HGTP2N120BND [RENESAS]

暂无描述;
HGTP2N120BND
型号: HGTP2N120BND
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

暂无描述

局域网 瞄准线 功率控制 晶体管
文件: 总7页 (文件大小:86K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTP2N120BND, HGT1S2N120BNDS  
Data Sheet  
January 2000  
File Number 4698.2  
12A, 1200V, NPT Series N-Channel IGBT  
with Anti-Parallel Hyperfast Diode  
Features  
o
• 12A, 1200V, T = 25 C  
C
The HGTP2N120BND and HGT1S2N120BNDS are  
• 1200V Switching SOA Capability  
Non-Punch Through (NPT) IGBT designs. They are new  
members of the MOS gated high voltage switching IGBT  
family. IGBTs combine the best features of MOSFETs and  
bipolar transistors. This device has the high input impedance  
of a MOSFET and the low on-state conduction loss of a  
bipolar transistor. The IGBT used is the development type  
TA49312. The Diode used is the development type TA49056.  
o
Typical Fall Time. . . . . . . . . . . . . . . . 160ns at T = 150 C  
J
• Short Circuit Rating  
• Low Conduction Loss  
Thermal Impedance SPICE Model  
www.intersil.com  
• Related Literature  
The IGBT is ideal for many high voltage switching  
applications operating at moderate frequencies where low  
conduction losses are essential, such as: AC and DC motor  
controls, power supplies and drivers for solenoids, relays  
and contactors.  
- TB334 “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Packaging  
JEDEC TO-220AB (ALTERNATE VERSION)  
Formerly Developmental Type TA49310.  
E
Ordering Information  
C
COLLECTOR  
G
(FLANGE)  
PART NUMBER  
PACKAGE  
TO-220AB  
TO-263AB  
BRAND  
2N120BND  
2N120BND  
HGTP2N120BND  
HGT1S2N120BNDS  
NOTE: When ordering, use the entire part number. Add the suffix 9A  
to obtain the TO-263AB variant in Tape and Reel, i.e.,  
HGT1S2N120BNDS9A.  
JEDEC TO-263AB  
Symbol  
C
COLLECTOR  
(FLANGE)  
G
E
G
E
INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000  
1
HGTP2N120BND, HGT1S2N120BNDS  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGTP2N120BND  
HGT1S2N120BNDS  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BV  
1200  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
12  
5.6  
A
A
A
V
V
C25  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
C110  
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
20  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
±30  
Switching Safe Operating Area at T = 150 C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . .SSOA  
J
12A at 1200V  
104  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.83  
W/ C  
C
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
-55 to 150  
C
STG  
Maximum Lead Temperature for Soldering  
o
Leads at 0.063in (1.6mm) from case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
300  
260  
8
C
L
o
Package Body for 10s, see Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
C
pkg  
Short Circuit Withstand Time (Note 2) at V  
= 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
µs  
µs  
GE  
GE  
SC  
SC  
Short Circuit Withstand Time (Note 2) at V  
= 12V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . t  
15  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Pulse width limited by maximum junction temperature.  
o
2. V  
= 840V, T = 125 C, R = 51.  
J G  
CE(PK)  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V  
MIN  
TYP  
MAX  
-
UNITS  
V
Collector to Emitter Breakdown Voltage  
Collector to Emitter Leakage Current  
I
1200  
-
-
CES  
C
GE  
o
I
V
= BV  
CES  
T
= 25 C  
-
-
250  
-
µA  
µA  
mA  
V
CES  
CE  
C
C
C
C
C
o
T
T
T
T
= 125 C  
50  
-
o
= 150 C  
-
0.6  
2.7  
4.2  
-
o
Collector to Emitter Saturation Voltage  
V
I
V
= 2.3A,  
C
= 25 C  
-
2.45  
3.6  
6.8  
-
CE(SAT)  
= 15V  
GE  
o
= 150 C  
-
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 40µA, V = V  
CE GE  
6.0  
-
V
GE(TH)  
C
I
V
= ±20V  
±250  
-
nA  
A
GES  
GE  
o
SSOA  
T = 150 C, R = 51Ω, V  
= 15V,  
12  
-
J
G
GE  
L = 400µH, V  
= 1200V  
CE(PK)  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
= 2.3A, V  
= 10A,  
= 0.5 BV  
CE CES  
-
-
-
-
-
-
-
-
-
10.2  
24  
-
V
GEP  
C
C
Q
V
= 15V  
30  
nC  
nC  
ns  
ns  
ns  
ns  
µJ  
µJ  
G(ON)  
GE  
V
= 0.5 BV  
CES  
CE  
V
= 20V  
o
32  
39  
GE  
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 25 C  
I
V
V
21  
25  
d(ON)I  
J
= 2.3A  
CE  
t
11  
15  
rI  
= 0.8 BV  
= 15V  
CE  
CES  
Current Turn-Off Delay Time  
Current Fall Time  
t
GE  
185  
100  
370  
195  
240  
130  
500  
270  
d(OFF)I  
R
= 51Ω  
G
t
fI  
L = 5mH  
Test Circuit (Figure 20)  
Turn-On Energy  
E
ON  
Turn-Off Energy (Note 3)  
E
OFF  
2
HGTP2N120BND, HGT1S2N120BNDS  
o
Electrical Specifications  
PARAMETER  
T
= 25 C, Unless Otherwise Specified (Continued)  
C
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
25  
11  
195  
160  
725  
280  
-
MAX  
30  
UNITS  
ns  
o
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 150 C  
-
-
-
-
-
-
-
-
-
-
-
d(ON)I  
J
I
= 2.3A  
CE  
t
15  
ns  
rI  
d(OFF)I  
V
= 0.8 BV  
= 15V  
CE  
CES  
V
Current Turn-Off Delay Time  
Current Fall Time  
t
GE  
260  
200  
1000  
380  
3.2  
ns  
R
= 51Ω  
G
t
ns  
fI  
L = 5mH  
Test Circuit (Figure 20)  
Turn-On Energy  
E
µJ  
ON  
Turn-Off Energy (Note 3)  
Diode Forward Voltage  
Diode Reverse Recovery Time  
E
µJ  
OFF  
V
I
I
I
= 2.3A  
V
EC  
EC  
EC  
EC  
t
= 2.3A, dl /dt = 200A/µs  
EC  
52  
38  
-
60  
ns  
rr  
= 1A, dl /dt = 200A/µs  
EC  
44  
ns  
o
Thermal Resistance Junction To Case  
NOTE:  
R
IGBT  
1.20  
2.5  
C/W  
θJC  
o
Diode  
-
C/W  
3. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement  
CE  
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.  
Typical Performance Curves Unless Otherwise Specified  
12  
10  
8
14  
12  
10  
8
o
T
= 150 C, R = 51, V = 15V, L = 1mH  
GE  
J
G
V
= 15V  
GE  
6
6
4
4
2
2
0
0
0
200  
400  
600  
800  
1000  
1200  
1400  
25  
50  
75  
100  
125  
150  
o
T
, CASE TEMPERATURE ( C)  
V
CE  
, COLLECTOR TO EMITTER VOLTAGE (V)  
C
FIGURE 1. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA  
3
HGTP2N120BND, HGT1S2N120BNDS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
25  
20  
15  
40  
35  
30  
o
T
= 150 C, R = 51, L = 5mH, V  
= 960V  
CE  
o
J
G
V
= 840V, R = 51, T = 125 C  
CE  
G
J
o
T
= 75 C, V = 15V, IDEAL DIODE  
C
GE  
t
SC  
100  
50  
I
SC  
T
V
C
GE  
15V  
75 C 12V  
o
75 C  
o
f
= 0.05 / (t  
d(OFF)I  
+ t )  
d(ON)I  
MAX1  
10  
5
25  
20  
f
= (P - P ) / (E  
+ E )  
MAX2  
D
C
ON  
OFF  
T
V
P
= CONDUCTION DISSIPATION  
(DUTY FACTOR = 50%)  
C
GE  
C
o
15V  
12V  
110 C  
110 C  
o
o
R
= 1.2 C/W, SEE NOTES  
ØJC  
10  
12  
13  
14  
15  
0.5  
1.0  
2.0  
5.0  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME  
10  
8
10  
o
T
= -55 C  
C
8
o
T
= 25 C  
C
o
= 25 C  
T
C
6
6
4
2
0
o
T
= -55 C  
C
o
T
= 150 C  
C
4
o
T
= 150 C  
C
2
DUTY CYCLE < 0.5%, V  
= 15V  
PULSE DURATION = 250µs  
DUTY CYCLE < 0.5%, V = 12V  
PULSE DURATION = 250µs  
GE  
GE  
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
V , COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
2.0  
400  
R
T
= 51, L = 5mH, V  
= 960V  
CE  
G
R
= 51, L = 5mH, V  
= 960V  
G
CE  
350  
300  
250  
200  
150  
1.5  
1.0  
o
o
= 150 C, V  
= 12V OR 15V  
T
= 150 C, V  
= 12V, V = 15V  
GE  
J
GE  
J
GE  
o
T
= 25 C, V = 12V OR 15V  
GE  
J
0.5  
0
100  
50  
0
o
T
2
= 25 C, V  
= 12V, V = 15V  
GE  
J
GE  
0
1
2
3
4
5
0
1
3
4
5
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
4
HGTP2N120BND, HGT1S2N120BNDS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
45  
40  
35  
30  
25  
20  
15  
40  
35  
30  
25  
R
= 51, L = 5mH, V = 960V  
CE  
R
= 51, L = 5mH, V  
= 960V  
CE  
G
G
o
o
T
= 25 C, T = 150 C, V  
= 12V  
GE  
J
J
o
o
T
= 25 C, T = 150 C, V  
= 12V  
GE  
J
J
20  
15  
10  
5
o
o
T
2
= 25 C OR T = 150 C, V  
= 15V  
J
J
GE  
o
o
T
= 25 C, T = 150 C, V = 15V  
GE  
J
J
0
0
1
4
5
3
2
0
1
3
4
5
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
450  
400  
R
= 51, L = 5mH, V  
= 960V  
CE  
R
= 51, L = 5mH, V  
= 960V  
CE  
G
G
400  
350  
300  
250  
200  
350  
300  
250  
200  
150  
100  
50  
o
V
= 12V, V  
GE  
= 15V, T = 150 C  
J
GE  
o
= 150 C, V  
T
= 12V OR 15V  
GE  
J
150  
100  
o
o
= 15V, T = 25 C  
T
= 25 C, V  
= 12V OR 15V  
2
V
= 12V, V  
1
J
GE  
GE  
GE  
J
0
1
3
4
5
3
0
2
4
5
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER  
CURRENT  
20  
30  
o
DUTY CYCLE < 0.5%, V  
PULSE DURATION = 250µs  
= 20V  
I
= 1mA, R = 260, T = 25 C  
CE  
G (REF)  
L
C
25  
20  
15  
10  
15  
10  
5
V
= 1200V  
CE  
V
= 800V  
V
= 400V  
CE  
CE  
o
T
= 25 C  
C
5
0
o
T
= 150 C  
C
o
T
= -55 C  
C
0
7
8
9
10  
11  
12  
13  
14  
15  
0
5
10  
15  
Q , GATE CHARGE (nC)  
G
20  
25  
35  
30  
V
, GATE TO EMITTER VOLTAGE (V)  
GE  
FIGURE 13. TRANSFER CHARACTERISTIC  
FIGURE 14. GATE CHARGE WAVEFORMS  
5
HGTP2N120BND, HGT1S2N120BNDS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
0.8  
0.6  
0.4  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
o
FREQUENCY = 1MHz  
DUTY CYCLE < 0.5%, T = 110 C  
C
PULSE DURATION = 250µs  
C
IES  
V
= 15V  
GE  
V
= 10V  
GE  
C
OES  
0.2  
0
C
RES  
0
5
10  
15  
20  
25  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V , COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER  
VOLTAGE  
FIGURE 16. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
0
10  
0.5  
0.2  
0.1  
t
1
-1  
10  
P
0.05  
0.02  
D
t
2
DUTY FACTOR, D = t / t  
1
2
0.01  
PEAK T = (P X Z  
θJC  
X R  
) + T  
J
D
θJC C  
SINGLE PULSE  
-2  
10  
-5  
-4  
-3  
-2  
10  
-1  
0
10  
10  
10  
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 17. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
70  
o
= 25 C, dI  
T
/ dt = 200A/µs  
EC  
C
10  
60  
50  
40  
30  
20  
10  
t
rr  
o
150 C  
t
a
1
t
b
o
25 C  
o
-55 C  
0.1  
0.5  
1.5  
2.0  
2.5  
1.0  
0
1
2
3
4
5
V , FORWARD VOLTAGE (V)  
I , FORWARD CURRENT (A)  
F
F
FIGURE 18. DIODE FORWARD CURRENT vs FORWARD  
VOLTAGE DROP  
FIGURE 19. RECOVERY TIMES vs FORWARD CURRENT  
6
HGTP2N120BND, HGT1S2N120BNDS  
Test Circuit and Waveforms  
HGTP2N120BND  
90%  
OFF  
10%  
ON  
V
GE  
E
E
V
CE  
L = 5mH  
90%  
R
= 51Ω  
G
10%  
d(OFF)I  
+
I
CE  
t
t
V
= 960V  
rI  
DD  
t
fI  
-
t
d(ON)I  
FIGURE 20. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 21. SWITCHING TEST WAVEFORMS  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating device  
performance for a specific application. Other typical  
gate-insulation damage by the electrostatic discharge of  
energy through the devices. When handling these devices,  
care should be exercised to assure that the static charge built  
in the handler’s body capacitance is not discharged through  
the device. With proper handling and application procedures,  
however, IGBTs are currently being extensively used in  
production by numerous equipment manufacturers in military,  
industrial and consumer applications, with virtually no  
damage problems due to electrostatic discharge. IGBTs can  
be handled safely if the following basic precautions are taken:  
frequency vs collector current (I ) plots are possible using  
CE  
the information shown for a typical unit in Figures 5, 6, 7, 8, 9  
and 11. The operating frequency plot (Figure 3) of a typical  
device shows f  
or f  
; whichever is smaller at each  
MAX1  
MAX2  
point. The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
MAX1  
= 0.05/(t ).  
+ t  
MAX1  
d(OFF)I d(ON)I  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD™ LD26” or equivalent.  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions  
are possible. t  
and t  
are defined in Figure 21.  
d(OFF)I  
d(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
JM d(OFF)I  
is important when controlling output ripple under a lightly  
loaded condition.  
3. Tips of soldering irons should be grounded.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON  
4. Devices should never be inserted into or removed from  
circuits with power on.  
MAX2  
D
C
allowable dissipation (P ) is defined by P = (T - T )/R  
.
D
D
JM θJC  
C
The sum of device switching and conduction losses must  
not exceed P . A 50% duty factor was used (Figure 3) and  
5. Gate Voltage Rating - Never exceed the gate-voltage  
rating of V  
. Exceeding the rated V can result in  
D
GEM  
GE  
permanent damage to the oxide layer in the gate region.  
the conduction losses (P ) are approximated by  
C
P
E
= (V  
x I )/2.  
CE  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate  
open-circuited or floating should be avoided. These  
conditions can result in turn-on of the device due to  
voltage buildup on the input capacitor due to leakage  
currents or pickup.  
C
CE  
and E  
are defined in the switching waveforms  
OFF  
ON  
shown in Figure 21. E  
power loss (I  
is the integral of the instantaneous  
ON  
x V ) during turn-on and E  
is the  
CE  
CE  
OFF  
x V ) during  
integral of the instantaneous power loss (I  
CE  
turn-off. All tail losses are included in the calculation for  
; i.e., the collector current equals zero (I = 0).  
CE  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate pro-  
tection is required an external Zener is recommended.  
E
OFF  
CE  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
ECCOSORBD™ is a trademark of Emerson and Cumming, Inc.  
7

相关型号:

HGTP2N120CN

13A, 1200V, NPT Series N-Channel IGBT
FAIRCHILD

HGTP2N120CN

13A, 1200V, NPT Series N-Channel IGBT
INTERSIL

HGTP2N120CN9A

Insulated Gate Bipolar Transistor, 13A I(C), 1200V V(BR)CES, N-Channel
FAIRCHILD

HGTP2N120CND

13A, 1200V, NPT Series N-Channel IGBTs with Anti-Parallel Hyperfast Diodes
INTERSIL

HGTP2N120CNDS

Insulated Gate Bipolar Transistor
FAIRCHILD

HGTP2N120CNDS9A

Insulated Gate Bipolar Transistor
FAIRCHILD

HGTP2N120CNS

13A, 1200V, NPT Series N-Channel IGBT
FAIRCHILD

HGTP2N120CN_NL

Insulated Gate Bipolar Transistor, 13A I(C), 1200V V(BR)CES, N-Channel, TO-220AB, TO-220AB, 3 PIN
FAIRCHILD

HGTP3N60A4

600V, SMPS Series N-Channel IGBT
FAIRCHILD

HGTP3N60A4

600V, SMPS Series N-Channel IGBT
INTERSIL

HGTP3N60A4

17A, 600V, N-CHANNEL IGBT, TO-220AB, TO-220AB, 3 PIN
ROCHESTER

HGTP3N60A4

IGBT,600 V,SMPS
ONSEMI