  
(b) I2C bus format (Start condition retransmission, FS = 0)  
S
1
SLA  
7
R/W  
A
1
DATA  
n1  
A/A  
S
1
SLA  
7
R/W  
A
1
DATA  
n2  
A/A  
P
1
1
1
1
1
1
m1  
1
m2  
n1 and n2: Transfer bit count (n1 and n2 = 1 to 8)  
m1 and m2: Transfer frame count (m1 and m2 1)  
Figure 15.3 I2C Bus Formats  
SDA  
1-7  
8
9
1-7  
8
9
1-7  
8
9
SCL  
S
SLA  
R/W  
A
DATA  
A
DATA  
A
P
Figure 15.4 I2C Bus Timing  
Rev. 3.00 Sep. 14, 2006 Page 254 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
[Legend]  
S:  
Start condition. The master device drives SDA from high to low while SCL is high.  
SLA: Slave address  
R/W: Indicates the direction of data transfer: from the slave device to the master device when  
R/W is 1, or from the master device to the slave device when R/W is 0.  
A:  
Acknowledge. The receive device drives SDA to low.  
DATA: Transfer data  
P:  
Stop condition. The master device drives SDA from low to high while SCL is high.  
15.4.2 Master Transmit Operation  
In master transmit mode, the master device outputs the transmit clock and transmit data, and the  
slave device returns an acknowledge signal. For master transmit mode operation timing, refer to  
figures 15.5 and 15.6. The transmission procedure and operations in master transmit mode are  
described below.  
1. Set the ICE bit in ICCR1 to 1. Set the MLS and WAIT bits in ICMR and the CKS3 to CKS0  
bits in ICCR1 to 1. (Initial setting)  
2. Read the BBSY flag in ICCR2 to confirm that the bus is free. Set the MST and TRS bits in  
ICCR1 to select master transmit mode. Then, write 1 to BBSY and 0 to SCP using MOV  
instruction. (Start condition issued) This generates the start condition.  
3. After confirming that TDRE in ICSR has been set, write the transmit data (the first byte data  
show the slave address and R/W) to ICDRT. At this time, TDRE is automatically cleared to 0,  
and data is transferred from ICDRT to ICDRS. TDRE is set again.  
4. When transmission of one byte data is completed while TDRE is 1, TEND in ICSR is set to 1  
at the rise of the 9th transmit clock pulse. Read the ACKBR bit in ICIER, and confirm that the  
slave device has been selected. Then, write second byte data to ICDRT. When ACKBR is 1,  
the slave device has not been acknowledged, so issue the stop condition. To issue the stop  
condition, write 0 to BBSY and SCP using MOV instruction. SCL is fixed low until the  
transmit data is prepared or the stop condition is issued.  
5. The transmit data after the second byte is written to ICDRT every time TDRE is set.  
6. Write the number of bytes to be transmitted to ICDRT. Wait until TEND is set (the end of last  
byte data transmission) while TDRE is 1, or wait for NACK (NACKF in ICSR = 1) from the  
receive device while ACKE in ICIER is 1. Then, issue the stop condition to clear TEND or  
NACKF.  
7. When the STOP bit in ICSR is set to 1, the operation returns to the slave receive mode.  
Rev. 3.00 Sep. 14, 2006 Page 255 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
SCL  
(Master output)  
1
2
3
4
5
6
7
8
9
1
2
SDA  
(Master output)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bit 7  
Bit 6  
Slave address  
R/W  
SDA  
(Slave output)  
A
TDRE  
TEND  
ICDRT  
ICDRS  
Address + R/W  
Address + R/W  
Data 1  
Data 1  
Data 2  
User  
processing  
[2] Instruction of start  
condition issuance  
[4] Write data to ICDRT (second byte)  
[5] Write data to ICDRT (third byte)  
[3] Write data to ICDRT (first byte)  
Figure 15.5 Master Transmit Mode Operation Timing (1)  
SCL  
(Master output)  
9
1
2
3
4
5
6
7
8
9
SDA  
(Master output)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SDA  
(Slave output)  
A
A/A  
TDRE  
TEND  
ICDRT  
ICDRS  
Data n  
Data n  
User  
processing  
[6] Issue stop condition. Clear TEND.  
[7] Set slave receive mode  
[5] Write data to ICDRT  
Figure 15.6 Master Transmit Mode Operation Timing (2)  
Rev. 3.00 Sep. 14, 2006 Page 256 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
15.4.3 Master Receive Operation  
In master receive mode, the master device outputs the receive clock, receives data from the slave  
device, and returns an acknowledge signal. For master receive mode operation timing, refer to  
figures 15.7 and 15.8. The reception procedure and operations in master receive mode are shown  
below.  
1. Clear the TEND bit in ICSR to 0, then clear the TRS bit in ICCR1 to 0 to switch from master  
transmit mode to master receive mode. Then, clear the TDRE bit to 0.  
2. When ICDRR is read (dummy data read), reception is started, and the receive clock is output,  
and data received, in synchronization with the internal clock. The master device outputs the  
level specified by ACKBT in ICIER to SDA, at the 9th receive clock pulse.  
3. After the reception of first frame data is completed, the RDRF bit in ICST is set to 1 at the rise  
of 9th receive clock pulse. At this time, the receive data is read by reading ICDRR, and RDRF  
is cleared to 0.  
4. The continuous reception is performed by reading ICDRR every time RDRF is set. If 8th  
receive clock pulse falls after reading ICDRR by the other processing while RDRF is 1, SCL is  
fixed low until ICDRR is read.  
5. If next frame is the last receive data, set the RCVD bit in ICCR1 to 1 before reading ICDRR.  
This enables the issuance of the stop condition after the next reception.  
6. When the RDRF bit is set to 1 at rise of the 9th receive clock pulse, issue the stage condition.  
7. When the STOP bit in ICSR is set to 1, read ICDRR. Then clear the RCVD bit to 0.  
8. The operation returns to the slave receive mode.  
Rev. 3.00 Sep. 14, 2006 Page 257 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
Master transmit mode  
SCL  
Master receive mode  
9
1
2
3
4
5
6
7
8
9
1
(Master output)  
SDA  
(Master output)  
A
SDA  
(Slave output)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bit 7  
A
TDRE  
TEND  
TRS  
RDRF  
ICDRS  
ICDRR  
Data 1  
Data 1  
[3] Read ICDRR  
User  
[2] Read ICDRR (dummy read)  
processing  
[1] Clear TDRE after clearing  
TEND and TRS  
Figure 15.7 Master Receive Mode Operation Timing (1)  
Rev. 3.00 Sep. 14, 2006 Page 258 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
SCL  
(Master output)  
9
1
2
3
4
5
6
7
8
9
SDA  
(Master output)  
A
A/A  
SDA  
(Slave output)  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RDRF  
RCVD  
ICDRS  
ICDRR  
Data n  
Data n-1  
Data n  
Data n-1  
User  
processing  
[7] Read ICDRR,  
and clear RCVD  
[5] Read ICDRR after setting RCVD  
[6] Issue stop  
condition  
[8] Set slave  
receive mode  
Figure 15.8 Master Receive Mode Operation Timing (2)  
15.4.4 Slave Transmit Operation  
In slave transmit mode, the slave device outputs the transmit data, while the master device outputs  
the receive clock and returns an acknowledge signal. For slave transmit mode operation timing,  
refer to figures 15.9 and 15.10.  
The transmission procedure and operations in slave transmit mode are described below.  
1. Set the ICE bit in ICCR1 to 1. Set the MLS and WAIT bits in ICMR and the CKS3 to CKS0  
bits in ICCR1 to 1. (Initial setting) Set the MST and TRS bits in ICCR1 to select slave receive  
mode, and wait until the slave address matches.  
2. When the slave address matches in the first frame following detection of the start condition,  
the slave device outputs the level specified by ACKBT in ICIER to SDA, at the rise of the 9th  
clock pulse. At this time, if the 8th bit data (R/W) is 1, the TRS and ICSR bits in ICCR1 are  
set to 1, and the mode changes to slave transmit mode automatically. The continuous  
transmission is performed by writing transmit data to ICDRT every time TDRE is set.  
3. If TDRE is set after writing last transmit data to ICDRT, wait until TEND in ICSR is set to 1,  
with TDRE = 1. When TEND is set, clear TEND.  
4. Clear TRS for the end processing, and read ICDRR (dummy read). SCL is free.  
5. Clear TDRE.  
Rev. 3.00 Sep. 14, 2006 Page 259 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
Slave transmit mode  
Slave receive mode  
SCL  
(Master output)  
9
1
2
3
4
5
6
7
8
9
1
SDA  
(Master output)  
A
SCL  
(Slave output)  
SDA  
(Slave output)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bit 7  
A
TDRE  
TEND  
TRS  
ICDRT  
ICDRS  
ICDRR  
Data 1  
Data 2  
Data 3  
Data 1  
Data 2  
User  
processing  
[2] Write data to ICDRT (data 1)  
[2] Write data to ICDRT (data 2)  
[2] Write data to ICDRT (data 3)  
Figure 15.9 Slave Transmit Mode Operation Timing (1)  
Rev. 3.00 Sep. 14, 2006 Page 260 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
Slave receive  
mode  
Slave transmit mode  
SCL  
(Master output)  
9
1
2
3
4
5
6
7
8
9
SDA  
(Master output)  
A
A
SCL  
(Slave output)  
SDA  
(Slave output)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TDRE  
TEND  
TRS  
ICDRT  
ICDRS  
ICDRR  
Data n  
User  
processing  
[5] Clear TDRE  
[4] Read ICDRR (dummy read)  
after clearing TRS  
[3] Clear TEND  
Figure 15.10 Slave Transmit Mode Operation Timing (2)  
15.4.5 Slave Receive Operation  
In slave receive mode, the master device outputs the transmit clock and transmit data, and the  
slave device returns an acknowledge signal. For slave receive mode operation timing, refer to  
figures 15.11 and 15.12. The reception procedure and operations in slave receive mode are  
described below.  
1. Set the ICE bit in ICCR1 to 1. Set the MLS and WAIT bits in ICMR and the CKS3 to CKS0  
bits in ICCR1 to 1. (Initial setting) Set the MST and TRS bits in ICCR1 to select slave receive  
mode, and wait until the slave address matches.  
2. When the slave address matches in the first frame following detection of the start condition,  
the slave device outputs the level specified by ACKBT in ICIER to SDA, at the rise of the 9th  
clock pulse. At the same time, RDRF in ICSR is set to read ICDRR (dummy read). (Since the  
read data show the slave address and R/W, it is not used.)  
3. Read ICDRR every time RDRF is set. If 8th receive clock pulse falls while RDRF is 1, SCL is  
fixed low until ICDRR is read. The change of the acknowledge before reading ICDRR, to be  
returned to the master device, is reflected to the next transmit frame.  
Rev. 3.00 Sep. 14, 2006 Page 261 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
4. The last byte data is read by reading ICDRR.  
SCL  
(Master output)  
9
1
2
3
4
5
6
7
8
9
1
SDA  
(Master output)  
Bit 7  
Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bit 7  
SCL  
(Slave output)  
SDA  
(Slave output)  
A
A
RDRF  
ICDRS  
ICDRR  
Data 1  
Data 2  
Data 1  
User  
processing  
[2] Read ICDRR  
[2] Read ICDRR (dummy read)  
Figure 15.11 Slave Receive Mode Operation Timing (1)  
SCL  
(Master output)  
9
1
2
3
4
5
6
7
8
9
SDA  
(Master output)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SCL  
(Slave output)  
SDA  
(Slave output)  
A
A
RDRF  
ICDRS  
ICDRR  
Data 2  
Data 1  
Data 1  
User  
processing  
[3] Set ACKBT  
[4] Read ICDRR  
[3] Read ICDRR  
Figure 15.12 Slave Receive Mode Operation Timing (2)  
Rev. 3.00 Sep. 14, 2006 Page 262 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
15.4.6 Clocked Synchronous Serial Format  
This module can be operated with the clocked synchronous serial format, by setting the FS bit in  
SAR to 1. When the MST bit in ICCR1 is 1, the transfer clock output from SCL is selected. When  
MST is 0, the external clock input is selected.  
(1) Data Transfer Format:  
Figure 15.13 shows the clocked synchronous serial transfer format.  
The transfer data is output from the rise to the fall of the SCL clock, and the data at the rising edge  
of the SCL clock is guaranteed. The MLS bit in ICMR sets the order of data transfer, in either the  
MSB first or LSB first. The output level of SDA can be changed during the transfer wait, by the  
SDAO bit in ICCR2.  
SCL  
Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7  
SDA  
Figure 15.13 Clocked Synchronous Serial Transfer Format  
(2) Transmit Operation:  
In transmit mode, transmit data is output from SDA, in synchronization with the fall of the transfer  
clock. The transfer clock is output when MST in ICCR1 is 1, and is input when MST is 0. For  
transmit mode operation timing, refer to figure 15.14. The transmission procedure and operations  
in transmit mode are described below.  
1. Set the ICE bit in ICCR1 to 1. Set the MST and CKS3 to CKS0 bits in ICCR1 to 1. (Initial  
setting)  
2. Set the TRS bit in ICCR1 to select the transmit mode. Then, TDRE in ICSR is set.  
3. Confirm that TDRE has been set. Then, write the transmit data to ICDRT. The data is  
transferred from ICDRT to ICDRS, and TDRE is set automatically. The continuous  
transmission is performed by writing data to ICDRT every time TDRE is set. When changing  
from transmit mode to receive mode, clear TRS while TDRE is 1.  
Rev. 3.00 Sep. 14, 2006 Page 263 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
1
2
7
8
1
7
8
1
SCL  
SDA  
(Output)  
Bit 6  
Bit 7  
Bit 0  
Bit 6  
Bit 7  
Bit 0  
Bit 0  
Bit 1  
TRS  
TDRE  
ICDRT  
ICDRS  
Data 1  
Data 2  
Data 3  
Data 3  
Data 1  
Data 2  
User  
processing  
[3] Write data  
to ICDRT  
[3] Write data  
to ICDRT  
[3] Write data [3] Write data  
to ICDRT to ICDRT  
[2] Set TRS  
Figure 15.14 Transmit Mode Operation Timing  
(3) Receive Operation:  
In receive mode, data is latched at the rise of the transfer clock. The transfer clock is output when  
MST in ICCR1 is 1, and is input when MST is 0. For receive mode operation timing, refer to  
figure 15.15. The reception procedure and operations in receive mode are described below.  
1. Set the ICE bit in ICCR1 to 1. Set the MST and CKS3 to CKS0 bits in ICCR1 to 1. (Initial  
setting)  
2. When the transfer clock is output, set MST to 1 to start outputting the receive clock.  
3. When the receive operation is completed, data is transferred from ICDRS to ICDRR and  
RDRF in ICSR is set. When MST = 1, the next byte can be received, so the clock is  
continually output. The continuous reception is performed by reading ICDRR every time  
RDRF is set. When the 8th clock is risen while RDRF is 1, the overrun is detected and  
AL/OVE in ICSR is set. At this time, the previous reception data is retained in ICDRR.  
4. To stop receiving when MST = 1, set RCVD in ICCR1 to 1, then read ICDRR. Then, SCL is  
fixed high after receiving the next byte data.  
Rev. 3.00 Sep. 14, 2006 Page 264 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
SCL  
1
2
7
8
1
7
8
1
2
SDA  
(Input)  
Bit 6  
Bit 7  
Bit 0  
Bit 6  
Bit 7  
Bit 0  
Bit 1  
Bit 0  
Bit 1  
MST  
TRS  
RDRF  
Data 2  
Data 3  
Data 2  
Data 1  
ICDRS  
ICDRR  
Data 1  
User  
processing  
[2] Set MST  
(when outputting the clock)  
[3] Read ICDRR  
[3] Read ICDRR  
Figure 15.15 Receive Mode Operation Timing  
15.4.7 Noise Canceler  
The logic levels at the SCL and SDA pins are routed through the noise canceler before being  
latched internally. Figure 15.16 shows a block diagram of the noise canceler.  
The noise canceler consists of two cascaded latches and a match detector. The SCL (or SDA)  
input signal is sampled on the system clock, but is not passed forward to the next circuit unless the  
outputs of both latches agree. If they do not agree, the previous value is held.  
Sampling clock  
C
C
SCL or SDA  
input signal  
Internal  
SCL or SDA  
signal  
D
Q
D
Q
March detector  
Latch  
Latch  
System clock  
period  
Sampling  
clock  
Figure 15.16 Block Diagram of Noise Canceler  
Rev. 3.00 Sep. 14, 2006 Page 265 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
15.4.8 Example of Use  
Flowcharts in respective modes that use the I2C bus interface are shown in figures 15.17 to 15.20.  
Start  
[1] Test the status of the SCL and SDA lines.  
[2] Set master transmit mode.  
Initialize  
Read BBSY in ICCR2  
BBSY=0 ?  
[1]  
No  
[3] Issue the start candition.  
Yes  
Set MST and TRS  
in ICCR1 to 1.  
[4] Set the first byte (slave address + R/W) of transmit data.  
[5] Wait for 1 byte to be transmitted.  
[2]  
[3]  
[4]  
Write 1 to BBSY  
and 0 to SCP.  
[6] Test the acknowledge transferred from the specified slave device.  
[7] Set the second and subsequent bytes (except for the final byte) of transmit data.  
[8] Wait for ICDRT empty.  
Write transmit data  
in ICDRT  
Read TEND in ICSR  
[5]  
[6]  
No  
TEND=1 ?  
Yes  
[9] Set the last byte of transmit data.  
Read ACKBR in ICIER  
[10] Wait for last byte to be transmitted.  
No  
No  
ACKBR=0 ?  
Yes  
[11] Clear the TEND flag.  
Mater receive mode  
Transmit  
mode?  
Yes  
[12] Clear the STOP flag.  
[7]  
[8]  
Write transmit data in ICDRT  
[13] Issue the stop condition.  
Read TDRE in ICSR  
No  
TDRE=1 ?  
[14] Wait for the creation of stop condition.  
[15] Set slave receive mode. Clear TDRE.  
Yes  
No  
Last byte?  
[9]  
Yes  
Write transmit data in ICDRT  
Read TEND in ICSR  
[10]  
No  
TEND=1 ?  
Yes  
[11]  
[12]  
Clear TEND in ICSR  
Clear STOP in ICSR  
Write 0 to BBSY  
and SCP  
[13]  
Read STOP in ICSR  
[14]  
No  
STOP=1 ?  
Yes  
Set MST to 1 and TRS  
to 0 in ICCR1  
[15]  
Clear TDRE in ICSR  
End  
Figure 15.17 Sample Flowchart for Master Transmit Mode  
Rev. 3.00 Sep. 14, 2006 Page 266 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
Mater receive mode  
[1] Clear TEND, select master receive mode, and then clear TDRE.*  
Clear TEND in ICSR  
Clear TRS in ICCR1 to 0  
Clear TDRE in ICSR  
[2] Set acknowledge to the transmit device.*  
[3] Dummy-read ICDDR.*  
[1]  
[4] Wait for 1 byte to be received  
Clear ACKBT in ICIER to 0  
Dummy-read ICDRR  
[2]  
[3]  
[5] Check whether it is the (last receive - 1).  
[6] Read the receive data last.  
Read RDRF in ICSR  
No  
[7] Set acknowledge of the final byte. Disable continuous reception (RCVD = 1).  
[8] Read the (final byte - 1) of receive data.  
[9] Wait for the last byte to be receive.  
[10] Clear the STOP flag.  
[4]  
RDRF=1 ?  
Yes  
Yes  
Last receive  
[5]  
[6]  
- 1?  
No  
Read ICDRR  
[11] Issue the stop condition.  
[12] Wait for the creation of stop condition.  
[13] Read the last byte of receive data.  
[14] Clear RCVD.  
Set ACKBT in ICIER to 1  
Set RCVD in ICCR1 to 1  
[7]  
[8]  
[9]  
Read ICDRR  
[15] Set slave receive mode.  
Read RDRF in ICSR  
No  
RDRF=1 ?  
Yes  
[10]  
[11]  
Clear STOP in ICSR.  
Write 0 to BBSY  
and SCP  
Read STOP in ICSR  
[12]  
No  
STOP=1 ?  
Yes  
[13]  
[14]  
Read ICDRR  
Clear RCVD in ICCR1 to 0  
[15]  
Clear MST in ICCR1 to 0  
End  
Note: Do not activate an interrupt during the execution of steps [1] to [3].  
When one byte is received, steps [2] to [6] are skipped after step [1],  
before jumping to step [7]. The step [8] is dammy-read in ICDRR.  
Supplementary explanation:  
Figure 15.18 Sample Flowchart for Master Receive Mode  
Rev. 3.00 Sep. 14, 2006 Page 267 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
[1] Clear the AAS flag.  
Slave transmit mode  
Clear AAS in ICSR  
[1]  
[2]  
[2] Set transmit data for ICDRT (except for the last data).  
[3] Wait for ICDRT empty.  
Write transmit data  
in ICDRT  
[4] Set the last byte of transmit data.  
[5] Wait for the last byte to be transmitted.  
[6] Clear the TEND flag .  
Read TDRE in ICSR  
[3]  
[4]  
No  
TDRE=1 ?  
[7] Set slave receive mode.  
Yes  
[8] Dummy-read ICDRR to release the SCL line.  
[9] Clear the TDRE flag.  
Last  
byte?  
No  
Yes  
Write transmit data  
in ICDRT  
Read TEND in ICSR  
[5]  
No  
TEND=1 ?  
Yes  
Clear TEND in ICSR  
[6]  
[7]  
Clear TRS in ICCR1 to 0  
Dummy read ICDRR  
Clear TDRE in ICSR  
[8]  
[9]  
End  
Figure 15.19 Sample Flowchart for Slave Transmit Mode  
Rev. 3.00 Sep. 14, 2006 Page 268 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
Slave receive mode  
Clear AAS in ICSR  
[1] Clear the AAS flag.  
[1]  
[2] Set acknowledge to the transmit device.  
[3] Dummy-read ICDRR.  
Clear ACKBT in ICIER to 0  
Dummy-read ICDRR  
[2]  
[3]  
[4] Wait for 1 byte to be received.  
[5] Check whether it is the (last receive - 1).  
[6] Read the receive data.  
Read RDRF in ICSR  
No  
[4]  
RDRF=1 ?  
[7] Set acknowledge of the last byte.  
[8] Read the (last byte - 1) of receive data.  
[9] Wait the last byte to be received.  
[10] Read for the last byte of receive data.  
Yes  
Yes  
Last receive  
- 1?  
[5]  
[6]  
No  
Read ICDRR  
Set ACKBT in ICIER to 1  
[7]  
[8]  
Read ICDRR  
Read RDRF in ICSR  
[9]  
No  
RDRF=1 ?  
Yes  
[10]  
Read ICDRR  
End  
Supplementary explanation: When one byte is received, steps [2] to [6] are skipped after step [1],  
before jumping to step [7]. The step [8] is dammy-read in ICDRR.  
Figure 15.20 Sample Flowchart for Slave Receive Mode  
Rev. 3.00 Sep. 14, 2006 Page 269 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
15.5  
Interrupts  
There are six interrupt requests in this module; transmit data empty, transmit end, receive data full,  
NACK receive, STOP recognition, and arbitration lost/overrun error. Table 15.3 shows the  
contents of each interrupt request.  
Table 15.3 Interrupt Requests  
Clocked  
Synchronous  
Interrupt Request  
Abbreviation Interrupt Condition  
I2C Mode Mode  
Transmit Data Empty TXI  
(TDRE=1) (TIE=1)  
{
{
{
{
{
{
{
{
{
×
×
{
Transmit End  
TEI  
(TEND=1) (TEIE=1)  
Receive Data Full  
STOP Recognition  
NACK Receive  
RXI  
(RDRF=1) (RIE=1)  
STPI  
NAKI  
(STOP=1) (STIE=1)  
{(NACKF=1)+(AL=1)}  
(NAKIE=1)  
Arbitration  
Lost/Overrun Error  
When interrupt conditions described in table 15.3 are 1 and the I bit in CCR is 0, the CPU  
executes an interrupt exception processing. Interrupt sources should be cleared in the exception  
processing. TDRE and TEND are automatically cleared to 0 by writing the transmit data to  
ICDRT. RDRF are automatically cleared to 0 by reading ICDRR. TDRE is set to 1 again at the  
same time when transmit data is written to ICDRT. When TDRE is cleared to 0, then an excessive  
data of one byte may be transmitted.  
Rev. 3.00 Sep. 14, 2006 Page 270 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
15.6  
Bit Synchronous Circuit  
In master mode, this module has a possibility that high level period may be short in the two states  
described below.  
When SCL is driven to low by the slave device  
When the rising speed of SCL is lowered by the load of the SCL line (load capacitance or pull-  
up resistance)  
Therefore, it monitors SCL and communicates by bit with synchronization.  
Figure 15.21 shows the timing of the bit synchronous circuit and table 15.4 shows the time when  
SCL output changes from low to Hi-Z then SCL is monitored.  
SCL monitor  
timing reference  
clock  
VIH  
SCL  
Internal SCL  
Figure 15.21 Timing of Bit Synchronous Circuit  
Table 15.4 Time for Monitoring SCL  
CKS3  
CKS2  
Time for Monitoring SCL  
7.5 tcyc  
0
0
1
0
1
19.5 tcyc  
1
17.5 tcyc  
41.5 tcyc  
Rev. 3.00 Sep. 14, 2006 Page 271 of 408  
REJ09B0105-0300  
Section 15 I2C Bus Interface 2 (IIC2)  
15.7  
Usage Notes  
15.7.1 Issue (Retransmission) of Start/Stop Conditions  
In master mode, when the start/stop conditions are issued (retransmitted) at the specific timing  
under the following condition 1 or 2, such conditions may not be output successfully. To avoid  
this, issue (retransmit) the start/stop conditions after the fall of the ninth clock is confirmed. Check  
the SCLO bit in the I2C control register 2 (IICR2) to confirm the fall of the ninth clock.  
1. When the rising of SCL falls behind the time specified in section 15.6, Bit Synchronous  
Circuit, by the load of the SCL bus (load capacitance or pull-up resistance)  
2. When the bit synchronous circuit is activated by extending the low period of eighth and ninth  
clocks, that is driven by the slave device  
15.7.2 WAIT Setting in I2C Bus Mode Register (ICMR)  
If the WAIT bit is set to 1, and the SCL signal is driven low for two or more transfer clocks by the  
slave device at the eighth and ninth clocks, the high period of ninth clock may be shortened. To  
avoid this, set the WAIT bit in ICMR to 0.  
Rev. 3.00 Sep. 14, 2006 Page 272 of 408  
REJ09B0105-0300  
Section 16 A/D Converter  
Section 16 A/D Converter  
This LSI includes a successive approximation type 10-bit A/D converter that allows up to four  
analog input channels to be selected. The block diagram of the A/D converter is shown in figure  
16.1.  
16.1  
Features  
10-bit resolution  
Four input channels  
Conversion time: At least 7 µs per channel (at 10 MHz operation)  
Two operating modes  
Single mode: Single-channel A/D conversion  
Scan mode: Continuous A/D conversion on 1 to 4 channels  
Four data registers  
Conversion results are held in a 16-bit data register for each channel  
Sample and hold function  
Two conversion start methods  
Software  
External trigger signal  
Interrupt request  
An A/D conversion end interrupt request (ADI) can be generated  
ADCMS32A_000020020200  
Rev. 3.00 Sep. 14, 2006 Page 273 of 408  
REJ09B0105-0300  
Section 16 A/D Converter  
Internal data bus  
Module data bus  
AVCC  
A
D
D
R
A
A
D
D
R
B
A
D
D
R
C
A
D
D
R
D
A
D
C
S
R
A
D
C
R
10-bit D/A  
+
φ
φ
/4  
/8  
AN0  
AN1  
AN2  
AN3  
Control circuit  
Comparator  
Sample-and-  
hold circuit  
ADI  
interrupt request  
ADTRG  
[Legend]  
ADCR: A/D control register  
ADCSR: A/D control/status register  
ADDRA: A/D data register A  
ADDRB: A/D data register B  
ADDRC: A/D data register C  
ADDRD: A/D data register D  
Figure 16.1 Block Diagram of A/D Converter  
Rev. 3.00 Sep. 14, 2006 Page 274 of 408  
REJ09B0105-0300  
Section 16 A/D Converter  
16.2  
Input/Output Pins  
Table 16.1 summarizes the input pins used by the A/D converter.  
Table 16.1 Pin Configuration  
Pin Name  
Symbol  
AVCC  
I/O  
Function  
Analog power supply pin  
Analog input pin 0  
Analog input pin 1  
Analog input pin 2  
Analog input pin 3  
A/D external trigger input pin  
Input  
Input  
Input  
Input  
Input  
Input  
Analog block power supply pin  
Analog input pins  
AN0  
AN1  
AN2  
AN3  
ADTRG  
External trigger input pin for starting A/D  
conversion  
16.3  
Register Description  
The A/D converter has the following registers.  
A/D data register A (ADDRA)  
A/D data register B (ADDRB)  
A/D data register C (ADDRC)  
A/D data register D (ADDRD)  
A/D control/status register (ADCSR)  
A/D control register (ADCR)  
16.3.1 A/D Data Registers A to D (ADDRA to ADDRD)  
There are four 16-bit read-only ADDR registers; ADDRA to ADDRD, used to store the results of  
A/D conversion. The ADDR registers, which store a conversion result for each channel, are shown  
in table 16.2.  
The converted 10-bit data is stored in bits 6 to 15. The lower 6 bits are always read as 0.  
The data bus between the CPU and the A/D converter is 8 bits wide. The upper byte can be read  
directly from the CPU, however the lower byte should be read via a temporary register. The  
temporary register contents are transferred from the ADDR when the upper byte data is read.  
Rev. 3.00 Sep. 14, 2006 Page 275 of 408  
REJ09B0105-0300  
Section 16 A/D Converter  
Therefore, byte access to ADDR should be done by reading the upper byte first then the lower  
one. ADDR is initialized to H'0000.  
Table 16.2 Analog Input Channels and Corresponding ADDR Registers  
Analog Input Channel  
A/D Data Register to Be Stored Results of A/D Conversion  
AN0  
AN1  
AN2  
AN3  
ADDRA  
ADDRB  
ADDRC  
ADDRD  
16.3.2 A/D Control/Status Register (ADCSR)  
ADCSR consists of the control bits and conversion end status bits of the A/D converter.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
ADF  
0
R/W  
A/D End Flag  
[Setting conditions]  
When A/D conversion ends in single mode  
When A/D conversion ends on all the channels  
selected in scan mode  
[Clearing condition]  
When 0 is written after reading ADF = 1  
6
5
ADIE  
0
0
R/W  
R/W  
A/D Interrupt Enable  
A/D conversion end interrupt (ADI) request enabled by  
ADF when 1 is set  
ADST  
A/D Start  
Setting this bit to 1 starts A/D conversion. In single mode,  
this bit is cleared to 0 automatically when conversion on  
the specified channel is complete. In scan mode,  
conversion continues sequentially on the specified  
channels until this bit is cleared to 0 by software, a reset,  
or a transition to standby mode.  
Rev. 3.00 Sep. 14, 2006 Page 276 of 408  
REJ09B0105-0300  
Section 16 A/D Converter  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
4
SCAN  
0
R/W  
Scan Mode  
Selects single mode or scan mode as the A/D conversion  
operating mode.  
0: Single mode  
1: Scan mode  
3
CKS  
0
R/W  
Clock Select  
Selects the A/D conversions time  
0: Conversion time = 134 states (max.)  
1: Conversion time = 70 states (max.)  
Clear the ADST bit to 0 before switching the conversion  
time.  
2
1
0
CH2  
CH1  
CH0  
0
0
0
R/W  
R/W  
R/W  
Channel Select 0 to 2  
Select analog input channels.  
When SCAN = 0  
000: AN0  
When SCAN = 1  
000: AN0  
001: AN1  
001: AN0 to AN1  
010: AN0 to AN2  
011: AN0 to AN3  
010: AN2  
011: AN3  
Note: When executing the A/D conversion through AN3  
or AN2, do not set the VDDII bit in LVDCR to 0. If 0  
is set, the A/D conversion accuracy is not  
guaranteed.  
Rev. 3.00 Sep. 14, 2006 Page 277 of 408  
REJ09B0105-0300  
Section 16 A/D Converter  
16.3.3 A/D Control Register (ADCR)  
ADCR enables A/D conversion started by an external trigger signal.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
TRGE  
0
R/W  
Trigger Enable  
A/D conversion is started at the falling edge and the rising  
edge of the external trigger signal (ADTRG) when this bit  
is set to 1.  
The selection between the falling edge and rising edge of  
the external trigger pin (ADTRG) conforms to the WPEG5  
bit in the interrupt edge select register 2 (IEGR2)  
6 to 4  
3, 2  
All 1  
All 0  
Reserved  
These bits are always read as 1.  
Reserved  
R/W  
Although these bits are readable/writable, they should not  
be set to 1.  
1
0
1
0
R/W  
R/W  
Reserved  
This bit is always read as 1.  
Reserved  
Although this bit is readable/writable, it should not be set  
to 1.  
Rev. 3.00 Sep. 14, 2006 Page 278 of 408  
REJ09B0105-0300  
Section 16 A/D Converter  
16.4  
Operation  
The A/D converter operates by successive approximation with 10-bit resolution. It has two  
operating modes; single mode and scan mode. When changing the operating mode or analog input  
channel, in order to prevent incorrect operation, first clear the bit ADST to 0 in ADCSR. The  
ADST bit can be set at the same time as the operating mode or analog input channel is changed.  
16.4.1 Single Mode  
In single mode, A/D conversion is performed once for the analog input on the specified single  
channel as follows:  
1. A/D conversion is started from the first channel when the ADST bit in ADCSR is set to 1,  
according to software or external trigger input.  
2. When A/D conversion is completed, the result is transferred to the corresponding A/D data  
register to the channel.  
3. On completion of conversion, the ADF bit in ADCSR is set to 1. If the ADIE bit is set to 1 at  
this time, an ADI interrupt request is generated.  
4. The ADST bit remains set to 1 during A/D conversion. When A/D conversion ends, the  
ADST bit is automatically cleared to 0 and the A/D converter enters the wait state.  
16.4.2 Scan Mode  
In scan mode, A/D conversion is performed sequentially for the analog input on the specified  
channels (four channels maximum) as follows:  
1. When the ADST bit is set to 1 by software, or external trigger input, A/D conversion starts on  
the first channel in the group.  
2. When A/D conversion for each channel is completed, the result is sequentially transferred to  
the A/D data register corresponding to each channel.  
3. When conversion of all the selected channels is completed, the ADF flag in ADCSR is set to 1.  
If the ADIE bit is set to 1 at this time, an ADI interrupt is requested. Conversion of the first  
channel in the group starts again.  
4. The ADST bit is not automatically cleared to 0. Steps [2] to [3] are repeated as long as the  
ADST bit remains set to 1. When the ADST bit is cleared to 0, A/D conversion stops.  
Rev. 3.00 Sep. 14, 2006 Page 279 of 408  
REJ09B0105-0300  
Section 16 A/D Converter  
16.4.3 Input Sampling and A/D Conversion Time  
The A/D converter has a built-in sample-and-hold circuit. The A/D converter samples the analog  
input when the A/D conversion start delay time (tD) has passed after the ADST bit is set to 1, then  
starts conversion. Figure 16.2 shows the A/D conversion timing. Table 16.3 shows the A/D  
conversion time.  
As indicated in figure 16.2, the A/D conversion time includes tD and the input sampling time. The  
length of tD varies depending on the timing of the write access to ADCSR. The total conversion  
time therefore varies within the ranges indicated in table 16.3.  
In scan mode, the values given in table 16.3 apply to the first conversion time. In the second and  
subsequent conversions, the conversion time is 128 states (fixed) when CKS = 0 and 66 states  
(fixed) when CKS = 1.  
(1)  
φ
Address  
(2)  
Write signal  
Input sampling  
timing  
ADF  
tD  
tSPL  
tCONV  
[Legend]  
(1):  
(2):  
tD:  
ADCSR write cycle  
ADCSR address  
A/D conversion start delay  
Input sampling time  
tSPL  
:
tCONV  
:
A/D conversion time  
Figure 16.2 A/D Conversion Timing  
Rev. 3.00 Sep. 14, 2006 Page 280 of 408  
REJ09B0105-0300  
Section 16 A/D Converter  
Table 16.3 A/D Conversion Time (Single Mode)  
CKS = 0  
CKS = 1  
Item  
Symbol  
Min.  
6
Typ.  
Max.  
9
Min.  
4
Typ.  
Max.  
5
A/D conversion start delay tD  
Input sampling time  
A/D conversion time  
tSPL  
tCONV  
31  
15  
131  
134  
69  
70  
Note: All values represent the number of states.  
16.4.4 External Trigger Input Timing  
A/D conversion can also be started by an external trigger input. When the TRGE bit is set to 1 in  
ADCR, external trigger input is enabled at the ADTRG pin. A falling edge at the ADTRG input  
pin sets the ADST bit to 1 in ADCSR, starting A/D conversion. Other operations, in both single  
and scan modes, are the same as when the bit ADST has been set to 1 by software. Figure 16.3  
shows the timing.  
φ
ADTRG  
Internal trigger signal  
ADST  
A/D conversion  
Figure 16.3 External Trigger Input Timing  
Rev. 3.00 Sep. 14, 2006 Page 281 of 408  
REJ09B0105-0300  
Section 16 A/D Converter  
16.5  
A/D Conversion Accuracy Definitions  
This LSI's A/D conversion accuracy definitions are given below.  
Resolution  
The number of A/D converter digital output codes  
Quantization error  
The deviation inherent in the A/D converter, given by 1/2 LSB (see figure 16.4).  
Offset error  
The deviation of the analog input voltage value from the ideal A/D conversion characteristic  
when the digital output changes from the minimum voltage value 0000000000 to 0000000001  
(see figure 16.5).  
Full-scale error  
The deviation of the analog input voltage value from the ideal A/D conversion characteristic  
when the digital output changes from 1111111110 to 1111111111 (see figure 16.5).  
Nonlinearity error  
The error with respect to the ideal A/D conversion characteristics between zero voltage and  
full-scale voltage. Does not include offset error, full-scale error, or quantization error.  
Absolute accuracy  
The deviation between the digital value and the analog input value. Includes offset error, full-  
scale error, quantization error, and nonlinearity error.  
Rev. 3.00 Sep. 14, 2006 Page 282 of 408  
REJ09B0105-0300  
Section 16 A/D Converter  
Digital output  
Ideal A/D conversion  
characteristic  
111  
110  
101  
100  
011  
010  
001  
Quantization error  
000  
1
2
8
3
8
4
8
5
8
6
8
7
8
FS  
8
Analog  
input voltage  
Figure 16.4 A/D Conversion Accuracy Definitions (1)  
Full-scale error  
Digital output  
Ideal A/D conversion  
characteristic  
Nonlinearity  
error  
Actual A/D conversion  
characteristic  
FS  
Analog  
input voltage  
Offset error  
Figure 16.5 A/D Conversion Accuracy Definitions (2)  
Rev. 3.00 Sep. 14, 2006 Page 283 of 408  
REJ09B0105-0300  
Section 16 A/D Converter  
16.6  
Usage Notes  
16.6.1 Permissible Signal Source Impedance  
This LSI's analog input is designed such that conversion accuracy is guaranteed for an input signal  
for which the signal source impedance is 5 kor less. This specification is provided to enable the  
A/D converter's sample-and-hold circuit input capacitance to be charged within the sampling time;  
if the sensor output impedance exceeds 5 k, charging may be insufficient and it may not be  
possible to guarantee A/D conversion accuracy. However, for A/D conversion in single mode with  
a large capacitance provided externally, the input load will essentially comprise only the internal  
input resistance of 10 k, and the signal source impedance is ignored. However, as a low-pass  
filter effect is obtained in this case, it may not be possible to follow an analog signal with a large  
differential coefficient (e.g., 5 mV/µs or greater) (see figure 16.6). When converting a high-speed  
analog signal or converting in scan mode, a low-impedance buffer should be inserted.  
16.6.2 Influences on Absolute Accuracy  
Adding capacitance results in coupling with GND, and therefore noise in GND may adversely  
affect absolute accuracy. Be sure to make the connection to an electrically stable GND.  
Care is also required to ensure that filter circuits do not interfere with digital signals or act as  
antennas on the mounting board.  
This LSI  
A/D converter  
Sensor output  
impedance  
equivalent circuit  
10 kΩ  
to 5 kΩ  
Sensor input  
Cin  
15 pF  
=
Low-pass  
filter  
20 pF  
C to 0.1 µF  
Figure 16.6 Analog Input Circuit Example  
Rev. 3.00 Sep. 14, 2006 Page 284 of 408  
REJ09B0105-0300  
Section 17 Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuits  
Section 17 Band-Gap Circuit, Power-On Reset, and  
Low-Voltage Detection Circuits  
This LSI can include a band-gap circuit (BGR, band-gap regulator), a power-on reset circuit and  
low-voltage detection circuit.  
BGR supplies a reference voltage to the on-chip oscillator and low-voltage detection circuit.  
Figure 17.1 shows the block diagram of how BGR is allocated.  
The low-voltage detection (LVD) circuit consists of two circuits: LVDI (interrupt by low voltage  
detection) and LVDR (reset by low voltage detection) circuits.  
This circuit is used to prevent abnormal operation (program runaway) from occurring due to the  
power supply voltage fall and to recreate the state before the power supply voltage fall when the  
power supply voltage rises again.  
Even if the power supply voltage falls, the unstable state when the power supply voltage falls  
below the guaranteed operating voltage can be removed by entering standby mode when  
exceeding the guaranteed operating voltage and during normal operation. Thus, system stability  
can be improved. If the power supply voltage falls more, the reset state is automatically entered. If  
the power supply voltage rises again, the reset state is held for a specified period, then active mode  
is automatically entered.  
Figure 17.2 is a block diagram of the power-on reset circuit and the low-voltage detection circuit.  
PSCKT00A_000020020200  
Rev. 3.00 Sep. 14, 2006 Page 285 of 408  
REJ09B0105-0300  
Section 17 Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuits  
17.1  
Features  
BGR circuit  
Supplies stable reference voltage covering the entire operating voltage range and the operating  
temperature range.  
Reduces power consumption when BGR is disabled by setting registers.  
Power-on reset circuit  
Uses an external capacitor to generate an internal reset signal when power is first supplied.  
Low-voltage detection circuit  
LVDR: Monitors the power-supply voltage, and generates an internal reset signal when the  
voltage falls below a given value.  
LVDI: Monitors the power-supply voltage, and generates an interrupt when the voltage falls  
below or rises above respective given values.  
Two detection levels for reset generation voltage are available: when only the LVDR circuit is  
used, or when the LVDI and LVDR circuits are both used.  
VCLSEL  
VCL  
Vcc  
Step-down circuit  
BGR  
On-chip  
oscillator  
RCSTP  
LVDE  
VBGR  
BGRE  
LVD (low-voltage  
detection circuit)  
[Legend]  
Vcc:  
Power supply  
BGRE:  
VCL:  
VBGR:  
BGR circuit enable signal  
Internal power supply generated from Vcc by the step-down circuit  
Reference voltage from BGR  
VCLSEL: Select signal for the source of the on-chip oscillator power supply  
RCSTP:  
LVDE:  
On-chip oscillator stop signal  
LVD enable signal  
Figure 17.1 Block Diagram around BGR  
Rev. 3.00 Sep. 14, 2006 Page 286 of 408  
REJ09B0105-0300  
Section 17 Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuits  
φ
OVF  
CK  
R
PSS  
R
S
Internal  
reset signal  
RES  
Noise filter  
circuit  
Q
C
RES  
Power-on reset circuit  
Noise filter  
circuit  
External  
power  
supply  
LVDCR  
Vreset  
VintU  
VintD  
LVDRES  
Ladder  
network  
Vcc  
ExtD  
ExtU  
LVDINT  
Interrupt  
control  
circuit  
LVDSR  
Interrupt request  
VDDII  
VBGR  
[Legend]  
PSS:  
Prescaler S  
LVDCR:  
LVDSR:  
VBGR:  
ExtD:  
Low-voltage-detection control register  
Low-voltage-detection status register  
Reference voltage from BGR  
Compared voltage for falling external input voltage  
Compared voltage for rising external input voltage  
Bit 5 in LVDCR  
ExtU:  
VDDII:  
Figure 17.2 Block Diagram of Power-On Reset Circuit and Low-Voltage Detection Circuit  
Rev. 3.00 Sep. 14, 2006 Page 287 of 408  
REJ09B0105-0300  
Section 17 Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuits  
17.2  
Register Descriptions  
The low-voltage detection circuit has the following registers.  
Low-voltage-detection control register (LVDCR)  
Low-voltage-detection status register (LVDSR)  
17.2.1 Low-Voltage-Detection Control Register (LVDCR)  
LVDCR enables or disables the low-voltage detection circuit and BGR circuit, selects the  
compared voltage of the LVDI circuit, sets the detection levels for the LVDR circuit, enables or  
disables the LVDR circuit, and enables or disables generation of an interrupt when the power-  
supply voltage rises above or falls below the respective levels.  
Table 17.1 shows the relationship between the LVDCR settings and functions to be selected.  
LVDCR should be set according to table 17.1.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7
LVDE  
1*  
R/W  
LVD Enable  
0: Low-voltage detection circuit is not used (standby  
mode)  
1: Low-voltage detection circuit is used  
BGR Enable  
6
5
4
BGRE  
VDDII  
1*  
1*  
1
R/W  
R/W  
0: BGR circuit is not used (standby mode)  
1: BGR circuit is used  
LVDR External Compared Voltage Input Inhibit  
0: Use external voltage as LVDI compared voltage  
1: Use internal voltage as LVDI compared voltage  
Reserved  
This bit is always read as 1 and cannot be modified.  
Rev. 3.00 Sep. 14, 2006 Page 288 of 408  
REJ09B0105-0300  
Section 17 Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuits  
Initial  
Bit Name Value  
Bit  
R/W  
Description  
3
LVDSEL  
0*  
R/W  
LVDR Detection Level Select  
0: Reset detection voltage is 2.3 V (Typ.)  
1: Reset detection voltage is 3.6 V (Typ.)  
When the falling or rising voltage detection interrupt is  
used, the reset detection voltage of 2.3 V (Typ.) should  
be used. When only a reset detection interrupt is used,  
reset detection voltage of 3.6 V (Typ.) should be used.  
2
LVDRE  
LVDDE  
LVDUE  
1*  
0
R/W  
R/W  
R/W  
LVDR Enable  
0: Disables an LVDR  
1: Enables an LVDR  
1
Voltage-Fall-Interrupt Enable  
0: Interrupt on the power-supply voltage falling disabled  
1: Interrupt on the power-supply voltage falling enabled  
Voltage-Rise-Interrupt Enable  
0
0
0: Interrupt on the power-supply voltage rising disabled  
1: Interrupt on the power-supply voltage rising enabled  
Note:  
*
Not initialized by an LVDR but initialized by a power-on reset or a watchdog timer reset.  
Table 17.1 LVDCR Settings and Select Functions  
LVDCR Settings  
Select Functions  
Low-  
Low-  
Voltage-  
Detection  
Fall  
Voltage-  
Detection  
Rise  
Power-On  
LVDE BGRE VDDII LVDSEL LVDRE LVDDE LVDUE Reset  
LVDR  
Interrupt  
Interrupt  
1
*
2
1
1
1
1
2
*
2
*
2
2
0
1
1
1
1
*
*
*
*
*
*
*
1
1
1
1
1
0
0
0
1
0
0
1
0
1
1
1
0
0
1
1
Notes: 1. Set these bits if necessary.  
2. Settings are ignored.  
Rev. 3.00 Sep. 14, 2006 Page 289 of 408  
REJ09B0105-0300  
Section 17 Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuits  
17.2.2 Low-Voltage-Detection Status Register (LVDSR)  
LVDSR indicates whether the power-supply voltage falls below or rises above the respective  
given values.  
Initial  
Bit  
Bit Name Value  
R/W  
Description  
7 to 2  
All 1  
Reserved  
These bits are always read as 1 and cannot be modified.  
LVD Power-Supply Voltage Fall Flag  
[Setting condition]  
1
0
LVDDF  
0*  
R/W  
R/W  
When the power-supply voltage falls below Vint (D)  
(Typ. = 3.7 V)  
[Clearing condition]  
When writing 0 to this bit after reading it as 1  
LVDUF  
0*  
LVD Power-Supply Voltage Rise Flag  
[Setting condition]  
When the power supply voltage falls below Vint (D)  
while the LVDUE bit in LVDCR is set to 1 and then  
rises above Vint (U) (Typ. = 4.0 V) before falling  
below Vreset1 (Typ. = 2.3 V)  
[Clearing condition]  
When writing 0 to this bit after reading it as 1  
Note:  
*
Initialized by an LVDR.  
Rev. 3.00 Sep. 14, 2006 Page 290 of 408  
REJ09B0105-0300  
Section 17 Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuits  
17.3  
Operations  
17.3.1 Power-On Reset Circuit  
Figure 17.3 shows the timing of the operation of the power-on reset circuit. As the power-supply  
voltage rises, the capacitor which is externally connected to the RES pin is gradually charged via  
the internal pull-up resistor (Typ. 150 k). While the RES signal is driven low, the prescaler S and  
the entire chip retains the reset state. When the level on the RES signal reaches the specified value,  
the prescaler S is released from its reset state and it starts counting. The OVF signal is generated to  
release the internal reset signal after the prescaler S has counted 131,072 cycles of the φ clock. The  
noise filter circuit which removes noise with less than 400 ns (Typ.) is included to prevent the  
incorrect operation of this LSI caused by noise on the RES signal.  
To achieve stable operation of this LSI, the power supply needs to rise to its full level and settles  
within the specified time. The maximum time required for the power supply to rise and settle  
(tPWON) is determined by the oscillation frequency (fOSC) and capacitance which is connected to RES  
pin (CRES). Where tPWON is assumed to be the time required to reach 90 % of the full level of the  
power supply, the power supply circuit should be designed to satisfy the following formula.  
tPWON (ms) 90 × CRES (µF) + 162/fOSC (MHz)  
(tPWON 3000 ms, CRES 0.22 µF, and fOSC = 10 in 2-MHz to 10-MHz operation)  
Note that the power supply voltage (Vcc) must fall below Vpor = 100 mV to remove charge on the  
RES pin. After that, it can be risen. To remove charge on the RES pin, it is recommended that the  
diode should be placed to Vcc. If the power supply voltage (Vcc) rises from the point above Vpor,  
a power-on reset may not occur.  
Rev. 3.00 Sep. 14, 2006 Page 291 of 408  
REJ09B0105-0300  
Section 17 Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuits  
tPWON  
Vcc  
Vpor  
Vss  
Vss  
RES  
PSS-reset  
signal  
OVF  
Internal reset  
signal  
131,072 cycles  
PSS counter starts Reset released  
Figure 17.3 Operational Timing of Power-On Reset Circuit  
17.3.2 Low-Voltage Detection Circuit  
(1) LVDR (Reset by Low Voltage Detection) Circuit  
Figure 17.4 shows the timing of the operation of the LVDR circuit. The LVDR circuit is enabled  
after a power-on reset is released. To cancel the LVDR circuit, first the LVDRE bit in LVDCR  
should be cleared to 0 and then the LVDE bit in LVDCR and, if necessary, the BGRE bit should  
be cleared to 0. The LVDE and the BGRE bits must not be cleared to 0 simultaneously with the  
LVDRE bit because incorrect operation may occur. To restart the LVDR circuit, set the LVDE bit  
and the BGRE bit to 1, wait for 50 µs (tLVDON) given by a software timer until the reference voltage  
and the low-voltage-detection power supply have settled, then set the LVDRE bit to 1. After that,  
the output settings of ports must be made.  
When the power-supply voltage falls below the Vreset voltage (2.3 V or 3.6 V (Typ.)), the LVDR  
circuit clears the LVDRES signal to 0, and resets prescaler S. The low-voltage detection reset state  
remains in place until a power-on reset is generated. When the power-supply voltage rises above  
the Vreset voltage again, prescaler S starts counting. It counts 131,072 clock (φ) cycles, and then  
releases the internal reset signal. In this case, the LVDE, BGRE, VDDII, LVDSEL, and LVDRE  
bits in LVDCR are not initialized.  
Note that if the power supply voltage (Vcc) falls below VLVDRmin = 1.0 V and then rises from that  
point, the low-voltage detection reset may not occur.  
If the power supply voltage (Vcc) falls below Vpor = 100 mV, a power-on reset occurs.  
Rev. 3.00 Sep. 14, 2006 Page 292 of 408  
REJ09B0105-0300  
Section 17 Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuits  
VCC  
Vreset  
VSS  
VLVDRmin  
LVDRES  
PSS-reset  
signal  
OVF  
Internal reset  
signal  
131,072 cycles  
PSS counter starts  
Reset released  
Figure 17.4 Operating Timing of LVDR Circuit  
(2) Low Voltage Detection Interrupt (LVDI) Circuit  
(When Internally Generated Voltage is used for Detection)  
Figure 17.5 shows the timing of the operation of the LVDI circuit.  
The LVDI circuit is enabled after a power-on reset, however, the interrupt request is disabled. To  
enable the LVDI, the LVDDF bit and LVDUF bit in LVDSR must be cleared to 0 and then the  
LVDDE bit or LVDUE bit in LVDCR must be set to 1. After that, the output settings of ports  
must be made.  
To cancel the LVDI, follow the procedures written in section 17.3.2 (4), Operating Procedures for  
Enabling/Disabling LVDR and LVDI Circuits.  
To restart the LVDI circuit after standby mode, set the LVDE bit to 1, write 1 to VDDII (if  
necessary), and wait for 50 µs (tLVDON) given by a software timer until the reference voltage and the  
low-voltage detection power supply have settled. Then, clear the LVDDF and LVDUF bits to 0  
and set the LVDDE or the LVDUE bit to 1. After that, the output settings of ports must be made.  
When the power-supply voltage falls below Vint (D) (Typ. = 3.7 V) voltage, the LVDI circuit  
clears the LVDINT signal to 0 and sets the LVDDF bit to 1. If the LVDDE bit is 1 at this time, an  
IRQ0 interrupt request is generated. In this case, the necessary data must be saved in the external  
Rev. 3.00 Sep. 14, 2006 Page 293 of 408  
REJ09B0105-0300  
Section 17 Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuits  
EEPROM and a transition to standby mode or subsleep mode must be made. Until this processing  
is completed, the power supply voltage must be higher than the lower limit of the guaranteed  
operating voltage.  
When the power-supply voltage does not fall below the Vreset1 (Typ. = 2.3 V) voltage and rises  
above the Vint (U) (Typ. = 4.0 V) voltage, the LVDI circuit sets the LVDINT signal to 1. If the  
LVDUE bit is 1 at this time, the LVDUF bit in LVDSR is set to 1 and an IRQ0 interrupt request is  
simultaneously generated.  
If the power supply voltage (Vcc) falls below the Vreset1 (Typ. = 2.3 V) voltage, this LSI enters  
low voltage detection reset operation (when LVDRE = 1).  
Vint (U)  
Vint (D)  
Vcc  
Vreset1  
VSS  
LVDINT  
LVDDE  
LVDDF  
LVDUE  
LVDUF  
IRQ0 interrupt generated IRQ0 interrupt generated  
Figure 17.5 Operational Timing of LVDI Circuit  
Rev. 3.00 Sep. 14, 2006 Page 294 of 408  
REJ09B0105-0300  
Section 17 Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuits  
(3) Low Voltage Detection Interrupt (LVDI) Circuit  
(When Voltages Input via ExtU and ExtD Pins are used for Detection)  
Figure 17.6 shows the timing of the LVDI circuit. The LVDI circuit is enabled after a power-on  
reset, however, the interrupt request is disabled. To enable the LVDI, the LVDDF and LVDUF  
bits in LVDSR must be cleared to 0 and the LVDDE or LVDUE bit in LVDCR must be set to 1.  
When using external compared voltage, write 0 to the VDDII bit in LVDCR, and wait for 50 µs  
(tLVDON) given by a software timer until the detection circuit has settled. Then clear the LVDDF and  
LVDUF bits to 0 and set the LVDDE or LVDUE bit to 1. After that, the output settings of ports  
must be made. The initial value of the external compared voltages input on the ExtU and ExtD  
pins must be higher than the Vexd voltage.  
To cancel the LVDI, follow the procedures written in section 17.3.2 (4), Operating Procedures for  
Enabling/Disabling LVDR and LVDI Circuits.  
When the external comparison voltage of ExtD pin falls below the Vexd (D) (Typ. = 1.15 V)  
voltage, the LVDI clears the LVDINT signal to 0 and sets the LVDDF bit in LVDSR to 1. If the  
LVDDE bit is 1 at this time, an IRQ0 interrupt request is generated. In this case, the necessary  
data must be saved in the external EEPROM, and a transition to standby mode or subsleep mode  
must be made. Until this processing is completed, the power supply voltage must be higher than  
the lower limit of the guaranteed operating voltage.  
When the power-supply voltage does not fall below the Vreset1 (Typ. = 2.3 V) voltage and the  
input voltage of the ExtU pin rises above Vexd (Typ. = 1.15 V) voltage, the LVDI circuit sets the  
LVDINT signal to 1. If the LVDUE bit is 1 at this time, the LVDUF bit in LVDSR is set to 1 and  
an IRQ0 interrupt request is generated.  
If the power supply voltage falls below the Vreset1 (Typ. = 2.3 V) voltage, this LSI enters low-  
voltage detection reset operation. When the voltages input on the ExtU and ExtD pins are used as  
the compared voltage, ensure to use the LVDR (reset detection voltage: Typ. = 2.3 V) circuit.  
Rev. 3.00 Sep. 14, 2006 Page 295 of 408  
REJ09B0105-0300  
Section 17 Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuits  
External power  
supply voltage  
ExtD input voltage  
(1)  
ExtU input voltage  
(2)  
Vexd  
(3)  
(4)  
V
reset1  
SS  
V
LVDINT  
LVDDE  
LVDDF  
LVDUE  
LVDUF  
IRQ0 interrupt IRQ0 interrupt  
generated  
generated  
Figure 17.6 Operational Timing of LVDI Circuit (When Compared Voltage is Input  
through ExtU and ExtD Pins)  
Rev. 3.00 Sep. 14, 2006 Page 296 of 408  
REJ09B0105-0300  
Section 17 Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuits  
(4) Operating Procedures for Enabling/Disabling LVDR and LVDI Circuits  
The low-voltage detection circuit is enabled after reset. To enable or disable the low-voltage  
detection circuit correctly, follow the procedure described below. Figure 17.7 shows the timing for  
the operation and release of the low-voltage detection circuit.  
1. To disable the low-voltage detection circuit, clear all of the LVDRE, LVDDE, and LVDUE  
bits to 0. Then, clear the LVDE and BGRE bits to 0. Set the VDDII bit in LVDCR if  
necessary. The LVDE and BGRE bits must not be cleared to 0 at the same timing as the  
LVDRE, LVDDE, and LVDUE bits because incorrect operation may occur.  
2. To enable the low-voltage detection circuit, set the LVDE and BGRE bits in LVDCR to 1.  
When the voltages input on the ExtU and ExtD pins are used as the compared voltage, clear  
the LVDDII bit to 0.  
3. Wait for 50 µs (tLVDON) given by a software timer until the reference voltage and the low-  
voltage-detection power supply have settled. Then, clear the LVDDF and LVDUF bits in  
LVDSR to 0 and set the LVDRE, LVDDE, and LVDUE bits in LVDCR to 1, if necessary.  
LVDE  
BGRE  
VDDII  
LVDRE  
LVDDE  
LVDUE  
tLVDON  
Longer than one instruction operation time  
Figure 17.7 Timing for Enabling/Disabling of Low-Voltage Detection Circuit  
Rev. 3.00 Sep. 14, 2006 Page 297 of 408  
REJ09B0105-0300  
Section 17 Band-Gap Circuit, Power-On Reset, and Low-Voltage Detection Circuits  
Rev. 3.00 Sep. 14, 2006 Page 298 of 408  
REJ09B0105-0300  
Section 18 Power Supply Circuit  
Section 18 Power Supply Circuit  
This LSI incorporates an internal power supply step-down circuit. Use of this circuit enables the  
internal power supply to be fixed at a constant level of approximately 3.0 V, independently of the  
voltage of the power supply connected to the external VCC pin. As a result, the current consumed  
when an external power supply is used at 3.0 V or above can be held down to virtually the same  
low level as when used at approximately 3.0 V. If the external power supply is 3.0 V or below, the  
internal voltage will be practically the same as the external voltage. It is, of course, also possible  
to use the same level of external power supply voltage and internal power supply voltage without  
using the internal power supply step-down circuit.  
18.1  
When Using Internal Power Supply Step-Down Circuit  
Connect the external power supply to the VCC pin, and connect a capacitance of approximately 0.1  
µF between VCL and VSS, as shown in figure 18.1. The internal step-down circuit is made effective  
simply by adding this external circuit. In the external circuit interface, the external power supply  
voltage connected to VCC and the GND potential connected to VSS are the reference levels. For  
example, for port input/output levels, the VCC level is the reference for the high level, and the VSS  
level is that for the low level. The A/D converter analog power supply is not affected by the  
internal step-down circuit.  
VCC  
VCC = 3.0 to 5.5 V  
Step-down circuit  
VCL  
Stabilization  
capacitance  
(approx. 0.1 µF)  
Internal  
power  
supply  
Internal  
logic  
VSS  
Figure 18.1 Power Supply Connection when Internal Step-Down Circuit is Used  
PSCKT00A_000020020200  
Rev. 3.00 Sep. 14, 2006 Page 299 of 408  
REJ09B0105-0300  
Section 18 Power Supply Circuit  
18.2  
When Not Using Internal Power Supply Step-Down Circuit  
When the internal power supply step-down circuit is not used, connect the external power supply  
to the VCL pin and VCC pin, as shown in figure 18.2. The external power supply is then input directly  
to the internal power supply. The permissible range for the power supply voltage is 3.0 V to 3.6 V.  
Operation cannot be guaranteed if a voltage outside this range (less than 3.0 V or more than 3.6 V)  
is input.  
VCC  
VCC = 3.0 to 3.6 V  
Step-down circuit  
Internal  
VCL  
Internal  
logic  
power  
supply  
VSS  
Figure 18.2 Power Supply Connection when Internal Step-Down Circuit is Not Used  
Rev. 3.00 Sep. 14, 2006 Page 300 of 408  
REJ09B0105-0300  
Section 19 List of Registers  
Section 19 List of Registers  
The register list gives information on the on-chip I/O register addresses, how the register bits are  
configured, and the register states in each operating mode. The information is given as shown  
below.  
1. Register addresses (address order)  
Registers are listed from the lower allocation addresses.  
Registers are classified by functional modules.  
The data bus width is indicated.  
The number of access states is indicated.  
2. Register bits  
Bit configurations of the registers are described in the same order as the register addresses.  
Reserved bits are indicated by in the bit name column.  
When registers consist of 16 bits, bits are described from the MSB side.  
3. Register states in each operating mode  
Register states are described in the same order as the register addresses.  
The register states described here are for the basic operating modes. If there is a specific reset  
for an on-chip peripheral module, refer to the section on that on-chip peripheral module.  
Rev. 3.00 Sep. 14, 2006 Page 301 of 408  
REJ09B0105-0300  
Section 19 List of Registers  
19.1  
Register Addresses (Address Order)  
The data bus width indicates the numbers of bits by which the register is accessed.  
The number of access states indicates the number of states based on the specified reference clock.  
Abbre-  
viation  
Bit  
No  
Module  
Address Name  
Data Bus Access  
Register Name  
Width  
State  
Low-voltage-detection control  
register  
LVDCR  
8
H'F730 Low-voltage 8  
detection  
2
circuit  
Low-voltage-detection status  
register  
LVDSR  
8
H'F731 Low-voltage 8  
detection  
2
circuit  
Clock control status register  
RC control register  
CKCSR  
RCCR  
8
8
H'F734 Clock  
oscillator  
8
8
8
8
2
2
2
2
H'F735 On-chip  
oscillator  
RC trimming data protect register RCTRMDPR 8  
H'F736 On-chip  
oscillator  
RC trimming data register  
RCTRMDR  
8
H'F737 On-chip  
oscillator  
I2C bus control register 1  
I2C bus control register 2  
I2C bus mode register  
I2C bus interrupt enable register ICIER  
I2C bus status register  
ICCR1  
ICCR2  
ICMR  
8
8
8
8
8
8
8
8
8
8
H'F748 IIC2  
H'F749 IIC2  
H'F74A IIC2  
H'F74B IIC2  
H'F74C IIC2  
H'F74D IIC2  
H'F74E IIC2  
H'F74F IIC2  
H'F760 Timer B1  
H'F761 Timer B1  
8
8
8
8
8
8
8
8
8
8
2
2
2
2
2
2
2
2
2
2
ICSR  
Slave address register  
SAR  
I2C bus transmit data register  
I2C bus receive data register  
Timer mode register B1  
ICDRT  
ICDRR  
TMB1  
Timer counter B1/Timer load  
register B1  
TCB1(R)/  
TLB1 (W)  
Timer mode register W  
Timer control register W  
TMRW  
TCRW  
8
8
8
8
H'FF80 Timer W  
H'FF81 Timer W  
H'FF82 Timer W  
H'FF83 Timer W  
8
8
8
8
2
2
2
2
Timer interrupt enable register W TIERW  
Timer status register W TSRW  
Rev. 3.00 Sep. 14, 2006 Page 302 of 408  
REJ09B0105-0300  
Section 19 List of Registers  
Abbre-  
viation  
Bit  
No  
Module  
Address Name  
Data Bus Access  
Register Name  
Width  
State  
Timer I/O control register 0  
Timer I/O control register 1  
Timer counter  
TIOR0  
TIOR1  
TCNT  
GRA  
8
H'FF84 Timer W  
H'FF85 Timer W  
H'FF86 Timer W  
H'FF88 Timer W  
H'FF8A Timer W  
H'FF8C Timer W  
H'FF8E Timer W  
H'FF90 ROM  
8
2
8
8
2
16  
16  
16  
16  
16  
8
16*1  
16*1  
16*1  
16*1  
16*1  
8
2
General register A  
General register B  
General register C  
General register D  
2
GRB  
2
GRC  
2
GRD  
2
Flash memory control register 1 FLMCR1  
Flash memory control register 2 FLMCR2  
2
8
H'FF91 ROM  
8
2
Erase block register 1  
Flash memory enable register  
Timer control register V0  
Timer control/status register V  
Timer constant register A  
Timer constant register B  
Timer counter V  
EBR1  
FENR  
TCRV0  
TCSRV  
TCORA  
TCORB  
TCNTV  
TCRV1  
SMR  
8
H'FF93 ROM  
8
2
8
H'FF9B ROM  
8
2
8
H'FFA0 Timer V  
H'FFA1 Timer V  
H'FFA2 Timer V  
H'FFA3 Timer V  
H'FFA4 Timer V  
H'FFA5 Timer V  
H'FFA8 SCI3  
8
3
8
8
3
8
8
3
8
8
3
8
8
3
Timer control register V1  
Serial mode register  
Bit rate register  
8
8
3
8
8
3
BRR  
8
H'FFA9 SCI3  
8
3
Serial control register 3  
Transmit data register  
Serial status register  
Receive data register  
Sampling mode register  
A/D data register A  
SCR3  
TDR  
8
H'FFAA SCI3  
8
3
8
H'FFAB SCI3  
8
3
SSR  
8
H'FFAC SCI3  
8
3
RDR  
8
H'FFAD SCI3  
8
3
SPMR  
8
H'FFAE SCI3  
8
3
ADDRA 16  
ADDRB 16  
ADDRC 16  
ADDRD 16  
H'FFB0 A/D converter  
H'FFB2 A/D converter  
H'FFB4 A/D converter  
H'FFB6 A/D converter  
H'FFB8 A/D converter  
H'FFB9 A/D converter  
H'FFC0 WDT*2  
8
3
A/D data register B  
8
3
A/D data register C  
8
3
A/D data register D  
8
3
A/D control/status register  
A/D control register  
ADCSR  
ADCR  
8
8
8
3
8
3
Timer control/status register WD TCSRWD 8  
8
2
Rev. 3.00 Sep. 14, 2006 Page 303 of 408  
REJ09B0105-0300  
Section 19 List of Registers  
Abbre-  
viation  
Bit  
Module  
Data Bus Access  
Register Name  
No Address Name  
Width  
State  
Timer counter WD  
TCWD  
TMWD  
ABRKCR  
ABRKSR  
BARH  
BARL  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
H'FFC1 WDT*2  
H'FFC2 WDT*2  
8
2
Timer mode register WD  
Address break control register  
Address break status register  
Break address register H  
Break address register L  
Break data register H  
Break data register L  
Port pull-up control register 1  
Port pull-up control register 5  
Port data register 1  
8
2
H'FFC8 Address break  
H'FFC9 Address break  
H'FFCA Address break  
H'FFCB Address break  
H'FFCC Address break  
H'FFCD Address break  
H'FFD0 I/O port  
8
2
8
2
8
2
8
2
BDRH  
BDRL  
8
2
8
2
PUCR1  
PUCR5  
PDR1  
8
2
H'FFD1 I/O port  
8
2
H'FFD4 I/O port  
8
2
Port data register 2  
PDR2  
H'FFD5 I/O port  
8
2
Port data register 5  
PDR5  
H'FFD8 I/O port  
8
2
Port data register 7  
PDR7  
H'FFDA I/O port  
8
2
Port data register 8  
PDR8  
H'FFDB I/O port  
8
2
Port data register B  
PDRB  
PDRC  
PMR1  
PMR5  
PCR1  
H'FFDD I/O port  
8
2
Port data register C  
H'FFDE I/O port  
8
2
Port mode register 1  
H'FFE0 I/O port  
8
2
Port mode register 5  
H'FFE1 I/O port  
8
2
Port control register 1  
Port control register 2  
Port control register 5  
Port control register 7  
Port control register 8  
Port control register C  
System control register 1  
System control register 2  
Interrupt edge select register 1  
Interrupt edge select register 2  
Interrupt enable register 1  
Interrupt enable register 2  
H'FFE4 I/O port  
8
2
PCR2  
H'FFE5 I/O port  
8
2
PCR5  
H'FFE8 I/O port  
8
2
PCR7  
H'FFEA I/O port  
8
2
PCR8  
H'FFEB I/O port  
8
2
PCRC  
SYSCR1  
SYSCR2  
IEGR1  
IEGR2  
IENR1  
IENR2  
H'FFEE I/O port  
8
2
H'FFF0 Power-down  
H'FFF1 Power-down  
H'FFF2 Interrupts  
H'FFF3 Interrupts  
H'FFF4 Interrupts  
H'FFF5 Interrupts  
8
2
8
2
8
2
8
2
8
2
8
2
Rev. 3.00 Sep. 14, 2006 Page 304 of 408  
REJ09B0105-0300  
Section 19 List of Registers  
Abbre-  
viation  
Bit  
Module  
Data Bus Access  
Register Name  
No Address Name  
Width  
State  
Interrupt flag register 1  
Interrupt flag register 2  
Wake-up interrupt flag register  
IRR1  
IRR2  
IWPR  
8
8
8
8
H'FFF6 Interrupts  
H'FFF7 Interrupts  
H'FFF8 Interrupts  
H'FFF9 Power-down  
8
8
8
8
2
2
2
2
Module standby control register MSTCR1  
1
Module standby control register MSTCR2  
2
8
H'FFFA Power-down  
8
2
Notes: 1. Only word access can be used.  
2. WDT: Watchdog timer  
Rev. 3.00 Sep. 14, 2006 Page 305 of 408  
REJ09B0105-0300  
Section 19 List of Registers  
19.2  
Register Bits  
Register bit names of the on-chip peripheral modules are described below.  
Each line covers eight bits, and 16-bit registers are shown as 2 lines.  
Register  
Name  
Module  
Name  
Bit 7  
LVDE  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
LVDSEL LVDRE LVDDE  
LVDDF  
CKSWIE CKSWIF —  
Bit 2  
Bit 1  
Bit 0  
LVDCR  
LVDSR  
CKCSR  
BGRE VDDII  
LVDUE LVDC  
LVDUF  
PMRC1 PMRC0  
OSCSEL  
CKSTA Clock  
oscillator  
RCCR  
RCSTP FSEL  
VCLSEL  
RCPSC1 RCPSC0 On-chip  
oscillator  
RCTRMDPR WRI  
PRWE LOCKDW  
TRMDRWE  
TRMD4  
TRS  
RCTRMDR TRMD7 TRMD6 TRMD5  
TRMD3 TRMD2 TRMD1 TRMD0  
ICCR1  
ICCR2  
ICMR  
ICIER  
ICSR  
ICE  
RCVD MST  
CKS3  
SCLO  
CKS2  
CKS1  
IICRST  
BC1  
CKS0  
IIC2  
BBSY  
MLS  
TIE  
SCP  
SDAO  
SDAOP  
WAIT  
TEIE  
TEND  
SVA5  
BCWP BC2  
BC0  
RIE  
NAKIE  
NACKF  
SVA3  
STIE  
ACKE  
AL/OVE AAS  
SVA1 SVA0  
ACKBR ACKBT  
TDRE  
SVA6  
RDRF  
SVA4  
STOP  
SVA2  
ADZ  
FS  
SAR  
ICDRT  
ICDRR  
TMB1  
ICDRT7 ICDRT6 ICDRT5 ICDRT4  
ICDRR7 ICDRR6 ICDRR5 ICDRR4  
ICDRT3 ICDRT2 ICDRT1 ICDRT0  
ICDRR3 ICDRR2 ICDRR1 ICDRR0  
TMB17  
BIT7  
TMB12 TMB11  
BIT2 BIT1  
TMB10 Timer B1  
BIT0  
TCB1 (R)/  
TLB1 (W)  
BIT6  
BIT5  
BIT4  
BIT3  
TMRW  
TCRW  
TIERW  
TSRW  
TIOR0  
TIOR1  
TCNT  
CTS  
CCLR  
OVIE  
OVF  
BUFEB  
CKS1  
BUFEA  
CKS0  
PWMD PWMC  
PWMB  
TOA  
Timer W  
CKS2  
TOD  
IMIED  
IMFD  
TOC  
TOB  
IMIEC  
IMFC  
IOA2  
IOC2  
IMIEB  
IMFB  
IOA1  
IOC1  
IMIEA  
IMFA  
IOB2  
IOD2  
IOB1  
IOD1  
IOB0  
IOD0  
IOA0  
IOC0  
TCNT15 TCNT14 TCNT13 TCNT12  
TCNT11 TCNT10 TCNT9  
TCNT3 TCNT2 TCNT1  
GRA11 GRA10 GRA9  
TCNT8  
TCNT0  
GRA8  
GRA0  
GRB8  
GRB0  
TCNT7 TCNT6 TCNT5  
GRA15 GRA14 GRA13  
TCNT4  
GRA12  
GRA4  
GRA  
GRB  
GRA7  
GRB15 GRB14 GRB13  
GRB7 GRB6 GRB5  
GRA6  
GRA5  
GRA3  
GRB11 GRB10 GRB9  
GRB3 GRB2 GRB1  
GRA2  
GRA1  
GRB12  
GRB4  
Rev. 3.00 Sep. 14, 2006 Page 306 of 408  
REJ09B0105-0300  
Section 19 List of Registers  
Register  
Name  
Module  
Name  
Bit 7  
GRC15 GRC14 GRC13 GRC12 GRC11 GRC10 GRC9  
GRC7 GRC6 GRC5 GRC4 GRC3 GRC2 GRC1  
GRD15 GRD14 GRD13 GRD12 GRD11 GRD10 GRD9  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
GRC8  
GRC0  
GRD8  
GRD0  
P
GRC  
Timer W  
GRD  
GRD7  
GRD6  
SWE  
GRD5  
ESU  
GRD4  
PSU  
GRD3  
EV  
GRD2  
PV  
GRD1  
E
FLMCR1  
ROM  
FLMCR2 FLER  
EBR1  
FENR  
TCRV0  
TCSRV  
TCORA  
TCORB  
TCNTV  
TCRV1  
SMR  
EB5  
EB4  
EB3  
EB2  
EB1  
EB0  
FLSHE  
CMIEB  
CMFB  
CMIEA  
CMFA  
OVIE  
OVF  
CCLR1 CCLR0 CKS2  
OS3 OS2  
CKS1  
OS1  
CKS0  
OS0  
Timer V  
TCORA7 TCORA6 TCORA5 TCORA4 TCORA3 TCORA2 TCORA1 TCORA0  
TCORB7 TCORB6 TCORB5 TCORB4 TCORB3 TCORB2 TCORB1 TCORB0  
TCNTV7 TCNTV6 TCNTV5 TCNTV4 TCNTV3 TCNTV2 TCNTV1 TCNTV0  
TVEG1 TVEG0 TRGE  
ICKS0  
CKS0  
BRR0  
CKE0  
TDR0  
MPBT  
RDR0  
COM  
BRR7  
TIE  
CHR  
BRR6  
RIE  
PE  
PM  
STOP  
BRR3  
MPIE  
TDR3  
PER  
RDR3  
MP  
CKS1  
BRR1  
CKE1  
TDR1  
MPBR  
RDR1  
SCI3  
BRR  
BRR5  
TE  
BRR4  
RE  
BRR2  
TEIE  
TDR2  
TEND  
RDR2  
SCR3  
TDR  
TDR7  
TDRE  
RDR7  
TDR6  
RDRF  
RDR6  
TDR5  
OER  
RDR5  
TDR4  
FER  
RDR4  
SSR  
RDR  
SPMR  
ADDRA  
STDSPM —  
AD9  
AD1  
AD9  
AD1  
AD8  
AD0  
AD8  
AD0  
AD8  
AD0  
AD8  
AD0  
ADIE  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
A/D converter  
ADDRB  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
ADDRC AD9  
AD1  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
ADDRD AD9  
AD1  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
ADCSR  
ADCR  
ADF  
ADST  
SCAN  
CKS  
CH2  
CH1  
CH0  
TRGE  
TCSRWD B6WI  
TCWE  
B4WI  
TCSRWE B2WI  
WDON  
B0WI  
WRST  
WDT*  
TCWD  
TMWD  
TCWD7 TCWD6 TCWD5 TCWD4 TCWD3 TCWD2 TCWD1 TCWD0  
CKS3 CKS2 CKS1 CKS0  
Rev. 3.00 Sep. 14, 2006 Page 307 of 408  
REJ09B0105-0300  
Section 19 List of Registers  
Register  
Name  
Module  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ABRKCR RTINTE CSEL1  
CSEL0  
ACMP2 ACMP1 ACMP0 DCMP1 DCMP0 Address  
break  
ABRKSR ABIF  
ABIE  
BARH  
BARL  
BDRH  
BDRL  
PUCR1  
PUCR5  
PDR1  
PDR2  
PDR5  
PDR7  
PDR8  
PDRB  
PDRC  
PMR1  
PMR5  
PCR1  
PCR2  
PCR5  
PCR7  
PCR8  
PCRC  
BARH7 BARH6 BARH5 BARH4 BARH3 BARH2 BARH1 BARH0  
BARL7 BARL6 BARL5 BARL4 BARL3 BARL2 BARL1 BARL0  
BDRH7 BDRH6 BDRH5 BDRH4 BDRH3 BDRH2 BDRH1 BDRH0  
BDRL7  
PUCR17  
BDRL6  
BDRL5  
BDRL4  
PUCR14  
BDRL3  
BDRL2  
BDRL1  
BDRL0  
I/O port  
PUCR55  
P17  
P14  
P22  
P21  
P20  
P57  
P56  
P76  
P55  
P75  
P74  
P84  
P83  
PB3  
P82  
PB2  
P81  
PB1  
PC1  
TXD  
P80  
PB0  
PC0  
IRQ3  
IRQ0  
WKP5  
PCR17  
PCR14  
PCR22  
PCR21  
PCR20  
PCR57  
PCR56  
PCR76  
PCR55  
PCR75  
PCR74  
PCR84  
PCR83  
PCR82  
PCR81  
PCR80  
PCRC1 PCRC0  
SYSCR1 SSBY  
SYSCR2 SMSEL  
STS2  
STS1  
DTON  
STS0  
MA2  
Power-down  
Interrupts  
MA1  
IEG3  
MA0  
IEGR1  
IEGR2  
IENR1  
IENR2  
IRR1  
IEG0  
WPEG5  
IENWP  
IENTB1  
IENDT  
IEN3  
IEN0  
IRRDT  
IRRI3  
IRRI0  
IRR2  
IRRTB1  
IWPF5  
IWPR  
MSTCR1  
MSTCR2  
MSTIIC MSTS3 MSTAD MSTWD MSTTW MSTTV  
MSTTB1  
Power-down  
Note:  
*
WDT:Watchdog timer  
Rev. 3.00 Sep. 14, 2006 Page 308 of 408  
REJ09B0105-0300  
Section 19 List of Registers  
19.3  
Register States in Each Operating Mode  
Register  
Name  
Reset  
Active  
Sleep  
Subsleep Standby  
Module  
LVDCR  
LVDSR  
CKCSR  
RCCR  
Initialized  
Initialized  
Initialized  
Initialized  
LVDC  
Clock oscillator  
On-chip oscillation  
RCTRMDPR Initialized  
RCTRMDR Initialized  
ICCR1  
ICCR2  
ICMR  
ICIER  
ICSR  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
IIC2  
SAR  
ICDRT  
ICDRR  
TMB1  
Timer B1  
Timer W  
TCB1/TLB1 Initialized  
TMRW  
TCRW  
TIERW  
TSRW  
TIOR0  
TIOR1  
TCNT  
GRA  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
GRB  
GRC  
GRD  
FLMCR1  
FLMCR2  
EBR1  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
ROM  
FENR  
TCRV0  
Timer V  
Rev. 3.00 Sep. 14, 2006 Page 309 of 408  
REJ09B0105-0300  
Section 19 List of Registers  
Register  
Name  
TCSRV  
TCORA  
TCORB  
TCNTV  
TCRV1  
SMR  
Reset  
Active  
Sleep  
Subsleep Standby  
Module  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Timer V  
SCI3  
BRR  
SCR3  
TDR  
SSR  
RDR  
SPMR  
ADDRA  
ADDRB  
A/D converter  
ADDRC Initialized  
ADDRD Initialized  
ADCSR  
ADCR  
Initialized  
Initialized  
TCSRWD Initialized  
WDT*  
TCWD  
TMWD  
Initialized  
Initialized  
ABRKCR Initialized  
ABRKSR Initialized  
Address Break  
BARH  
BARL  
BDRH  
BDRL  
PUCR1  
PUCR5  
PDR1  
PDR2  
PDR5  
PDR7  
PDR8  
PDRB  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
I/O port  
Rev. 3.00 Sep. 14, 2006 Page 310 of 408  
REJ09B0105-0300  
Section 19 List of Registers  
Register  
Name  
Reset  
Active  
Sleep  
Subsleep Standby  
Module  
PDRC  
PMR1  
PMR5  
PCR1  
PCR2  
PCR5  
PCR7  
PCR8  
PCRC  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
I/O port  
SYSCR1 Initialized  
SYSCR2 Initialized  
Power-down  
Interrupts  
IEGR1  
IEGR2  
IENR1  
IENR2  
IRR1  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
Initialized  
IRR2  
IWPR  
MSTCR1 Initialized  
MSTCR2 Initialized  
Power-down  
Note: is not initialized  
WDT: Watchdog timer  
*
Rev. 3.00 Sep. 14, 2006 Page 311 of 408  
REJ09B0105-0300  
Section 19 List of Registers  
Rev. 3.00 Sep. 14, 2006 Page 312 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Section 20 Electrical Characteristics  
20.1  
Absolute Maximum Ratings  
Table 20.1 Absolute Maximum Ratings  
Item  
Symbol  
VCC  
Value  
Unit  
V
Note  
Power supply voltage  
Analog power supply voltage  
–0.3 to +7.0  
–0.3 to +7.0  
–0.3 to VCC +0.3  
–0.3 to AVCC +0.3  
–20 to +75  
*
AVCC  
VIN  
V
Input voltage  
Ports other than port B  
Port B  
V
V
Operating temperature  
Storage temperature  
Topr  
Tstg  
°C  
°C  
–55 to +125  
Note:  
*
Permanent damage may result if maximum ratings are exceeded. Normal operation  
should be under the conditions specified in Electrical Characteristics. Exceeding these  
values can result in incorrect operation and reduced reliability.  
Rev. 3.00 Sep. 14, 2006 Page 313 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
20.2  
Electrical Characteristics (F-ZTATTM Version)  
20.2.1 Power Supply Voltage and Operating Ranges  
1. Supply voltage and external oscillation frequency range  
φosc(MHz)  
12.0  
2.0  
3.0  
5.5  
Vcc(V)  
AVcc = 3.0 to 5.5 V  
Active mode  
Sleep mode  
2. Power supply voltage and operating frequency range  
φosc(MHz)  
φ(kHz)  
12.0  
1500  
2.0  
31.25  
3.0  
5.5  
3.0  
5.5  
Vcc(V)  
Vcc(V)  
AVcc = 3.0 to 5.5 V  
Active mode  
Sleep mode  
AVcc = 3.0 to 5.5 V  
Active mode  
Sleep mode  
(When MA2 = 0 in SYSCR2)  
(When MA2 = 1 in SYSCR2)  
Rev. 3.00 Sep. 14, 2006 Page 314 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
3. Analog power supply voltage and A/D converter accuracy guarantee range  
φosc(MHz)  
12.0  
2.0  
3.0  
5.5  
Vcc = 3.0 to 5.5 V  
AVcc(V)  
Active mode  
Sleep mode  
Rev. 3.00 Sep. 14, 2006 Page 315 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
20.2.2 DC Characteristics  
Table 20.2 DC Characteristics (1)  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C unless otherwise indicated.  
Values  
Applicable  
Symbol Pins  
Test  
Condition  
Item  
Min.  
Typ. Max.  
Unit  
V
Notes  
Input high VIH  
voltage  
RES, NMI, WKP5, VCC = 4.0 V to 5.5 V  
IRQ0, IRQ3,  
VCC × 0.8  
VCC × 0.9  
VCC + 0.3  
VCC + 0.3  
V
ADTRG, TMRIV,  
TMCIV, FTCI,  
FTIOA to FTIOD,  
SCK3, TRGV  
RXD, SCL, SDA, VCC = 4.0 V to 5.5 V  
P17, P14,  
P22 to P20,  
VCC × 0.7  
VCC × 0.8  
VCC + 0.3  
VCC + 0.3  
V
V
P57 to P55,  
P76 to P74,  
P84 to P80,  
PC1, PC0  
PB3 to PB0  
AVCC = 4.0 V to 5.5 V AVCC × 0.7  
AVCC = 3.0 V to 5.5 V AVCC × 0.8  
AVCC + 0.3 V  
AVCC + 0.3 V  
OSC1  
VCC = 4.0 V to 5.5 V  
VCC – 0.5  
VCC – 0.3  
–0.3  
VCC + 0.3  
VCC + 0.3  
VCC × 0.2  
V
V
V
RES, NMI, WKP5,  
IRQ0, IRQ3,  
Input low VIL  
voltage  
VCC = 4.0 V to 5.5 V  
ADTRG, TMRIV,  
TMCIV, FTCI,  
–0.3  
–0.3  
VCC × 0.1  
VCC × 0.3  
V
V
FTIOA to FTIOD,  
SCK3, TRGV  
RXD, SCL, SDA, VCC = 4.0 V to 5.5 V  
P17, P14,  
P22 to P20,  
P57 to P55,  
P76 to P74,  
P84 to P80,  
PC1, PC0  
–0.3  
VCC × 0.2  
V
V
PB3 to PB0  
AVCC = 4.0 V to 5.5 V –0.3  
AVCC = 3.0 V to 5.5 V –0.3  
AVCC × 0.3  
AVCC × 0.2  
0.5  
OSC1  
VCC = 4.0 V to 5.5 V  
–0.3  
–0.3  
V
V
0.3  
Rev. 3.00 Sep. 14, 2006 Page 316 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Values  
Applicable  
Symbol Pins  
Test  
Condition  
Item  
Min.  
Typ.  
Max.  
Unit Notes  
Output  
high  
voltage  
VOH  
P17, P14,  
P22 to P20,  
P55,  
P76 to P74,  
P84 to P80,  
PC1, PC0  
VCC = 4.0 V to 5.5 V VCC – 1.0 —  
–IOH = 4 mA  
V
–IOH = 0.1 mA  
VCC – 0.5 —  
V
P56, P57  
VCC = 4.0 V to 5.5 V  
–IOH = 0.1 mA  
V
V
CC – 2.5 —  
CC – 2.2 —  
V
V
V
V
CC = 3.0 V to 4.0 V  
–IOH = 0.1 mA  
Output low VOL  
voltage  
P17, P14,  
VCC = 4.0 V to 5.5 V  
IOL = 1.6 mA  
0.6  
P22 to P20,  
P57 to P55,  
P76 to P74,  
PC1, PC0  
I
OL = 0.4 mA  
0.4  
1.5  
V
V
P84 to P80  
VCC = 4.0 V to 5.5 V  
IOL = 20.0 mA  
VCC = 4.0 V to 5.5 V  
IOL = 10.0 mA  
1.0  
0.4  
V
V
VCC = 4.0 V to 5.5 V  
IOL = 1.6 mA  
IOL = 0.4 mA  
0.4  
0.6  
V
V
SCL, SDA  
VCC = 4.0 V to 5.5 V  
IOL = 6.0 mA  
I
OL = 3.0 mA  
IN = 0.5 V to  
(VCC – 0.5 V)  
0.4  
1.0  
V
Input/  
| IIL  
|
OSC1, NMI,  
V
µA  
output  
leakage  
current  
WKP5,  
IRQ0, IRQ3,  
ADTRG, TRGV,  
TMRIV, TMCIV,  
FTCI, FTIOA to  
FTIOD, RXD,  
SCK3, SCL, SDA  
P17, P14,  
V
IN = 0.5 V to  
1.0  
1.0  
µA  
µA  
P22 to P20,  
P57 to P55,  
P76 to P74,  
P84 to P80,  
PC1, PC0  
(VCC – 0.5 V)  
PB3 to PB0  
VIN = 0.5 V to  
(AVCC – 0.5 V)  
Rev. 3.00 Sep. 14, 2006 Page 317 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Values  
Typ.  
Applicable  
Symbol Pins  
Test  
Condition  
Item  
Min.  
Max.  
Unit Notes  
–Ip  
P17, P14, P55  
VCC = 5.0 V,  
50.0  
300.0  
µA  
Pull-up  
MOS  
current  
V
IN = 0.0 V  
VCC = 3.0 V,  
IN = 0.0 V  
f = 1 MHz,  
IN = 0.0 V,  
60.0  
µA  
pF  
Reference  
value  
V
Input  
capaci-  
tance  
Cin  
All input pins  
except power  
supply pins  
15.0  
V
Ta = 25°C  
Active  
mode  
current  
consump-  
tion  
IOPE1  
VCC  
VCC  
VCC  
VCC  
Active mode 1  
12.0  
9.6  
2.0  
1.5  
7.2  
6.0  
1.8  
1.4  
18.0  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
*
V
CC = 5.0 V,  
fOSC = 12 MHz  
Active mode 1  
CC = 3.0 V,  
OSC = 12 MHz  
Reference  
value*  
V
f
IOPE2  
Active mode 2  
CC = 5.0 V,  
OSC = 12 MHz  
2.5  
*
V
f
Active mode 2  
CC = 3.0 V,  
OSC = 12 MHz  
Reference  
value*  
V
f
Sleep  
mode  
current  
consump-  
tion  
ISLEEP1  
Sleep mode 1  
CC = 5.0 V,  
OSC = 12 MHz  
12.0  
*
V
f
Sleep mode 1  
CC = 3.0 V,  
OSC = 12 MHz  
Reference  
value*  
V
f
ISLEEP2  
Sleep mode 2  
CC = 5.0 V,  
OSC = 12 MHz  
2.2  
*
V
f
Sleep mode 2  
CC = 3.0 V,  
OSC = 12 MHz  
Reference  
value*  
V
f
Subsleep ISUBSP  
mode  
current  
VCC  
VCC = 5.0 V  
LVDE = 0,  
BGRE = 0  
5.0  
*
consump-  
tion  
Standby  
mode  
ISTBY  
VCC  
LVDE = 0,  
BGRE = 0  
5.0  
µA  
*
current  
consump-  
tion  
Rev. 3.00 Sep. 14, 2006 Page 318 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Values  
Applicable  
Symbol Pins  
Test  
Condition  
Item  
Min.  
Typ.  
Max.  
Unit Notes  
RAM data VRAM  
retaining  
VCC  
2.0  
V
voltage  
Note:  
*
Pin states during current consumption measurement are given below (excluding current  
in the pull-up MOS transistors and output buffers).  
Mode  
RES Pin Internal State  
Other Pins Oscillator Pins  
Active mode 1  
Active mode 2  
Sleep mode 1  
Sleep mode 2  
VCC  
VCC  
VCC  
Operates  
VCC  
VCC  
VCC  
System clock:  
Crystal or ceramic  
resonator, and on-chip  
oscillator  
Operates (φ/64)  
Only timers operate  
Only timers operate (φ/64)  
CPU and timers both stop  
Subsleep mode  
Standby mode  
Rev. 3.00 Sep. 14, 2006 Page 319 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Table 20.2 DC Characteristics (2)  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise indicated.  
Values  
Application  
Symbol Pins  
Test  
Item  
Condition  
Min. Typ. Max. Unit  
Allowable output low IOL  
current (per pin)  
Output pins except  
P84 to P80, SCL, and  
SDA  
V
CC = 4.0 V to 5.5 V —  
2.0  
mA  
P84 to P80  
20.0 mA  
0.5 mA  
Output pins except  
P84 to P80, SCL, and  
SDA  
P84 to P80  
SCL, SDA  
10.0 mA  
6.0 mA  
Allowable output low IOL  
current (total)  
Output pins except  
P84 to P80, SCL, and  
SDA  
V
CC = 4.0 V to 5.5 V —  
40.0 mA  
P84 to P80, SCL, and  
SDA  
80.0 mA  
20.0 mA  
Output pins except  
P84 to P80, SCL, and  
SDA  
P84 to P80, SCL, and  
SDA  
40.0 mA  
Allowable output high I –IOH  
current (per pin)  
I
Output pins except  
P56, P57  
VCC = 4.0 V to 5.5 V —  
4.0  
0.2  
2.0  
0.2  
mA  
mA  
mA  
mA  
P56, P57  
VCC = 4.0 V to 5.5 V —  
VCC = 4.0 V to 5.5 V —  
Allowable output high I –IOH I All output pins  
current (total)  
40.0 mA  
8.0 mA  
Rev. 3.00 Sep. 14, 2006 Page 320 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
20.2.3 AC Characteristics  
Table 20.3 AC Characteristics  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Applicable  
Symbol Pins  
Test  
Condition  
Reference  
Item  
Min. Typ. Max. Unit Figure  
System clock  
fOSC  
OSC1, OSC2  
2.0  
12.0 MHz  
oscillation frequency  
1
System clock (φ) cycle tcyc  
time  
1
64  
32.0 µs  
tcyc  
10.0 ms  
tOSC  
*
Figure 20.1  
2
Instruction cycle time  
Oscillation stabilization trc  
time (crystal resonator)  
OSC1, OSC2  
OSC1, OSC2  
Oscillation stabilization trc  
time (ceramic  
5.0  
ms  
resonator)  
External clock high  
width  
tCPH  
tCPL  
tCPr  
OSC1  
OSC1  
OSC1  
35.0  
35.0  
ns  
ns  
Figure 20.1  
External clock low  
width  
External clock rise  
time  
15.0 ns  
15.0 ns  
External clock fall time tCPf  
OSC1  
RES  
NMI  
RES pin low width*4  
NMI pin high width  
NMI pin low width  
Input pin high width  
tREL  
tIHNMI  
tILNMI  
tIH  
2500 —  
1500 —  
1500 —  
ns  
ns  
ns  
tcyc  
Figure 20.2  
Figure 20.3  
NMI  
IRQ0 , IRQ3,  
2
Figure 20.3  
WKP5, TMCIV,  
TMRIV, TRGV,  
ADTRG, FTCI,  
FTIOA to FTIOD  
Input pin low width  
tIL  
IRQ0, IRQ3,  
2
tcyc  
WKP5, TMCIV,  
TMRIV, TRGV,  
ADTRG, FTCI,  
FTIOA to FTIOD  
Rev. 3.00 Sep. 14, 2006 Page 321 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Values  
Applicable  
Symbol Pins  
Test  
Condition  
Reference  
Item  
Min. Typ. Max. Unit Figure  
On-chip oscillator  
fRC  
VCC = 5.0 V  
Ta = 25°C  
FSEL = 0,  
VCLSEL = 0  
7.92*3 8.0 8.08*3 MHz  
oscillation frequency *2  
VCC = 4.0 V to 5.5 V 7.76 8.0 8.24 MHz  
FSEL = 0,  
VCLSEL = 0  
V
CC = 4.0 V to 5.5 V 9.6*3 10.0 10.4*3 MHz  
FSEL = 1,  
VCLSEL = 0  
Notes: 1. Determined by MA2 to MA0 in system control register 2 (SYSCR2).  
2. For the oscillation frequency of the masked ROM version, refer to the electrical  
characteristics specified separately.  
3. The values are for reference.  
4. Except when power-on reset circuit is used.  
Rev. 3.00 Sep. 14, 2006 Page 322 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Table 20.4 I2C Bus Interface Timing  
VCC = 3.0 to 5.5 V, VSS = 0.0 V, Ta = –20 to +75°C, unless otherwise indicated.  
Values  
Applicable Test  
Reference  
Item  
Symbol Pins  
Condition Min.  
Typ. Max. Unit Figure  
SCL input cycle time  
tSCL  
12tcyc + 600   
ns  
ns  
Figure  
20.4  
SCL input high pulse  
width  
tSCLH  
3tcyc + 300  
SCL input low pulse  
width  
tSCLL  
5tcyc + 300  
ns  
SCL and SDA input fall tSf  
time  
300 ns  
1tcyc ns  
SCL and SDA input  
spike pulse removal  
time  
tSP  
SDA input bus-free  
time  
tBUF  
5tcyc  
3tcyc  
3tcyc  
ns  
ns  
ns  
Start condition input  
hold time  
tSTAH  
tSTAS  
Retransmission start  
condition input setup  
time  
Setup time for stop  
condition input  
tSTOS  
3tcyc  
ns  
Data input setup time  
Data input hold time  
tSDAS  
tSDAH  
cb  
1tcyc+ 20  
ns  
ns  
0
0
Capacitive load of  
SCL and SDA  
400 pF  
SCL and SDA output  
fall time  
tSf  
VCC = 4.0  
to 5.5 V  
250 ns  
300 ns  
Rev. 3.00 Sep. 14, 2006 Page 323 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Table 20.5 Serial Interface (SCI3) Timing  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Applicable Test  
Reference  
Unit Figure  
Item  
Symbol  
Pins  
Condition Min.  
Typ.  
Max.  
Input  
clock  
cycle  
Asynchro-  
nous  
tscyc  
SCK3  
4
tcyc  
Figure  
20.5  
Clocked  
6
tcyc  
synchronous  
Input clock pulse width tSCKW  
SCK3  
TXD  
0.4  
0.6  
1
tscyc  
tcyc  
Transmit data delay  
time (clocked  
tTXD  
tRXS  
tRXH  
Figure  
20.6  
synchronous)  
Receive data setup  
time (clocked  
RXD  
RXD  
83.3  
83.3  
ns  
ns  
synchronous)  
Receive data hold  
time (clocked  
synchronous)  
Rev. 3.00 Sep. 14, 2006 Page 324 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
20.2.4 A/D Converter Characteristics  
Table 20.6 A/D Converter Characteristics  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Applicable Test  
Item  
Symbol  
Pins  
Condition  
Min.  
Typ.  
Max.  
Unit Notes  
1
*
Analog power supply  
voltage  
AVCC  
AVCC  
3.0  
VCC  
5.5  
V
Analog input voltage  
AVIN  
AIOPE  
AN3 to AN0  
AVCC  
VSS  
0.3  
AVCC  
0.3  
+
V
Analog power supply  
current  
AVCC = 5.0 V  
fOSC = 12 MHz  
2.0  
mA  
2
*
AISTOP1  
AVCC  
50  
µA  
Reference  
value  
3
*
AISTOP2  
AVCC  
5.0  
µA  
pF  
kΩ  
Analog input capacitance CAIN  
AN3 to AN0  
AN3 to AN0  
30.0  
5.0  
Allowable signal source RAIN  
impedance  
Resolution (data length)  
10  
10  
10  
bit  
tcyc  
Conversion time (single  
mode)  
AVCC = 3.0 V 134  
to 5.5 V  
Nonlinearity error  
Offset error  
7.5  
7.5  
7.5  
0.5  
8.0  
LSB  
LSB  
LSB  
LSB  
LSB  
tcyc  
Full-scale error  
Quantization error  
Absolute accuracy  
Conversion time (single  
mode)  
AVCC = 4.0 V 70  
to 5.5 V  
Nonlinearity error  
Offset error  
7.5  
7.5  
7.5  
0.5  
8.0  
LSB  
LSB  
LSB  
LSB  
LSB  
Full-scale error  
Quantization error  
Absolute accuracy  
Rev. 3.00 Sep. 14, 2006 Page 325 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Values  
Typ.  
Applicable Test  
Pins Condition  
Item  
Symbol  
Min.  
Max.  
Unit Notes  
Conversion time (single  
mode)  
AVCC = 4.0 V 134  
to 5.5 V  
tcyc  
Nonlinearity error  
Offset error  
3.5  
3.5  
3.5  
0.5  
4.0  
LSB  
LSB  
LSB  
LSB  
LSB  
Full-scale error  
Quantization error  
Absolute accuracy  
Notes: 1. Set AVCC = VCC when the A/D converter is not used.  
2. AISTOP1 is the current in active and sleep modes while the A/D converter is idle.  
3. AISTOP2 is the current at reset and in standby and subsleep modes while the A/D  
converter is idle.  
20.2.5 Watchdog Timer Characteristics  
Table 20.7 Watchdog Timer Characteristics  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Applicable Test  
Item  
Symbol  
Pins  
Condition  
Min.  
Typ.  
Max.  
Unit Notes  
Internal  
oscillator  
overflow  
time  
tOVF  
0.2  
0.4  
s
*
Note:  
*
Shows the time to count from 0 to 255, at which point an internal reset is generated,  
when the internal oscillator is selected.  
Rev. 3.00 Sep. 14, 2006 Page 326 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
20.2.6 Power-Supply-Voltage Detection Circuit Characteristics  
Table 20.8 Power-Supply-Voltage Detection Circuit Characteristics  
VSS = 0.0 V, Ta = –20 to +75°C, unless otherwise indicated.  
Values  
Test  
Item  
Symbol Condition  
Min.  
Typ.  
Max. Unit  
Power-supply falling detection  
voltage  
Vint(D)  
LVDSEL = 0  
3.3  
3.7  
4.3  
V
Power-supply rising detection  
voltage  
Vint(U)  
LVDSEL = 0  
3.6  
4.0  
4.5  
V
Reset detection voltage 1*1  
Reset detection voltage 2*2  
Vreset1 LVDSEL = 0  
Vreset2 LVDSEL = 1  
VLVDRmin  
2.0  
3.0  
1.0  
2.3  
3.6  
2.7  
4.2  
V
V
V
Lower-limit voltage of LVDR  
operation*3  
LVD stabilization time  
tLVDON  
50  
µs  
Current consumption in standby ISTBY  
mode  
LVDE = 1,  
BGRE = 1  
Vcc = 5.0 V  
350  
µA  
Notes: 1. This voltage should be used when the falling and rising voltage detection function is  
used.  
2. Select the low-voltage reset 2 when only the low-voltage detection reset is used.  
3. When the power-supply voltage (Vcc) falls below VLVDRmin = 1.0 V and then rises, a reset  
may not occur. Therefore sufficient evaluation is required.  
20.2.7 LVDI External Voltage Detection Circuit Characteristics  
Table 20.9 LVDI External Voltage Detection Circuit Characteristics  
Vcc = 4.5 to 5.5 V, AVcc = 3.0 to 5.5 V, VSS= 0.0 V, Ta = –20 to +75°C  
Values  
Test  
Item  
Symbol Condition  
Min.  
Typ.  
Max.  
Unit  
ExtD/ExtU input  
detection voltage  
Vexd  
0.85  
1.15  
1.45  
V
ExtD/ExtU input voltage VextD/U VextD > VextU  
range  
0.3  
Lower voltage,  
either AVcc + 0.3  
or Vcc + 0.3  
V
Rev. 3.00 Sep. 14, 2006 Page 327 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
20.2.8 Power-On Reset Characteristics  
Table 20.10 Power-On Reset Circuit Characteristics  
VSS = 0.0 V, Ta = –20 to +75°C, unless otherwise indicated.  
Values  
Test  
Item  
Symbol  
RRES  
Condition  
Min.  
100  
Typ.  
150  
Max. Unit  
Pull-up resistance of RES pin  
Power-on reset start voltage*  
kΩ  
Vpor  
100  
mV  
Note:  
*
The power-supply voltage (Vcc) must fall below Vpor = 100 mV and then rise after  
charge of the RES pin is removed completely. In order to remove charge of the RES  
pin, it is recommended that the diode be placed in the Vcc side. If the power-supply  
voltage (Vcc) rises from the point over 100 mV, a power-on reset may not occur.  
Rev. 3.00 Sep. 14, 2006 Page 328 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
20.2.9 Flash Memory Characteristics  
Table 20.11 Flash Memory Characteristics  
VCC = 3.0 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Test  
Item  
Symbol Condition  
Min. Typ. Max. Unit  
Programming time (per 128 bytes)*1*2*4 tP  
7
200  
ms  
Erase time (per block) *1*3*6  
tE  
100  
1200 ms  
Reprogramming count  
NWEC  
x
1000 10000 —  
Times  
µs  
Programming Wait time after SWE  
1
bit setting*1  
Wait time after PSU  
y
50  
µs  
bit setting*1  
Wait time after P bit  
z1  
z2  
z3  
1 n 6  
28  
30  
32  
µs  
µs  
µs  
setting*1*4  
7 n 1000 198  
200  
10  
202  
12  
Additional-  
8
programming  
Wait time after P bit  
α
β
γ
5
µs  
µs  
µs  
µs  
µs  
µs  
clear*1  
Wait time after PSU  
5
bit clear*1  
Wait time after PV  
4
bit setting*1  
Wait time after  
ε
2
dummy write*1  
Wait time after PV  
η
θ
N
2
bit clear*1  
Wait time after SWE  
100  
bit clear*1  
Maximum  
1000 Times  
programming count*1*4*5  
Rev. 3.00 Sep. 14, 2006 Page 329 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Values  
Test  
Item  
Symbol Condition  
Min. Typ. Max. Unit  
Erase  
Wait time after SWE  
x
y
z
α
β
γ
1
µs  
bit setting*1  
Wait time after ESU  
100  
10  
10  
10  
20  
2
µs  
bit setting*1  
Wait time after E bit  
100  
ms  
µs  
setting*1*6  
Wait time after E bit  
clear*1  
Wait time after ESU  
µs  
bit clear*1  
Wait time after EV  
µs  
bit setting*1  
Wait time after  
ε
µs  
dummy write*1  
Wait time after EV  
η
θ
N
4
µs  
bit clear*1  
Wait time after SWE  
100  
µs  
bit clear*1  
Maximum erase  
120  
Times  
count*1*6*7  
Notes: 1. Make the time settings in accordance with the program/erase algorithms.  
2. The programming time for 64 bytes. (Indicates the total time for which the P bit in flash  
memory control register 1 (FLMCR1) is set. The program-verify time is not included.)  
3. The time required to erase one block. (Indicates the time for which the E bit in flash  
memory control register 1 (FLMCR1) is set. The erase-verify time is not included.)  
4. Programming time maximum value (tP (max.)) = wait time after P bit setting (z) ×  
maximum programming count (N)  
5. Set the maximum programming count (N) according to the actual set values of z1, z2,  
and z3, so that it does not exceed the programming time maximum value (tP (max.)).  
The wait time after P bit setting (z1, z2) should be changed as follows according to the  
value of the programming count (n).  
Programming count (n)  
1 n 6  
z1 = 30 µs  
7 n 1000 z2 = 200 µs  
6. Erase time maximum value (tE (max.)) = wait time after E bit setting (z) × maximum  
erase count (N)  
7. Set the maximum erase count (N) according to the actual set value of (z), so that it  
does not exceed the erase time maximum value (tE (max.)).  
Rev. 3.00 Sep. 14, 2006 Page 330 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
20.3  
Electrical Characteristics (Masked ROM Version)  
20.3.1 Power Supply Voltage and Operating Ranges  
1. Supply voltage and external oscillation frequency range  
φosc(MHz)  
12.0  
2.0  
2.7  
5.5  
Vcc(V)  
AVcc = 2.7 to 5.5 V  
Active mode  
Sleep mode  
2. Power supply voltage and operating frequency range  
φosc(MHz)  
φ(kHz)  
12.0  
1500  
2.0  
31.25  
2.7  
AVcc = 2.7 to 5.5 V  
5.5  
2.7  
AVcc = 2.7 to 5.5 V  
5.5  
Vcc(V)  
Vcc(V)  
Active mode  
Sleep mode  
Active mode  
Sleep mode  
(When MA2 = 0 in SYSCR2)  
(When MA2 = 1 in SYSCR2)  
Rev. 3.00 Sep. 14, 2006 Page 331 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
3. Analog power supply voltage and A/D converter accuracy guarantee range  
φosc(MHz)  
12.0  
2.0  
2.7  
Vcc = 2.7 to 5.5 V  
5.5  
AVcc(V)  
Active mode  
Sleep mode  
Rev. 3.00 Sep. 14, 2006 Page 332 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
20.3.2 DC Characteristics  
Table 20.12 DC Characteristics (1)  
VCC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C unless otherwise indicated.  
Values  
Applicable  
Symbol Pins  
Test  
Condition  
Item  
Min.  
Typ. Max.  
Unit  
V
Notes  
Input high VIH  
voltage  
RES, NMI, WKP5, VCC = 4.0 V to 5.5 V  
IRQ0, IRQ3,  
VCC × 0.8  
VCC × 0.9  
VCC + 0.3  
VCC + 0.3  
V
ADTRG, TMRIV,  
TMCIV, FTCI,  
FTIOA to FTIOD,  
SCK3, TRGV  
RXD, SCL, SDA, VCC = 4.0 V to 5.5 V  
P17, P14,  
VCC × 0.7  
VCC × 0.8  
VCC + 0.3  
VCC + 0.3  
V
V
P22 to P20,  
P57 to P55,  
P76 to P74,  
P84 to P80,  
PC1, PC0  
PB3 to PB0  
AVCC = 4.0 V to 5.5 V AVCC × 0.7  
AVCC = 2.7 V to 5.5 V AVCC × 0.8  
AVCC + 0.3 V  
AVCC + 0.3 V  
OSC1  
VCC = 4.0 V to 5.5 V  
VCC – 0.5  
VCC – 0.3  
–0.3  
VCC + 0.3  
VCC + 0.3  
VCC × 0.2  
V
V
V
RES, NMI, WKP5,  
IRQ0, IRQ3,  
Input low VIL  
voltage  
VCC = 4.0 V to 5.5 V  
ADTRG, TMRIV,  
TMCIV, FTCI,  
–0.3  
–0.3  
VCC × 0.1  
VCC × 0.3  
V
V
FTIOA to FTIOD,  
SCK3, TRGV  
RXD, SCL, SDA, VCC = 4.0 V to 5.5 V  
P17, P14,  
P22 to P20,  
P57 to P55,  
P76 to P74,  
P84 to P80,  
PC1, PC0  
–0.3  
VCC × 0.2  
V
V
PB3 to PB0  
AVCC = 4.0 V to 5.5 V –0.3  
AVCC = 2.7 V to 5.5 V –0.3  
AVCC × 0.3  
AVCC × 0.2  
0.5  
OSC1  
VCC = 4.0 V to 5.5 V  
–0.3  
–0.3  
V
V
0.3  
Rev. 3.00 Sep. 14, 2006 Page 333 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Values  
Typ.  
Applicable  
Symbol Pins  
Test  
Condition  
Item  
Min.  
Max.  
Unit Notes  
Output  
high  
voltage  
VOH P17, P14,  
VCC = 4.0 V to 5.5 V VCC  
V
P22 to P20,  
P55,  
P76 to P74,  
P84 to P80,  
PC1, PC0  
1.0  
–IOH = 4 mA  
–IOH = 0.1 mA  
VCC  
0.5  
V
P56, P57  
VCC = 4.0 V to 5.5 V VCC  
V
V
V
2.5  
–IOH = 0.1 mA  
V
CC = 2.7 V to 4.0 V VCC  
2.2  
–IOH = 0.1 mA  
Output low VOL  
voltage  
P17, P14,  
VCC = 4.0 V to 5.5 V  
IOL = 1.6 mA  
0.6  
P22 to P20,  
P57 to P55,  
P76 to P74,  
PC1, PC0  
I
OL = 0.4 mA  
0.4  
1.5  
V
V
P84 to P80  
VCC = 4.0 V to 5.5 V  
IOL = 20.0 mA  
VCC = 4.0 V to 5.5 V  
IOL = 10.0 mA  
1.0  
0.4  
V
V
VCC = 4.0 V to 5.5 V  
IOL = 1.6 mA  
IOL = 0.4 mA  
0.4  
0.6  
V
V
SCL, SDA  
VCC = 4.0 V to 5.5 V  
IOL = 6.0 mA  
I
OL = 3.0 mA  
IN = 0.5 V to  
(VCC – 0.5 V)  
0.4  
1.0  
V
Input/  
| IIL  
|
OSC1, NMI,  
V
µA  
output  
leakage  
current  
WKP5,  
IRQ0, IRQ3,  
ADTRG, TRGV,  
TMRIV, TMCIV,  
FTCI, FTIOA to  
FTIOD, RXD,  
SCK3, SCL, SDA  
P17, P14,  
V
IN = 0.5 V to  
1.0  
1.0  
µA  
µA  
P22 to P20,  
P57 to P55,  
P76 to P74,  
P84 to P80,  
PC1, PC0  
(VCC – 0.5 V)  
PB3 to PB0  
VIN = 0.5 V to  
(AVCC – 0.5 V)  
Rev. 3.00 Sep. 14, 2006 Page 334 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Values  
Applicable  
Symbol Pins  
Test  
Condition  
Item  
Min.  
Typ. Max.  
Unit Notes  
–Ip  
P17, P14, P55  
VCC = 5.0 V,  
50.0  
300.0  
µA  
Pull-up  
MOS  
current  
V
IN = 0.0 V  
VCC = 2.7 V,  
IN = 0.0 V  
f = 1 MHz,  
IN = 0.0 V,  
60.0  
µA Reference  
value  
V
Input  
capaci-  
tance  
Cin  
All input pins  
except power  
supply pins  
15.0  
pF  
V
Ta = 25°C  
Active  
mode  
current  
consump-  
tion  
IOPE1  
VCC  
VCC  
VCC  
VCC  
Active mode 1  
12.0  
9.6  
2.0  
1.5  
7.2  
6.0  
1.8  
1.4  
18.0  
mA  
*
V
CC = 5.0 V,  
fOSC = 12 MHz  
Active mode 1  
CC = 2.7 V,  
OSC = 12 MHz  
mA Reference  
V
value*  
f
IOPE2  
Active mode 2  
CC = 5.0 V,  
OSC = 12 MHz  
2.5  
mA  
*
V
f
Active mode 2  
CC = 2.7 V,  
OSC = 12 MHz  
mA Reference  
V
value*  
f
Sleep  
mode  
current  
consump-  
tion  
ISLEEP1  
Sleep mode 1  
CC = 5.0 V,  
OSC = 12 MHz  
12.0  
mA  
*
V
f
Sleep mode 1  
CC = 2.7 V,  
OSC = 12 MHz  
mA Reference  
V
value*  
f
ISLEEP2  
Sleep mode 2  
CC = 5.0 V,  
OSC = 12 MHz  
2.2  
mA  
*
V
f
Sleep mode 2  
CC = 2.7 V,  
OSC = 12 MHz  
mA Reference  
V
value*  
f
Subsleep ISUBSP  
mode  
current  
consump-  
tion  
VCC  
VCC = 5.0 V  
LVDE = 0,  
BGRE = 0  
5.0  
µA  
µA  
*
Standby  
mode  
ISTBY  
VCC  
LVDE = 0,  
BGRE = 0  
5.0  
*
current  
consump-  
tion  
Rev. 3.00 Sep. 14, 2006 Page 335 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Values  
Applicable  
Test  
Item  
Symbol Pins  
Condition  
Min.  
Typ. Max.  
Unit Notes  
RAM data VRAM  
retaining  
VCC  
2.0  
V
voltage  
Note:  
*
Pin states during current consumption measurement are given below (excluding current  
in the pull-up MOS transistors and output buffers).  
Mode  
RES Pin  
Internal State  
Other Pins  
Oscillator Pins  
Active mode 1  
Active mode 2  
Sleep mode 1  
Sleep mode 2  
VCC  
Operates  
VCC  
System clock:  
Crystal or ceramic  
resonator, and on-chip  
oscillator  
Operates (φ/64)  
VCC  
VCC  
Only timers operate  
Only timers operate (φ/64)  
CPU and timers both stop  
VCC  
VCC  
Subsleep mode  
Standby mode  
Rev. 3.00 Sep. 14, 2006 Page 336 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Table 20.12 DC Characteristics (2)  
VCC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise indicated.  
Values  
Application  
Symbol Pins  
Test  
Item  
Condition  
Min.  
Typ. Max. Unit  
Allowable output low IOL  
current (per pin)  
Output pins except  
P84 to P80, SCL,  
and SDA  
V
CC = 4.0 V to 5.5 V —  
2.0  
mA  
P84 to P80  
20.0  
0.5  
mA  
mA  
Output pins except  
P84 to P80, SCL,  
and SDA  
P84 to P80  
SCL, SDA  
10.0  
6.0  
mA  
mA  
mA  
Allowable output low IOL  
current (total)  
Output pins except  
P84 to P80, SCL,  
and SDA  
V
CC = 4.0 V to 5.5 V —  
40.0  
P84 to P80, SCL,  
and SDA  
80.0  
20.0  
mA  
mA  
Output pins except  
P84 to P80, SCL,  
and SDA  
P84 to P80, SCL,  
and SDA  
40.0  
mA  
Allowable output high I –IOH  
current (per pin)  
I
Output pins except VCC = 4.0 V to 5.5 V —  
4.0  
0.2  
2.0  
0.2  
40.0  
8.0  
mA  
mA  
mA  
mA  
mA  
mA  
P56, P57  
P56, P57  
VCC = 4.0 V to 5.5 V —  
VCC = 4.0 V to 5.5 V —  
Allowable output high I –IOH  
current (total)  
I
All output pins  
Rev. 3.00 Sep. 14, 2006 Page 337 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
20.3.3 AC Characteristics  
Table 20.13 AC Characteristics  
VCC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Applicable  
Symbol Pins  
Test  
Condition  
Reference  
Max. Unit Figure  
Item  
Min.  
Typ.  
System clock  
oscillation  
fOSC  
OSC1, OSC2  
2.0  
12.0  
MHz  
frequency  
System clock (φ)  
cycle time  
tcyc  
1
64  
tOSC  
µs  
*
Figure 20.1  
2
32.0  
Instruction cycle  
time  
tcyc  
Oscillation  
stabilization time  
(crystal resonator)  
trc  
OSC1, OSC2  
OSC1, OSC2  
10.0  
5.0  
ms  
ms  
Oscillation  
trc  
stabilization time  
(ceramic resonator)  
External clock high tCPH  
width  
OSC1  
OSC1  
OSC1  
OSC1  
35.0  
35.0  
ns  
ns  
ns  
ns  
Figure 20.1  
External clock low tCPL  
width  
External clock rise tCPr  
time  
15.0  
15.0  
External clock fall tCPf  
time  
RES pin low width* tREL  
NMI pin high width tIHNMI  
NMI pin low width tILNMI  
Input pin high width tIH  
RES  
NMI  
NMI  
2500  
1500  
1500  
2
ns  
ns  
ns  
tcyc  
Figure 20.2  
Figure 20.3  
IRQ0 , IRQ3,  
Figure 20.3  
WKP5,TMCIV,  
TMRIV, TRGV,  
ADTRG, FTCI,  
FTIOA to FTIOD  
Note:  
*
Except when power-on reset circuit is used.  
Rev. 3.00 Sep. 14, 2006 Page 338 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Values  
Applicable  
Symbol Pins  
Test  
Condition  
Reference  
Max. Unit Figure  
Item  
Min.  
Typ.  
Input pin low width tIL  
IRQ0, IRQ3,  
2
tcyc  
Figure 20.3  
WKP5, TMCIV,  
TMRIV, TRGV,  
ADTRG, FTCI,  
FTIOA to FTIOD  
On-chip oscillator fRC  
oscillation  
frequency  
VCC = 4.0 V to  
5.5 V  
FSEL = 0,  
VCLSEL = 0  
7.6  
9.4  
8.0  
8.4  
MHz  
MHz  
V
CC = 4.0 V to  
10.0  
10.6  
5.5 V  
FSEL = 1,  
VCLSEL = 0  
Notes: * Determined by MA2 to MA0 in system control register 2 (SYSCR2).  
Rev. 3.00 Sep. 14, 2006 Page 339 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Table 20.14 I2C Bus Interface Timing  
VCC = 2.7 to 5.5 V, VSS = 0.0 V, Ta = –20 to +75°C, unless otherwise indicated.  
Values  
Applicable Test  
Reference  
Item  
Symbol  
Pins  
Condition Min.  
Typ. Max. Unit Figure  
SCL input cycle time tSCL  
12tcyc + 600   
ns Figure  
20.4  
SCL input high pulse tSCLH  
width  
3tcyc + 300  
ns  
SCL input low pulse  
width  
tSCLL  
5tcyc + 300  
ns  
SCL and SDA input  
fall time  
tSf  
300 ns  
1tcyc ns  
SCL and SDA input  
spike pulse removal  
time  
tSP  
SDA input bus-free  
time  
tBUF  
5tcyc  
3tcyc  
3tcyc  
ns  
ns  
ns  
Start condition input  
hold time  
tSTAH  
Retransmission start tSTAS  
condition input setup  
time  
Setup time for stop  
condition input  
tSTOS  
3tcyc  
ns  
Data input setup time tSDAS  
1tcyc+ 20  
ns  
ns  
Data input hold time  
tSDAH  
cb  
0
0
Capacitive load of  
SCL and SDA  
400 pF  
SCL and SDA output tSf  
fall time  
VCC = 4.0 to   
250 ns  
5.5 V  
300 ns  
Rev. 3.00 Sep. 14, 2006 Page 340 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Table 20.15 Serial Interface (SCI3) Timing  
VCC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Applicable Test  
Reference  
Unit Figure  
Item  
Symbol  
Pins  
Condition Min.  
Typ.  
Max.  
Input  
clock  
cycle  
Asynchro-  
nous  
tscyc  
SCK3  
4
tcyc  
Figure  
20.5  
Clocked  
6
tcyc  
synchronous  
Input clock pulse width tSCKW  
SCK3  
TXD  
0.4  
0.6  
1
tscyc  
tcyc  
Transmit data delay  
time (clocked  
tTXD  
tRXS  
tRXH  
Figure  
20.6  
synchronous)  
Receive data setup  
time (clocked  
RXD  
RXD  
83.3  
83.3  
ns  
ns  
synchronous)s  
Receive data hold  
time (clocked  
synchronous)  
Rev. 3.00 Sep. 14, 2006 Page 341 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
20.3.4 A/D Converter Characteristics  
Table 20.16 A/D Converter Characteristics  
VCC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Applicable Test  
Item  
Symbol Pins  
Condition  
Min.  
Typ. Max.  
Unit Notes  
1
*
Analog power supply  
voltage  
AVCC  
AVCC  
2.7  
VCC 5.5  
V
Analog input voltage  
AVIN  
AIOPE  
AN3 to AN0  
AVCC  
VSS – 0.3 —  
AVCC + 0.3 V  
Analog power supply  
current  
AVCC = 5.0 V  
fOSC = 12 MHz  
2.0  
mA  
2
*
AISTOP1  
AVCC  
50  
µA  
Reference  
value  
3
*
AISTOP2  
CAIN  
AVCC  
5.0  
µA  
pF  
Analog input  
capacitance  
AN3 to AN0  
30.0  
Allowable signal source RAIN  
impedance  
AN3 to AN0  
5.0  
kΩ  
Resolution (data length)  
10  
10  
10  
bit  
tcyc  
Conversion time (single  
mode)  
AVCC = 2.7 V 134  
to 5.5 V  
Nonlinearity error  
Offset error  
7.5  
7.5  
7.5  
0.5  
8.0  
LSB  
LSB  
LSB  
LSB  
LSB  
tcyc  
Full-scale error  
Quantization error  
Absolute accuracy  
Conversion time (single  
mode)  
AVCC = 4.0 V 70  
to 5.5 V  
Nonlinearity error  
Offset error  
7.5  
7.5  
7.5  
0.5  
8.0  
LSB  
LSB  
LSB  
LSB  
LSB  
Full-scale error  
Quantization error  
Absolute accuracy  
Rev. 3.00 Sep. 14, 2006 Page 342 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
Values  
Applicable Test  
Pins Condition  
Item  
Symbol  
Min.  
Typ.  
Max.  
Unit Notes  
Conversion time (single  
mode)  
AVCC = 4.0 V 134  
to 5.5 V  
tcyc  
Nonlinearity error  
Offset error  
3.5  
3.5  
3.5  
0.5  
4.0  
LSB  
LSB  
LSB  
LSB  
LSB  
Full-scale error  
Quantization error  
Absolute accuracy  
Notes: 1. Set AVCC = VCC when the A/D converter is not used.  
2. AISTOP1 is the current in active and sleep modes while the A/D converter is idle.  
3. AISTOP2 is the current at reset and in standby and subsleep modes while the A/D  
converter is idle.  
20.3.5 Watchdog Timer Characteristics  
Table 20.17 Watchdog Timer Characteristics  
VCC = 2.7 V to 5.5 V, VSS = 0.0 V, Ta = –20°C to +75°C, unless otherwise specified.  
Values  
Test  
Applicable  
Pins  
Item  
Symbol  
Condition Min. Typ. Max. Unit Notes  
Internal oscillator  
overflow time  
tOVF  
0.2  
0.4  
s
*
Note:  
*
Shows the time to count from 0 to 255, at which point an internal reset is generated,  
when the internal oscillator is selected.  
Rev. 3.00 Sep. 14, 2006 Page 343 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
20.3.6 Power-Supply-Voltage Detection Circuit Characteristics  
Table 20.18 Power-Supply-Voltage Detection Circuit Characteristics  
VSS = 0.0 V, Ta = –20 to +75°C, unless otherwise indicated.  
Values  
Test  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max. Unit  
Power-supply falling detection  
voltage  
Vint(D)  
LVDSEL = 0 3.3  
3.7  
4.3  
V
Power-supply rising detection  
voltage  
Vint(U)  
LVDSEL = 0 3.6  
4.0  
4.5  
V
Reset detection voltage 1*1  
Reset detection voltage 2*2  
Vreset1  
Vreset2  
VLVDRmin  
LVDSEL = 0 2.0  
LVDSEL = 1 3.0  
1.0  
2.3  
3.6  
2.7  
4.2  
V
V
V
Lower-limit voltage of LVDR  
operation*3  
LVD stabilization time  
tLVDON  
ISTBY  
50  
µs  
Current consumption in standby  
mode  
LVDE = 1,  
BGRE = 1  
Vcc = 5.0 V  
350  
µA  
Notes: 1. This voltage should be used when the falling and rising voltage detection function is  
used.  
2. Select the low-voltage reset 2 when only the low-voltage detection reset is used.  
3. When the power-supply voltage (Vcc) falls below VLVDRmin = 1.0 V and then rises, a reset  
may not occur. Therefore sufficient evaluation is required.  
20.3.7 LVDI External Voltage Detection Circuit Characteristics  
Table 20.19 LVDI External Voltage Detection Circuit Characteristics  
Vcc = 4.5 to 5.5 V, AVcc = 2.7 to 5.5 V, VSS= 0.0 V, Ta = –20 to +75°C  
Values  
Test  
Item  
Symbol Condition  
Min.  
Typ.  
Max.  
Unit  
ExtD/ExtU input  
detection voltage  
Vexd  
0.85  
1.15  
1.45  
V
ExtD/ExtU input voltage VextD/U VextD > VextU  
range  
0.3  
Lower voltage,  
either AVcc + 0.3  
or Vcc + 0.3  
V
Rev. 3.00 Sep. 14, 2006 Page 344 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
20.3.8 Power-On Reset Characteristics  
Table 20.20 Power-On Reset Circuit Characteristics  
VSS = 0.0 V, Ta = –20 to +75°C, unless otherwise indicated.  
Values  
Test  
Item  
Symbol  
Condition  
Min.  
100  
Typ.  
150  
Max.  
Unit  
kΩ  
Pull-up resistance of RES pin RRES  
Power-on reset start voltage* Vpor  
100  
mV  
Note:  
*
The power-supply voltage (Vcc) must fall below Vpor = 100 mV and then rise after  
charge of the RES pin is removed completely. In order to remove charge of the RES  
pin, it is recommended that the diode be placed in the Vcc side. If the power-supply  
voltage (Vcc) rises from the point over 100 mV, a power-on reset may not occur.  
Rev. 3.00 Sep. 14, 2006 Page 345 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
20.4  
Operation Timing  
tOSC  
V
IH  
IL  
OSC1  
V
tCPH  
tCPL  
tCPr  
tCPf  
Figure 20.1 System Clock Input Timing  
Vcc × 0.7  
Vcc  
OSC1  
t
REL  
RES  
VIL  
V
IL  
t
REL  
Figure 20.2 RES Low Width Timing  
IRQ0, IRQ3  
WKP5, NMI  
ADTRG  
V
IH  
IL  
V
FTCI, FTIOA  
FTIOB, FTIOC  
FTIOD  
tIL  
tIH  
TMCIV, TMRIV  
TRGV  
Figure 20.3 Input Timing  
Rev. 3.00 Sep. 14, 2006 Page 346 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
VIH  
VIL  
SDA  
SCL  
tBUF  
tSTAH  
tSP  
tSTOS  
tSCLH  
tSTAS  
P*  
S*  
Sr*  
P*  
tSCLL  
tSDAS  
tSf  
tSr  
tSCL  
tSDAH  
Note: * S, P, and Sr represent the following:  
S: Start condition  
P: Stop comdition  
Sr: Retransmission start condition  
Figure 20.4 I2C Bus Interface Input/Output Timing  
t
SCKW  
SCK3  
t
scyc  
Figure 20.5 SCK3 Input Clock Timing  
Rev. 3.00 Sep. 14, 2006 Page 347 of 408  
REJ09B0105-0300  
Section 20 Electrical Characteristics  
tscyc  
*
VIH or VOH  
SCK3  
*
VIL or VOL  
tTXD  
*
VOH  
TXD  
(transmit data)  
*
VOL  
tRXS  
tRXH  
RXD  
(receive data)  
*
Note:  
Output timing reference levels  
Output high:  
Output low:  
V
V
= 2.0 V  
OH  
= 0.8 V  
OL  
Load conditions are shown in figure 20.7.  
Figure 20.6 SCI3 Input/Output Timing in Clocked Synchronous Mode  
20.5  
Output Load Condition  
VCC  
2.4 k  
LSI output pin  
30 pF  
12 kΩ  
Figure 20.7 Output Load Circuit  
Rev. 3.00 Sep. 14, 2006 Page 348 of 408  
REJ09B0105-0300  
Appendix  
Appendix A Instruction Set  
A.1  
Instruction List  
Operand Notation  
Symbol  
Description  
Rd  
General (destination*) register  
General (source*) register  
General register*  
Rs  
Rn  
ERd  
ERs  
ERn  
(EAd)  
(EAs)  
PC  
SP  
General destination register (address register or 32-bit register)  
General source register (address register or 32-bit register)  
General register (32-bit register)  
Destination operand  
Source operand  
Program counter  
Stack pointer  
CCR  
N
Condition-code register  
N (negative) flag in CCR  
Z (zero) flag in CCR  
Z
V
V (overflow) flag in CCR  
C (carry) flag in CCR  
C
disp  
Displacement  
Transfer from the operand on the left to the operand on the right, or transition from  
the state on the left to the state on the right  
+
×
÷
¬
Addition of the operands on both sides  
Subtraction of the operand on the right from the operand on the left  
Multiplication of the operands on both sides  
Division of the operand on the left by the operand on the right  
Logical AND of the operands on both sides  
Logical OR of the operands on both sides  
Logical exclusive OR of the operands on both sides  
NOT (logical complement)  
Rev. 3.00 Sep. 14, 2006 Page 349 of 408  
REJ09B0105-0300  
Appendix  
Symbol  
Description  
( ), < >  
Contents of operand  
Note: General registers include 8-bit registers (R0H to R7H and R0L to R7L) and 16-bit registers  
(R0 to R7 and E0 to E7).  
Condition Code Notation  
Symbol  
Description  
Changed according to execution result  
Undetermined (no guaranteed value)  
Cleared to 0  
*
0
1
Set to 1  
Not affected by execution of the instruction  
Varies depending on conditions, described in notes  
Rev. 3.00 Sep. 14, 2006 Page 350 of 408  
REJ09B0105-0300  
Appendix  
Table A.1 Instruction Set  
Data transfer instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
MOV.B #xx:8, Rd  
B
B
B
B
B
B
2
#xx:8 Rd8  
0
0
0
0
0
0
2
2
MOV  
MOV.B Rs, Rd  
2
2
4
8
2
Rs8 Rd8  
MOV.B @ERs, Rd  
MOV.B @(d:16, ERs), Rd  
MOV.B @(d:24, ERs), Rd  
MOV.B @ERs+, Rd  
@ERs Rd8  
4
@(d:16, ERs) Rd8  
@(d:24, ERs) Rd8  
6
10  
6
@ERs Rd8  
ERs32+1 ERs32  
MOV.B @aa:8, Rd  
B
B
B
B
B
B
B
2
@aa:8 Rd8  
0
0
0
0
0
0
0
4
6
MOV.B @aa:16, Rd  
MOV.B @aa:24, Rd  
MOV.B Rs, @ERd  
4
@aa:16 Rd8  
@aa:24 Rd8  
Rs8 @ERd  
6
8
2
4
8
2
4
MOV.B Rs, @(d:16, ERd)  
MOV.B Rs, @(d:24, ERd)  
MOV.B Rs, @–ERd  
Rs8 @(d:16, ERd)  
Rs8 @(d:24, ERd)  
6
10  
6
ERd32–1 ERd32  
Rs8 @ERd  
MOV.B Rs, @aa:8  
B
B
2
4
6
Rs8 @aa:8  
0
0
0
0
0
0
0
0
0
4
6
MOV.B Rs, @aa:16  
MOV.B Rs, @aa:24  
MOV.W #xx:16, Rd  
MOV.W Rs, Rd  
Rs8 @aa:16  
Rs8 @aa:24  
#xx:16 Rd16  
Rs16 Rd16  
B
8
W
W
W
W
W
W
4
4
2
2
4
8
2
2
MOV.W @ERs, Rd  
MOV.W @(d:16, ERs), Rd  
MOV.W @(d:24, ERs), Rd  
MOV.W @ERs+, Rd  
@ERs Rd16  
@(d:16, ERs) Rd16  
@(d:24, ERs) Rd16  
4
6
10  
6
@ERs Rd16  
ERs32+2 @ERd32  
MOV.W @aa:16, Rd  
MOV.W @aa:24, Rd  
MOV.W Rs, @ERd  
W
W
W
W
W
4
@aa:16 Rd16  
0
0
0
0
0
6
8
6
@aa:24 Rd16  
2
4
8
Rs16 @ERd  
4
MOV.W Rs, @(d:16, ERd)  
MOV.W Rs, @(d:24, ERd)  
Rs16 @(d:16, ERd)  
Rs16 @(d:24, ERd)  
6
10  
Rev. 3.00 Sep. 14, 2006 Page 351 of 408  
REJ09B0105-0300  
Appendix  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
MOV.W Rs, @–ERd  
W
2
ERd32–2 ERd32  
Rs16 @ERd  
0
6
MOV  
MOV.W Rs, @aa:16  
MOV.W Rs, @aa:24  
MOV.L #xx:32, Rd  
W
W
L
4
6
Rs16 @aa:16  
0
0
0
0
0
0
0
0
6
8
Rs16 @aa:24  
6
#xx:32 Rd32  
6
MOV.L ERs, ERd  
L
2
ERs32 ERd32  
@ERs ERd32  
2
MOV.L @ERs, ERd  
MOV.L @(d:16, ERs), ERd  
MOV.L @(d:24, ERs), ERd  
MOV.L @ERs+, ERd  
L
4
8
L
6
@(d:16, ERs) ERd32  
@(d:24, ERs) ERd32  
10  
14  
10  
L
10  
4
L
@ERs ERd32  
ERs32+4 ERs32  
MOV.L @aa:16, ERd  
MOV.L @aa:24, ERd  
MOV.L ERs, @ERd  
L
L
L
L
L
L
6
@aa:16 ERd32  
0
0
0
0
0
0
10  
12  
8
8
@aa:24 ERd32  
4
ERs32 @ERd  
MOV.L ERs, @(d:16, ERd)  
MOV.L ERs, @(d:24, ERd)  
MOV.L ERs, @–ERd  
6
ERs32 @(d:16, ERd)  
ERs32 @(d:24, ERd)  
10  
14  
10  
10  
4
ERd32–4 ERd32  
ERs32 @ERd  
MOV.L ERs, @aa:16  
MOV.L ERs, @aa:24  
POP.W Rn  
L
L
6
8
ERs32 @aa:16  
ERs32 @aa:24  
0
0
0
10  
12  
6
W
2
4
2
4
@SP Rn16  
SP+2 SP  
POP  
POP.L ERn  
PUSH.W Rn  
PUSH.L ERn  
L
W
L
@SP ERn32  
SP+4 SP  
0
0
0
10  
6
SP–2 SP  
Rn16 @SP  
PUSH  
SP–4 SP  
10  
ERn32 @SP  
Cannot be used in  
this LSI  
MOVFPE MOVFPE @aa:16, Rd  
MOVTPE MOVTPE Rs, @aa:16  
B
B
Cannot be used in  
this LSI  
4
4
Cannot be used in  
this LSI  
Cannot be used in  
this LSI  
Rev. 3.00 Sep. 14, 2006 Page 352 of 408  
REJ09B0105-0300  
Appendix  
Arithmetic instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
ADD.B #xx:8, Rd  
ADD.B Rs, Rd  
B
B
2
4
6
Rd8+#xx:8 Rd8  
Rd8+Rs8 Rd8  
2
2
4
2
6
ADD  
2
2
ADD.W #xx:16, Rd  
ADD.W Rs, Rd  
W
W
L
Rd16+#xx:16 Rd16  
Rd16+Rs16 Rd16  
— (1)  
— (1)  
— (2)  
ADD.L #xx:32, ERd  
ERd32+#xx:32 →  
ERd32  
ADD.L ERs, ERd  
L
2
ERd32+ERs32 →  
— (2)  
2
ERd32  
ADDX.B #xx:8, Rd  
ADDX.B Rs, Rd  
ADDS.L #1, ERd  
ADDS.L #2, ERd  
ADDS.L #4, ERd  
INC.B Rd  
B
B
L
2
Rd8+#xx:8 +C Rd8  
Rd8+Rs8 +C Rd8  
ERd32+1 ERd32  
ERd32+2 ERd32  
ERd32+4 ERd32  
Rd8+1 Rd8  
(3)  
(3)  
2
2
2
2
2
2
2
2
2
2
2
ADDX  
ADDS  
2
2
2
2
2
2
2
2
2
2
*
L
L
B
W
W
L
INC  
INC.W #1, Rd  
INC.W #2, Rd  
INC.L #1, ERd  
INC.L #2, ERd  
DAA Rd  
Rd16+1 Rd16  
Rd16+2 Rd16  
ERd32+1 ERd32  
ERd32+2 ERd32  
L
B
Rd8 decimal adjust  
*
DAA  
SUB  
Rd8  
SUB.B Rs, Rd  
B
W
W
L
2
2
2
Rd8–Rs8 Rd8  
2
4
2
6
2
2
2
2
2
2
2
2
2
SUB.W #xx:16, Rd  
SUB.W Rs, Rd  
SUB.L #xx:32, ERd  
SUB.L ERs, ERd  
SUBX.B #xx:8, Rd  
SUBX.B Rs, Rd  
SUBS.L #1, ERd  
SUBS.L #2, ERd  
SUBS.L #4, ERd  
DEC.B Rd  
4
6
2
Rd16–#xx:16 Rd16  
Rd16–Rs16 Rd16  
— (1)  
— (1)  
ERd32–#xx:32 ERd32 — (2)  
ERd32–ERs32 ERd32 — (2)  
L
SUBX  
SUBS  
B
B
L
Rd8–#xx:8–C Rd8  
Rd8–Rs8–C Rd8  
ERd32–1 ERd32  
ERd32–2 ERd32  
ERd32–4 ERd32  
Rd8–1 Rd8  
(3)  
(3)  
2
2
2
2
2
2
2
L
L
DEC  
B
W
W
DEC.W #1, Rd  
DEC.W #2, Rd  
Rd16–1 Rd16  
Rd16–2 Rd16  
Rev. 3.00 Sep. 14, 2006 Page 353 of 408  
REJ09B0105-0300  
Appendix  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
DEC.L #1, ERd  
DEC.L #2, ERd  
L
L
B
2
2
2
ERd32–1 ERd32  
ERd32–2 ERd32  
*
2
2
2
DEC  
DAS DAS.Rd  
Rd8 decimal adjust  
*
Rd8  
MULXU MULXU. B Rs, Rd  
MULXU. W Rs, ERd  
MULXS MULXS. B Rs, Rd  
MULXS. W Rs, ERd  
B
W
B
2
2
4
4
2
Rd8 × Rs8 Rd16  
(unsigned multiplication)  
14  
22  
16  
24  
14  
Rd16 × Rs16 ERd32  
(unsigned multiplication)  
Rd8 × Rs8 Rd16  
(signed multiplication)  
W
B
Rd16 × Rs16 ERd32  
(signed multiplication)  
DIVXU DIVXU. B Rs, Rd  
Rd16 ÷ Rs8 Rd16  
(RdH: remainder,  
RdL: quotient)  
— (6) (7) —  
— (6) (7) —  
— (8) (7) —  
— (8) (7) —  
(unsigned division)  
DIVXU. W Rs, ERd  
DIVXS DIVXS. B Rs, Rd  
DIVXS. W Rs, ERd  
W
B
2
4
4
ERd32 ÷ Rs16 ERd32  
(Ed: remainder,  
22  
16  
24  
Rd: quotient)  
(unsigned division)  
Rd16 ÷ Rs8 Rd16  
(RdH: remainder,  
RdL: quotient)  
(signed division)  
W
ERd32 ÷ Rs16 ERd32  
(Ed: remainder,  
Rd: quotient)  
(signed division)  
CMP CMP.B #xx:8, Rd  
CMP.B Rs, Rd  
B
B
2
4
6
Rd8–#xx:8  
2
2
4
2
4
2
2
2
2
Rd8–Rs8  
CMP.W #xx:16, Rd  
CMP.W Rs, Rd  
W
W
L
Rd16–#xx:16  
Rd16–Rs16  
ERd32–#xx:32  
ERd32–ERs32  
— (1)  
— (1)  
— (2)  
— (2)  
CMP.L #xx:32, ERd  
CMP.L ERs, ERd  
L
Rev. 3.00 Sep. 14, 2006 Page 354 of 408  
REJ09B0105-0300  
Appendix  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
NEG.B Rd  
B
0–Rd8 Rd8  
W 0–Rd16 Rd16  
0–ERd32 ERd32  
2
2
2
2
2
2
2
2
NEG  
NEG.W Rd  
NEG.L ERd  
L
EXTU EXTU.W Rd  
W 0 (<bits 15 to 8>  
0
0
0
0
0
0
of Rd16)  
EXTU.L ERd  
L
0 (<bits 31 to 16>  
of ERd32)  
2
2
2
2
2
2
EXTS EXTS.W Rd  
EXTS.L ERd  
W (<bit 7> of Rd16) →  
(<bits 15 to 8> of Rd16)  
L
(<bit 15> of ERd32) →  
(<bits 31 to 16> of  
ERd32)  
Rev. 3.00 Sep. 14, 2006 Page 355 of 408  
REJ09B0105-0300  
Appendix  
Logic instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
AND.B #xx:8, Rd  
AND.B Rs, Rd  
B
B
W
W
L
2
4
6
2
4
6
2
4
6
Rd8#xx:8 Rd8  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
4
2
6
4
2
2
4
2
6
4
2
2
4
2
6
4
2
2
2
AND  
2
2
4
2
2
4
2
2
Rd8Rs8 Rd8  
AND.W #xx:16, Rd  
AND.W Rs, Rd  
AND.L #xx:32, ERd  
AND.L ERs, ERd  
OR.B #xx:8, Rd  
OR.B Rs, Rd  
Rd16#xx:16 Rd16  
Rd16Rs16 Rd16  
ERd32#xx:32 ERd32  
ERd32ERs32 ERd32  
Rd8#xx:8 Rd8  
L
B
B
W
W
L
OR  
Rd8Rs8 Rd8  
OR.W #xx:16, Rd  
OR.W Rs, Rd  
Rd16#xx:16 Rd16  
Rd16Rs16 Rd16  
ERd32#xx:32 ERd32  
ERd32ERs32 ERd32  
Rd8#xx:8 Rd8  
Rd8Rs8 Rd8  
OR.L #xx:32, ERd  
OR.L ERs, ERd  
L
XOR XOR.B #xx:8, Rd  
XOR.B Rs, Rd  
B
B
W
W
L
XOR.W #xx:16, Rd  
XOR.W Rs, Rd  
Rd16#xx:16 Rd16  
Rd16Rs16 Rd16  
ERd32#xx:32 ERd32  
ERd32ERs32 ERd32  
¬ Rd8 Rd8  
XOR.L #xx:32, ERd  
XOR.L ERs, ERd  
NOT NOT.B Rd  
NOT.W Rd  
L
4
2
2
2
B
W
L
¬ Rd16 Rd16  
NOT.L ERd  
¬ Rd32 Rd32  
Rev. 3.00 Sep. 14, 2006 Page 356 of 408  
REJ09B0105-0300  
Appendix  
Shift instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
SHAL.B Rd  
B
W
L
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
SHAL  
C
0
SHAL.W Rd  
SHAL.L ERd  
SHAR.B Rd  
SHAR.W Rd  
SHAR.L ERd  
SHLL.B Rd  
MSB  
LSB  
B
W
L
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SHAR  
SHLL  
C
MSB  
LSB  
B
W
L
C
0
SHLL.W Rd  
SHLL.L ERd  
SHLR.B Rd  
SHLR.W Rd  
SHLR.L ERd  
ROTXL.B Rd  
ROTXL.W Rd  
ROTXL.L ERd  
ROTXR.B Rd  
ROTXR.W Rd  
ROTXR.L ERd  
MSB  
MSB  
LSB  
LSB  
B
W
L
SHLR  
ROTXL  
0
C
B
W
L
C
MSB  
LSB  
B
W
L
ROTXR  
C
MSB  
LSB  
ROTL ROTL.B Rd  
ROTL.W Rd  
B
W
L
C
MSB  
LSB  
ROTL.L ERd  
ROTR.B Rd  
ROTR.W Rd  
ROTR.L ERd  
B
W
L
ROTR  
C
MSB  
LSB  
Rev. 3.00 Sep. 14, 2006 Page 357 of 408  
REJ09B0105-0300  
Appendix  
Bit manipulation instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
BSET #xx:3, Rd  
BSET #xx:3, @ERd  
BSET #xx:3, @aa:8  
BSET Rn, Rd  
B
B
B
B
B
B
B
B
B
B
B
B
B
2
4
4
2
4
4
2
4
4
2
4
4
2
(#xx:3 of Rd8) 1  
(#xx:3 of @ERd) 1  
(#xx:3 of @aa:8) 1  
(Rn8 of Rd8) 1  
2
8
8
2
8
8
2
8
8
2
8
8
2
BSET  
BSET Rn, @ERd  
BSET Rn, @aa:8  
BCLR #xx:3, Rd  
BCLR #xx:3, @ERd  
BCLR #xx:3, @aa:8  
BCLR Rn, Rd  
(Rn8 of @ERd) 1  
(Rn8 of @aa:8) 1  
(#xx:3 of Rd8) 0  
(#xx:3 of @ERd) 0  
(#xx:3 of @aa:8) 0  
(Rn8 of Rd8) 0  
BCLR  
BNOT  
BCLR Rn, @ERd  
BCLR Rn, @aa:8  
BNOT #xx:3, Rd  
(Rn8 of @ERd) 0  
(Rn8 of @aa:8) 0  
(#xx:3 of Rd8) ←  
¬ (#xx:3 of Rd8)  
BNOT #xx:3, @ERd  
BNOT #xx:3, @aa:8  
BNOT Rn, Rd  
B
B
B
B
B
4
(#xx:3 of @ERd) ←  
¬ (#xx:3 of @ERd)  
8
8
2
8
8
4
(#xx:3 of @aa:8) ←  
¬ (#xx:3 of @aa:8)  
2
4
4
(Rn8 of Rd8) ←  
¬ (Rn8 of Rd8)  
BNOT Rn, @ERd  
BNOT Rn, @aa:8  
(Rn8 of @ERd) ←  
¬ (Rn8 of @ERd)  
(Rn8 of @aa:8) ←  
¬ (Rn8 of @aa:8)  
BTST #xx:3, Rd  
BTST #xx:3, @ERd  
BTST #xx:3, @aa:8  
BTST Rn, Rd  
B
B
B
B
B
B
B
2
4
4
2
4
4
2
¬ (#xx:3 of Rd8) Z  
¬ (#xx:3 of @ERd) Z  
¬ (#xx:3 of @aa:8) Z  
¬ (Rn8 of @Rd8) Z  
¬ (Rn8 of @ERd) Z  
¬ (Rn8 of @aa:8) Z  
(#xx:3 of Rd8) C  
2
6
6
2
6
6
2
BTST  
BTST Rn, @ERd  
BTST Rn, @aa:8  
BLD #xx:3, Rd  
BLD  
Rev. 3.00 Sep. 14, 2006 Page 358 of 408  
REJ09B0105-0300  
Appendix  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
BLD #xx:3, @ERd  
BLD #xx:3, @aa:8  
BILD #xx:3, Rd  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
4
(#xx:3 of @ERd) C  
6
6
2
6
6
2
8
8
2
8
8
2
6
6
2
6
6
2
6
6
2
6
6
2
6
6
2
6
6
BLD  
4
(#xx:3 of @aa:8) C  
2
¬ (#xx:3 of Rd8) C  
BILD  
BILD #xx:3, @ERd  
BILD #xx:3, @aa:8  
BST #xx:3, Rd  
4
¬ (#xx:3 of @ERd) C  
¬ (#xx:3 of @aa:8) C  
C (#xx:3 of Rd8)  
4
2
BST  
BST #xx:3, @ERd  
BST #xx:3, @aa:8  
BIST #xx:3, Rd  
4
C (#xx:3 of @ERd24)  
C (#xx:3 of @aa:8)  
4
BIST  
2
¬ C (#xx:3 of Rd8)  
BIST #xx:3, @ERd  
BIST #xx:3, @aa:8  
BAND #xx:3, Rd  
4
¬ C (#xx:3 of @ERd24)  
¬ C (#xx:3 of @aa:8)  
C(#xx:3 of Rd8) C  
4
2
BAND  
BAND #xx:3, @ERd  
BAND #xx:3, @aa:8  
BIAND #xx:3, Rd  
BIAND #xx:3, @ERd  
BIAND #xx:3, @aa:8  
BOR #xx:3, Rd  
4
C(#xx:3 of @ERd24) C  
C(#xx:3 of @aa:8) C  
C¬ (#xx:3 of Rd8) C  
C¬ (#xx:3 of @ERd24) C  
C¬ (#xx:3 of @aa:8) C  
C(#xx:3 of Rd8) C  
4
BIAND  
2
4
4
2
BOR  
BIOR  
BOR #xx:3, @ERd  
BOR #xx:3, @aa:8  
BIOR #xx:3, Rd  
4
C(#xx:3 of @ERd24) C  
C(#xx:3 of @aa:8) C  
C¬ (#xx:3 of Rd8) C  
C¬ (#xx:3 of @ERd24) C  
C¬ (#xx:3 of @aa:8) C  
C(#xx:3 of Rd8) C  
C(#xx:3 of @ERd24) C  
C(#xx:3 of @aa:8) C  
C¬ (#xx:3 of Rd8) C  
C¬ (#xx:3 of @ERd24) C  
C¬ (#xx:3 of @aa:8) C  
4
2
BIOR #xx:3, @ERd  
BIOR #xx:3, @aa:8  
BXOR #xx:3, Rd  
4
4
2
BXOR  
BIXOR  
BXOR #xx:3, @ERd  
BXOR #xx:3, @aa:8  
BIXOR #xx:3, Rd  
BIXOR #xx:3, @ERd  
BIXOR #xx:3, @aa:8  
4
4
2
4
4
Rev. 3.00 Sep. 14, 2006 Page 359 of 408  
REJ09B0105-0300  
Appendix  
Branching instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
Branch  
I
H
N
Z
V
C
Condition  
BRA d:8 (BT d:8)  
BRA d:16 (BT d:16)  
BRN d:8 (BF d:8)  
BRN d:16 (BF d:16)  
BHI d:8  
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
2
4
Always  
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
4
6
If condition  
is true then  
PC PC+d  
else next;  
Bcc  
Never  
C Z = 0  
C Z = 1  
C = 0  
BHI d:16  
BLS d:8  
BLS d:16  
BCC d:8 (BHS d:8)  
BCC d:16 (BHS d:16)  
BCS d:8 (BLO d:8)  
BCS d:16 (BLO d:16)  
BNE d:8  
C = 1  
Z = 0  
BNE d:16  
BEQ d:8  
Z = 1  
BEQ d:16  
BVC d:8  
V = 0  
BVC d:16  
BVS d:8  
V = 1  
BVS d:16  
BPL d:8  
N = 0  
BPL d:16  
BMI d:8  
N = 1  
BMI d:16  
BGE d:8  
NV = 0  
NV = 1  
Z (NV) = 0  
Z (NV) = 1  
BGE d:16  
BLT d:8  
BLT d:16  
BGT d:8  
BGT d:16  
BLE d:8  
BLE d:16  
Rev. 3.00 Sep. 14, 2006 Page 360 of 408  
REJ09B0105-0300  
Appendix  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
JMP @ERn  
JMP @aa:24  
JMP @@aa:8  
BSR d:8  
2
4
2
2
PC ERn  
4
6
JMP  
BSR  
PC aa:24  
PC @aa:8  
8
6
10  
8
PC @–SP  
PC PC+d:8  
BSR d:16  
4
PC @–SP  
PC PC+d:16  
8
6
8
8
8
10  
8
JSR  
JSR @ERn  
JSR @aa:24  
JSR @@aa:8  
2
4
2
PC @–SP  
PC ERn  
PC @–SP  
PC aa:24  
10  
12  
10  
PC @–SP  
PC @aa:8  
RTS RTS  
2
PC @SP+  
Rev. 3.00 Sep. 14, 2006 Page 361 of 408  
REJ09B0105-0300  
Appendix  
System control instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
1
TRAPA #x:2  
2
PC @–SP  
14 16  
TRAPA  
CCR @–SP  
<vector> PC  
RTE  
CCR @SP+  
PC @SP+  
10  
2
RTE  
SLEEP SLEEP  
Transition to power-  
down state  
LDC #xx:8, CCR  
B
B
2
#xx:8 CCR  
2
2
LDC  
LDC Rs, CCR  
2
Rs8 CCR  
LDC @ERs, CCR  
W
W
W
W
4
@ERs CCR  
6
LDC @(d:16, ERs), CCR  
LDC @(d:24, ERs), CCR  
LDC @ERs+, CCR  
6
@(d:16, ERs) CCR  
@(d:24, ERs) CCR  
8
10  
4
12  
8
@ERs CCR  
ERs32+2 ERs32  
LDC @aa:16, CCR  
LDC @aa:24, CCR  
STC CCR, Rd  
W
W
B
6
@aa:16 CCR  
@aa:24 CCR  
CCR Rd8  
8
10  
2
8
2
STC  
STC CCR, @ERd  
W
W
W
W
4
CCR @ERd  
6
STC CCR, @(d:16, ERd)  
STC CCR, @(d:24, ERd)  
STC CCR, @–ERd  
6
CCR @(d:16, ERd)  
CCR @(d:24, ERd)  
8
10  
4
12  
8
ERd32–2 ERd32  
CCR @ERd  
STC CCR, @aa:16  
STC CCR, @aa:24  
ANDC #xx:8, CCR  
ORC #xx:8, CCR  
XORC #xx:8, CCR  
W
W
B
6
8
CCR @aa:16  
CCR @aa:24  
CCR#xx:8 CCR  
CCR#xx:8 CCR  
CCR#xx:8 CCR  
PC PC+2  
8
10  
2
2
2
2
ANDC  
ORC  
B
2
XORC  
B
2
NOP NOP  
2
2
Rev. 3.00 Sep. 14, 2006 Page 362 of 408  
REJ09B0105-0300  
Appendix  
Block transfer instructions  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
I
H
N
Z
V
C
EEPMOV  
EEPMOV. B  
4
4
if R4L 0 then  
repeat @R5 @R6  
R5+1 R5  
8+  
4n*2  
R6+1 R6  
R4L–1 R4L  
until  
else next  
R4L=0  
EEPMOV. W  
if R4 0 then  
repeat @R5 @R6  
R5+1 R5  
8+  
4n*2  
R6+1 R6  
R4–1 R4  
until  
R4=0  
else next  
Notes: 1. The number of states in cases where the instruction code and its operands are located  
in on-chip memory is shown here. For other cases see appendix A.3, Number of  
Execution States.  
2. n is the value set in register R4L or R4.  
(1) Set to 1 when a carry or borrow occurs at bit 11; otherwise cleared to 0.  
(2) Set to 1 when a carry or borrow occurs at bit 27; otherwise cleared to 0.  
(3) Retains its previous value when the result is zero; otherwise cleared to 0.  
(4) Set to 1 when the adjustment produces a carry; otherwise retains its previous value.  
(5) The number of states required for execution of an instruction that transfers data in  
synchronization with the E clock is variable.  
(6) Set to 1 when the divisor is negative; otherwise cleared to 0.  
(7) Set to 1 when the divisor is zero; otherwise cleared to 0.  
(8) Set to 1 when the quotient is negative; otherwise cleared to 0.  
Rev. 3.00 Sep. 14, 2006 Page 363 of 408  
REJ09B0105-0300  
Appendix  
A.2  
Operation Code Map  
Table A.2 Operation Code Map (1)  
Rev. 3.00 Sep. 14, 2006 Page 364 of 408  
REJ09B0105-0300  
Appendix  
Table A.2 Operation Code Map (2)  
Rev. 3.00 Sep. 14, 2006 Page 365 of 408  
REJ09B0105-0300  
Appendix  
Table A.2 Operation Code Map (3)  
Rev. 3.00 Sep. 14, 2006 Page 366 of 408  
REJ09B0105-0300  
Appendix  
A.3  
Number of Execution States  
The status of execution for each instruction of the H8/300H CPU and the method of calculating  
the number of states required for instruction execution are shown below. Table A.4 shows the  
number of cycles of each type occurring in each instruction, such as instruction fetch and data  
read/write. Table A.3 shows the number of states required for each cycle. The total number of  
states required for execution of an instruction can be calculated by the following expression:  
Execution states = I × SI + J × SJ + K × SK + L × SL + M × SM + N × SN  
Examples: When instruction is fetched from on-chip ROM, and an on-chip RAM is accessed.  
BSET #0, @FF00  
From table A.4:  
I = L = 2, J = K = M = N= 0  
From table A.3:  
SI = 2, SL = 2  
Number of states required for execution = 2 × 2 + 2 × 2 = 8  
When instruction is fetched from on-chip ROM, branch address is read from on-chip ROM, and  
on-chip RAM is used for stack area.  
JSR @@ 30  
From table A.4:  
I = 2, J = K = 1, L = M = N = 0  
From table A.3:  
SI = SJ = SK = 2  
Number of states required for execution = 2 × 2 + 1 × 2+ 1 × 2 = 8  
Rev. 3.00 Sep. 14, 2006 Page 367 of 408  
REJ09B0105-0300  
Appendix  
Table A.3 Number of Cycles in Each Instruction  
Access Location  
On-Chip Peripheral Module  
Execution Status  
(Instruction Cycle)  
On-Chip Memory  
Instruction fetch  
SI  
2
Branch address read  
Stack operation  
SJ  
SK  
SL  
SM  
SN  
Byte data access  
Word data access  
Internal operation  
2 or 3*  
2 or 3*  
1
Note:  
*
Depends on which on-chip peripheral module is accessed. See section 19.1, Register  
Addresses (Address Order).  
Rev. 3.00 Sep. 14, 2006 Page 368 of 408  
REJ09B0105-0300  
Appendix  
Table A.4 Number of Cycles in Each Instruction  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
ADD  
ADD.B #xx:8, Rd  
1
1
2
1
3
1
1
1
1
1
1
2
1
3
2
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
ADD.B Rs, Rd  
ADD.W #xx:16, Rd  
ADD.W Rs, Rd  
ADD.L #xx:32, ERd  
ADD.L ERs, ERd  
ADDS #1/2/4, ERd  
ADDX #xx:8, Rd  
ADDX Rs, Rd  
AND.B #xx:8, Rd  
AND.B Rs, Rd  
AND.W #xx:16, Rd  
AND.W Rs, Rd  
AND.L #xx:32, ERd  
AND.L ERs, ERd  
ANDC #xx:8, CCR  
BAND #xx:3, Rd  
BAND #xx:3, @ERd  
BAND #xx:3, @aa:8  
BRA d:8 (BT d:8)  
BRN d:8 (BF d:8)  
BHI d:8  
ADDS  
ADDX  
AND  
ANDC  
BAND  
1
1
Bcc  
BLS d:8  
BCC d:8 (BHS d:8)  
BCS d:8 (BLO d:8)  
BNE d:8  
BEQ d:8  
BVC d:8  
BVS d:8  
BPL d:8  
BMI d:8  
BGE d:8  
Rev. 3.00 Sep. 14, 2006 Page 369 of 408  
REJ09B0105-0300  
Appendix  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
Bcc  
BLT d:8  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
1
2
2
1
2
2
1
2
2
BGT d:8  
BLE d:8  
BRA d:16(BT d:16)  
BRN d:16(BF d:16)  
BHI d:16  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
BLS d:16  
BCC d:16(BHS d:16)  
BCS d:16(BLO d:16)  
BNE d:16  
BEQ d:16  
BVC d:16  
BVS d:16  
BPL d:16  
BMI d:16  
BGE d:16  
BLT d:16  
BGT d:16  
BLE d:16  
BCLR  
BCLR #xx:3, Rd  
BCLR #xx:3, @ERd  
BCLR #xx:3, @aa:8  
BCLR Rn, Rd  
BCLR Rn, @ERd  
BCLR Rn, @aa:8  
BIAND #xx:3, Rd  
BIAND #xx:3, @ERd  
BIAND #xx:3, @aa:8  
BILD #xx:3, Rd  
BILD #xx:3, @ERd  
BILD #xx:3, @aa:8  
2
2
2
2
BIAND  
BILD  
1
1
1
1
Rev. 3.00 Sep. 14, 2006 Page 370 of 408  
REJ09B0105-0300  
Appendix  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
BIOR  
BIOR #xx:8, Rd  
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
1
2
2
2
2
1
2
2
BIOR #xx:8, @ERd  
BIOR #xx:8, @aa:8  
BIST #xx:3, Rd  
1
1
BIST  
BIST #xx:3, @ERd  
BIST #xx:3, @aa:8  
BIXOR #xx:3, Rd  
BIXOR #xx:3, @ERd  
BIXOR #xx:3, @aa:8  
BLD #xx:3, Rd  
2
2
BIXOR  
BLD  
1
1
BLD #xx:3, @ERd  
BLD #xx:3, @aa:8  
BNOT #xx:3, Rd  
BNOT #xx:3, @ERd  
BNOT #xx:3, @aa:8  
BNOT Rn, Rd  
1
1
BNOT  
2
2
BNOT Rn, @ERd  
BNOT Rn, @aa:8  
BOR #xx:3, Rd  
2
2
BOR  
BOR #xx:3, @ERd  
BOR #xx:3, @aa:8  
BSET #xx:3, Rd  
BSET #xx:3, @ERd  
BSET #xx:3, @aa:8  
BSET Rn, Rd  
1
1
BSET  
2
2
BSET Rn, @ERd  
BSET Rn, @aa:8  
BSR d:8  
2
2
BSR  
BST  
1
1
BSR d:16  
2
BST #xx:3, Rd  
BST #xx:3, @ERd  
BST #xx:3, @aa:8  
2
2
Rev. 3.00 Sep. 14, 2006 Page 371 of 408  
REJ09B0105-0300  
Appendix  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
BTST  
BTST #xx:3, Rd  
1
2
2
1
2
2
1
2
2
1
1
2
1
3
1
1
1
1
1
1
2
2
1
1
2
2
1
1
1
1
BTST #xx:3, @ERd  
BTST #xx:3, @aa:8  
BTST Rn, Rd  
1
1
BTST Rn, @ERd  
BTST Rn, @aa:8  
BXOR #xx:3, Rd  
BXOR #xx:3, @ERd  
BXOR #xx:3, @aa:8  
CMP.B #xx:8, Rd  
CMP.B Rs, Rd  
1
1
BXOR  
CMP  
1
1
CMP.W #xx:16, Rd  
CMP.W Rs, Rd  
CMP.L #xx:32, ERd  
CMP.L ERs, ERd  
DAA Rd  
DAA  
DAS  
DEC  
DAS Rd  
DEC.B Rd  
DEC.W #1/2, Rd  
DEC.L #1/2, ERd  
DIVXS.B Rs, Rd  
DIVXS.W Rs, ERd  
DIVXU.B Rs, Rd  
DIVXU.W Rs, ERd  
DUVXS  
DIVXU  
12  
20  
12  
20  
EEPMOV EEPMOV.B  
EEPMOV.W  
2n+2*1  
2n+2*1  
EXTS  
EXTS.W Rd  
EXTS.L ERd  
EXTU.W Rd  
EXTU.L ERd  
EXTU  
Rev. 3.00 Sep. 14, 2006 Page 372 of 408  
REJ09B0105-0300  
Appendix  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
INC  
INC.B Rd  
1
1
1
2
2
2
2
2
2
1
1
2
3
5
2
3
4
1
1
1
2
4
1
1
2
3
1
2
4
1
1
INC.W #1/2, Rd  
INC.L #1/2, ERd  
JMP @ERn  
JMP  
JSR  
LDC  
JMP @aa:24  
2
2
JMP @@aa:8  
1
1
JSR @ERn  
1
1
1
JSR @aa:24  
2
JSR @@aa:8  
LDC #xx:8, CCR  
LDC Rs, CCR  
LDC@ERs, CCR  
LDC@(d:16, ERs), CCR  
LDC@(d:24,ERs), CCR  
LDC@ERs+, CCR  
LDC@aa:16, CCR  
LDC@aa:24, CCR  
MOV.B #xx:8, Rd  
MOV.B Rs, Rd  
1
1
1
1
1
1
2
MOV  
MOV.B @ERs, Rd  
MOV.B @(d:16, ERs), Rd  
MOV.B @(d:24, ERs), Rd  
MOV.B @ERs+, Rd  
MOV.B @aa:8, Rd  
MOV.B @aa:16, Rd  
MOV.B @aa:24, Rd  
MOV.B Rs, @Erd  
MOV.B Rs, @(d:16, ERd)  
MOV.B Rs, @(d:24, ERd)  
MOV.B Rs, @-ERd  
MOV.B Rs, @aa:8  
1
1
1
1
1
1
1
1
1
1
1
1
2
2
Rev. 3.00 Sep. 14, 2006 Page 373 of 408  
REJ09B0105-0300  
Appendix  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
MOV  
MOV.B Rs, @aa:16  
2
3
2
1
1
2
4
1
2
3
1
2
4
1
2
3
3
1
2
3
5
2
3
4
2
3
5
2
3
4
2
2
1
1
MOV.B Rs, @aa:24  
MOV.W #xx:16, Rd  
MOV.W Rs, Rd  
MOV.W @ERs, Rd  
1
1
1
1
1
1
1
1
1
1
1
1
MOV.W @(d:16,ERs), Rd  
MOV.W @(d:24,ERs), Rd  
MOV.W @ERs+, Rd  
MOV.W @aa:16, Rd  
MOV.W @aa:24, Rd  
MOV.W Rs, @ERd  
2
MOV.W Rs, @(d:16,ERd)  
MOV.W Rs, @(d:24,ERd)  
MOV.W Rs, @-ERd  
MOV.W Rs, @aa:16  
MOV.W Rs, @aa:24  
MOV.L #xx:32, ERd  
MOV.L ERs, ERd  
MOV  
2
MOV.L @ERs, ERd  
MOV.L @(d:16,ERs), ERd  
MOV.L @(d:24,ERs), ERd  
MOV.L @ERs+, ERd  
MOV.L @aa:16, ERd  
MOV.L @aa:24, ERd  
MOV.L ERs,@ERd  
2
2
2
2
2
2
2
2
2
2
2
2
2
MOV.L ERs, @(d:16,ERd)  
MOV.L ERs, @(d:24,ERd)  
MOV.L ERs, @-ERd  
MOV.L ERs, @aa:16  
MOV.L ERs, @aa:24  
MOVFPE @aa:16, Rd*2  
MOVTPE Rs,@aa:16*2  
2
MOVFPE  
MOVTPE  
1
1
Rev. 3.00 Sep. 14, 2006 Page 374 of 408  
REJ09B0105-0300  
Appendix  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
MULXS  
MULXU  
NEG  
MULXS.B Rs, Rd  
2
2
1
1
1
1
1
1
1
1
1
1
1
2
1
3
2
1
1
2
1
2
1
1
1
1
1
1
1
1
1
12  
20  
12  
20  
MULXS.W Rs, ERd  
MULXU.B Rs, Rd  
MULXU.W Rs, ERd  
NEG.B Rd  
NEG.W Rd  
NEG.L ERd  
NOP  
NOT  
NOP  
NOT.B Rd  
NOT.W Rd  
NOT.L ERd  
OR  
OR.B #xx:8, Rd  
OR.B Rs, Rd  
OR.W #xx:16, Rd  
OR.W Rs, Rd  
OR.L #xx:32, ERd  
OR.L ERs, ERd  
ORC #xx:8, CCR  
POP.W Rn  
ORC  
POP  
1
2
1
2
2
2
2
2
POP.L ERn  
PUSH  
ROTL  
PUSH.W Rn  
PUSH.L ERn  
ROTL.B Rd  
ROTL.W Rd  
ROTL.L ERd  
ROTR.B Rd  
ROTR  
ROTR.W Rd  
ROTR.L ERd  
ROTXL.B Rd  
ROTXL.W Rd  
ROTXL.L ERd  
ROTXL  
Rev. 3.00 Sep. 14, 2006 Page 375 of 408  
REJ09B0105-0300  
Appendix  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
ROTXR  
ROTXR.B Rd  
ROTXR.W Rd  
ROTXR.L ERd  
RTE  
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
3
5
2
3
4
1
2
1
3
1
1
RTE  
2
1
2
2
RTS  
RTS  
SHAL  
SHAL.B Rd  
SHAL.W Rd  
SHAL.L ERd  
SHAR  
SHLL  
SHLR  
SHAR.B Rd  
SHAR.W Rd  
SHAR.L ERd  
SHLL.B Rd  
SHLL.W Rd  
SHLL.L ERd  
SHLR.B Rd  
SHLR.W Rd  
SHLR.L ERd  
SLEEP  
STC  
SLEEP  
STC CCR, Rd  
STC CCR, @ERd  
STC CCR, @(d:16,ERd)  
STC CCR, @(d:24,ERd)  
STC CCR,@-ERd  
STC CCR, @aa:16  
STC CCR, @aa:24  
SUB.B Rs, Rd  
SUB.W #xx:16, Rd  
SUB.W Rs, Rd  
SUB.L #xx:32, ERd  
SUB.L ERs, ERd  
SUBS #1/2/4, ERd  
1
1
1
1
1
1
2
SUB  
SUBS  
Rev. 3.00 Sep. 14, 2006 Page 376 of 408  
REJ09B0105-0300  
Appendix  
Instruction Branch  
Stack  
Byte Data  
Word Data Internal  
Fetch  
I
Addr. Read Operation Access  
Access  
M
Operation  
N
Instruction Mnemonic  
J
K
L
SUBX  
SUBX #xx:8, Rd  
1
1
2
1
1
2
1
3
2
1
SUBX. Rs, Rd  
TRAPA  
XOR  
TRAPA #xx:2  
1
2
4
XOR.B #xx:8, Rd  
XOR.B Rs, Rd  
XOR.W #xx:16, Rd  
XOR.W Rs, Rd  
XOR.L #xx:32, ERd  
XOR.L ERs, ERd  
XORC #xx:8, CCR  
XORC  
Notes: 1. n: Specified value in R4L and R4. The source and destination operands are accessed  
n+1 times respectively.  
2. Cannot be used in this LSI.  
Rev. 3.00 Sep. 14, 2006 Page 377 of 408  
REJ09B0105-0300  
Appendix  
A.4  
Combinations of Instructions and Addressing Modes  
Table A.5 Combinations of Instructions and Addressing Modes  
Addressing Mode  
Functions  
Instructions  
Data  
transfer  
instructions  
MOV  
BWL BWL BWL BWL BWL BWL  
B
BWL BWL  
WL  
POP, PUSH  
MOVFPE,  
MOVTPE  
ADD, CMP  
SUB  
Arithmetic  
operations  
BWL BWL  
WL BWL  
ADDX, SUBX  
ADDS, SUBS  
INC, DEC  
DAA, DAS  
MULXU,  
B
B
L
BWL  
B
BW  
MULXS,  
DIVXU,  
DIVXS  
NEG  
B
BWL  
WL  
BWL  
BWL  
BWL  
B
B
W
W
W
W
W
W
B
W
W
EXTU, EXTS  
AND, OR, XOR  
NOT  
Logical  
operations  
Shift operations  
Bit manipulations  
Branching  
instructions  
BCC, BSR  
JMP, JSR  
RTS  
W
W
System  
control  
instructions  
TRAPA  
RTE  
W
W
SLEEP  
LDC  
B
STC  
B
B
ANDC, ORC,  
XORC  
NOP  
Block data transfer instructions  
BW  
Rev. 3.00 Sep. 14, 2006 Page 378 of 408  
REJ09B0105-0300  
Appendix  
Appendix B I/O Port Block Diagrams  
B.1  
I/O Port Block Diagrams  
RES goes low in a reset, and SBY goes low in a reset and in standby mode.  
Internal data bus  
RES  
SBY  
PUCR  
PMR  
Pull-up MOS  
PDR  
PCR  
IRQ  
TRGV  
[Legend]  
PUCR: Port pull-up control register  
PMR: Port mode register  
PDR: Port data register  
PCR: Port control register  
Figure B.1 Port 1 Block Diagram (P17)  
Rev. 3.00 Sep. 14, 2006 Page 379 of 408  
REJ09B0105-0300  
Appendix  
Internal data bus  
RES  
SBY  
PUCR  
PMR  
Pull-up MOS  
PDR  
PCR  
IRQ  
[Legend]  
PUCR: Port pull-up control register  
PMR: Port mode register  
PDR: Port data register  
PCR: Port control register  
Figure B.2 Port 1 Block Diagram (P14)  
Rev. 3.00 Sep. 14, 2006 Page 380 of 408  
REJ09B0105-0300  
Appendix  
Internal data bus  
SBY  
PMR  
PDR  
PCR  
SCI3  
TXD  
[Legend]  
PMR: Port mode register  
PDR: Port data register  
PCR: Port control register  
Figure B.3 Port 2 Block Diagram (P22)  
Rev. 3.00 Sep. 14, 2006 Page 381 of 408  
REJ09B0105-0300  
Appendix  
SBY  
Internal data bus  
PDR  
PCR  
SCI3  
RE  
RXD  
[Legend]  
PDR: Port data register  
PCR: Port control register  
Figure B.4 Port 2 Block Diagram (P21)  
Rev. 3.00 Sep. 14, 2006 Page 382 of 408  
REJ09B0105-0300  
Appendix  
SBY  
SCI3  
SCKIE  
SCKOE  
Internal data bus  
PDR  
PCR  
SCKO  
SCKI  
[Legend]  
PDR: Port data register  
PCR: Port control register  
Figure B.5 Port 2 Block Diagram (P20)  
Rev. 3.00 Sep. 14, 2006 Page 383 of 408  
REJ09B0105-0300  
Appendix  
Internal data bus  
SBY  
PDR  
PCR  
IIC2  
ICE  
SDAO/SCLO  
SDAI/SCLI  
[Legend]  
PDR: Portdata register  
PCR: Portcontrol register  
Figure B.6 (1) Port 5 Block Diagram (P57, P56) (for H8/36912 Group)  
Rev. 3.00 Sep. 14, 2006 Page 384 of 408  
REJ09B0105-0300  
Appendix  
Internal data bus  
SBY  
PDR  
PCR  
[Legend]  
PDR: Portdata register  
PCR: Portcontrol register  
Figure B.6 (2) Port 5 Block Diagram (P57, P56) (for H8/36902 Group)  
Rev. 3.00 Sep. 14, 2006 Page 385 of 408  
REJ09B0105-0300  
Appendix  
Internal data bus  
RES  
SBY  
PUCR  
PMR  
Pull-up MOS  
PDR  
PCR  
WKP  
ADTRG  
[Legend]  
PUCR: Port pull-up control register  
PMR: Port mode register  
PDR: Port data register  
PCR: Port control register  
Figure B.7 Port 5 Block Diagram (P55)  
Rev. 3.00 Sep. 14, 2006 Page 386 of 408  
REJ09B0105-0300  
Appendix  
Internal data bus  
SBY  
Timer V  
OS3  
OS2  
OS1  
OS0  
PDR  
PCR  
TMOV  
[Legend]  
PDR: Portdata register  
PCR: Portcontrol register  
Figure B.8 Port 5 Block Diagram (P76)  
Rev. 3.00 Sep. 14, 2006 Page 387 of 408  
REJ09B0105-0300  
Appendix  
Internal data bus  
SBY  
PDR  
PCR  
Timer V  
TMCIV  
[Legend]  
PDR: Portdata register  
PCR: Portcontrol register  
Figure B.9 Port 7 Block Diagram (P75)  
Rev. 3.00 Sep. 14, 2006 Page 388 of 408  
REJ09B0105-0300  
Appendix  
Internal data bus  
SBY  
PDR  
PCR  
Timer V  
TMRIV  
[Legend]  
PDR: Portdata register  
PCR: Portcontrol register  
Figure B.10 Port 7 Block Diagram (P74)  
Rev. 3.00 Sep. 14, 2006 Page 389 of 408  
REJ09B0105-0300  
Appendix  
Internal data bus  
SBY  
Timer W  
Output  
control signal  
A to D  
PDR  
PCR  
FTIOA to D  
[Legend]  
PDR: Portdata register  
PCR: Portcontrol register  
Figure B.11 Port 8 Block Diagram (P84 to P81)  
Rev. 3.00 Sep. 14, 2006 Page 390 of 408  
REJ09B0105-0300  
Appendix  
Internal data bus  
SBY  
PDR  
PCR  
Timer W  
FTCI  
[Legend]  
PDR: Portdata register  
PCR: Portcontrol register  
Figure B.12 Port 8 Block Diagram (P80)  
Rev. 3.00 Sep. 14, 2006 Page 391 of 408  
REJ09B0105-0300  
Appendix  
Internal data bus  
A/D converter  
CH3 to CH0  
SCAN  
DEC  
VIN  
Low voltage  
detection circuit  
VDDII  
ExtD, ExtU  
[Legend]  
PDR: Portdata register  
PCR: Portcontrol register  
Figure B.13 Port B Block Diagram (PB3, PB2)  
Internal data bus  
A/D converter  
SCAN  
CH3 to CH0  
DEC  
VIN  
Figure B.14 Port B Block Diagram (PB1, PB0)  
Rev. 3.00 Sep. 14, 2006 Page 392 of 408  
REJ09B0105-0300  
Appendix  
SBY  
Internal data bus  
CPG  
PDR  
PCR  
φ
PMRC1  
PMRC0  
XTALI  
[Legend]  
PDR: Portdata register  
PCR: Portcontrol register  
Figure B.15 Port C Block Diagram (PC1)  
Rev. 3.00 Sep. 14, 2006 Page 393 of 408  
REJ09B0105-0300  
Appendix  
SBY  
Internal data bus  
PDR  
PCR  
CPG  
PMRC0  
EXTALI  
[Legend]  
PDR: Portdata register  
PCR: Portcontrol register  
Figure B.16 Port C Block Diagram (PC0)  
B.2  
Port States in Each Operating State  
Port  
Reset  
Active  
Sleep  
Subsleep  
Retained  
Retained  
Retained  
Retained  
Retained  
Retained  
Standby  
P17, P14  
P22 to P20  
P57 to P55  
P76 to P74  
P84 to P80  
High impedance  
High impedance  
High impedance  
High impedance  
High impedance  
Functioning Retained  
Functioning Retained  
Functioning Retained  
Functioning Retained  
Functioning Retained  
High impedance*  
High impedance  
High impedance*  
High impedance  
High impedance  
High impedance  
PB3 to PB0 High impedance  
High  
High  
impedance impedance  
PC1, PC0  
Note:  
High impedance  
Functioning Retained  
Retained  
High impedance  
*
High level output when the pull-up MOS is in on state.  
Rev. 3.00 Sep. 14, 2006 Page 394 of 408  
REJ09B0105-0300  
Appendix  
Appendix C Product Code Lineup  
Product Type  
Product Code  
Model Marking  
Package Code  
H8/36912 Flash memory HD64F36912G  
version  
HD64F36912GFH  
LQFP-32 (FP-32A)  
SOP-32 (FP-32D)  
SDIP-32 (32P4B)  
LQFP-32 (FP-32A)  
SOP-32 (FP-32D)  
LQFP-32 (FP-32A)  
SOP-32 (FP-32D)  
LQFP-32 (FP-32A)  
SOP-32 (FP-32D)  
SDIP-32 (32P4B)  
LQFP-32 (FP-32A)  
SOP-32 (FP-32D)  
LQFP-32 (FP-32A)  
SOP-32 (FP-32D)  
LQFP-32 (FP-32A)  
SOP-32 (FP-32D)  
HD64F36912GTP  
HD64F36912GP  
Masked ROM HD64336912G  
version  
HD64336912G (***) FH  
HD64336912G (***) TP  
HD64336911G (***) FH  
HD64336911G (***) TP  
HD64F36902GFH  
H8/36911 Masked ROM HD64336911G  
version  
H8/36902 Flash memory HD64F36902G  
version  
HD64F36902GTP  
HD64F36902GP  
Masked ROM HD64336902G  
version  
HD64336902G (***) FH  
HD64336902G (***) TP  
HD64336901G (***) FH  
HD64336901G (***) TP  
HD64336900G (***) FH  
HD64336900G (***) TP  
H8/36901 Masked ROM HD64336901G  
version  
H8/36900 Masked ROM HD64336900G  
version  
[Legend]  
(***): ROM code  
Rev. 3.00 Sep. 14, 2006 Page 395 of 408  
REJ09B0105-0300  
Appendix  
Appendix D Package Dimensions  
The package dimensions that are shows in the Renesas Semiconductor Packages Data Book have  
priority.  
Unit: mm  
20.45  
20.95 Max  
17  
32  
1
16  
14.14 0.30  
1.42  
1.00 Max  
0˚ – 8˚  
0.10  
M
0.80 0.20  
1.27  
*
0.40 0.08  
0.38 0.06  
0.15  
Package Code  
JEDEC  
JEITA  
FP-32D  
Conforms  
*Dimension including the plating thickness  
Base material dimension  
Mass (reference value)  
1.3 g  
Figure D.1 FP-32D Package Dimensions  
Rev. 3.00 Sep. 14, 2006 Page 396 of 408  
REJ09B0105-0300  
Appendix  
Unit: mm  
9.0 0.2  
7
24  
17  
25  
32  
16  
9
1
8
0.70  
*
0.35 0.05  
0.37 0.05  
0.20 M  
1.0  
0 ~ 10˚  
0.5 0.1  
0.10  
Package Code  
FP-32A  
FP-32AV  
JEDEC  
*Dimension including the plating thickness  
JEITA  
Base material dimension  
Mass (reference value)  
0.2 g  
Figure D.2 FP-32A Package Dimension  
Rev. 3.00 Sep. 14, 2006 Page 397 of 408  
REJ09B0105-0300  
Appendix  
Unit: mm  
32  
17  
1
16  
D
e
b1  
b
b2  
SEATING PLANE  
Dimension in Millmeters  
Symbol  
Min  
0.51  
Nom  
Max  
5.08  
A
A1  
A2  
b
b1  
b2  
c
D
E
e
e1  
L
3.8  
0.45  
1.0  
0.73  
0.27  
28.0  
8.9  
1.778  
10.16  
0.35  
0.9  
0.63  
0.22  
27.8  
8.75  
0.55  
1.3  
1.03  
0.34  
28.2  
9.05  
Package Code  
JEDEC  
32P4B  
3.0  
JEITA  
Mass (reference value)  
2.2  
θ
0˚  
15˚  
Figure D.3 32P4B Package Dimension  
Rev. 3.00 Sep. 14, 2006 Page 398 of 408  
REJ09B0105-0300  
Main Revisions and Additions in this Edition  
Item  
Page Revision (See Manual for Details)  
When using an on-chip emulator (E7, E8) for H8/36912,  
H8/36902 program development and debugging, the following  
restrictions must be noted.  
Preface  
1.The NMI pin is reserved for the E7 or E8, and cannot be  
used.  
2.Area H'2000 to H'2FFF is used by the E7 or E8, and is not  
available to the user.  
3.Area H'F980 to H'FD7F must on no account be accessed.  
4.When the E7 or E8 is used, address breaks can be set as  
either available to the user or for use by the E7 or E8. If  
address breaks are set as being used by the E7 or E8, the  
address break control registers must not be accessed.  
5.When the E7 or E8 is used, NMI is an input/output pin (open-  
drain in output mode).  
On-chip memory  
1.1 Features  
1
Product Classification  
Remarks  
Masked ROM  
version  
H8/36912  
Under planning  
Under planning  
Under planning  
Under planning  
Under planning  
H8/36911  
H8/36902  
H8/36901  
H8/36900  
2
2
On-chip oscillator  
Frequency accuracy:  
(Flash memory version): 8MHz 3ꢀ  
8MHz 1ꢀ (Typ.) Vcc = 5.0 V, Ta = 25˚C  
Vcc = 4.0 to 5.0 V, Ta = 20 to 75˚C  
10MHz 4ꢀ (Typ.) Vcc = 4.0 to 5.0 V, Ta = 20 to 75˚C  
Package  
LQFP-32  
SOP-32  
SDIP-32  
Code  
FP-32A  
FP-32D  
32P4B  
Compact package  
2
Package  
LQFP-32  
SOP-32  
SDIP-32*  
Note: * Flash memory version only  
Rev. 3.00 Sep. 14, 2006 Page 399 of 408  
REJ09B0105-0300  
Item  
Page Revision (See Manual for Details)  
Figure 1.1 Internal Block  
Diagram of H8/36912 Group  
3, 4  
E10T_0  
E10T_1  
E10T_2  
*
*
*
System  
clock  
generator  
CPU  
H8/300H  
On-chip  
oscillator  
Figure 1.2 Internal Block  
Diagram of H8/36902 Group  
Data bus (lower)  
Port C  
Port B  
Note:  
* Can also be used for the E7 or E8 emulator.  
Figure 1.3 Pin Arrangement 5, 6  
of H8/36912 Group (FP-32A)  
P76/TMOV  
PB3/AN3/ExtU  
PB2/AN2/ExtD  
PB1/AN1  
28  
29  
30  
31  
32  
13  
12  
11  
10  
9
E10T_2*  
E10T_1*  
E10T_0*  
H8/36912 Group  
(Top view)  
Figure 1.4 Pin Arrangement  
of H8/36902 Group (FP-32A)  
P17/IRQ3/TRGV  
PB0/AN0  
NMI  
Note:  
* Can also be used for the E7 or E8 emulator.  
Figure 1.5 Pin Arrangement 7, 8  
of H8/36912 Group (FP-32D,  
32P4B),  
P57/SCL  
E10T_0*  
E10T_1*  
15  
16  
18  
17  
E10T_2*  
Figure 1.6 Pin Arrangement  
of H8/36902 Group (FP-32D,  
32P4B)  
Note:  
*
Can also be used for the E7 or E8 emulator.  
Table 1.1 Pin Functions  
9, 10  
Pin No.  
Type Symbol FP-32D, 32P4B FP-32A Functions  
E7, E8 E10T_0, 15, 16, 17  
11, 12, Interface pins  
E10T_1,  
E10T_2  
13  
for the E7 or E8  
emulator  
High-speed operation  
Section 2 CPU  
11  
All frequently-used instructions execute in two or four states  
Figure 2.1 Memory Map (1) 12  
H8/36912  
H8/36902  
H8/36912F  
H8/36902F  
(Masked ROM version  
(under planning))  
(Flash memory version)  
H'0000  
H'0045  
H'0046  
H'0000  
H'0045  
H'0046  
Interrupt vector  
Interrupt vector  
H'1FFF  
H'2000  
H'1FFF  
E7 or E8 control  
program area  
(4 kbytes)  
Not used  
H'2FFF  
H'F980  
Not used  
(E7 or E8 work area,  
for flash memory  
programming:  
1 kbyte)  
Not used  
Rev. 3.00 Sep. 14, 2006 Page 400 of 408  
REJ09B0105-0300  
Item  
Page Revision (See Manual for Details)  
Figure 2.1 Memory Map (2) 13  
H8/36911  
H8/36901  
H8/36900  
(Masked ROM version  
(under planning))  
(Masked ROM version  
(under planning))  
H'0000  
H'0045  
H'0046  
H'0000  
H'0045  
H'0046  
Interrupt vector  
Interrupt vector  
Table 3.1 Exception Sources 48  
and Vector Address  
Relative Module  
Exception Sources  
IIC2*  
IIC_2 transmit data empty  
IIC_2 transmit end  
IIC_2 receive error  
Timer B1*  
Timer B1 overflow  
Note: * Available for the H8/36912 Group only.  
Figure 5.1 Block Diagram of 69  
Clock Pulse Generators  
System  
clock  
Duty  
correction  
circuit  
OSC  
1
2
φ
OSC  
OSC  
oscillator  
R
R
R
OSC  
ROSC  
On-chip  
oscillator  
Clock  
divider  
OSC/2  
OSC/4  
5.2.1 RC Control Register  
(RCCR)  
71  
Description  
Bit  
1
Bit Name  
RCPSC1  
RCPSC0  
Division Ratio Select for On-chip Oscillator  
0
The division ratio of ROSC changes right after  
rewriting this bit.  
These bits can be written to only when the CKSTA  
bit in CKCSR is 0.  
0X: ROSC (not divided)  
10: ROSC/2  
11: ROSC /4  
5.2.2 RC Trimming Data  
Protect Register  
(RCTRMDPR)  
73  
Bit  
Bit Name  
Description  
4
TRMDRWE Trimming Date Register Write Enable  
This register can be written to when the LOCKDW  
bit is 0 and this bit is 1.  
[Setting condition]  
When writing 0 to the WRI bit while writing 1 to  
the TRMDRWE bit while the PRWE bit is 1  
[Clearing conditions]  
Reset  
When writing 0 to the WRI bit and writing 0 to  
the TRMDRWE bit while the PRWE bit is 1  
Rev. 3.00 Sep. 14, 2006 Page 401 of 408  
REJ09B0105-0300  
Item  
Page Revision (See Manual for Details)  
5.2.3 RC Trimming Data  
Register (RCTRMDR)  
73  
Bit  
7
Bit Name Description  
TRMD7  
TRMD6  
TRMD5  
TRMD4  
TRMD3  
TRMD2  
TRMD1  
TRMD0  
Trimming Data  
6
In the flash memory version, the trimming  
data is loaded from the flash memory to this  
register right after a reset. These bits are  
always read as undefined value.  
5
4
3
As for the masked ROM version (under  
planning), the on-chip oscillator frequency  
can be trimmed by rewriting these bits.  
2
1
0
5.2.4 Clock Control/Status  
Register (CKCSR)  
74  
78  
Bit  
7
Bit Name Description  
PMRC1  
PMRC0  
Port C Function Select 1 and 0  
6
Note: *The φ halt duration is the duration from the timing when the  
φ clock stops to the first  
Figure 5.5 Timing Chart of  
Switching On-chip Oscillator  
Clock to External Clock  
rising edge of the φOSC clock after six clock cycles of the φRC  
clock have elapsed.  
Table 5.1 Crystal Resonator 82  
Parameters  
Frequency (MHz) 12  
RS (Max.)  
50 Ω  
The features of the 12-kbyte (including 4 kbytes as the E7 or E8  
control program area) flash memory built into the HD64F36912G  
and HD64F36902G are summarized below.  
Section 7 ROM  
97  
Figure 7.1 Flash Memory  
Block Configuration  
98  
Programming unit: 64 kbytes →  
Table 7.3 System Clock  
Frequencies for which  
Automatic Adjustment of LSI  
Bit Rate is Possible  
105  
Host Bit Rate System Clock Frequency Range of LSI  
9600bps  
4800bps  
2400bps  
8 MHz (on-chip oscillator clock)  
8 MHz (on-chip oscillator clock)  
8 MHz (on-chip oscillator clock)  
Figure 7.4 Erase/Erase-  
Verify Flowchart  
111  
115  
Read verify data  
No  
Verify data = all 1s ?  
Increment address  
Yes  
Note: * When the E7 or E8 is used, area H'F980 to H'FD7F must  
Section 8 RAM  
not be accessed.  
Rev. 3.00 Sep. 14, 2006 Page 402 of 408  
REJ09B0105-0300  
Item  
Page Revision (See Manual for Details)  
13.2.1 Timer Control/Status 192  
Register WD (TCSRWD)  
Bit Bit Name Description  
4
TCSRWE Timer Control/Status Register WD Write Enable  
The WDON and WRST bits can be written when  
the TCSRWE bit is set to 1.  
When writing data to this bit, the value for bit 5  
must be 0.  
14.8.2 Mark State and Break 236  
Sending  
Replaced  
15.3.5 I2C Bus Status  
Register (ICSR)  
251  
Bit Bit Name Description  
3
STOP  
Stop Condition Detection Flag  
[Setting conditions]  
In master mode, when a stop condition is  
detected after frame transfer  
In slave mode, when a stop condition is  
detected after the general call address or  
the first byte slave address, next to  
detection of start condition, accords with the  
address set in SAR  
……  
Figure 15.15 Receive Mode 265  
Operation Timing  
7
8
1
2
SCL  
SDA  
(Input)  
Bit 6  
Bit 7  
Bit 0  
Bit 1  
MST  
15.7 Usage Notes  
272  
Added  
There are four 16-bit read-only ADDR registers; ……  
16.3.1 A/D Data Registers A 276  
to D (ADDRA to ADDRD)  
Therefore, byte access to ADDR should be done by reading the  
upper byte first then the lower one. ADDR is initialized to H'0000.  
Figure 17.2 Block Diagram  
of Power-On Reset Circuit  
and Low-Voltage Detection  
Circuit  
287  
RES  
CRES  
20.3 Electrical Characteristics (Masked ROM Version) [Preliminary]  
20.3 Electrical  
331  
Characteristics (Masked  
ROM Version)  
The guarantee value for the electrical characteristics of masked ROM  
version is preliminary.  
20.3.1 Power Supply Voltage and Operating Ranges  
Rev. 3.00 Sep. 14, 2006 Page 403 of 408  
REJ09B0105-0300  
Item  
Page Revision (See Manual for Details)  
Table 20.13 AC  
Characteristics  
339  
Values  
Item  
Symbol  
fRC  
Min. Typ. Max.  
7.6  
9.4  
8.0  
8.4  
On-chip oscillator oscillation  
frequency  
10.0 10.6  
Table A.1 Instruction Set  
353  
Addressing Mode and  
Instruction Length (bytes)  
No. of  
States*1  
Condition Code  
Mnemonic  
Operation  
Arithmetic instructions  
I
H
N
Z
V
C
ADD.B #xx:8, Rd  
INC.L #2, ERd  
DAA Rd  
B
L
2
Rd8+#xx:8 Rd8  
ERd32+2 ERd32  
2
2
2
ADD  
DAA  
2
2
B
Rd8 decimal adjust  
*
*
Rd8  
Product Type  
Model Marking  
Package Code  
Appendix C Product Code 395  
Lineup  
H8/36912 Flash memory HD64F36912GFH  
LQFP-32 (FP-32A)  
SOP-32 (FP-32D)  
SDIP-32 (32P4B)  
LQFP-32 (FP-32A)  
SOP-32 (FP-32D)  
SDIP-32 (32P4B)  
LQFP-32 (FP-32A)  
SOP-32 (FP-32D)  
SDIP-32 (32P4B)  
LQFP-32 (FP-32A)  
SOP-32 (FP-32D)  
SDIP-32 (32P4B)  
LQFP-32 (FP-32A)  
SOP-32 (FP-32D)  
SDIP-32 (32P4B)  
LQFP-32 (FP-32A)  
SOP-32 (FP-32D)  
SDIP-32 (32P4B)  
LQFP-32 (FP-32A)  
SOP-32 (FP-32D)  
SDIP-32 (32P4B)  
version  
HD64F36912GTP  
HD64F36912GP  
Masked ROM HD64336912G(***) FH  
version  
HD64336912G(***) TP  
HD64336912G(***) P  
H8/36911 Masked ROM HD64336911G(***) FH  
version  
HD64336911G(***) TP  
HD64336911G(***) P  
H8/36902 Flash memory HD64F36902GFH  
version  
HD64F36902GTP  
HD64F36902GP  
Masked ROM HD64336902G(***) FH  
version  
HD64336902G(***) TP  
HD64336902G(***) P  
H8/36901 Masked ROM HD64336901G(***) FH  
version  
HD64336901G(***) TP  
HD64336901G(***) P  
H8/36900 Masked ROM HD64336900G(***) FH  
version  
HD64336900G(***) TP  
HD64336900G(***) P  
Figure D.3 32P4B Package 398  
Dimension  
Package Code  
JEDEC  
32P4B  
JEITA  
Mass (reference value)  
2.2  
Rev. 3.00 Sep. 14, 2006 Page 404 of 408  
REJ09B0105-0300  
Index  
Exception handling ...................................47  
Reset exception handling ......................54  
Stack status ...........................................58  
Trap instruction.....................................47  
A
A/D converter ......................................... 273  
A/D conversion time........................... 280  
External trigger input.......................... 281  
Sample-and-hold circuit...................... 280  
Scan mode........................................... 279  
Single mode........................................ 279  
Acknowledge.......................................... 255  
Address break ........................................... 63  
Addressing modes  
F
Flash memory ...........................................97  
Boot mode...........................................102  
Boot program ......................................102  
Erase/erase-verify ...............................109  
Erasing units .........................................97  
Error protection...................................112  
Hardware protection............................112  
Program/program-verify .....................107  
Programming units................................97  
Programming/erasing in user program  
mode....................................................106  
Software protection.............................112  
Absolute address................................... 33  
Immediate............................................. 34  
Memory indirect ................................... 34  
Program-counter relative ...................... 34  
Register direct....................................... 32  
Register indirect.................................... 33  
Register indirect with displacement...... 33  
Register indirect with post-increment... 33  
Register indirect with pre-decrement.... 33  
B
G
Bit Synchronous Circuit ......................... 271  
General registers .......................................15  
C
I
Clock pulse generators  
I/O ports..................................................117  
I/O port block diagrams ......................379  
I2C Bus Format .......................................254  
I2C Bus Interface 2 (IIC2).......................239  
Instruction set............................................21  
Arithmetic operations instructions........23  
Bit Manipulation instructions................26  
Block data transfer instructions.............30  
Branch instructions ...............................28  
Data Transfer instructions.....................22  
Logic Operations instructions...............25  
System Prescaler S................................ 83  
Clocked Synchronous Serial Format ...... 263  
Condition field.......................................... 31  
Condition-code register (CCR)................. 16  
CPU .......................................................... 11  
E
Effective address....................................... 35  
Effective address extension ...................... 31  
Rev. 3.00 Sep. 14, 2006 Page 405 of 408  
REJ09B0105-0300  
Shift Instructions .................................. 25  
System control instructions................... 29  
Internal power supply step-down  
Power-down modes................................... 85  
Sleep mode............................................ 93  
Standby mode ....................................... 93  
Subsleep mode...................................... 94  
Power-on reset ........................................ 285  
Power-on reset circuit ............................. 291  
Product code lineup ................................ 395  
Program counter (PC) ............................... 16  
PWM operation....................................... 176  
circuit...................................................... 299  
Interrupt  
Internal interrupts ................................. 56  
Interrupt response time ......................... 59  
IRQ3 to IRQ0 interrupts....................... 55  
NMI interrupt........................................ 55  
WKP5 to WKP0 interrupts................... 55  
R
L
Register  
Low-voltage detection circuit................. 285  
LVDI .............................................. 293, 295  
LVDI (interrupt by low voltage detect)  
circuit.............................................. 293, 295  
LVDR..................................................... 292  
LVDR (reset by low voltage detect)  
circuit...................................................... 292  
ABRKCR...................... 64, 304, 308, 310  
ABRKSR ...................... 66, 304, 308, 310  
ADCR ......................... 278, 303, 307, 310  
ADCSR....................... 276, 303, 307, 310  
ADDRA ...................... 275, 303, 307, 310  
ADDRB ...................... 275, 303, 307, 310  
ADDRC ...................... 275, 303, 307, 310  
ADDRD ...................... 275, 303, 307, 310  
BARH ........................... 66, 304, 308, 310  
BARL............................ 66, 304, 308, 310  
BDRH ........................... 66, 304, 308, 310  
BDRL............................ 66, 304, 308, 310  
BRR ............................ 206, 303, 307, 310  
EBR1........................... 101, 303, 307, 309  
FENR.......................... 101, 303, 307, 309  
FLMCR1....................... 99, 303, 307, 309  
FLMCR2..................... 100, 303, 307, 309  
GRA............................ 171, 303, 306, 309  
GRB............................ 171, 303, 306, 309  
GRC............................ 171, 303, 307, 309  
GRD............................ 171, 303, 307, 309  
ICCR1......................... 242, 302, 306, 309  
ICCR2......................... 245, 302, 306, 309  
ICDRR........................ 253, 302, 306, 309  
ICDRS................................................. 253  
ICDRT ........................ 253, 302, 306, 309  
ICIER.......................... 248, 302, 306, 309  
M
Memory map ............................................ 12  
Module standby function.......................... 95  
N
Noise Canceler........................................ 265  
O
On-board programming modes............... 102  
Operation field.......................................... 30  
P
Package....................................................... 2  
Package dimensions................................ 396  
Rev. 3.00 Sep. 14, 2006 Page 406 of 408  
REJ09B0105-0300  
ICMR.......................... 246, 302, 306, 309  
ICSR ........................... 250, 302, 306, 309  
IEGR1........................... 49, 304, 308, 311  
IEGR2........................... 50, 304, 308, 311  
IENR1........................... 50, 304, 308, 311  
IRR1 ............................. 52, 305, 308, 311  
IWPR............................ 53, 305, 308, 311  
LVDCR....................... 288, 302, 306, 309  
LVDSR....................... 290, 302, 306, 309  
MSTCR1....................... 89, 305, 308, 311  
MSTCR2....................... 90, 305, 308, 311  
PCR1........................... 119, 304, 308, 311  
PCR2........................... 122, 304, 308, 311  
PCR5........................... 125, 304, 308, 311  
PCR7........................... 128, 304, 308, 311  
PCR8........................... 131, 304, 308, 311  
PDR1 .......................... 119, 304, 308, 310  
PDR2 .......................... 122, 304, 308, 310  
PDR5 .......................... 126, 304, 308, 310  
PDR7 .......................... 129, 304, 308, 310  
PDR8 .......................... 131, 304, 308, 310  
PDRB.......................... 134, 304, 308, 310  
PMR1.......................... 118, 304, 308, 311  
PMR5.......................... 125, 304, 308, 311  
PUCR1........................ 120, 304, 308, 310  
PUCR5........................ 126, 304, 308, 310  
RDR............................ 200, 303, 307, 310  
RSR..................................................... 200  
SAR ............................ 252, 302, 306, 309  
SCR3........................... 202, 303, 307, 310  
SMR............................ 201, 303, 307, 310  
SPMR ......................... 211, 303, 307, 310  
SSR............................. 204, 303, 307, 310  
SYSCR1 ....................... 86, 304, 308, 311  
SYSCR2 ....................... 88, 304, 308, 311  
TCB1 .......................... 141, 302, 306, 309  
TCNT.................................. 171, 306, 309  
TCNTV....................... 147, 303, 307, 310  
TCORA....................... 148, 303, 307, 310  
TCORB....................... 148, 303, 307, 310  
TCRV0........................ 148, 303, 307, 309  
TCRV1........................ 151, 303, 307, 310  
TCRW......................... 164, 302, 306, 309  
TCSRV........................ 150, 303, 307, 310  
TCSRWD.................... 192, 303, 307, 310  
TCWD......................... 194, 304, 307, 310  
TDR ............................ 200, 303, 307, 310  
TIERW........................ 165, 302, 306, 309  
TIOR0......................... 168, 303, 306, 309  
TIOR1......................... 169, 303, 306, 309  
TLB1...................................................141  
TMB1.......................... 140, 302, 306, 309  
TMRW........................ 163, 302, 306, 309  
TMWD........................ 194, 304, 307, 310  
TSR.....................................................200  
TSRW ......................... 166, 302, 306, 309  
Register field.............................................30  
S
Serial communication interface 3  
(SCI3) .....................................................197  
Asynchronous mode............................212  
Bit rate.................................................206  
Break...................................................236  
Clocked synchronous mode ................219  
Framing error ......................................216  
Multiprocessor communication  
function...............................................227  
Overrun error ......................................216  
Parity error ..........................................216  
Slave address...........................................255  
Stack pointer (SP) .....................................16  
Start condition.........................................255  
Stop condition.........................................255  
System clocks ...........................................69  
Rev. 3.00 Sep. 14, 2006 Page 407 of 408  
REJ09B0105-0300  
T
Timer B1................................................. 139  
Auto-reload timer operation ............... 142  
Interval timer operation ...................... 142  
Timer V .................................................. 145  
Timer W ................................................. 159  
Transfer Rate .......................................... 244  
V
Vector address........................................... 47  
W
Watchdog timer....................................... 191  
Rev. 3.00 Sep. 14, 2006 Page 408 of 408  
REJ09B0105-0300  
Renesas 16-Bit Single-Chip Microcomputer  
Hardware Manual  
H8/36912 Group, H8/36902 Group  
Publication Date: Rev.1.00, Nov. 07, 2003  
Rev.3.00, Sep. 14, 2006  
Published by:  
Sales Strategic Planning Div.  
Renesas Technology Corp.  
Customer Support Department  
Global Strategic Communication Div.  
Renesas Solutions Corp.  
Edited by:  
2006. Renesas Technology Corp., All rights reserved. Printed in Japan.  
Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
RENESAS SALES OFFICES  
http://www.renesas.com  
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.  
Renesas Technology America, Inc.  
450 Holger Way, San Jose, CA 95134-1368, U.S.A  
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501  
Renesas Technology Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.  
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900  
Renesas Technology (Shanghai) Co., Ltd.  
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120  
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898  
Renesas Technology Hong Kong Ltd.  
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong  
Tel: <852> 2265-6688, Fax: <852> 2730-6071  
Renesas Technology Taiwan Co., Ltd.  
10th Floor, No.99, Fushing North Road, Taipei, Taiwan  
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999  
Renesas Technology Singapore Pte. Ltd.  
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632  
Tel: <65> 6213-0200, Fax: <65> 6278-8001  
Renesas Technology Korea Co., Ltd.  
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea  
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145  
Renesas Technology Malaysia Sdn. Bhd  
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia  
Tel: <603> 7955-9390, Fax: <603> 7955-9510  
Colophon 6.0  
H8/36912 Group, H8/36902 Group  
Hardware Manual  
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan  
REJ09B0105-0300  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY