HD66120TA3 [RENESAS]

LIQUID CRYSTAL DISPLAY DRIVER, UUC269, SLIM, TCP-269;
HD66120TA3
型号: HD66120TA3
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

LIQUID CRYSTAL DISPLAY DRIVER, UUC269, SLIM, TCP-269

驱动
文件: 总21页 (文件大小:83K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HD66120T  
(240-Channel Segment Driver for Dot-Matrix Graphic Liquid  
Crystal Display)  
ADE-207-283(Z)  
'99.9  
Rev. 0.0  
Description  
The HD66120T is a segment driver for dot-matrix graphic liquid crystal display (LCD). It features a  
maximum driving voltage of 40V, enabling a high duty cycle. This driver operates at about 3V, making it  
suitable for battery-driven applications that make use of the low power dissipation of liquid crystal  
elements. The HD66120T, packaged in a fine-pitch slim tape carrier package (TCP), helps to reduce the  
size of the frame around an LCD panel.  
Features  
Duty cycle: 1/100 to 1/480  
High LCD driving voltage: 14 to 40V  
240 LCD drive circuits  
Low operating voltage: 2.7 to 5.5V  
4- and 8-bit data bus interface  
High-speed shift clocks  
10 MHz (max) at 3-V operation  
20 MHz (max) at 5-V operation  
Display off function  
Slim-TCP package  
Fine output lead pitch: 70 µm/74 µm  
Compact user area : 7.3 mm (when output lead pitch is 70 µm)  
: 7.6 mm (when output lead pitch is 74 µm)  
Internal chip enable signal generator  
Standby function  
1
HD66120T  
Ordering Information  
Type No.  
Outer Lead Pitch (µm)  
HD66120TA3  
HD66120TA4  
70  
74  
2
HD66120T  
Pin Arrangement  
Top view  
Note: This figure does not specify the TCP dimensions; other TCP shapes are also possible.  
3
HD66120T  
Block Diagram  
Y1–Y240  
V1L–V4L  
M
V1R–V4R  
LCD drive circuit  
Level shifter  
VLCD1  
VCC  
VLCD2  
GND2  
DISP  
GND1  
CL1  
Latch circuit 2  
BS  
Latch circuit 1  
Latch circuit 1  
D0–D7  
Data shifter  
SHL  
CL2  
Shift register  
EIO2  
EIO1  
4
HD66120T  
Block Functions  
LCD Drive Circuit  
The 240-bit LCD drive circuit generates four voltage levels V1, V2, V3, and V4, for driving an LCD panel.  
One of the four levels is output to the corresponding Y pin, depending on the combination of the M signal  
and the data in latch circuit 2.  
Level Shifter  
The level shifter changes 5-V signals into high-voltage signals for the LCD drive circuit.  
Latch Circuit 2  
240-bit latch circuit 2 latches data input from latch circuit 1, and outputs the latched data to the level  
shifter, both at the falling edge of each clock 1 (CL1) pulse.  
Latch Circuit 1  
240-bit latch circuit 1 latches 4-bit or 8-bit parallel data input via the D0 to D7 pins at the timing generated  
by the shift register.  
Shift Register  
The 60-bit shift register generates and outputs data latch signals for latch circuit 1 at the falling edge of  
each clock 2 (CL2) pulse.  
Data Shifter  
The data shifter shifts the destinations of display data output, when necessary.  
5
HD66120T  
Pin Description  
Symbol  
VCC  
Pin No.  
247  
Pin Name  
VCC  
Input/Output  
Classification  
Power supply  
Power supply  
Power supply  
Power supply  
Power supply  
Power supply  
Power supply  
Control signal  
Control signal  
Control signal  
Control signal  
Control signal  
Control signal  
GND1, GND2  
VLCD1, VLCD2  
V1L, V1R  
V2L, V2R  
V3L, V3R  
V4L, V4R  
CL1  
246, 264  
241, 269  
242, 268  
245, 265  
243, 267  
244, 266  
260  
GND1, GND2  
VLCD1, VLCD2  
V1L, V1R  
V2L, V2R  
V3L, V3R  
V4L, V4R  
Clock 1  
Input  
Input  
Input  
Input  
Input  
CL2  
258  
Clock 2  
Input  
M
262  
M
Input  
D0–D7  
250–257  
263  
Data 0–data 7  
Shift left  
Input  
SHL  
Input  
EIO1, EIO2  
261, 249  
Enable IO 1,  
enable IO 2  
Input/output  
DISP  
259  
Display off  
Bus select  
Y1–Y240  
Input  
Control signal  
Control signal  
LCD drive output  
BS  
248  
Input  
Y1–Y240  
1–240  
Output  
6
HD66120T  
Pin Functions  
Power Supply  
VCC, VLCD, GND: VCC–GND1, GND2 supplies power to the internal logic circuits. VLCD–GND supplies  
power to the LCD drive circuits. See Figure 1.  
V1L, V1R, V2L, V2R, V3L, V3R, V4L, V4R: Supply different levels of power to drive the LCD. V1 and  
V2 are selected levels, and V3 and V4 are non-selected levels.  
Control Signals  
CL1: Inputs display data latch pulses for latch circuit 2. Latch circuit 2 latches display data input from  
latch circuit 1, and outputs LCD drive signals corresponding to the latched data, both at the falling edge of  
each CL1 pulse.  
CL2: Inputs display data latch pulses for latch circuit 1. Latch circuit 1 latches display data input via D0–  
D7 at the falling edge of each CL2 pulse.  
M: Changes LCD drive outputs to AC.  
D0–D7: Input display data. High-voltage level (VCC level) of data corresponds to a selected level and turns  
an LCD pixel on, and low-voltage level (GND level) data corresponds to a non-selected level and turns an  
LCD pixel off.  
SHL: Shifts the destinations of display data output, and determines which chip enable pin (EIO1 or EIO2)  
is an input and which is an output. See Figure 2.  
EIO1, EIO2: If SHL is VCC level, EIO1inputs the chip enable signal, and EIO2 outputs the signal. If SHL  
is GND level, EIO1 outputs the chip enable signal, and EIO2 inputs the signal. The chip enable input pin of  
the first HD66120T must be grounded, and those of the other HD66120Ts must be connected to the chip  
enable output pin of the previous HD66120T. The chip enable output pin of the last HD66120T must be  
open.  
DISP: A low DISP sets LCD drive outputs Y1–Y240 to V2 level.  
BS: Selects either the 4-bit or 8-bit display data bus interface. If BS is VCC level, the 8-bit bus is selected,  
and if BS is GND level, the 4-bit bus is selected. In 4-bit bus mode, data is latched via D0–D3; D4–D7  
must be grounded.  
LCD Drive Output  
Y1–Y240: Each Y outputs one of the four voltage levels V1, V2, V3, or V4, depending on the combination  
of the M signal and display data levels. See Figure 3.  
7
HD66120T  
VLCD  
VCC  
GND, GND2  
Figure 1 Power Supply for Logic and LCD Drive Circuits  
SHL = VCC, BS = GND  
Y240 Y239 Y238 Y237 Y236 Y235 Y234 Y233  
Y8 Y7  
D0 D1  
Y6 Y5  
D2 D3  
Y4  
Y3  
Y2 Y1  
D0  
D1 D2 D3  
D0 D1 D2 D3  
D0 D1 D2 D3  
Last data  
1st data  
EIO1: chip enable input  
EIO2: chip enable output  
SHL = GND, BS = GND  
Y240 Y239 Y238 Y237 Y236 Y235 Y234 Y233  
Y8 Y7  
D3 D2  
Y6 Y5  
D1 D0  
Y4  
Y3  
Y2 Y1  
D3  
D2 D1 D0  
D3 D2 D1 D0  
D3 D2 D1 D0  
1st data  
Last data  
EIO2: chip enable input  
EIO1: chip enable output  
SHL = VCC, BS = VCC  
Y240 Y239 Y238 Y237 Y236 Y235 Y234 Y233  
Y8 Y7  
D0 D1  
Y6 Y5  
D2 D3  
Y4  
Y3  
Y2 Y1  
D0  
D1 D2 D3  
D4 D5 D6 D7  
D4 D5 D6 D7  
Last data  
1st data  
EIO1: chip enable input  
EIO2: chip enable output  
SHL = GND, BS = VCC  
Y240 Y239 Y238 Y237 Y236 Y235 Y234 Y233  
Y8 Y7  
D7 D6  
Y6 Y5  
D5 D4  
Y4  
Y3  
Y2 Y1  
D7  
D6 D5 D4  
D3 D2 D1 D0  
D3 D2 D1 D0  
1st data  
Last data  
EIO2: chip enable input  
EIO1: chip enable output  
Figure 2 Selection of Destinations of Display Data Output  
1
0
M
1
0
1
0
D
Y output level  
V1  
V3  
V2  
V4  
Figure 3 Selection of LCD Drive Output Level  
8
HD66120T  
Operation Timing  
4-Bit Bus Mode (BS = GND)  
Figure 4 shows 4-bit data latch timing when SHL = GND, that is, the EIO2 pin is a chip enable input and  
EIO1 pin is a chip enable output. When SHL = VCC, the EIO1 pin is a chip enable input and EIO2 pin is a  
chip enable input.  
When a low chip enable signal is input via the EIO1 pin, the HD66120T is first released from data standby  
state, and, at the falling edge of the following CL2 pulse, it is released entirely from standby state and starts  
latching data. It simultaneously latches 4 bits of data at the falling edge of each CL2 pulse. When it has  
latched 236 bits of data, it sets the EIO2 signal low. When it has latched 240 bits of data, it automatically  
stops and enters standby state, initiating the next HD66120T, as long as its EIO2 pin is connected to the  
EIO1 pin of the next HD66120T.  
The HD66120Ts output one line of data from the Y1–Y240 pins at the falling edge of each CL1 pulse. Data  
d1 is output from Y1, and d240 from Y240 when SHL = GND, and d1 is output from Y240, and d240 from  
Y1 when SHL = VCC. Data output level is either VLCD, V2, V3, or V4 depending on the combination of  
the M signal and the data level.  
1 line  
CL2  
1
2
3
59  
60  
d240  
61  
62  
479 480 481  
d4  
d8  
d12  
D0  
d1  
d5  
d9  
d237  
D3  
CL1  
EIO2  
(No.1)  
HD66120T no.1  
latches data  
EIO2  
(No.2)  
HD66120T no.2  
latches data  
EIO2  
(No.3)  
HD66120T no.3  
latches data  
EIO2  
(No.8)  
HD66120T no.8  
latches data  
Y1–Y240  
Figure 4 4-Bit Data Latch Timing (BS = GND, 1 Line: 640-by-3 Dots)  
9
HD66120T  
8-Bit Bus Mode (BS = VCC  
)
The operation is the same as that in 4-bit bus mode except that 8 bits of data are latched simultaneously.  
1 line  
CL2  
1
2
3
29  
30  
d240  
31  
32  
239 240 241  
d8  
d16  
d24  
D0  
d1  
d9  
d17  
d233  
D7  
CL1  
EIO2  
(No.1)  
HD66120T no.1  
latches data  
EIO2  
(No.2)  
HD66120T no.2  
latches data  
EIO2  
(No.3)  
IHD66120T no.3  
latches data  
EIO2  
HD66120T no.8  
latches data  
(No.8)  
Y1–Y240  
Figure 5 8-Bit Data Latch Timing (BS = VCC, 1 Line: 640-by-3 Dots)  
10  
HD66120T  
Application Example  
DISP  
D0–D7  
M
seg1920  
seg1919  
seg1918  
CL2  
CL1  
V4L, R  
V3L, R  
V2L, R  
V1L, R  
640 × 3 × 480 LCD panel;  
1/480 duty cycle  
DISP  
D0–D7  
M
CL2  
CL1  
V4L, R  
V3L, R  
V2L, R  
V1L, R  
seg3  
seg2  
seg1  
DISP  
D0–D7  
M
CL2  
CL1  
V4L, R  
V3L, R  
V2L, R  
V1L, R  
X1–X160  
X1–X160  
SHL  
DIO1  
CH  
SHL  
DIO1  
CH  
DIO2  
DIO2  
VLCD1,2  
GND1, 2  
VCC  
VLCD1,2  
GND1, 2  
VCC  
R1  
R1  
R2  
R1  
R1  
+5V +40V  
LCD controller  
Notes: 1. The resistances of R1 and R2 depend on the type of the LCD panel used. For example, for an LCD panel with a 1/20  
bias, R1 and R2 must be 3 kand 48 k, respectively. That is, R1/(4 • R1 + R2) should be 1/20.  
2. To stabilize the power supply, place two 0.1-µF capacitors near each HD66120T, one between the VCC and GND  
pins, and the other between the VLCD and GND pins.  
3. The load must be less than 30 pF between the EIO2 and EIO1 connections of HD66120Ts.  
11  
HD66120T  
Absolute Maximum Ratings  
Item  
Symbol  
VCC  
Rating  
Unit  
V
Notes  
1, 4  
Power supply voltage for logic circuits  
Power supply voltage for LCD drive circuits  
Input voltage 1  
–0.3 to + 7.0  
–0.3 to + 42  
–0.3 to VCC + 0.3  
–0.3 to VLCD + 0.3  
–30 to +75  
VLCD  
VT1  
V
1, 4  
V
1, 2  
Input voltage 2  
VT2  
V
1, 3  
Operating temperature  
Storage temperature  
Topr  
°C  
°C  
Tstg  
–55 to +110  
Notes: 1. The reference point is GND (0V).  
2. Applies to input pins for logic circuits.  
3. Applies to V1L, V1R, V2L, V2R, V3L, V3R, V4L, and V4R pins.  
4. Power should be applied to VCC–GND first, and then VLCD–GND. It should be disconnected in  
the reverse way.  
5. If the LSI is used beyond its absolute maximum ratings, it may be permanently damaged. It  
should always be used within its electrical characteristics in order to prevent malfunctioning or  
degradation of reliability.  
12  
HD66120T  
Electrical Characteristics  
DC Characteristics 1 (VCC = 2.7 to 4.5V, VLCD–GND = 14 to 40V, and Ta = –30 to +75°C, unless  
otherwise noted)  
Item  
Symbol Pins  
Min  
Max  
Unit  
V
Test Condition  
Notes  
Input high voltage  
Input low voltage  
Output high voltage  
Output low voltage  
Vi–Yj on resistance  
Input leakage current 1  
Input leakage current 2  
Current consumption 1  
VIH  
VIL  
VOH  
VOL  
RON  
IIL1  
1
1
2
2
3
1
4
0.8 × VCC VCC  
0
0.2 × VCC  
V
VCC – 0.4  
V
IOH = –0.4 mA  
IOL = 0.4 mA  
0.4  
3.0  
5.0  
100  
3.3  
V
kΩ  
µA  
µA  
mA  
ION = 150 µA  
1
–5.0  
–100  
VIN = VCC to GND  
VIN = VLCD to GND  
VCC = 3.0V  
IIL2  
2
2
ICC  
f
f
CL2 = 10 MHz  
CL1= 36 kHz  
fM = 75 Hz  
Current consumption 2  
Current consumption 3  
ILCD  
IST  
3.8  
mA  
mA  
Same as above  
Same as above  
2
0.45  
2, 3  
Pins and notes at the end of the DC characteristics 2 table.  
13  
HD66120T  
DC Characteristics 2 (VCC = 5V ± 10%, VLCD–GND = 14 to 40V, and Ta = –30 to +75°C, unless  
otherwise noted)  
Item  
Symbol Pins  
Min  
Max  
Unit  
V
Test Condition  
Notes  
Input high voltage  
Input low voltage  
Output high voltage  
Output low voltage  
Vi–Yj on resistance  
Input leakage current 1  
Input leakage current 2  
Current consumption 1  
VIH  
VIL  
VOH  
VOL  
RON  
IIL1  
1
0.8 × VCC VCC  
1
0
0.2 × VCC  
V
2
VCC – 0.4 —  
V
IOH = –0.4 mA  
IOL = 0.4 mA  
2
0.4  
V
3
3.0  
5.0  
100  
10  
kΩ  
µA  
µA  
mA  
ION = 150 µA  
1
1
–5.0  
–100  
VIN = VCC to GND  
VIN = VLCD to GND  
fCL2 = 12 MHz  
IIL2  
4
2
2
ICC  
247  
f
CL1 = 36 kHz  
fM = 75 Hz  
Current consumption 2  
Current consumption 3  
ILCD  
IST  
241,  
269  
3.8  
1.0  
mA  
mA  
Same as above  
2
247  
Same as above  
2, 3  
Pins: 1. CL1, CL2, M, SHL, BS, EIO1, EIO2, DISP, D0–D7  
2. EIO1, EIO2  
3. Y1–Y240, VLCD1, VLCD2, V1L, V1R, V2L, V2R, V3L, V3R, V4L, V4R  
4. V1L, V1R, V2L, V2R, V3L, V3R, V4L, V4R  
Notes: 1. Indicates the resistance between one pin from Y1–Y240 and another pin from V1–V4, when load  
current is applied to the Y pin; defined under the following conditions.  
VLCD–GND = 40V  
V1, V3 = VLCD – {1/20(VLCD–GND)}  
V2, V4 = GND + {1/20(VLCD–GND)}  
V1 and V3 should be near VLCD level, and V2 and V4 should be near GND level (Figure 6). All  
voltage must be within V. V is the range within which RON, the LCD drive circuits’ output  
impedance, is stable. Note that V depends on power supply voltage VLCD–GND (Figure 7).  
2. Input and output current is excluded. When a CMOS input is floating, excess current flows from  
the power supply through the input circuit. To avoid this, VIH and VIL must be held to VCC and  
GND levels, respectively.  
3. Applies to standby mode.  
14  
HD66120T  
VLCD  
V1  
V3  
V  
V  
V4  
V2  
GND  
Figure 6 Relation between Driver Output Waveform and Level Voltages  
6.2  
V (V)  
Level voltage range  
3.0  
14  
40  
VLCD–GND (V)  
Figure 7 Relation between VLCD–GND and V  
15  
HD66120T  
AC Characteristics 1 (VCC = 2.7 to 4.5V, VLCD–GND = 14 to 40V, and Ta = –30 to +75°C, unless  
otherwise noted)  
Item  
Symbol  
tCYC  
tCWH2  
tCWL2  
tCWH1  
tSCL  
tHCL  
tr  
Pins  
Min  
100  
37  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
Clock cycle time  
Clock high-level width 1  
Clock low-level width 1  
Clock high-level width 2  
Clock setup time  
Clock hold time  
CL2  
CL2  
CL2  
37  
CL1  
50  
CL1, CL2  
CL1, CL2  
CL1, CL2  
CL1, CL2  
D0–D7, CL2  
D0–D7, CL2  
M, CL1  
100  
100  
Clock rise time  
50*1  
50*1  
Clock fall time  
tf  
Data setup time  
tDS  
35  
Data hold time  
tDH  
35  
M phase difference time  
Output delay time 1  
Output delay time 2  
tCM  
300  
1.2  
1.2  
tpd1  
CL1, Y1–Y240  
M, Y1–Y240  
tpd2  
Notes at the end of the AC characteristics 2 table.  
AC Characteristics 2 (VCC = 5V ± 10%, VLCD–GND = 14 to 40V, and Ta = –30 to +75°C, unless  
otherwise noted)  
Item  
Symbol  
tCYC  
tCWH2  
tCWL2  
tCWH1  
tSCL  
tHCL  
tr  
Pins  
Min  
50  
15  
15  
15  
100  
100  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
Clock cycle time  
Clock high-level width 1  
Clock low-level width 1  
Clock high-level width 2  
Clock setup time  
Clock hold time  
CL2  
CL2  
CL2  
CL1  
CL1, CL2  
CL1, CL2  
CL1, CL2  
CL1, CL2  
D0–D7, CL2  
D0–D7, CL2  
M, CL1  
Clock rise time  
50*1  
50*1  
Clock fall time  
tf  
Data setup time  
tDS  
5
Data hold time  
tDH  
15  
M phase difference time  
Output delay time 1  
Output delay time 2  
tCM  
300  
0.7  
0.7  
tpd1  
CL1, Y1–Y240  
M, Y1–Y240  
tpd2  
Notes: 1. The clock rise and fall times (tr, tf) must satisfy the following relationships:  
tr, tf < (tCYC – tCWH2 – tCWL2)/2  
tr, tf 50 ns  
2. The load must be less than 30 pF between the EIO2 and EIO1 connections of HD66120Ts.  
16  
HD66120T  
tr  
tCWH2  
tf  
tCWL2  
tCYC  
0.8 VCC  
CL2  
0.2 VCC  
tDS  
tDH  
0.8 VCC  
0.2 VCC  
D0–D7  
tCWH1  
0.8 VCC  
CL1  
CL2  
M
0.2 VCC  
tSCL  
tHCL  
0.2 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
tCM  
CL1  
M
0.2 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
0.8 VCC  
0.2 VCC  
tpd1  
tpd2  
tpd1  
tpd2  
Y (n)  
Figure 8 LCD Controller Interface Timing  
17  
HD66120T  
LCD Driver LSI Power Supply Pin Connection  
A feature of the LCD driver is the LCD drive power supply. As the number of pixel drives per LSI  
increases, so does the voltage and number of outputs.  
Consequently, if multi-output CMOS circuits are switched simultaneously, a wiring voltage drop may  
occurs due to transient currents, and the potential between the LCD drive circuit power supply (VLCD) and  
LCD drive level power supplies (V1, V6, and V3) or GND and the LCD level power supplies (V2, V5, and  
V4) may be inverted, resulting in latchup breakdown. To prevent this, it is recommended that, when  
designing the LCD drive power supply and board power supply wiring, the power supply wiring be  
designed as low-impedance and capacitors be inserted in the wiring between VLCD and V1, V3, V6, and  
between V2, V4, V5 and GND. In set evaluation, it is recommended that a check be carried out to confirm  
that there is no inversion of the LCD drive power supply and level power supplies in the period between  
when the LCD drive power supply is turned on and turned off.  
Example of capacitor insertion (when VLCD = V1 and GND = V2)  
VLCD, V1 pins  
(COM, SEG)  
+
+
+
V6 pin (COM)  
V3 pin (SEG)  
V4 pin (SEG)  
V5 pin (COM)  
+
Electrolytic capacitor  
Ceramic capacitor  
+
+
GND, V2 pins  
(COM, SEG)  
Figure 9 Example of Capacitor Insertion  
18  
HD66120T  
Notes on Power-On/Off of the LCD Driver  
To prevent an LCD driver display error at power on/off, the sequence for power-on signal activation must  
be as follows (see figure 10):  
2.7V  
2.7V  
VCC  
0ms  
0ms  
0ms  
0ms  
VLCD  
DISP  
Input signals such as  
CL1, CL2, and Data  
Signal non-fixed Initializing period  
period  
(1frame or longer)  
Figure 10 Sequence of Power-On/Off  
At Power On  
(1) Power on VCC. At this time, input 0 to the DISP pin.  
(2) Display-off function forces the LCD driver to output a V2 level (lowest level).  
(3) Display-off function takes priority even if the input signal status becomes irregular immediately after  
VCC power-on.  
(4) Input the specified signals to initialize registers of the LCD driver. Its period must be 1 frame or longer.  
(5) Set the DISP level to 1 to cancel display-off function after steps (1) to (4). At this time, VLCD and each  
V pin input must be at the specified levels.  
19  
HD66120T  
At Power Off  
Basically, the power-off procedure is the reverse of the power-on procedure.  
(1) Set the DISP level to 0.  
(2) Lower LCD driver power supply to 0V  
(3) Lower VCC and each input signals to 0V  
At this time, each V pin input must be at 0V. Display-off function stops when VCC falls to 0V, and  
therefore, the LCD driver may output a level other than V2 (lowest level). As a result, a display error may  
be caused at power-off or power-on.  
20  
HD66120T  
Cautions  
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,  
copyright, trademark, or other intellectual property rights for information contained in this document.  
Hitachi bears no responsibility for problems that may arise with third party’s rights, including  
intellectual property rights, in connection with use of the information contained in this document.  
2. Products and product specifications may be subject to change without notice. Confirm that you have  
received the latest product standards or specifications before final design, purchase or use.  
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,  
contact Hitachi’s sales office before using the product in an application that demands especially high  
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk  
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,  
traffic, safety equipment or medical equipment for life support.  
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly  
for maximum rating, operating supply voltage range, heat radiation characteristics, installation  
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used  
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable  
failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-  
safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other  
consequential damage due to operation of the Hitachi product.  
5. This product is not designed to be radiation resistant.  
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without  
written approval from Hitachi.  
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor  
products.  
Hitachi, Ltd.  
Semiconductor & Integrated Circuits.  
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109  
URL  
NorthAmerica  
Europe  
: http:semiconductor.hitachi.com/  
: http://www.hitachi-eu.com/hel/ecg  
Asia (Singapore)  
Asia (Taiwan)  
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm  
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm  
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm  
Japan  
: http://www.hitachi.co.jp/Sicd/indx.htm  
For further information write to:  
Hitachi Semiconductor  
(America) Inc.  
Hitachi Europe GmbH  
Hitachi Asia (Hong Kong) Ltd.  
Group III (Electronic Components)  
7/F., North Tower, World Finance Centre,  
Harbour City, Canton Road, Tsim Sha Tsui,  
Kowloon, Hong Kong  
Tel: <852> (2) 735 9218  
Fax: <852> (2) 730 0281  
Hitachi Asia Pte. Ltd.  
16 Collyer Quay #20-00  
Hitachi Tower  
Singapore 049318  
Tel: 535-2100  
Electronic components Group  
Dornacher Straße 3  
D-85622 Feldkirchen, Munich  
Germany  
Tel: <49> (89) 9 9180-0  
Fax: <49> (89) 9 29 30 00  
179 East Tasman Drive,  
San Jose,CA 95134  
Tel: <1> (408) 433-1990  
Fax: <1>(408) 433-0223  
Fax: 535-1533  
Hitachi Asia Ltd.  
Taipei Branch Office  
3F, Hung Kuo Building. No.167,  
Tun-Hwa North Road, Taipei (105)  
Tel: <886> (2) 2718-3666  
Fax: <886> (2) 2718-8180  
Telex: 40815 HITEC HX  
Hitachi Europe Ltd.  
Electronic Components Group.  
Whitebrook Park  
Lower Cookham Road  
Maidenhead  
Berkshire SL6 8YA, United Kingdom  
Tel: <44> (1628) 585000  
Fax: <44> (1628) 778322  
Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.  
21  

相关型号:

HD66120TA5

LCD Display Driver
ETC

HD66130

320-channel Low-voltage Segment Driver for Dot-Matrix STN Liquid Crystal Display
HITACHI

HD66130T

320-channel Low-voltage Segment Driver for Dot-Matrix STN Liquid Crystal Display
HITACHI

HD66131ST

LCD Display Driver
ETC

HD66132T

LCD Display Driver
ETC

HD66133T

LCD Display Driver
ETC

HD66134ST

LCD Display Driver
ETC

HD66135T

LCD Display Driver
ETC

HD66137

High-Voltage Durable 240-Channel Common Driver for Dot-Matrix STN LCD
HITACHI

HD66137T

High-Voltage Durable 240-Channel Common Driver for Dot-Matrix STN LCD
HITACHI

HD66204

DOT MATRIX LIQUID CRYSTAL GRAPHIC DISPLAY COLUMN DRIVER WITH 80-CHANNEL OUPUTS
HITACHI

HD66204F

DOT MATRIX LIQUID CRYSTAL GRAPHIC DISPLAY COLUMN DRIVER WITH 80-CHANNEL OUPUTS
HITACHI