HGT1S12N60C3DRS9A [RENESAS]

Insulated Gate Bipolar Transistor, 24A I(C), 600V V(BR)CES, N-Channel, TO-263AB;
HGT1S12N60C3DRS9A
型号: HGT1S12N60C3DRS9A
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Insulated Gate Bipolar Transistor, 24A I(C), 600V V(BR)CES, N-Channel, TO-263AB

电动机控制 栅 瞄准线 开关 晶体管
文件: 总7页 (文件大小:94K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTG12N60C3DR,  
HGTP12N60C3DR, HGT1S12N60C3DRS  
Data Sheet  
June 2000  
File Number 4467.1  
24A, 600V, Rugged, UFS Series N-Channel  
IGBTs with Anti-Parallel Ultrafast Diodes  
Features  
o
• 24A, 600V at T = 25 C  
C
[ /Title  
(HGT  
G12N6  
0C3D  
R,  
HGTP  
12N60  
C3DR,  
HGT1  
S12N6  
0C3D  
RS)  
This family of IGBTs was designed for optimum performance  
in the demanding world of motor control operation as well as  
other high voltage switching applications. These devices  
demonstrate RUGGED performance capability when  
subjected to harsh SHORT CIRCUIT WITHSTAND TIME  
(SCWT) conditions. The parts have ULTRAFAST (UFS)  
switching speed while the on-state conduction losses have  
been kept at a low level.  
• 600V Switching SOA Capability  
o
Typical Fall Time at T = 150 C . . . . . . . . . . . . . . . . 250ns  
J
o
• Short Circuit Rating at T = 150 C. . . . . . . . . . . . . . .10µs  
J
• Low Conduction Loss  
• Ultrafast Anti-Parallel Diode  
• Related Literature  
The electrical specifications include typical Turn-On and  
Turn-Off dv/dt ratings. These ratings and the Turn-On ratings  
include the effect of the diode in the test circuit (Figure 17).  
- TB334, “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
The data was obtained with the diode at the same T as the  
Packaging  
J
IGBT under test. The diode used in anti-parallel with the  
IGBT is development type TA49213. The IGBT is  
development type TA49118.  
JEDEC TO-220AB (ALTERNATE VERSION)  
/Sub-  
ject  
E
C
G
(24A,  
600V,  
Rug-  
ged,  
UFS  
Series  
N-  
Formerly development type TA49124.  
COLLECTOR  
(FLANGE)  
Ordering Information  
PART NUMBER  
HGTP12N60C3DR  
HGT1S12N60C3DRS  
HGTG12N60C3DR  
PACKAGE  
BRAND  
12N60CDR  
TO-220AB  
TO-263AB  
TO-247  
12N60CDR  
JEDEC TO-247AB  
12N60C3DR  
Chan-  
nel  
IGBT  
with  
Anti-  
Paral-  
lel  
E
C
NOTE: When ordering, use the entire part number. Add the suffix 9A  
to obtain the TO-263AB variant in tape and reel, ie.,  
HGT1S12N60C3DRS9A.  
G
Symbol  
COLLECTOR  
(BOTTOM SIDE  
MEDAL)  
C
Ultrafa  
st  
Diode)  
/Autho  
r ()  
/Key-  
words  
(24A,  
600V,  
Rug-  
ged,  
G
JEDEC TO-263AB  
COLLECTOR  
E
(FLANGE)  
G
E
INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
UFS  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000  
2-1  
HGTG12N60C3DR, HGTP12N60C3DR, HGT1S12N60C3DRS  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
ALL TYPES  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV  
600  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
24  
12  
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
C110  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
48  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
o
±30  
Switching Safe Operating Area at T = 150 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSOA  
C
48A at 600V  
104  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.83  
W/ C  
C
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 150  
C
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
Package Body for 10s, See Tech Brief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
o
300  
260  
C
C
L
o
pkg  
Short Circuit Withstand Time (Note 2) at V  
GE  
= 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t  
10  
µs  
SC  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Repetitive Rating: Pulse width limited by maximum junction temperature.  
o
2. V  
= 440V, T = 150 C, R = 25Ω.  
J G  
CE(PK)  
o
Electrical Specifications  
T
= 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
= 250µA, V = 0V  
MIN  
TYP  
MAX  
-
UNITS  
V
Collector to Emitter Breakdown Voltage  
Collector to Emitter Leakage Current  
BV  
I
600  
-
-
CES  
C
GE  
I
V
= BV  
= BV  
-
-
250  
1.0  
2.2  
2.5  
7.5  
±100  
-
µA  
mA  
V
CES  
CE  
CE  
CES  
o
V
T
= 150 C  
-
CES,  
C
Collector to Emitter Saturation Voltage  
V
I
I
I
= I  
, V  
= 15V  
= 15V, T = 150 C  
-
1.9  
2.0  
6.1  
-
CE(SAT)  
C
C110 GE  
o
= I , V  
-
V
C
C
C110 GE  
= 250µA, V  
C
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA (See Figure 2)  
V
= V  
CE GE  
4.5  
-
V
GE(TH)  
I
V
= ±20V  
nA  
A
GES  
GE  
o
SSOA  
T = 150 C, R = 25, V  
= 15V  
48  
-
J
G
GE  
V
= 600V, L = 100µH  
CE(PK)  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
I
= I  
= I  
= I  
, V  
= 0.5 BV  
CES  
-
-
-
-
-
-
-
-
9.7  
50  
-
V
GEP  
C
C
C
C110 CE  
Q
, V  
C110 CE  
= 0.5 BV , V  
ES GE  
= 15V  
= 20V  
70  
90  
-
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
g(ON)  
, V  
= 0.5 BV , V  
ES GE  
71  
C110 CE  
o
Current Turn-On Delay Time  
Current Rise Time  
t
T = 25 C  
37  
d(ON)I  
J
I
= I  
CE  
C110  
= 0.8 BV  
t
37  
-
rI  
V
V
R
CE(PK)  
= 15V  
CES  
Current Turn-Off Delay Time  
Current Fall Time  
t
GE  
120  
110  
400  
340  
260  
160  
450  
700  
d(OFF)I  
= 25Ω  
G
t
fI  
L = 1mH  
Turn-On Energy (Note 4)  
Turn-Off Energy (Note 5)  
E
ON  
Diode Used In Test Circuit  
RURP1560 at 25 C  
o
E
OFF  
2-2  
HGTG12N60C3DR, HGTP12N60C3DR, HGT1S12N60C3DRS  
o
Electrical Specifications  
PARAMETER  
T
= 25 C, Unless Otherwise Specified (Continued)  
C
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
36  
38  
290  
250  
2
MAX  
-
UNITS  
ns  
o
Current Turn-On Delay Time  
Current Rise Time  
t
T = 150 C  
-
-
-
-
-
-
-
-
-
-
-
-
-
d(ON)I  
J
I
= I  
CE  
C110  
= 0.8 BV  
t
-
ns  
rI  
d(OFF)I  
V
CE(PK)  
= 15V  
CES  
V
Current Turn-Off Delay Time  
Current Fall Time  
t
GE  
500  
400  
-
ns  
R
= 25Ω  
G
t
ns  
fI  
L = 1mH  
Turn-Off Voltage dv/dt (Note 3)  
Turn-On Voltage dv/dt (Note 3)  
Turn-On Energy (Note 4)  
Turn-Off Energy (Note 5)  
Diode Forward Voltage  
dV /dt  
V/ns  
V/ns  
mJ  
mJ  
V
CE  
Diode Used in Test Circuit  
RURP1560 at 150 C  
o
dV /dt  
10  
0.83  
1.20  
1.3  
-
-
CE  
E
0.91  
1.95  
1.6  
35  
ON  
E
OFF  
V
I
I
I
= 12A  
EC  
EC  
EC  
EC  
Diode Reverse Recovery Time  
t
= 1A, dI /dt = 200A/µs  
EC  
ns  
rr  
= 12A, dI /dt = 200A/µs  
EC  
-
60  
ns  
o
Thermal Resistance Junction to Case  
NOTES:  
R
IGBT  
-
1.2  
1.75  
C/W  
θJC  
o
Diode  
-
C/W  
3. dV /dt depends on the diode used and the temperature of the diode.  
CE  
4. Turn-On Energy Loss (E ) includes losses due to the diode recovery and is defined as the integral of the instantaneous power loss starting at  
ON  
the leading edge of the input pulse and ending at the point where the collector voltage equals V (ON). This value of E  
was obtained with  
CE  
ON  
o
o
a RURP1560 diode at T = 150 C. A different diode or temperature will result in a different E . For example with diode at T = 25 C, E  
is  
J
ON  
J
ON  
o
about one half the value of E  
with diode at T = 150 C.  
J
ON  
5. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I  
= 0A). All devices were tested per JEDEC standard No. 24-1 Method for Measurement  
CE  
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.  
Typical Performance Curves  
25  
20  
15  
10  
5
50  
40  
30  
20  
10  
0
V
= 15V  
GE  
o
T
= 150 C, R = 25, V  
= 15V, L = 100µH  
J
G
GE  
0
25  
0
200  
400  
600  
150  
50  
75  
100  
125  
o
T
, CASE TEMPERATURE ( C)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE(PK)  
C
FIGURE 1. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 2. SWITCHING SAFE OPERATING AREAS  
2-3  
HGTG12N60C3DR, HGTP12N60C3DR, HGT1S12N60C3DRS  
Typical Performance Curves (Continued)  
200  
100  
70  
60  
50  
40  
30  
20  
10  
0
o
o
T
= 150 C, R = 25, L = 1mH, V  
= 480V  
CE(PK)  
T
T
= -55 C  
PULSE DURATION = 250µs  
J
G
C
DUTY CYCLE <0.5%  
V
= 15V  
GE  
V
= 15V  
o
GE  
= 25 C  
C
o
T
= 150 C  
C
o
= 75 C  
T
C
o
T
= 110 C  
C
10  
f
f
P
= 0.05/(t  
d(OFF)I  
+ t )  
d(ON)I  
MAX1  
MAX2  
= (P - P )/(E  
+ E  
)
D
C
ON  
OFF  
= ALLOWABLE DISSIPATION  
= CONDUCTION DISSIPATION  
(DUTY FACTOR = 50%)  
D
C
P
o
R
= 1.2 C/W  
6
θJC  
1
4
8
10  
20  
30  
0
1
2
3
4
5
6
7
8
9
10  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 4. COLLECTOR TO EMITTER ON STATE VOLTAGE  
4.0  
o
4.5  
o
= 150 C, R = 25, L = 1mH, V = 480V  
CE(PK)  
T
= 150 C, R = 25, L = 1mH, V  
= 480V  
J
G
CE(PK)  
T
J
G
V
= 15V  
GE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 15V  
GE  
8
12  
16  
20  
24  
28  
32  
36  
4
4
8
12  
16  
20  
24  
28  
32  
36  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 5. TURN ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 6. TURN OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
46  
150  
o
o
= 150 C, R = 25, L = 1mH, V = 480V  
CE(PK)  
T
= 150 C, R = 25, L = 1mH, V  
= 480V  
CE(PK)  
T
J
G
J
G
V
= 15V  
V
= 15V  
GE  
GE  
44  
42  
40  
38  
36  
34  
125  
100  
75  
50  
25  
0
4
8
12  
16  
20  
24  
28  
32  
36  
4
8
12  
16  
20  
24  
28  
32  
36  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 7. TURN ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
2-4  
HGTG12N60C3DR, HGTP12N60C3DR, HGT1S12N60C3DRS  
Typical Performance Curves (Continued)  
325  
300  
275  
250  
225  
200  
175  
375  
350  
325  
300  
275  
250  
225  
200  
o
o
T
= 150 C, R = 25, L = 1mH, V  
= 480V  
CE(PK)  
T
= 150 C, R = 25, L = 1mH, V  
= 480V  
CE(PK)  
J
G
J
G
V
= 15V  
GE  
V
= 15V  
GE  
4
8
12  
16  
20  
24  
28  
32  
36  
4
8
12  
16  
20  
24  
28  
32  
36  
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 9. TURN OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN OFF FALL TIME vs COLLECTOR TO  
EMITTER CURRENT  
16  
o
70  
I
= 1mA, R = 25, T = 25 C  
G(REF)  
L
C
DUTY CYCLE <0.5%, V  
= 10V  
PULSE DURATION = 250µs  
CE  
14  
12  
60  
50  
40  
30  
20  
10  
0
V
= 600V  
CE  
o
T
= -55 C  
C
10  
8
V
= 200V  
CE  
o
T
= 25 C  
C
V
= 400V  
CE  
6
o
4
T
= 150 C  
C
2
0
6
7
8
9
10  
11  
12  
13  
14  
15  
0
10  
20  
30  
40  
50  
Q , GATE CHARGE (nC)  
V
, GATE TO EMITTER VOLTAGE (V)  
g
GE  
FIGURE 11. TRANSFER CHARACTERISTICS  
FIGURE 12. GATE CHARGE WAVEFORMS  
2.5  
2.0  
1.5  
1.0  
0.5  
FREQUENCY = 1MHz  
C
IES  
C
OES  
C
RES  
0
10  
, COLLECTOR TO EMITTER VOLTAGE (V)  
0
5
15  
20  
25  
V
CE  
FIGURE 13. CAPACITANCE vs COLLECTOR TO EMITTER VOLTAGE  
2-5  
HGTG12N60C3DR, HGTP12N60C3DR, HGT1S12N60C3DRS  
Typical Performance Curves (Continued)  
0
10  
0.5  
0.2  
0.1  
t
1
-1  
10  
P
0.05  
D
t
2
0.02  
0.01  
DUTY FACTOR, D = t / t  
1
2
SINGLE PULSE  
PEAK T = (P X Z  
X R  
) + T  
θJC C  
J
D
θJC  
-2  
10  
10  
-5  
-4  
-3  
10  
-2  
10  
-1  
10  
0
1
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 14. IGBT NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
60  
10  
60  
o
= 25 C, dI /dt = 200A/µs  
T
C
EC  
50  
40  
30  
20  
10  
0
o
150 C  
o
o
-55 C  
25 C  
t
rr  
t
a
t
b
1
0
0.5  
1.0  
1.5  
2.0  
2.5  
1
2
5
10 12  
I
, FORWARD CURRENT (A)  
V
, FORWARD VOLTAGE (V)  
EC  
EC  
FIGURE 15. DIODE FORWARD CURRENT AS A FUNCTION OF  
FORWARD VOLTAGE DROP  
FIGURE 16. RECOVERY TIME vs FORWARD CURRENT  
Test Circuit and Waveforms  
L = 1mH  
90%  
RURP1560  
10%  
V
GE  
E
E
OFF  
ON  
V
CE  
R
= 25Ω  
G
90%  
10%  
d(OFF)I  
+
-
I
CE  
t
t
rI  
t
V
= 480V  
fI  
DD  
t
d(ON)I  
FIGURE 17. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 18. SWITCHING TEST WAVEFORMS  
2-6  
HGTG12N60C3DR, HGTP12N60C3DR, HGT1S12N60C3DRS  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to  
gate-insulation damage by the electrostatic discharge of  
energy through the devices. When handling these devices,  
care should be exercised to assure that the static charge  
built in the handler’s body capacitance is not discharged  
through the device. With proper handling and application  
procedures, however, IGBTs are currently being extensively  
used in production by numerous equipment manufacturers in  
military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
Operating frequency information for a typical device (Figure  
3) is presented as a guide for estimating device performance  
for a specific application. Other typical frequency vs collector  
current (I ) plots are possible using the information shown  
CE  
for a typical unit in Figures 4, 5, 6, 7 and 9. The operating  
frequency plot (Figure 3) of a typical device shows f  
or  
whichever is smaller at each point. The information is  
MAX1  
f
MAX2  
based on measurements of a typical device and is bounded  
by the maximum rated junction temperature.  
f
is defined by f  
MAX1  
= 0.05/(t  
d(OFF)I  
+ t  
).  
d(ON)I  
MAX1  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on- state time for a 50% duty factor. Other definitions  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD™ LD26” or equivalent.  
are possible. t  
d(OFF)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
and t  
are defined in Figure 18.  
d(ON)I  
JM d(OFF)  
is important when controlling output ripple under a lightly  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
loaded condition.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON  
MAX2  
D
C
allowable dissipation (P ) is defined by P = (T - T )/R  
.
D
D
JM θJC  
C
3. Tips of soldering irons should be grounded.  
The sum of device switching and conduction losses must  
not exceed P . A 50% duty factor was used (Figure 3) and  
4. Devices should never be inserted into or removed from  
circuits with power on.  
D
the conduction losses (P ) are approximated by  
C
5. Gate Voltage Rating - Never exceed the gate-voltage  
P
= (V  
x I )/2.  
CE  
C
CE  
rating of V  
. Exceeding the rated V can result in  
GEM  
GE  
permanent damage to the oxide layer in the gate region.  
E
and E are defined in the switching waveforms shown  
OFF  
ON  
in Figure 18. E  
loss (I x V ) during turn-on and E  
CE CE OFF  
instantaneous power loss (I x V ) during turn-off. All tail  
losses are included in the calculation for E  
is the integral of the instantaneous power  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate  
open-circuited or floating should be avoided. These  
conditions can result in turn-on of the device due to  
voltage buildup on the input capacitor due to leakage  
currents or pickup.  
ON  
is the integral of the  
CE CE  
; i.e., the  
OFF  
collector current equals zero (I = 0).  
CE  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
protection is required an external Zener is recommended.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
ECCOSORBD™ is a trademark Emerson and Cumming, Inc.  
2-7  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY