HI5767/6IBZ [RENESAS]

10-Bit, 20/40/60 MSPS A/D Converter with CMOS Outputs; QSOP28, SOIC28; Temp Range: See Datasheet;
HI5767/6IBZ
型号: HI5767/6IBZ
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

10-Bit, 20/40/60 MSPS A/D Converter with CMOS Outputs; QSOP28, SOIC28; Temp Range: See Datasheet

光电二极管 转换器
文件: 总15页 (文件大小:709K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NS  
at  
SIG  
DATASHEET  
DE  
EM  
W
AC  
ort  
rsi  
NE  
PL  
pp  
Su  
nte  
w.i  
OR  
RE  
D F  
DE  
EN  
EN  
MM  
M
OM  
CO  
EC  
RE  
T R  
NO  
co  
1-8  
NO  
T
EN  
D
DE  
er  
nt  
Ce  
al  
nic  
ch  
Te  
ur  
ct o  
nta  
/tsc  
om  
l.c  
ww  
or  
IL  
RS  
TE  
-IN  
88  
HI5767  
FN4319  
Rev 6.00  
March 30, 2005  
10-Bit, 20/40/60MSPS A/D Converter with Internal Voltage Reference  
The HI5767 is a monolithic, 10-bit, analog-to-digital  
converter fabricated in a CMOS process. It is designed for  
Features  
• Sampling Rate . . . . . . . . . . . . . . . . . . . . . . 20/40/60MSPS  
• 8.8 Bits at f = 10MHz, f = 40MSPS  
high speed applications where wide bandwidth and low  
power consumption are essential. Its high sample clock  
rate is made possible by a fully differential pipelined  
architecture with both an internal sample and hold and  
internal band-gap voltage reference.  
IN  
S
• Low Power at 40MSPS . . . . . . . . . . . . . . . . . . . . .310mW  
• Wide Full Power Input Bandwidth . . . . . . . . . . . . 250MHz  
• On-Chip Sample and Hold  
The 250MHz Full Power Input Bandwidth and superior high  
frequency performance of the HI5767 converter make it an  
excellent choice for implementing Digital IF architectures in  
communications applications.  
• Internal 2.5V Band-Gap Voltage Reference  
• Fully Differential or Single-Ended Analog Input  
• Single Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . .+5V  
• TTL/CMOS Compatible Digital Inputs  
The HI5767 has excellent dynamic performance while  
consuming only 310mW power at 40MSPS. Data output  
latches are provided which present valid data to the output  
bus with a latency of 7 clock cycles.  
• CMOS Compatible Digital Outputs. . . . . . . . . . . 3.0V/5.0V  
• Offset Binary or Two’s Complement Output Format  
• Pb-Free Available (RoHS Compliant)  
The HI5767 is offered in 20MSPS, 40MSPS and 60MSPS  
sampling rates.  
Applications  
Pinout  
• Digital Communication Systems  
• QAM Demodulators  
HI5767 (SOIC, SSOP)  
TOP VIEW  
• Professional Video Digitizing  
• Medical Imaging  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
DV  
D0  
D1  
D2  
D3  
D4  
DV  
CC1  
DGND  
• High Speed Data Acquisition  
3
DV  
CC1  
4
DGND  
5
AV  
CC  
6
AGND  
CC2  
7
V
CLK  
DGND  
D5  
REFIN  
8
V
REFOUT  
9
V
+
-
IN  
10  
11  
12  
13  
14  
V
D6  
IN  
V
D7  
DC  
AGND  
D8  
AV  
CC  
D9  
OE  
DFS  
FN4319 Rev 6.00  
March 30, 2005  
Page 1 of 15  
HI5767  
Ordering Information  
TEMP.  
SAMPLING  
RATE  
DWG. # (MSPS)  
PART  
NUMBER  
RANGE  
PKG.  
o
( C)  
PACKAGE  
HI5767/2CB  
0 to 70 28 Ld SOIC  
M28.3  
M28.3  
20  
20  
HI5767/2CBZ  
(See Note)  
0 to 70 28 Ld SOIC  
(Pb-free)  
HI5767/4CB*  
0 to 70 28 Ld SOIC  
M28.3  
M28.3  
40  
40  
HI5767/4CBZ*  
(See Note)  
0 to 70 28 Ld SOIC  
(Pb-free)  
HI5767/6CB*  
0 to 70 28 Ld SOIC  
M28.3  
M28.3  
60  
60  
HI5767/6CBZ*  
(See Note)  
0 to 70 28 Ld SOIC  
(Pb-free)  
HI5767/6IB  
-40 to 85 28 Ld SOIC  
M28.3  
M28.3  
60  
60  
HI5767/6IBZ  
(See Note)  
-40 to 85 28 Ld SOIC  
(Pb-free)  
HI5767/2CA  
0 to 70 28 Ld SSOP  
M28.15  
M28.15  
20  
20  
HI5767/2CAZ  
(See Note)  
0 to 70 28 Ld SSOP  
(Pb-free)  
HI5767/2IA  
-40 to 85 28 Ld SSOP  
M28.15  
M28.15  
20  
20  
HI5767/2IAZ  
(See Note)  
-40 to 85 28 Ld SSOP  
(Pb-free)  
HI5767/4CA  
0 to 70 28 Ld SSOP  
M28.15  
M28.15  
40  
40  
HI5767/4CAZ  
(See Note)  
0 to 70 28 Ld SSOP  
(Pb-free)  
HI5767/6CA  
0 to 70 28 Ld SSOP  
M28.15  
M28.15  
60  
60  
HI5767/6CAZ  
(See Note)  
0 to 70 28 Ld SSOP  
(Pb-free)  
HI5767EVAL1  
HI5767EVAL2  
25  
25  
Evaluation Board  
Evaluation Board  
60  
60  
* Add “-T” suffix for tape and reel.  
NOTE: Intersil Pb-free products employ special Pb-free material  
sets; molding compounds/die attach materials and 100% matte tin  
plate termination finish, which are RoHS compliant and compatible  
with both SnPb and Pb-free soldering operations. Intersil Pb-free  
products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
FN4319 Rev 6.00  
March 30, 2005  
Page 2 of 15  
HI5767  
Functional Block Diagram  
CLK  
CLOCK  
V
BIAS  
DC  
V
-
IN  
V
REFOUT  
V
+
IN  
REFERENCE  
V
REFIN  
S/H  
STAGE 1  
DFS  
OE  
2-BIT  
FLASH  
2-BIT  
DAC  
+
-
DV  
CC2  
X2  
D9 (MSB)  
D8  
D7  
D6  
DIGITAL DELAY  
AND  
STAGE 8  
D5  
DIGITAL ERROR  
CORRECTION  
D4  
D3  
2-BIT  
FLASH  
2-BIT  
DAC  
D2  
D1  
+
D0 (LSB)  
-
X2  
DGND2  
STAGE 9  
2-BIT  
FLASH  
AV  
CC  
AGND DV  
DGND1  
CC1  
FN4319 Rev 6.00  
March 30, 2005  
Page 3 of 15  
HI5767  
Typical Application Schematic  
HI5767  
(7)  
V
V
REFIN  
(8)  
REFOUT  
0.1F  
(LSB) (28) D0  
(27) D1  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
(26) D2  
(25) D3  
(24) D4  
(20) D5  
(19) D6  
(18) D7  
(17) D8  
AGND (12)  
AGND (6)  
DGND  
AGND  
BNC  
DGND1 (2)  
DGND1 (4)  
DGND2 (21)  
(MSB) (16) D9  
10F AND 0.1F CAPS  
ARE PLACED AS CLOSE  
TO PART AS POSSIBLE  
V
+
-
(1) DV  
CC1  
V
V
V
+ (9)  
(11)  
IN  
IN  
(3) DV  
CC1  
DC  
IN  
V
- (10) (23) DV  
IN  
CC2  
+5V  
+
0.1F  
10F  
CLOCK  
CLK (22)  
DFS (15)  
OE (14)  
(13) AV  
CC  
CC  
(5) AV  
+5V  
+
0.1F  
10F  
Pin Descriptions  
PIN NO.  
15  
NAME  
DESCRIPTION  
PIN NO.  
NAME  
DESCRIPTION  
DFS  
D9  
Data Format Select Input  
Data Bit 9 Output (MSB)  
Data Bit 8 Output  
1
2
DV  
Digital Supply (+5.0V)  
Digital Ground  
CC1  
DGND1  
DV  
16  
17  
D8  
3
Digital Supply (+5.0V)  
Digital Ground  
CC1  
DGND1  
AV  
18  
D7  
Data Bit 7 Output  
4
19  
D6  
Data Bit 6 Output  
5
Analog Supply (+5.0V)  
Analog Ground  
CC  
AGND  
20  
D5  
Data Bit 5 Output  
6
21  
DGND2  
CLK  
Digital Ground  
7
V
+2.5V Reference Voltage Input  
+2.5V Reference Voltage Output  
Positive Analog Input  
REFIN  
22  
Sample Clock Input  
Digital Output Supply (+3.0V or +5.0V)  
Data Bit 4 Output  
8
V
REFOUT  
23  
DV  
9
V
+
CC2  
IN  
24  
D4  
10  
11  
12  
13  
14  
V
-
Negative Analog Input  
IN  
25  
D3  
D2  
D1  
D0  
Data Bit 3 Output  
V
DC Bias Voltage Output  
Analog Ground  
DC  
26  
Data Bit 2 Output  
AGND  
AV  
27  
Data Bit 1 Output  
Analog Supply (+5.0V)  
CC  
OE  
28  
Data Bit 0 Output (LSB)  
Digital Output Enable Control Input  
FN4319 Rev 6.00  
March 30, 2005  
Page 4 of 15  
HI5767  
Absolute Maximum Ratings T = 25 C  
o
Thermal Information  
A
o
Supply Voltage, AV  
or DV  
to AGND or DGND . . . . . . . . . . .6V  
CC  
Thermal Resistance (Typical, Note 1)  
JA ( C/W)  
CC  
DGND to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3V  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
75  
100  
Digital I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DGND to DV  
Analog I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . AGND to AV  
CC  
CC  
o
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . .150 C  
Maximum Storage Temperature Range . . . . . . . . .-65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300 C  
o
o
o
Operating Conditions  
(SOIC - Lead Tips Only)  
Temperature Range  
o
o
HI5767/xCx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 C to 70 C  
o
o
HI5767/xIx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications AV = DV  
= 5.0V, DV  
= 3.0V; V  
= V  
; f = 40MSPS at 50% Duty Cycle;  
S
CC  
CC1  
A
CC2  
REFIN  
REFOUT  
o
o
C = 10pF; T = 25 C; Differential Analog Input; Typical Values are Test Results at 25 C,  
L
Unless Otherwise Specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ACCURACY  
Resolution  
10  
-
-
-
Bits  
LSB  
LSB  
Integral Linearity Error, INL  
f
f
= 1MHz Sinewave  
0.75  
0.35  
1.75  
1.0  
IN  
Differential Linearity Error, DNL  
(Guaranteed No Missing Codes)  
= 1MHz Sinewave  
-
IN  
Offset Error, V  
f
f
= DC  
= DC  
-40  
-
-
40  
-
LSB  
LSB  
OS  
IN  
IN  
Full Scale Error, FSE  
4
DYNAMIC CHARACTERISTICS  
Minimum Conversion Rate  
No Missing Codes  
-
0.5  
1
MSPS  
Maximum Conversion Rate  
HI5767/2  
No Missing Codes  
No Missing Codes  
No Missing Codes  
20  
40  
60  
-
-
-
-
-
-
MSPS  
MSPS  
MSPS  
HI5767/4  
HI5767/6  
Effective Number of Bits, ENOB  
HI5767/2  
f
f
f
= 20MSPS, f = 10MHz  
IN  
8.7  
8.55  
8.1  
9
-
-
-
Bits  
Bits  
Bits  
S
S
S
HI5767/4  
= 40MSPS, f = 10MHz  
IN  
8.8  
8.4  
HI5767/6  
= 60MSPS, f = 10MHz  
IN  
Signal to Noise and Distortion Ratio, SINAD  
RMS Signal  
= -------------------------------------------------------------  
RMS Noise + Distortion  
HI5767/2  
f
f
f
= 20MSPS, f = 10MHz  
IN  
-
-
-
55.9  
54.7  
53.8  
-
-
-
dB  
dB  
dB  
S
S
S
HI5767/4  
= 40MSPS, f = 10MHz  
IN  
HI5767/6  
= 60MSPS, f = 10MHz  
IN  
Signal to Noise Ratio, SNR  
RMS Signal  
= -------------------------------  
RMS Noise  
HI5767/2  
HI5767/4  
HI5767/6  
f
f
f
= 20MSPS, f = 10MHz  
IN  
-
-
-
55.9  
55  
-
-
-
dB  
dB  
dB  
S
S
S
= 40MSPS, f = 10MHz  
IN  
= 60MSPS, f = 10MHz  
IN  
54  
Total Harmonic Distortion, THD  
HI5767/2  
f
= 20MSPS, f = 10MHz  
IN  
-
-71  
-
dBc  
S
FN4319 Rev 6.00  
March 30, 2005  
Page 5 of 15  
HI5767  
Electrical Specifications AV = DV  
= 5.0V, DV  
= 3.0V; V  
= V  
; f = 40MSPS at 50% Duty Cycle;  
S
CC  
CC1  
A
CC2  
REFIN  
REFOUT  
o
o
C = 10pF; T = 25 C; Differential Analog Input; Typical Values are Test Results at 25 C,  
L
Unless Otherwise Specified (Continued)  
TEST CONDITIONS  
= 40MSPS, f = 10MHz  
PARAMETER  
MIN  
TYP  
-65  
MAX  
UNITS  
dBc  
HI5767/4  
HI5767/6  
f
f
-
-
-
-
S
S
IN  
= 60MSPS, f = 10MHz  
-64.5  
dBc  
IN  
2nd Harmonic Distortion  
HI5767/2  
f
f
f
= 20MSPS, f = 10MHz  
IN  
-
-
-
-76  
-73  
-70  
-
-
-
dBc  
dBc  
dBc  
S
S
S
HI5767/4  
HI5767/6  
= 40MSPS, f = 10MHz  
IN  
= 60MSPS, f = 10MHz  
IN  
3rd Harmonic Distortion  
HI5767/2  
f
f
f
= 20MSPS, f = 10MHz  
IN  
-
-
-
-80  
-69  
-67  
-
-
-
dBc  
dBc  
dBc  
S
S
S
HI5767/4  
HI5767/6  
= 40MSPS, f = 10MHz  
IN  
= 60MSPS, f = 10MHz  
IN  
Spurious Free Dynamic Range, SFDR  
HI5767/2  
f
f
f
f
f
f
= 20MSPS, f = 10MHz  
IN  
-
-
-
-
-
-
-
-
76  
69  
67  
64  
0.5  
0.2  
1
-
-
-
-
-
-
-
-
dBc  
dBc  
S
S
S
1
HI5767/4  
= 40MSPS, f = 10MHz  
IN  
HI5767/6  
= 60MSPS, f = 10MHz  
IN  
dBc  
Intermodulation Distortion, IMD  
Differential Gain Error  
Differential Phase Error  
Transient Response  
= 1MHz, f = 1.02MHz  
2
dBc  
= 17.72MHz, 6 Step, Mod Ramp  
= 17.72MHz, 6 Step, Mod Ramp  
%
S
S
Degree  
Cycle  
Cycle  
(Note 2)  
Over-Voltage Recovery  
ANALOG INPUT  
0.2V Overdrive (Note 2)  
1
Maximum Peak-to-Peak Differential Analog Input  
-
-
0.5  
-
-
V
V
Range (V + - V -)  
IN IN  
Maximum Peak-to-Peak Single-Ended  
Analog Input Range  
1.0  
Analog Input Resistance, R  
(Note 3)  
-
-
1
10  
-
-
M  
pF  
IN  
Analog Input Capacitance, C  
-
+10  
-
IN  
Analog Input Bias Current, I + or I -  
(Note 3)  
(Note 3)  
-10  
-
A  
A  
B
B
Differential Analog Input Bias Current  
= (I + - I -)  
0.5  
I
BDIFF  
B
B
Full Power Input Bandwidth, FPBW  
-
250  
-
-
MHz  
V
Analog Input Common Mode Voltage Range  
Differential Mode (Note 2)  
0.25  
4.75  
(V + + V -) / 2  
IN IN  
INTERNAL REFERENCE VOLTAGE  
Reference Voltage Output, V  
(Loaded)  
-
-
-
2.5  
1
-
2
-
V
REFOUT  
Reference Output Current, I  
mA  
REFOUT  
o
Reference Temperature Coefficient  
120  
ppm/ C  
REFERENCE VOLTAGE INPUT  
Reference Voltage Input, V  
-
-
-
2.5  
2.5  
1
-
-
-
V
REFIN  
Total Reference Resistance, R  
k  
mA  
REFIN  
REFIN  
Reference Input Current, I  
DC BIAS VOLTAGE  
DC Bias Voltage Output, V  
-
3.0  
-
V
DC  
FN4319 Rev 6.00  
March 30, 2005  
Page 6 of 15  
HI5767  
Electrical Specifications AV = DV  
= 5.0V, DV  
= 3.0V; V  
= V  
; f = 40MSPS at 50% Duty Cycle;  
S
CC  
CC1  
A
CC2  
REFIN  
REFOUT  
o
o
C = 10pF; T = 25 C; Differential Analog Input; Typical Values are Test Results at 25 C,  
L
Unless Otherwise Specified (Continued)  
PARAMETER  
Maximum Output Current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
-
-
0.2  
mA  
DIGITAL INPUTS  
Input Logic High Voltage, V  
CLK, DFS, OE  
CLK, DFS, OE  
2.0  
-
-
-
-
V
IH  
Input Logic Low Voltage, V  
0.8  
V
IL  
Input Logic High Current, I  
CLK, DFS, OE, V = 5V  
IH  
-10.0  
-10.0  
-
-
+10.0  
+10.0  
-
A  
A  
pF  
IH  
Input Logic Low Current, I  
CLK, DFS, OE, V = 0V  
IL  
-
IL  
Input Capacitance, C  
7
IN  
DIGITAL OUTPUTS  
Output Logic High Voltage, V  
I
I
= 100A; DV  
= 5V  
= 5V  
4.0  
-
-
-
-
0.8  
10  
-
V
V
OH  
OH  
OL  
CC2  
Output Logic Low Voltage, V  
= 100A; DV  
= 0/5V; DV  
OL  
CC2  
Output Three-State Leakage Current, I  
V
= 5V  
-10  
2.4  
-
1  
-
A  
V
OZ  
OZ  
O
CC2  
Output Logic High Voltage, V  
I
I
= 100A; DV  
= 3V  
= 3V  
OH  
OH  
OL  
CC2  
Output Logic Low Voltage, V  
= 100A; DV  
= 0/5V; DV  
-
0.5  
10  
-
V
OL  
CC2  
Output Three-State Leakage Current, I  
Output Capacitance, C  
V
= 3V  
CC2  
-10  
-
1  
10  
A  
pF  
O
OUT  
TIMING CHARACTERISTICS  
Aperture Delay, t  
-
5
5
-
-
ns  
AP  
Aperture Jitter, t  
-
ps  
RMS  
AJ  
Data Output Hold, t  
-
5
-
ns  
ns  
H
Data Output Delay, t  
-
6
-
OD  
Data Output Enable Time, t  
Data Output Enable Time, t  
-
5
-
ns  
EN  
-
5
-
ns  
DIS  
Data Latency, t  
For a Valid Sample (Note 2)  
Data Invalid Time (Note 2)  
-
-
-
7
20  
-
Cycles  
Cycles  
ns  
LAT  
Power-Up Initialization  
-
Sample Clock Pulse Width (Low)  
Sample Clock Pulse Width (High)  
Sample Clock Duty Cycle Variation  
f
f
f
= 40MSPS  
= 40MSPS  
= 40MSPS  
11.3  
11.3  
-
12.5  
12.5  
5  
S
S
S
-
ns  
-
%
POWER SUPPLY CHARACTERISTICS  
Analog Supply Voltage, AV  
4.75  
5.0  
5.0  
5.25  
V
V
CC  
Digital Supply Voltage, DV  
4.75  
5.25  
CC1  
Digital Output Supply Voltage, DV  
At 3.0V  
At 5.0V  
2.7  
3.0  
3.3  
V
CC2  
4.75  
5.0  
5.25  
V
Supply Current, I  
f
f
= 1MHz and DFS = “0”  
= 1MHz and DFS = “0”  
-
-
-
-
62  
-
-
-
-
mA  
mW  
LSB  
LSB  
CC  
IN  
IN  
Power Dissipation  
310  
0.7  
0.1  
Offset Error Sensitivity, V  
AV  
AV  
or DV  
= 5V 5%  
= 5V 5%  
OS  
CC  
CC  
CC  
CC  
Gain Error Sensitivity, FSE  
or DV  
NOTES:  
2. Parameter guaranteed by design or characterization and not production tested.  
3. With the clock low and DC input.  
FN4319 Rev 6.00  
March 30, 2005  
Page 7 of 15  
HI5767  
Timing Waveforms  
ANALOG  
INPUT  
t
AP  
t
AJ  
CLOCK  
INPUT  
1.5V  
1.5V  
t
OD  
t
H
2.4V  
0.5V  
DATA  
OUTPUT  
DATA N  
DATA N-1  
FIGURE 1. INPUT TO OUTPUT TIMING  
Typical Performance Curves  
9.5  
59  
53  
47  
41  
60  
55  
50  
45  
40  
f
= 1MHz  
IN  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
f
= 5MHz  
f
= 1MHz  
IN  
IN  
f
= 5MHz  
IN  
f
= 10MHz  
IN  
f = 10MHz  
IN  
f
= 15MHz  
IN  
f
= 15MHz  
IN  
o
o
T
= 25 C  
T
= 25 C  
A
A
10  
20  
30  
40  
50  
60  
70  
80  
10  
20  
30  
40  
50  
60  
70  
80  
SAMPLING FREQUENCY (MSPS)  
SAMPLING FREQUENCY (MSPS)  
FIGURE 2. EFFECTIVE NUMBER OF BITS (ENOB) AND  
SINAD vs SAMPLING FREQUENCY  
FIGURE 3. SNR vs SAMPLING FREQUENCY  
80  
75  
80  
75  
70  
65  
60  
55  
50  
f
= 1MHz  
IN  
f = 5MHz  
IN  
f
= 1MHz  
f
= 5MHz  
IN  
IN  
70  
65  
60  
55  
50  
f
= 15MHz  
IN  
f
= 10MHz  
IN  
f
= 10MHz  
IN  
f
= 15MHz  
IN  
o
o
T
= 25 C  
T
= 25 C  
A
A
10  
20  
30  
40  
50  
60  
70  
80  
10  
20  
30  
40  
50  
60  
70  
80  
SAMPLING FREQUENCY (MSPS)  
SAMPLING FREQUENCY (MSPS)  
FIGURE 4. -THD vs SAMPLING FREQUENCY  
FIGURE 5. SFDR vs SAMPLING FREQUENCY  
FN4319 Rev 6.00  
March 30, 2005  
Page 8 of 15  
HI5767  
Typical Performance Curves (Continued)  
9.5  
9.1  
9.0  
8.9  
8.8  
8.7  
8.6  
8.5  
8.4  
8.3  
20MSPS  
9.0  
20MSPS  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
40MSPS  
60MSPS  
o
T
= 25 C, f = 10MHz  
IN  
A
DIFFERENTIAL ANALOG INPUT  
40MSPS  
60MSPS  
o
= 25 C, f = 10MHz  
T
A
IN  
30  
35  
40  
45  
50  
55  
CLK  
60  
65  
70  
0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75  
DUTY CYCLE (%, t /t  
)
V
CM  
(V)  
H
FIGURE 6. EFFECTIVE NUMBER OF BITS (ENOB) vs  
SAMPLE CLOCK DUTY CYCLE  
FIGURE 7. EFFECTIVE NUMBER OF BITS (ENOB) vs  
ANALOG INPUT COMMON MODE VOLTAGE  
80  
9.2  
20MSPS  
I
70  
60  
50  
40  
30  
20  
10  
0
CC  
9.0  
AI  
CC  
8.8  
40MSPS  
8.6  
o
T
= 25 C, 1MHz < f < 15MHz  
IN  
A
8.4  
DI  
CC1  
60MSPS  
f
= 10MHz, V  
= V  
REFOUT  
8.2  
8.0  
IN  
REFIN  
DIFFERENTIAL ANALOG INPUT  
DI  
CC2  
45  
10  
15  
20  
25  
30  
35  
40  
50  
55  
60  
-40  
-20  
0
20  
40  
60  
80  
o
f
(MSPS)  
S
TEMPERATURE ( C)  
FIGURE 8. SUPPLY CURRENT vs SAMPLE CLOCK  
FREQUENCY  
FIGURE 9. EFFECTIVE NUMBER OF BITS (ENOB) vs  
TEMPERATURE  
2.530  
2.525  
3.1  
V
REFOUT  
2.520  
3.0  
V
DC  
2.515  
2.510  
2.9  
-40  
-40  
-20  
0
20  
40  
60  
80  
-20  
0
20  
40  
60  
80  
o
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 10. INTERNAL REFERENCE VOLTAGE (V  
TEMPERATURE  
) vs  
FIGURE 11. DC BIAS VOLTAGE (V ) vs TEMPERATURE  
DC  
REFOUT  
FN4319 Rev 6.00  
March 30, 2005  
Page 9 of 15  
HI5767  
Typical Performance Curves (Continued)  
6.5  
80  
70  
60  
50  
40  
30  
20  
I
CC  
6.0  
t
OD  
AI  
CC  
5.5  
5.0  
4.5  
60MSPS, f = 10MHz,  
IN  
AV  
= DV  
= 5V  
CC  
CC1  
= 3V  
DV  
CC2  
DI  
CC1  
10  
0
DI  
CC2  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
o
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 12. DATA OUTPUT DELAY (t ) vs TEMPERATURE  
OD  
FIGURE 13. SUPPLY CURRENT vs TEMPERATURE  
0
-10  
-20  
-30  
C
1
1
H
o
= 25 C, f = 60MSPS, f = 10MHz  
-40  
-50  
T
A
S
IN  
1
C
C
S
V
V
IN+  
V
OUT+  
+
-
-60  
2
V
+
-
OUT-  
-70  
IN-  
S
-80  
1
C
1
H
1
-90  
-100  
0
100 200 300 400 500 600 700 800 900 1023  
FREQUENCY (BIN)  
FIGURE 14. 2048 POINT FFT PLOT  
FIGURE 15. ANALOG INPUT SAMPLE-AND-HOLD  
FN4319 Rev 6.00  
March 30, 2005  
Page 10 of 15  
HI5767  
TABLE 1. A/D CODE TABLE  
OFFSET BINARY OUTPUT CODE  
(DFS LOW)  
TWO’S COMPLEMENT OUTPUT CODE  
(DFS HIGH)  
M
S
B
L
S
B
M
S
B
L
S
B
DIFFERENTIAL  
INPUT VOLTAGE  
CODE CENTER  
DESCRIPTION  
(V + - V -)  
IN IN  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
+Full Scale (+FS) -  
1
0.499756V  
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
/
LSB  
4
1
+FS - 1 / LSB  
4
3
0.498779V  
732.422V  
-244.141V  
-0.498291V  
-0.499268V  
1
1
0
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
0
0
1
1
0
0
0
1
1
1
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
0
0
1
1
0
+ / LSB  
4
1
- / LSB  
4
3
-FS + 1 / LSB  
4
-Full Scale (-FS) +  
3
/
LSB  
4
NOTE:  
4. The voltages listed above represent the ideal center of each output code shown with V  
= +2.5V.  
REFIN  
The output of each of the eight identical two-bit subconverter  
Detailed Description  
stages is a two-bit digital word containing a supplementary bit to  
be used by the digital error correction logic. The output of each  
subconverter stage is input to a digital delay line which is  
controlled by the internal sampling clock. The function of the  
digital delay line is to time align the digital outputs of the eight  
identical two-bit subconverter stages with the corresponding  
output of the ninth stage flash converter before applying the  
eighteen bit result to the digital error correction logic. The digital  
error correction logic uses the supplementary bits to correct any  
error that may exist before generating the final ten bit digital data  
output of the converter.  
Theory of Operation  
The HI5767 is a 10-bit fully differential sampling pipeline A/D  
converter with digital error correction logic. Figure 16 depicts the  
circuit for the front end differential-in-differential-out sample-and-  
hold (S/H). The switches are controlled by an internal sampling  
clock which is a non-overlapping two phase signal and ,  
1
2
derived from the master sampling clock. During the sampling  
phase, , the input signal is applied to the sampling capacitors,  
1
C . At the same time the holding capacitors, C , are discharged  
S
H
to analog ground. At the falling edge of the input signal is  
1
sampled on the bottom plates of the sampling capacitors. In the  
Because of the pipeline nature of this converter, the digital data  
representing an analog input sample is output to the digital data  
bus on the 7th cycle of the clock after the analog sample is taken.  
This time delay is specified as the data latency. After the data  
latency time, the digital data representing each succeeding  
analog sample is output during the following clock cycle. The  
digital output data is synchronized to the external sampling clock  
by a double buffered latching technique. The digital output data is  
available in two’s complement or offset binary format depending  
on the state of the Data Format Select (DFS) control input (see  
Table 1, A/D Code Table).  
next clock phase, , the two bottom plates of the sampling  
2
capacitors are connected together and the holding capacitors are  
switched to the op-amp output nodes. The charge then  
redistributes between C and C completing one sample-and-  
S
H
hold cycle. The front end sample-and-hold output is a fully-  
differential, sampled-data representation of the analog input. The  
circuit not only performs the sample-and-hold function but will also  
convert a single-ended input to a fully-differential output for the  
converter core. During the sampling phase, the V pins see only  
IN  
the on-resistance of a switch and C . The relatively small values  
S
of these components result in a typical full power input bandwidth  
of 250MHz for the converter.  
Internal Reference Voltage Output, V  
REFOUT  
The HI5767 is equipped with an internal reference voltage  
generator, therefore, no external reference voltage is required.  
As illustrated in the functional block diagram and the timing  
diagram in Figure 1, eight identical pipeline subconverter  
stages, each containing a two-bit flash converter and a two-bit  
multiplying digital-to-analog converter, follow the S/H circuit  
with the ninth stage being a two bit flash converter. Each  
converter stage in the pipeline will be sampling in one phase  
and amplifying in the other clock phase. Each individual  
subconverter clock signal is offset by 180 degrees from the  
previous stage clock signal resulting in alternate stages in the  
pipeline performing the same operation.  
V
must be connected to V when using the internal  
REFIN  
REFOUT  
reference voltage.  
An internal band-gap reference voltage followed by an  
amplifier/buffer generates the precision +2.5V reference  
voltage used by the converter. A 4:1 array of substrate PNPs  
generates the “delta-V ” and a two-stage op-amp closes the  
BE  
loop to create an internal +1.25V band-gap reference voltage.  
This voltage is then amplified by a wideband uncompensated  
operational amplifier connected in a gain-of-two  
FN4319 Rev 6.00  
March 30, 2005  
Page 11 of 15  
HI5767  
configuration. An external, user-supplied, 0.1F capacitor  
V
and -V input signals are 0.5V  
IN P-P  
, with -V being  
IN  
IN  
connected from the V  
output pin to analog ground is  
180 degrees out of phase with V . The converter will be at  
REFOUT  
IN  
used to set the dominant pole and to maintain the stability of  
positive full scale when the V + input is at V + 0.25V and the  
IN DC  
the operational amplifier.  
V - input is at V  
- 0.25V (V + - V - = +0.5V). Conversely,  
IN DC  
IN IN  
the converter will be at negative full scale when the V + input is  
IN  
Reference Voltage Input, V  
REFIN  
equal to V  
- 0.25V and V - is at V  
+ 0.25V (V + - V -  
DC  
IN DC  
IN IN  
The HI5767 is designed to accept a +2.5V reference voltage  
source at the V input pin. Typical operation of the  
= -0.5V).  
REFIN  
converter requires V  
The analog input can be DC coupled (Figure 18) as long as the  
inputs are within the analog input common mode voltage range  
(0.25V VDC 4.75V).  
to be set at +2.5V. The HI5767 is  
yielding a fully  
REFIN  
connected to V  
tested with V  
REFIN  
REFOUT  
differential analog input voltage range of 0.5V.  
V
IN  
The user does have the option of supplying an external +2.5V  
reference voltage. As a result of the high input impedance  
V
+
IN  
VDC  
presented at the V  
input pin, 2.5ktypically, the  
R
R
REFIN  
HI5767  
C
external reference voltage being used is only required to  
source 1mA of reference input current. In the situation where  
an external reference voltage will be used an external 0.1F  
V
V
DC  
-V  
IN  
capacitor must be connected from the V  
output pin to  
REFOUT  
VDC  
-
IN  
analog ground in order to maintain the stability of the internal  
operational amplifier.  
FIGURE 17. DC COUPLED DIFFERENTIAL INPUT  
In order to minimize overall converter noise it is recommended  
that adequate high frequency decoupling be provided at the  
The resistors, R, in Figure 18 are not absolutely necessary but  
may be used as load setting resistors. A capacitor, C,  
reference voltage input pin, V  
.
REFIN  
connected from V + to V - will help filter any high frequency  
IN IN  
noise on the inputs, also improving performance. Values  
around 20pF are sufficient and can be used on AC coupled  
inputs as well. Note, however, that the value of capacitor C  
chosen must take into account the highest frequency  
component of the analog input signal.  
Analog Input, Differential Connection  
The analog input to the HI5767 is a differential input that can  
be configured in various ways depending on the signal source  
and the required level of performance. A fully differential  
connection (Figure 17 and Figure 18) will deliver the best  
performance from the converter.  
Analog Input, Single-Ended Connection  
The configuration shown in Figure 19 may be used with a  
single ended AC coupled input.  
V
+
V
IN  
IN  
R
R
HI5767  
V
+
V
IN  
IN  
V
V
DC  
R
HI5767  
-
VDC  
-V  
IN  
-
IN  
V
IN  
FIGURE 16. AC COUPLED DIFFERENTIAL INPUT  
FIGURE 18. AC COUPLED SINGLE ENDED INPUT  
Since the HI5767 is powered by a single +5V analog supply,  
the analog input is limited to be between ground and +5V. For  
the differential input connection this implies the analog input  
common mode voltage can range from 0.25V to 4.75V. The  
performance of the ADC does not change significantly with the  
value of the analog input common mode voltage.  
Again, with V  
REFIN  
connected to V  
, if V is a 1V  
IN P-P  
REFOUT  
sinewave, then V + is a 1.0V  
sinewave riding on a positive  
IN P-P  
voltage equal to VDC. The converter will be at positive full scale  
when V + is at VDC + 0.5V (V + - V - = +0.5V) and will be at  
IN IN IN  
negative full scale when V + is equal to VDC - 0.5V (V + - V - =  
IN IN IN  
-0.5V). Sufficient headroom must be provided such that the input  
voltage never goes above +5V or below AGND. In this case, VDC  
could range between 0.5V and 4.5V without a significant change in  
ADC performance. The simplest way to produce VDC is to use the  
A DC voltage source, V , equal to 3.2V (typical), is made  
DC  
available to the user to help simplify circuit design when using  
an AC coupled differential input. This low output impedance  
voltage source is not designed to be a reference but makes an  
excellent DC bias source and stays well within the analog input  
common mode voltage range over temperature.  
DC bias source, V , output of the HI5767.  
DC  
The single ended analog input can be DC coupled (Figure 20)  
as long as the input is within the analog input common mode  
voltage range.  
For the AC coupled differential input (Figure 17) and with  
V
connected to V , full scale is achieved when the  
REFOUT  
REFIN  
FN4319 Rev 6.00  
March 30, 2005  
Page 12 of 15  
HI5767  
The part should be mounted on a board that provides separate  
low impedance connections for the analog and digital supplies  
and grounds. For best performance, the supplies to the HI5767  
should be driven by clean, linear regulated supplies. The board  
should also have good high frequency decoupling capacitors  
mounted as close as possible to the converter. If the part is  
powered off a single supply, then the analog supply should be  
isolated with a ferrite bead from the digital supply.  
V
IN  
V
V
+
V
IN  
DC  
R
HI5767  
-
C
V
DC  
IN  
Refer to the application note “Using Intersil High Speed A/D  
Converters” (AN9214) for additional considerations when using  
high speed converters.  
FIGURE 19. DC COUPLED SINGLE ENDED INPUT  
The resistor, R, in Figure 20 is not absolutely necessary but  
may be used as a load setting resistor. A capacitor, C,  
connected from V + to V - will help filter any high frequency  
IN IN  
Static Performance Definitions  
noise on the inputs, also improving performance. Values  
around 20pF are sufficient and can be used on AC coupled  
inputs as well. Note, however, that the value of capacitor C  
chosen must take into account the highest frequency  
component of the analog input signal.  
Offset Error (V  
)
OS  
1
The midscale code transition should occur at a level / LSB  
4
above half-scale. Offset is defined as the deviation of the  
actual code transition from this point.  
A single ended source may give better overall system  
performance if it is first converted to differential before driving  
the HI5767.  
Full-Scale Error (FSE)  
The last code transition should occur for an analog input that is  
3
/ LSB below Positive Full Scale (+FS) with the offset error  
4
removed. Full scale error is defined as the deviation of the  
Digital Output Control and Clock Requirements  
actual code transition from this point.  
The HI5767 provides a standard high-speed interface to  
external TTL logic families.  
Differential Linearity Error (DNL)  
In order to ensure rated performance of the HI5767, the duty  
cycle of the clock should be held at 50% 5%. It must also  
have low jitter and operate at standard TTL levels.  
DNL is the worst case deviation of a code width from the ideal  
value of 1 LSB.  
Integral Linearity Error (INL)  
Performance of the HI5767 will only be guaranteed at  
conversion rates above 1 MSPS. This ensures proper  
performance of the internal dynamic circuits. Similarly, when  
power is first applied to the converter, a maximum of 20 cycles  
at a sample rate above 1 MSPS will have to be performed  
before valid data is available.A Data Format Select (DFS) pin  
is provided which will determine the format of the digital data  
outputs. When at logic low, the data will be output in offset  
binary format. When at logic high, the data will be output in  
two’s complement format. Refer to Table 1 for further  
information.  
INL is the worst case deviation of a code center from a best fit  
straight line calculated from the measured data.  
Power Supply Sensitivity  
Each of the power supplies are moved plus and minus 5% and  
the shift in the offset and full scale error (in LSBs) is noted.  
Dynamic Performance Definitions  
Fast Fourier Transform (FFT) techniques are used to evaluate  
the dynamic performance of the HI5767. A low distortion sine  
wave is applied to the input, it is coherently sampled, and the  
output is stored in RAM. The data is then transformed into the  
frequency domain with an FFT and analyzed to evaluate the  
dynamic performance of the A/D. The sine wave input to the part  
is typically -0.5dB down from full scale for all these tests.  
The output enable pin, OE, when pulled high will three-state  
the digital outputs to a high impedance state. Set the OE input  
to logic low for normal operation.  
OE INPUT  
DIGITAL DATA OUTPUTS  
Active  
SNR and SINAD are quoted in dB. The distortion numbers are  
quoted in dBc (decibels with respect to carrier) and DO NOT  
include any correction factors for normalizing to full scale.  
0
1
High Impedance  
The Effective Number of Bits (ENOB) is calculated from the  
SINAD data by:  
Supply and Ground Considerations  
The HI5767 has separate analog and digital supply and  
ground pins to keep digital noise out of the analog signal  
path. The digital data outputs also have a separate supply  
ENOB = (SINAD - 1.76 + V  
) / 6.02,  
= 0.5 dB (Typical).  
CORR  
where:  
V
CORR  
pin, DV  
, which can be powered from a 3.0V or 5.0V  
CC2  
supply. This allows the outputs to interface with 3.0V logic if  
so desired.  
V
adjusts the SINAD, and hence the ENOB, for the  
CORR  
amount the analog input signal is backed off from full scale.  
FN4319 Rev 6.00  
March 30, 2005  
Page 13 of 15  
HI5767  
Signal To Noise and Distortion Ratio (SINAD)  
Intermodulation Distortion (IMD)  
SINAD is the ratio of the measured RMS signal to RMS sum of  
all the other spectral components below the Nyquist frequency,  
Nonlinearities in the signal path will tend to generate  
intermodulation products when two tones, f and f , are  
1
2
f /2, excluding DC.  
S
present at the inputs. The ratio of the measured signal to the  
distortion terms is calculated. The terms included in the  
Signal To Noise Ratio (SNR)  
calculation are (f +f ), (f -f ), (2f ), (2f ), (2f +f ), (2f -f ),  
1 2 1 2  
1
2
1
2
1 2  
SNR is the ratio of the measured RMS signal to RMS noise at a  
specified input and sampling frequency. The noise is the RMS  
sum of all of the spectral components below f /2 excluding the  
(f +2f ), (f -2f ). The ADC is tested with each tone 6dB below  
1
2
1
2
full scale.  
S
Transient Response  
fundamental, the first five harmonics and DC.  
Transient response is measured by providing a full-scale  
transition to the analog input of the ADC and measuring the  
number of cycles it takes for the output code to settle within 10-  
bit accuracy.  
Total Harmonic Distortion (THD)  
THD is the ratio of the RMS sum of the first 5 harmonic  
components to the RMS value of the fundamental input signal.  
2nd and 3rd Harmonic Distortion  
Over-Voltage Recovery  
This is the ratio of the RMS value of the applicable harmonic  
component to the RMS value of the fundamental input signal.  
Over-Voltage Recovery is measured by providing a full-scale  
transition to the analog input of the ADC which overdrives the  
input by 200mV, and measuring the number of cycles it takes  
for the output code to settle within 10-bit accuracy.  
Spurious Free Dynamic Range (SFDR)  
SFDR is the ratio of the fundamental RMS amplitude to the RMS  
amplitude of the next largest spectral component in the  
Full Power Input Bandwidth (FPBW)  
spectrum below f /2.  
S
Full power input bandwidth is the analog input frequency at  
which the amplitude of the digitally reconstructed output has  
decreased 3dB below the amplitude of the input sine wave.  
The input sine wave has an amplitude which swings from -FS  
to +FS. The bandwidth given is measured at the specified  
sampling frequency.  
FN4319 Rev 6.00  
March 30, 2005  
Page 14 of 15  
HI5767  
Video Definitions  
Data Hold Time (t )  
H
Differential Gain and Differential Phase are two commonly  
found video specifications for characterizing the distortion of  
a chrominance signal as it is offset through the input voltage  
range of an ADC.  
Data hold time is the time to where the previous data (N - 1)  
is no longer valid.  
Data Output Delay Time (t  
)
OD  
Data output delay time is the time to where the new data (N)  
is valid.  
Differential Gain (DG)  
Differential Gain is the peak difference in chrominance  
amplitude (in percent) relative to the reference burst.  
Data Latency (t  
)
LAT  
After the analog sample is taken, the digital data representing  
an analog input sample is output to the digital data bus on  
the 7th cycle of the clock after the analog sample is taken.  
This is due to the pipeline nature of the converter where the  
analog sample has to ripple through the internal subconverter  
stages. This delay is specified as the data latency. After the  
data latency time, the digital data representing each  
succeeding analog sample is output during the following  
clock cycle. The digital data lags the analog input sample by 7  
sample clock cycles.  
Differential Phase (DP)  
Differential Phase is the peak difference in chrominance  
phase (in degrees) relative to the reference burst.  
Timing Definitions  
Refer to Figure 1 and Figure 2 for these definitions.  
Aperture Delay (t  
)
AP  
Aperture delay is the time delay between the external  
sample command (the falling edge of the clock) and the time  
at which the signal is actually sampled. This delay is due to  
internal clock path propagation delays.  
Power-Up Initialization  
This time is defined as the maximum number of clock cycles  
that are required to initialize the converter at power-up. The  
requirement arises from the need to initialize the dynamic  
circuits within the converter.  
Aperture Jitter (t  
)
AJ  
Aperture jitter is the RMS variation in the aperture delay due  
to variation of internal clock path delays.  
© Copyright Intersil Americas LLC 2003-2005. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN4319 Rev 6.00  
March 30, 2005  
Page 15 of 15  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY