HM6AEB9404BP30 [RENESAS]

4MX9 DDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, 1 MM PITCH, PLASTIC, FBGA-165;
HM6AEB9404BP30
型号: HM6AEB9404BP30
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

4MX9 DDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, 1 MM PITCH, PLASTIC, FBGA-165

双倍数据速率 静态存储器
文件: 总24页 (文件大小:266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HM66AEB36104/HM66AEB18204  
HM66AEB9404  
36-Mbit DDR II SRAM  
4-word Burst  
REJ03C0045-0100  
Rev.1.00  
Sep.06.2006  
Description  
The HM66AEB36104 is a 1,048,576-word by 36-bit, the HM66AEB18204 is a 2,097,152-word by 18-bit, and the  
HM66AEB9404 is a 4,194,304-word by 9-bit synchronous double data rate static RAM fabricated with advanced  
CMOS technology using full CMOS six-transistor memory cell. It integrates unique synchronous peripheral circuitry  
and a burst counter. All input registers controlled by an input clock pair (K and K) and are latched on the positive edge  
of K and K. These products are suitable for applications which require synchronous operation, high speed, low voltage,  
high density and wide bit configuration. These products are packaged in 165-pin plastic FBGA package.  
Features  
1.8 V ± 0.1 V power supply for core (VDD  
1.4 V to VDD power supply for I/O (VDDQ  
DLL circuitry for wide output data valid window and future frequency scaling  
Pipelined double data rate operation  
Common data input/output bus  
Four-tick burst for reduced address frequency  
Two input clocks (K and K) for precise DDR timing at clock rising edges only  
Two output clocks (C and C) for precise flight time and clock skew matching-clock and data delivered together to  
receiving device  
)
)
Internally self-timed write control  
Clock-stop capability with µs restart  
User programmable impedance output  
Fast clock cycle time: 3.0 ns (333 MHz)/3.3 ns (300 MHz)/4.0 ns (250 MHz)/5.0 ns (200 MHz)/6.0 ns (167 MHz)  
Simple control logic for easy depth expansion  
JTAG boundary scan  
Rev.1.00 Sep 06, 2006 page 1 of 20  
HM66AEB36104/18204/9404  
Part No. Information  
Catalogue Part No.  
Organi-  
zation  
Cycle  
time  
Clock  
frequency  
Ordering Part No.  
Package  
HM66AEB36104BP-30  
HM66AEB36104BP-33  
HM66AEB36104BP-40  
HM66AEB36104BP-50  
HM66AEB36104BP-60  
HM6AEB36104BP30  
HM6AEB36104BP33  
HM6AEB36104BP40  
HM6AEB36104BPL50  
HM6AEB36104BPL60  
1-M word  
× 36-bit  
3.0 ns  
3.3 ns  
4.0 ns  
5.0 ns  
6.0 ns  
333 MHz  
300 MHz  
250 MHz  
200 MHz  
167 MHz  
Plastic FBGA  
165-pin  
PLBG0165FB-A  
(BP-165A)  
HM66AEB18204BP-30  
HM66AEB18204BP-33  
HM66AEB18204BP-40  
HM66AEB18204BP-50  
HM66AEB18204BP-60  
HM6AEB18204BP30  
HM6AEB18204BP33  
HM6AEB18204BP40  
HM6AEB18204BPL50  
HM6AEB18204BPL60  
2-M word  
× 18-bit  
3.0 ns  
3.3 ns  
4.0 ns  
5.0 ns  
6.0 ns  
333 MHz  
300 MHz  
250 MHz  
200 MHz  
167 MHz  
HM66AEB9404BP-30  
HM66AEB9404BP-33  
HM66AEB9404BP-40  
HM66AEB9404BP-50  
HM66AEB9404BP-60  
HM6AEB9404BP30  
HM6AEB9404BP33  
HM6AEB9404BP40  
HM6AEB9404BPL50  
HM6AEB9404BPL60  
4-M word  
× 9-bit  
3.0 ns  
3.3 ns  
4.0 ns  
5.0 ns  
6.0 ns  
333 MHz  
300 MHz  
250 MHz  
200 MHz  
167 MHz  
Pin Arrangement (165PIN-BGA)  
HM66AEB36104  
1
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
DOFF  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
2
3
4
5
6
7
8
9
10  
NC  
11  
A
B
C
D
E
F
VSS  
SA  
R/W  
SA  
BW2  
BW3  
SA  
K
K
BW1  
BW0  
SA1  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
LD  
SA  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
CQ  
DQ8  
DQ7  
DQ16  
DQ6  
DQ5  
DQ14  
ZQ  
DQ27  
NC  
DQ18  
DQ28  
DQ19  
DQ20  
DQ21  
DQ22  
VDDQ  
DQ32  
DQ23  
DQ24  
DQ34  
DQ25  
DQ26  
SA  
NC  
VSS  
SA0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
VSS  
DQ17  
NC  
DQ29  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
DQ15  
NC  
DQ30  
DQ31  
VREF  
NC  
G
H
J
NC  
VREF  
DQ13  
DQ12  
NC  
DQ4  
DQ3  
DQ2  
DQ1  
DQ10  
DQ0  
TDI  
K
L
NC  
DQ33  
NC  
M
N
P
R
DQ11  
NC  
DQ35  
NC  
VSS  
VSS  
SA  
SA  
SA  
SA  
DQ9  
TMS  
TCK  
SA  
SA  
C
SA  
SA  
(Top view)  
Rev.1.00 Sep 06, 2006 page 2 of 20  
HM66AEB36104/18204/9404  
HM66AEB18204  
1
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
DOFF  
NC  
NC  
NC  
NC  
NC  
NC  
TDO  
2
VSS  
DQ9  
NC  
3
4
5
6
7
8
9
SA  
10  
SA  
11  
CQ  
A
B
C
D
E
F
SA  
R/W  
SA  
BW1  
NC  
K
K
NC  
LD  
SA  
NC  
BW0  
SA1  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
NC  
DQ8  
NC  
NC  
VSS  
SA  
SA0  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
VSS  
DQ7  
NC  
NC  
DQ10  
DQ11  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
NC  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
NC  
DQ6  
DQ5  
NC  
DQ12  
NC  
NC  
G
H
J
DQ13  
VDDQ  
NC  
NC  
VREF  
NC  
VREF  
DQ4  
NC  
ZQ  
NC  
K
L
NC  
DQ14  
NC  
DQ3  
DQ2  
NC  
DQ15  
NC  
NC  
M
N
P
R
NC  
DQ1  
NC  
NC  
DQ16  
DQ17  
SA  
VSS  
VSS  
NC  
NC  
SA  
SA  
SA  
SA  
NC  
DQ0  
TDI  
TCK  
SA  
SA  
C
SA  
SA  
TMS  
(Top view)  
HM66AEB9404  
1
2
3
SA  
4
5
6
7
8
9
SA  
10  
SA  
11  
CQ  
DQ4  
NC  
A
B
C
D
E
F
CQ  
NC  
VSS  
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
NC  
NC  
DQ7  
NC  
NC  
NC  
TCK  
R/W  
SA  
NC  
NC  
SA  
K
K
NC  
BW  
SA  
LD  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VDDQ  
NC  
NC  
NC  
NC  
NC  
NC  
SA  
NC  
NC  
NC  
NC  
NC  
NC  
VREF  
DQ2  
NC  
NC  
NC  
NC  
NC  
TMS  
NC  
NC  
VSS  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SA  
C
VSS  
NC  
NC  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
SA  
VSS  
NC  
NC  
DQ5  
NC  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VDDQ  
VSS  
DQ3  
NC  
NC  
G
H
J
NC  
DQ6  
VDDQ  
NC  
NC  
DOFF  
NC  
ZQ  
NC  
K
L
NC  
NC  
NC  
NC  
NC  
DQ1  
NC  
M
N
P
R
NC  
NC  
NC  
NC  
VSS  
VSS  
NC  
NC  
DQ8  
SA  
SA  
SA  
SA  
SA  
DQ0  
TDI  
TDO  
SA  
SA  
C
SA  
SA  
(Top view)  
Note: Note that 7C is not SA1. The ×9 product does not permit random start address on the two least significant  
address bits. SA0, SA1 = 0 at the start of each address.  
Notes on Usage  
Power-on initialization cycles are required for all operations, including JTAG functions, to become normal.  
Clock recovery initialization cycles are required for read/write operations to become normal.  
Output buffer impedance can be programmed by terminating the ZQ ball to VSS through a precision resistor (RQ).  
The value of RQ is five times the output impedance desired. The allowable range of RQ to guarantee impedance  
matching with a tolerance of 10% is 250 typical. The total external capacitance of ZQ ball must be less than 7.5  
pF.  
Rev.1.00 Sep 06, 2006 page 3 of 20  
HM66AEB36104/18204/9404  
Pin Descriptions  
Name  
SA0  
SA1  
SA  
I/O type  
Descriptions  
Input  
Synchronous address inputs: These inputs are registered and must meet the setup and hold times  
around the rising edge of K. All transactions operate on a burst-of-four words (two clock periods of  
bus activity). SA0 and SA1 are used as the lowest two address bits for burst READ and burst  
WRITE operations permitting a random burst start address on ×18 and ×36 devices. These inputs  
are ignored when device is deselected or once burst operation is in progress.  
LD  
Input  
Input  
Input  
Synchronous load: This input is brought low when a bus cycle sequence is to be defined. This  
definition includes address and READ / WRITE direction. All transactions operate on a burst-of-  
four data (two clock periods of bus activity).  
R/W  
Synchronous read / write Input: When LD is low, this input designates the access type (READ  
when R/W is high, WRITE when R/W is low) for the loaded address. R/W must meet the setup and  
hold times around the rising edge of K.  
BW  
BWn  
Synchronous byte writes: When low, these inputs cause their respective byte to be registered and  
written during WRITE cycles. These signals must meet setup and hold times around the rising  
edges of K and K for each of the two rising edges comprising the WRITE cycle. See Byte Write  
Truth Table for signal to data relationship.  
K, K  
C, C  
Input  
Input  
Input clock: This input clock pair registers address and control inputs on the rising edge of K, and  
registers data on the rising edge of K and the rising edge of K. K is ideally 180 degrees out of  
phase with K. All synchronous inputs must meet setup and hold times around the clock rising  
edges. These balls cannot remain VREF level.  
Output clock: This clock pair provides a user-controlled means of tuning device output data. The  
rising edge of C is used as the output timing reference for first and third output data. The rising  
edge of C is used as the output timing reference for second and fourth output data. Ideally, C is  
180 degrees out of phase with C. C and C may be tied high to force the use of K and K as the  
output reference clocks instead of having to provide C and C clocks. If tied high, C and C must  
remain high and not to be toggled during device operation. These balls cannot remain VREF level.  
DOFF  
Input  
Input  
DLL disable: When low, this input causes the DLL to be bypassed for stable, low frequency  
operation.  
ZQ  
Output impedance matching input: This input is used to tune the device outputs to the system data  
bus impedance. DQ and CQ output impedance are set to 0.2 × RQ, where RQ is a resistor from  
this ball to ground. This ball can be connected directly to VDDQ, which enables the minimum  
impedance mode. This ball cannot be connected directly to VSS or left unconnected.  
TMS  
TDI  
Input  
Input  
IEEE1149.1 test inputs: 1.8 V I/O levels. These balls may be left not connected if the JTAG  
function is not used in the circuit.  
TCK  
IEEE1149.1 clock input: 1.8 V I/O levels. This ball must be tied to VSS if the JTAG function is not  
used in the circuit.  
DQ0 to  
DQn  
Input/  
output  
Synchronous data I/Os: Input data must meet setup and hold times around the rising edges of K  
and K. Output data is synchronized to the respective C and C, or to the respective K and K if C  
and C are tied high.  
The ×9 device uses DQ0 to DQ8. Remaining signals are NC.  
The ×18 device uses DQ0 to DQ17. Remaining signals are NC.  
The ×36 device uses DQ0 to DQ35.  
CQ, CQ  
Output Synchronous echo clock outputs: The edges of these outputs are tightly matched to the  
synchronous data outputs and can be used as a data valid indication. These signals run freely and  
do not stop when DQ tri-states.  
TDO  
VDD  
Output IEEE 1149.1 test output: 1.8 V I/O level.  
Supply Power supply: 1.8 V nominal. See DC Characteristics and Operating Conditions for range.  
VDDQ  
Supply Power supply: Isolated output buffer supply. Nominally 1.5 V. 1.8 V is also permissible. See DC  
Characteristics and Operating Conditions for range.  
Rev.1.00 Sep 06, 2006 page 4 of 20  
HM66AEB36104/18204/9404  
Name  
VSS  
I/O type  
Descriptions  
Supply Power supply: Ground  
VREF  
HSTL input reference voltage: Nominally VDDQ/2, but may be adjusted to improve system noise  
margin. Provides a reference voltage for the HSTL input buffers.  
NC  
No connect: These signals are internally connected. These signals may be connected to ground  
to improve package heat dissipation.  
Note: 1. All power supply and ground balls must be connected for proper operation of the device.  
Block Diagram  
HM66AEB36104  
SA1  
SA0  
SA1'  
SA0'  
Burst  
Logic  
20  
Output  
Control  
Logic  
20  
SA  
R/  
SA0''  
SA0'''  
Address  
Registry  
& Logic  
ZQ  
K
R/  
2
CQ,  
DQ0-35  
Data  
Registry  
& Logic  
Memory  
Array  
72  
K
72  
72  
36  
MUX  
K
C
36  
C,  
or  
K,  
HM66AEB18204  
SA1  
SA0  
SA1'  
SA0'  
Burst  
Logic  
21  
Output  
Control  
Logic  
21  
SA  
R/  
SA0''  
SA0'''  
Address  
Registry  
& Logic  
ZQ  
K
R/  
2
CQ,  
DQ0-17  
Data  
Registry  
& Logic  
Memory  
Array  
36  
K
36  
36  
18  
MUX  
K
C
18  
C,  
or  
K,  
Rev.1.00 Sep 06, 2006 page 5 of 20  
HM66AEB36104/18204/9404  
HM66AEB9404  
20  
SA  
Address  
20  
Registry  
& Logic  
R/  
K
ZQ  
R/  
2
9
CQ,  
DQ0-8  
Data  
Registry  
& Logic  
Memory  
Array  
18  
K
18  
C
18  
MUX  
K
9
C,  
or  
K,  
Burst Sequence  
Linear Burst Sequence Table  
(HM66AEB36104/18204)  
SA1, SA0  
SA1, SA0  
0, 1  
SA1, SA0  
1, 0  
SA1, SA0  
1, 1  
External address  
0, 0  
0, 1  
1, 0  
1, 1  
1st internal burst address  
2nd internal burst address  
3rd internal burst address  
1, 0  
1, 1  
0, 0  
1, 1  
0, 0  
0, 1  
0, 0  
0, 1  
1, 0  
Truth Table  
Operation  
K
LD  
R/W  
DQ  
WRITE cycle  
LH  
L
L
Data in  
Input  
Load address, input write data  
on two consecutive K and K  
rising edges  
D(A1)  
D(A2)  
D(A3)  
D(A4)  
data  
Input  
clock  
K(t+1)↑  
K(t+1)↑  
K(t+2)↑  
K(t+2)↑  
READ cycle  
LH  
L
H
Data out  
Load address, read data on two  
consecutive C and C rising  
edges  
Output  
data  
Q(A1)  
Q(A2)  
Q(A3)  
Q(A4)  
Output  
clock  
C(t+1)↑  
C(t+2)↑  
C(t+2)↑  
C(t+3)↑  
NOP (No operation)  
LH  
H
×
×
High-Z  
STANDBY (Clock stopped)  
Stopped  
×
Previous state  
Rev.1.00 Sep 06, 2006 page 6 of 20  
HM66AEB36104/18204/9404  
Notes: 1. H: high level, L: low level, ×: don’t care, : rising edge.  
2. Data inputs are registered at K and K rising edges. Data outputs are delivered at C and C rising edges,  
except if C and C are high, then data outputs are delivered at K and K rising edges.  
3. LD and R/W must meet setup/hold times around the rising edges (low to high) of K and are registered at the  
rising edge of K.  
4. This device contains circuitry that will ensure the outputs will be in high-Z during power-up.  
5. Refer to state diagram and timing diagrams for clarification.  
6. When clocks are stopped, the following cases are recommended; the case of K = low, K = high, C = low and  
C = high, or the case of K = high, K = low, C = high and C = low. This condition is not essential, but permits  
most rapid restart by overcoming transmission line charging symmetrically.  
7. A1 refers to the address input during a WRITE or READ cycle. A2, A3 and A4 refer to the 1st, 2nd and 3rd  
internal burst address, respectively, in accordance with the linear burst sequence.  
Byte Write Truth Table  
HM66AEB36104  
Operation  
K
K
BW0  
L
BW1  
L
BW2  
L
BW3  
L
Write D0 to D35  
LH  
LH  
LH  
LH  
LH  
LH  
LH  
L
L
L
L
Write D0 to D8  
Write D9 to D17  
Write D18 to D26  
Write D27 to D35  
Write nothing  
LH  
LH  
LH  
LH  
LH  
L
H
H
L
H
H
H
H
L
H
H
H
H
H
H
L
L
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
L
H
H
H
H
L
H
H
Notes: 1. H: high level, L: low level, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0 to BW3 can be altered for any portion of the BURST WRITE  
operation provided that the setup and hold requirements are satisfied.  
HM66AEB18204  
Operation  
K
K
BW0  
L
BW1  
L
Write D0 to D17  
Write D0 to D8  
Write D9 to D17  
Write nothing  
LH  
LH  
LH  
LH  
LH  
L
L
LH  
LH  
LH  
L
H
L
H
H
L
H
L
H
H
H
H
Notes: 1. H: high level, L: low level, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW0 and BW1 can be altered for any portion of the BURST WRITE  
operation provided that the setup and hold requirements are satisfied.  
Rev.1.00 Sep 06, 2006 page 7 of 20  
HM66AEB36104/18204/9404  
HM66AEB9404  
Operation  
K
K
BW  
L
Write D0 to D8  
LH  
LH  
LH  
L
Write nothing  
LH  
H
H
Notes: 1. H: high level, L: low level, : rising edge.  
2. Assumes a WRITE cycle was initiated. BW can be altered for any portion of the BURST WRITE operation  
provided that the setup and hold requirements are satisfied.  
Bus Cycle State Diagram  
= L  
= H,  
Count = 4  
Count = 2  
= L,  
Count = 4  
WRITE DOUBLE  
Count = Count + 2  
ADVANCE ADDRESS  
BY TWO  
Always  
R/ = L  
LOAD NEW  
ADDRESS  
Count = 0  
= H  
NOP  
R/ = H  
Count = 2  
Always  
= L,  
Count = 4  
READ DOUBLE  
Count = Count + 2  
ADVANCE ADDRESS  
BY TWO  
Supply voltage provided  
= H,  
Count = 4  
POWER UP  
Notes:  
1. SA0 and SA1 are internally advanced in accordance with the burst order table. Bus cycle is  
terminated at the end of this sequence (burst count = 4).  
2. State machine control timing sequence is controlled by K.  
Rev.1.00 Sep 06, 2006 page 8 of 20  
HM66AEB36104/18204/9404  
Absolute Maximum Ratings  
Parameter  
Symbol  
Rating  
Unit  
Notes  
Input voltage on any ball  
VIN  
0.5 to VDD + 0.5  
V
1, 4  
(2.5 V max.)  
Input/output voltage  
VI/O  
0.5 to VDDQ + 0.5  
V
1, 4  
(2.5 V max.)  
Core supply voltage  
VDD  
VDDQ  
Tj  
0.5 to 2.5  
0.5 to VDD  
+125 (max)  
55 to +125  
V
V
1, 4  
1, 4  
Output supply voltage  
Junction temperature  
°C  
°C  
Storage temperature  
TSTG  
Notes: 1. All voltage is referenced to VSS.  
2. Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted the Operation Conditions. Exposure to higher than recommended voltages for extended  
periods of time could affect device reliability.  
3. These CMOS memory circuits have been designed to meet the DC and AC specifications shown in the tables  
after thermal equilibrium has been established.  
4. The following supply voltage application sequence is recommended: VSS, VDD, VDDQ, VREF then VIN.  
Remember, according to the Absolute Maximum Ratings table, VDDQ is not to exceed 2.5 V, whatever the  
instantaneous value of VDDQ  
.
Recommended DC Operating Conditions  
(Ta = 0 to +70°C)  
Parameter  
Power supply voltage -- core  
Power supply voltage -- I/O  
Input reference voltage -- I/O  
Input high voltage  
Symbol  
VDD  
Min  
1.7  
Typ  
1.8  
Max  
1.9  
Unit  
V
Notes  
VDDQ  
1.4  
1.5  
VDD  
V
VREF  
0.68  
0.75  
0.95  
V
1
VIH (DC)  
VIL (DC)  
VREF + 0.1  
0.3  
VDDQ + 0.3  
V
2, 3  
2, 3  
Input low voltage  
V
REF 0.1  
V
Notes: 1. Peak to peak AC component superimposed on VREF may not exceed 5% of VREF  
2. Overshoot: VIH (AC) VDDQ + 0.5 V for t tKHKH/2  
.
Undershoot: VIL (AC) ≥ −0.5 V for t tKHKH/2  
Power-up: VIH VDDQ + 0.3 V and VDD 1.7 V and VDDQ 1.4 V for t 200 ms  
During normal operation, VDDQ must not exceed VDD  
.
Control input signals may not have pulse widths less than tKHKL (min) or operate at cycle rates less than tKHKH  
(min).  
3. These are DC test criteria. The AC VIH / VIL levels are defined separately to measure timing parameters.  
DC Characteristics  
(Ta = 0 to +70°C, VDD = 1.8 V ± 0.1 V)  
HM66AEB36104/HM66AEB18204  
HM66AEB9404  
-30  
-33  
-40  
Max  
630  
700  
-50  
-60  
Parameter  
Operating supply current  
Symbol  
Unit Notes  
(×9 / ×18)  
(×36)  
IDD  
IDD  
770  
880  
720  
800  
540  
600  
480  
520  
mA 1, 2, 3  
mA 1, 2, 3  
(READ / WRITE)  
Standby supply current  
(NOP)  
(×9 / ×18 / ×36)  
ISB1  
350  
330  
300  
280  
260  
mA 2, 4, 5  
Rev.1.00 Sep 06, 2006 page 9 of 20  
HM66AEB36104/18204/9404  
Parameter  
Input leakage current  
Output leakage current  
Output high voltage  
Symbol  
Min  
2  
Max  
2
Unit Test conditions Notes  
ILI  
µA  
µA  
V
10  
11  
ILO  
2  
2
VOH  
V
DDQ 0.2  
VDDQ  
|IOH| 0.1 mA  
8, 9  
(Low)  
VOH  
VDDQ/2 0.08  
VDDQ/2 + 0.08  
V
V
Notes6  
8, 9  
8, 9  
Output low voltage  
VOL  
VSS  
0.2  
I
OL 0.1 mA  
(Low)  
VOL  
VDDQ/2 0.08  
VDDQ/2 + 0.08  
V
Notes7  
8, 9  
Notes: 1. All inputs (except ZQ, VREF) are held at either VIH or VIL.  
2. IOUT = 0 mA. VDD = VDD max, tKHKH = tKHKH min.  
3. Operating supply currents are measured at 100% bus utilization.  
4. All address / data inputs are static at either VIN > VIH or VIN < VIL.  
5. NOP currents are valid when entering NOP after all pending READ and WRITE cycles are completed.  
6. Outputs are impedance-controlled. |IOH| = (VDDQ/2)/(RQ/5) for values of 175 Ω ≤ RQ 350 .  
7. Outputs are impedance-controlled. IOL = (VDDQ/2)/(RQ/5) for values of 175 Ω ≤ RQ 350 .  
8. AC load current is higher than the shown DC values. AC I/O curves are available upon request.  
9. HSTL outputs meet JEDEC HSTL Class I and Class II standards.  
10.0 VIN VDDQ for all input balls (except VREF, ZQ, TCK, TMS, TDI ball).  
11.0 VOUT VDDQ (except TDO ball), output disabled.  
Capacitance  
(Ta = +25°C, f = 1.0 MHz, VDD = 1.8 V, VDDQ = 1.5 V)  
Parameter  
Symbol  
CIN  
Min  
Typ  
4
Max  
Unit  
pF  
Test conditions  
VIN = 0 V  
Input capacitance  
5
6
7
Clock input capacitance  
Input/output capacitance (DQ, ZQ)  
CCLK  
CI/O  
5
pF  
VCLK = 0 V  
VI/O = 0 V  
6
pF  
Notes: 1. These parameters are sampled and not 100% tested.  
2. Except JTAG (TCK, TMS, TDI, TDO) pins.  
AC Characteristics  
(Ta = 0 to +70°C, VDD = 1.8 V ± 0.1 V)  
Test Conditions  
Input waveform (Rise/fall time 0.3 ns)  
1.25 V  
0.75 V  
Test points  
0.75 V  
0.25 V  
Output waveform  
VDDQ/2  
Test points  
VDDQ/2  
Rev.1.00 Sep 06, 2006 page 10 of 20  
HM66AEB36104/18204/9404  
Output load condition  
VDDQ/2  
0.75 V  
50 Ω  
VREF  
DQ  
Zo = 50 Ω  
SRAM  
250 Ω  
ZQ  
Operating Conditions  
Parameter  
Input high voltage  
Input low voltage  
Symbol  
VIH (AC)  
VIL (AC)  
Min  
VREF + 0.2  
Typ  
Max  
REF 0.2  
Unit  
V
Notes  
1, 2, 3, 4  
1, 2, 3, 4  
V
V
Notes: 1. All voltages referenced to VSS (GND).  
2. These conditions are for AC functions only, not for AC parameter test.  
3. Overshoot: VIH (AC) VDDQ + 0.5 V for t tKHKH/2  
Undershoot: VIL (AC) ≥ −0.5 V for t tKHKH/2  
Power-up: VIH VDDQ + 0.3 V and VDD 1.7 V and VDDQ 1.4 V for t 200 ms  
During normal operation, VDDQ must not exceed VDD. Control input signals may not have pulse widths less  
than tKHKL (min) or operate at cycle rates less than tKHKH (min).  
4. To maintain a valid level, the transitioning edge of the input must:  
a. Sustain a constant slew rate from the current AC level through the target AC level, VIL (AC) or VIH (AC)  
b. Reach at least the target AC level.  
.
c. After the AC target level is reached, continue to maintain at least the target DC level, VIL (DC) or VIH (DC)  
.
HM66AEB36104/HM66AEB18204  
HM66AEB9404  
-30  
-33  
-40  
-50  
-60  
Parameter  
Symbol  
Unit Notes  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Average clock  
cycle time  
tKHKH  
3.00  
3.47  
3.30  
4.20  
4.00  
5.25  
5.00  
6.30  
6.00  
7.88  
ns  
(K, K, C, C)  
Clock phase jitter tKC var  
0.20  
0.20  
0.20  
0.20  
0.20  
ns  
ns  
ns  
ns  
ns  
ns  
3
(K, K, C, C)  
Clock high time  
(K, K, C, C)  
Clock low time  
(K, K, C, C)  
Clock to clock  
(K to K, C to C)  
tKHKL  
tKLKH  
tKH/KH  
t/KHKH  
tKHCH  
1.20  
1.20  
1.35  
1.35  
0
1.32  
1.32  
1.49  
1.49  
0
1.60  
1.60  
1.80  
1.80  
0
2.00  
2.00  
2.20  
2.20  
0
2.40  
2.40  
2.70  
2.70  
0
Clock to clock  
(K to K, C to C)  
Clock to data  
1.30  
1.45  
1.80  
2.30  
2.80  
clock  
(K to C, K to C)  
Rev.1.00 Sep 06, 2006 page 11 of 20  
HM66AEB36104/18204/9404  
HM66AEB36104/HM66AEB18204  
HM66AEB9404  
-30  
-33  
-40  
-50  
-60  
Parameter  
Symbol  
Unit Notes  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
DLL lock time  
(K, C)  
tKC lock 1,024  
tKC reset 30  
tCHQV  
1,024  
1,024  
1,024  
1,024  
Cycle  
2
K static to DLL  
reset  
30  
30  
30  
30  
ns  
7
C, C high to  
output valid  
0.45  
0.45  
0.25  
0.45  
0.45  
0.45  
0.27  
0.45  
0.45  
0.45  
0.30  
0.45  
0.45  
0.45  
0.35  
0.45  
0.50  
0.50  
0.40  
0.50  
ns  
C, C high to  
output hold  
tCHQX  
0.45  
0.45  
0.45  
0.27  
0.45  
0.45  
0.30  
0.45  
0.45  
0.35  
0.50  
0.50  
0.40  
ns  
C, C high to echo tCHCQV  
clock valid  
ns  
C, C high to echo tCHCQX 0.45  
clock hold  
ns  
CQ, CQ high to  
output valid  
tCQHQV  
ns  
4, 7  
4, 7  
5
CQ, CQ high to  
output hold  
tCQHQX 0.25  
tCHQZ  
ns  
C, C high to  
output high-Z  
ns  
C, C high to  
tCHQX1 0.45  
0.45  
0.40  
0.40  
0.45  
0.50  
0.50  
0.45  
0.60  
0.60  
0.50  
0.70  
0.70  
ns  
5
output low-Z  
Address valid to  
K rising edge  
tAVKH  
tIVKH  
0.40  
0.40  
ns  
1
Control inputs  
valid to K rising  
edge  
ns  
1
Data-in valid to  
K, K rising edge  
K rising edge to  
tDVKH  
tKHAX  
tKHIX  
0.28  
0.40  
0.40  
0.30  
0.40  
0.40  
0.35  
0.50  
0.50  
0.40  
0.60  
0.60  
0.50  
0.70  
0.70  
ns  
ns  
ns  
1
1
1
address hold  
K rising edge to  
control inputs  
hold  
K, K rising edge  
to data-in hold  
tKHDX  
0.28  
0.30  
0.35  
0.40  
0.50  
ns  
1
Notes: 1. This is a synchronous device. All addresses, data and control lines must meet the specified setup and hold  
times for all latching clock edges.  
2. VDD slew rate must be less than 0.1 V DC per 50 ns for DLL lock retention. DLL lock time begins once VDD  
and input clock are stable.  
It is recommended that the device is kept inactive during these cycles.  
3. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.  
4. Echo clock is very tightly controlled to data valid / data hold. By design, there is a ±0.1 ns variation from echo  
clock to data. The datasheet parameters reflect tester guardbands and test setup variations.  
5. Transitions are measured ±100 mV from steady-state voltage.  
6. At any given voltage and temperature tCHQZ is less than tCHQX1 and tCHQZ less than tCHQV  
.
7. These parameters are sampled.  
Remarks: 1. Test conditions as specified with the output loading as shown in AC Test Conditions unless otherwise  
noted.  
2. Control input signals may not be operated with pulse widths less than tKHKL (min).  
3. If C, C are tied high, K, K become the references for C, C timing parameters.  
4. VDDQ is +1.5 V DC.  
5. Control signals are LD, R/W, BW, BW0, BW1, BW2 and BW3.  
Rev.1.00 Sep 06, 2006 page 12 of 20  
HM66AEB36104/18204/9404  
Timing Waveforms  
Read and Write Timing  
NOP  
1
READ  
(burst of 4)  
READ  
(burst of 4)  
NOP  
NOP  
WRITE  
(burst of 4)  
WRITE  
(burst of 4)  
READ  
(burst of 4)  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
tKHKH  
K
tKHKL KLKH  
t
tKH/KH  
t/KHKH  
tKHIX  
tIVKH  
R/  
tAVKH tKHAX  
SA  
A0  
A1  
A2  
A3  
A4  
tKHDX  
tDVKH  
tKHDX  
tDVKH  
DQ  
Qx4  
Q01 Q02 Q03 Q04 Q11 Q12 Q13 Q14  
D21 D22 D23 D24 D31 D32 D33 D34  
Q41  
tCQHQX  
tCHQX  
tCQHQV  
tCHCQX1  
tKHCH  
tCHQX  
tCHQV  
tCHQV  
tKHCH  
tCHQZ  
CQ  
C
tCHCQX  
tCHCQV  
tCHCQX  
tCHCQV  
tKHKL KLKH tKHKH tKH/KHt/KHKH  
t
Notes:  
1. Q01 refers to output from address A0. Q02 refers to output from the next internal burst  
address following A0, etc.  
2. Outputs are disable (high-Z) one clock cycle after a NOP.  
3. In this example, if address A4 = A3, then data Q41 = D31, Q42 = D32, etc. Write data is  
forwarded immediately as read results.  
4. To control read and write operations, BW signals must operate at the same timing as Data in.  
5. The second NOP cycle is not necessary for correct device operation; however, at high clock  
frequencies it may be required to prevent bus contention.  
Rev.1.00 Sep 06, 2006 page 13 of 20  
HM66AEB36104/18204/9404  
JTAG Specification  
These products support a limited set of JTAG functions as in IEEE standard 1149.1.  
Disabling the Test Access Port  
It is possible to use this device without utilizing the TAP. To disable the TAP controller without interfering with  
normal operation of the device, TCK must be tied to VSS to preclude mid level inputs.  
TDI and TMS are designed so an undriven input will produce a response identical to the application of a logic 1, and  
may be left unconnected. But they may also be tied to VDD through a 1kresistor.  
TDO should be left unconnected.  
Test Access Port (TAP) Pins  
Symbol I/O  
Pin assignments  
Description  
TCK  
2R  
Test clock input. All inputs are captured on the rising edge of TCK  
and all outputs propagate from the falling edge of TCK.  
TMS  
TDI  
10R  
11R  
Test mode select. This is the command input for the TAP controller  
state machine.  
Test data input. This is the input side of the serial registers placed  
between TDI and TDO. The register placed between TDI and TDO is  
determined by the state of the TAP controller state machine and the  
instruction that is currently loaded in the TAP instruction.  
TDO  
1R  
Test data output. Output changes in response to the falling edge of  
TCK. This is the output side of the serial registers placed between  
TDI and TDO.  
Note: The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held high for  
five rising edges of TCK. The TAP controller state is also reset on SRAM POWER-UP.  
TAP DC Operating Characteristics  
(Ta = 0 to +70°C, VDD = 1.8 V ± 0.1 V)  
Parameter  
Input high voltage  
Symbol  
VIH  
Min  
+1.3  
0.3  
5.0  
5.0  
Max  
VDD + 0.3  
+0.5  
Unit  
V
Conditions  
Input low voltage  
VIL  
V
Input leakage current  
Output leakage current  
ILI  
+5.0  
µA  
µA  
0 V VIN VDD  
0 V VIN VDD,  
ILO  
+5.0  
output disabled  
IOLC = 100 µA  
IOLT = 2 mA  
Output low voltage  
Output high voltage  
VOL1  
VOL2  
VOH1  
VOH2  
0.2  
0.4  
V
V
V
V
1.6  
1.4  
|IOHC| = 100 µA  
|IOHT| = 2 mA  
Notes: 1. All voltages referenced to VSS (GND).  
2. Power-up: VIH VDDQ + 0.3 V and VDD +1.7 V and VDDQ +1.4 V for t 200 ms.  
3. In “EXTEST” mode and “SAMPLE” mode, VDDQ is nominally 1.5 V.  
4. ZQ: VIH = VDDQ  
.
Rev.1.00 Sep 06, 2006 page 14 of 20  
HM66AEB36104/18204/9404  
TAP AC Test Condition  
Temperature  
Input timing measurement reference levels  
Input pulse levels  
0°C Ta +70°C  
0.9 V  
0 V to 1.8 V  
1.0 ns  
0.9 V  
0.9 V  
Input rise/fall time  
Output timing measurement reference levels  
Test load termination supply voltage (VTT)  
Output load  
See figures  
Input waveform  
1.8 V  
0 V  
0.9 V  
Test points  
0.9 V  
Output waveform  
0.9 V  
Test points  
0.9 V  
Output load  
VTT = 0.9 V  
50 Ω  
Zo = 50 Ω  
TDO  
20 pF  
External load at test  
Rev.1.00 Sep 06, 2006 page 15 of 20  
HM66AEB36104/18204/9404  
TAP AC Operating Characteristics  
(Ta = 0 to +70°C, VDD = 1.8 V ± 0.1 V)  
Parameter  
Test clock cycle time  
Test clock high pulse width  
Test clock low pulse width  
Test mode select setup  
Test mode select hold  
Capture setup  
Symbol  
tTHTH  
tTHTL  
tTLTH  
tMVTH  
tTHMX  
tCS  
Min  
100  
40  
40  
10  
10  
10  
10  
10  
10  
0
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note  
1
1
Capture hold  
tCH  
TDI valid to TCK high  
TCK high to TDI invalid  
TCK low to TDO unknown  
TCK low to TDO valid  
tDVTH  
tTHDX  
tTLQX  
tTLQV  
20  
Note: 1. tCS + tCH defines the minimum pause in RAM I/O pad transitions to assure pad data capture.  
TAP Controller Timing Diagram  
tTHTH  
TCK  
tMVTH  
tTHTL  
tTLTH  
TMS  
tTHMX  
tDVTH  
TDI  
tTHDX  
tTLQV  
TDO  
tCS  
tTLQX  
tCH  
PI (SRAM)  
Test Access Port Registers  
Register name  
Instruction register  
Bypass register  
Length  
Symbol  
IR [2:0]  
BP  
3 bits  
1 bit  
ID register  
32 bits  
109 bits  
ID [31:0]  
BS [109:1]  
Boundary scan register  
Rev.1.00 Sep 06, 2006 page 16 of 20  
HM66AEB36104/18204/9404  
TAP Controller Instruction Set  
IR2  
IR1  
IR0  
Instruction  
EXTEST  
Description  
Notes  
0
0
0
The EXTEST instruction allows circuitry external to the component  
package to be tested. Boundary scan register cells at output balls are  
used to apply test vectors, while those at input balls capture test  
results. Typically, the first test vector to be applied using the EXTEST  
instruction will be shifted into the boundary scan register using the  
PRELOAD instruction. Thus, during the Update-IR state of EXTEST,  
the output driver is turned on and the PRELOAD data is driven onto  
the output balls.  
1, 2, 3  
0
0
0
1
1
0
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded into the ID  
register when the controller is in capture-DR mode and places the ID  
register between the TDI and TDO balls in shift-DR mode. The  
IDCODE instruction is the default instruction loaded in at power up and  
any time the controller is placed in the Test-Logic-Reset state.  
SAMPLE-Z  
If the SAMPLE-Z instruction is loaded in the instruction register, all  
RAM outputs are forced to an inactive drive state (high-Z), moving the  
TAP controller into the capture-DR state loads the data in the RAMs  
input into the boundary scan register, and the boundary scan register  
is connected between TDI and TDO when the TAP controller is moved  
to the shift-DR state.  
3, 4  
0
1
1
0
1
0
RESERVED  
The RESERVED instructions are not implemented but are reserved for  
future use. Do not use these instructions.  
SAMPLE  
(/PRELOAD)  
When the SAMPLE instruction is loaded in the instruction register,  
moving the TAP controller into the capture-DR state loads the data in  
the RAMs input and I/O buffers into the boundary scan register.  
Because the RAM clock(s) are independent from the TAP clock (TCK)  
it is possible for the TAP to attempt to capture the I/O ring contents  
while the input buffers are in transition (i.e., in a metastable state).  
Although allowing the TAP to SAMPLE metastable input will not harm  
the device, repeatable results cannot be expected. Moving the  
controller to shift-DR state then places the boundary scan register  
between the TDI and TDO balls.  
3
1
1
1
0
1
1
1
0
1
RESERVED  
RESERVED  
BYPASS  
The BYPASS instruction is loaded in the instruction register when the  
bypass register is placed between TDI and TDO. This occurs when  
the TAP controller is moved to the shift-DR state. This allows the  
board level scan path to be shortened to facilitate testing of other  
devices in the scan path.  
Notes: 1. Data in output register is not guaranteed if EXTEST instruction is loaded.  
2. After performing EXTEST, power-up conditions are required in order to return part to normal operation.  
3. RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus hold  
time (tCS plus tCH). The RAMs clock inputs need not be paused for any other TAP operation except capturing  
the I/O ring contents into the boundary scan register.  
4. Clock recovery initialization cycles are required to return from the SAMPLE-Z instruction.  
ID Register  
Revision number  
(31:29)  
Type number  
(28:12)  
Vendor JEDEC code  
(11:1)  
Start bit  
(0)  
Part  
HM66AEB36104  
HM66AEB18204  
HM66AEB9404  
000  
000  
000  
00010011010001000  
00010010010001000  
00010000010001000  
01000100011  
01000100011  
01000100011  
1
1
1
Rev.1.00 Sep 06, 2006 page 17 of 20  
HM66AEB36104/18204/9404  
Boundary Scan Order  
Signal names  
×18  
C
Signal names  
×18  
NC  
Bit #  
Ball ID  
Bit #  
Ball ID  
×9  
C
×36  
C
×9  
NC  
CQ  
SA  
×36  
NC  
1
6R  
6P  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
10B  
11A  
10A  
9A  
8B  
7C  
6C  
8A  
7A  
7B  
6B  
6A  
5B  
5A  
4A  
5C  
4B  
3A  
2A  
1A  
2B  
3B  
1C  
1B  
3D  
3C  
1D  
2C  
3E  
2D  
2E  
1E  
2F  
3F  
1G  
1F  
3G  
2G  
1H  
1J  
2
C
C
C
CQ  
CQ  
3
6N  
SA  
SA  
SA  
SA  
SA  
SA  
SA  
DQ0  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ2  
NC  
ZQ  
NC  
NC  
NC  
NC  
NC  
NC  
DQ3  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ4  
NC  
NC  
SA  
SA  
SA  
NC  
4
7P  
SA  
SA  
SA  
SA  
SA  
5
7N  
SA  
SA  
SA  
SA  
SA  
6
7R  
SA  
SA  
SA  
SA1  
SA0  
LD  
SA1  
SA0  
LD  
BW1  
BW0  
K
7
8R  
SA  
SA  
NC  
8
8P  
SA  
SA  
LD  
9
9R  
SA  
SA  
NC  
BW  
K
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
11P  
10P  
10N  
9P  
DQ0  
NC  
DQ0  
DQ9  
NC  
BW0  
K
NC  
K
K
NC  
K
NC  
NC  
NC  
NC  
R/W  
SA  
BW3  
BW2  
R/W  
SA  
10M  
11N  
9M  
DQ1  
NC  
DQ11  
DQ10  
NC  
BW1  
R/W  
SA  
NC  
9N  
NC  
NC  
SA  
SA  
SA  
11L  
11M  
9L  
DQ2  
NC  
DQ2  
DQ1  
NC  
SA  
SA  
SA  
VSS  
CQ  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ5  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ6  
NC  
DOFF  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
VSS  
NC  
CQ  
DQ9  
CQ  
10L  
11K  
10K  
9J  
NC  
NC  
DQ27  
DQ18  
NC  
DQ3  
NC  
DQ3  
DQ12  
NC  
NC  
NC  
NC  
NC  
NC  
9K  
NC  
NC  
DQ10  
NC  
DQ19  
DQ28  
NC  
10J  
11J  
11H  
10G  
9G  
DQ4  
NC  
DQ13  
DQ4  
ZQ  
NC  
ZQ  
NC  
NC  
NC  
NC  
DQ11  
NC  
DQ20  
DQ29  
NC  
NC  
NC  
11F  
11G  
9F  
DQ5  
NC  
DQ5  
DQ14  
NC  
NC  
NC  
NC  
NC  
DQ12  
NC  
DQ30  
DQ21  
NC  
10F  
11E  
10E  
10D  
9E  
NC  
NC  
DQ6  
NC  
DQ6  
DQ15  
NC  
NC  
NC  
NC  
NC  
DQ13  
NC  
DQ22  
DQ31  
DOFF  
NC  
NC  
NC  
10C  
11D  
9C  
DQ7  
NC  
DQ17  
DQ16  
NC  
DOFF  
NC  
NC  
2J  
NC  
NC  
9D  
NC  
NC  
3K  
3J  
DQ14  
NC  
DQ23  
DQ32  
NC  
11B  
11C  
9B  
DQ8  
NC  
DQ8  
DQ7  
NC  
2K  
1K  
NC  
NC  
NC  
NC  
Rev.1.00 Sep 06, 2006 page 18 of 20  
HM66AEB36104/18204/9404  
Signal names  
×18  
Signal names  
Bit #  
Ball ID  
Bit #  
Ball ID  
×9  
DQ7  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
DQ8  
NC  
×36  
DQ33  
DQ24  
NC  
×9  
NC  
NC  
SA  
SA  
SA  
SA  
SA  
SA  
×18  
NC  
NC  
SA  
SA  
SA  
SA  
SA  
SA  
×36  
NC  
NC  
SA  
SA  
SA  
SA  
SA  
SA  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
2L  
3L  
DQ15  
NC  
101  
102  
103  
104  
105  
106  
107  
108  
109  
2P  
1P  
3R  
4R  
4P  
5P  
5N  
5R  
1M  
1L  
NC  
NC  
NC  
3N  
3M  
1N  
2M  
3P  
2N  
DQ16  
NC  
DQ25  
DQ34  
NC  
NC  
NC  
NC  
DQ17  
NC  
DQ26  
DQ35  
INTER-  
NAL  
INTER-  
NAL  
INTER-  
NAL  
Note: In boundary scan mode,  
1. Clock balls (K / K, C / C) are referenced to each other and must be at opposite logic levels for reliable  
operation.  
2. CQ and CQ data are synchronized to the respective C and C (except EXTEST, SAMPLE-Z).  
3. If C and C tied high, CQ is generated with respect to K and CQ is generated with respect to K (except  
EXTEST, SAMPLE-Z).  
4. ZQ must be driven to VDDQ supply to ensure consistent results.  
TAP Controller State Diagram  
Test-Logic-  
1
Reset  
0
1
1
1
Run-Test/  
Idle  
Select-  
DR-Scan  
Select-  
IR-Scan  
0
0
0
1
1
Capture-DR  
0
Capture-IR  
0
Shift-DR  
1
Shift-IR  
1
0
0
0
0
1
1
Exit1-DR  
0
Exit1-IR  
0
Pause-DR  
1
Pause-IR  
1
0
0
Exit2-DR  
1
Exit2-IR  
1
Update-DR  
Update-IR  
1
0
1
0
Notes: The value adjacent to each state transition in this figure represents the signal present  
at TMS at the time of a rising edge at TCK.  
No matter what the original state of the controller, it will enter Test-Logic-Reset when  
TMS is held high for at least five rising edges of TCK.  
Rev.1.00 Sep 06, 2006 page 19 of 20  
HM66AEB36104/18204/9404  
Package Dimensions  
HM66AEB36104/18204/9404BP (PLBG0165FB-A / Previous Code: BP-165A)  
JEITA Package Code  
RENESAS Code  
PLBG0165FB-A  
Previous Code  
BP-165A  
MASS[Typ.]  
0.7g  
P-LBGA165-15x17-1.00  
D
A
B
INDEX  
y1  
S
S
y
S
e
R
P
N
M
L
Dimension in Millimeters  
Reference  
Symbol  
Min  
Nom  
15.00  
17.00  
Max  
15.10  
17.10  
K
J
D
E
14.90  
16.90  
H
G
F
v
w
E
D
C
B
A
A
1.34  
0.27  
1.40  
0.32  
1.00  
0.50  
1.46  
0.37  
A1  
e
b
0.45  
0.55  
0.20  
0.15  
0.25  
x
1
2
3
4
5
6
7
8
9
10 11  
y
φ b  
φ
×
M
S
A
S
B
y1  
SD  
SE  
ZD  
ZE  
φ
0.07  
M
Rev.1.00 Sep 06, 2006 page 20 of 20  
Revision History  
HM66AEB36104/HM66AEB18204  
HM66AEB9404 Data Sheet  
Rev.  
Date  
Contents of Modification  
Description  
Page  
0.0  
0.01  
Jan. 27, 2003  
Apr.05.2004  
Initial issue  
Change format issued by Renesas Technology Corp.  
HM66AEB9404: Change of pin names  
DQ0 to DQ1  
DQ1 to DQ2  
DQ2 to DQ3  
DQ3 to DQ4  
DQ4 to DQ5  
DQ5 to DQ6  
DQ6 to DQ7  
DQ7 to DQ8  
DQ8 to DQ0  
4
5-6  
Addition of Notes on Usage  
Pin Descriptions  
SAn/SA0/SA1 to SA0/SA1/SA  
SA0/SA1/SA: Change of Descriptions  
K, K: Change of Descriptions  
C, C: Change of Descriptions  
DOFF: Change of Descriptions  
ZQ: Change of Descriptions  
DQn  
to  
DQ0 to DQn  
DQ0 to DQn: Change of Descriptions  
VREF: Change of Descriptions  
NC: Change of Descriptions  
Block Diagram  
Change of the figures  
Truth Table  
7-8  
9
DA(A+0) to D(A1)  
DA(A+1) to D(A2)  
DA(A+2) to D(A3)  
DA(A+3) to D(A4)  
QA(A+0) to Q(A1)  
QA(A+1) to Q(A2)  
QA(A+2) to Q(A3)  
QA(A+3) to Q(A4)  
Change of Notes3, 6, 7  
10-11 Byte Write Truth Table  
0 to L  
1 to H  
11  
12  
Bus Cycle State Diagram  
Change of Notes1  
Absolute Maximum Ratings  
VIN, VI/O, VDD, VDDQ (Notes4)  
Maximum value: 2.9 V to 2.5 V  
Rev.  
0.01  
Date  
Contents of Modification  
Description  
Page  
12  
Apr.05.2004  
Recommended DC Operating Conditions  
Deletion of Notes2  
Notes3 to Notes2  
Change of Notes2  
Addition of Notes3  
13  
DC Characteristics (1st table)  
I
I
I
DD (Max):  
×9, ×18:  
390/355/300/250/215 mA  
to 770/720/630/540/480 mA  
×36:  
520/475/400/330/285 mA  
to 880/800/700/600/520 mA  
SB1 (Max):  
×9, ×18:  
255/235/200/170/150 mA  
to 350/330/300/280/260 mA  
×36:  
265/245/210/180/160 mA  
to 350/330/300/280/260 mA  
DD, ISB1: Addition of Notes  
Deletion of Notes3  
Notes4 to Notes3  
Addition of Notes4  
Notes1-5 are moved to DC Characteristics (2nd table)  
DC Characteristics (2nd table)  
Deletion of IOH, IOL  
Deletion of Notes5-7, 10  
Notes1-4 to Notes6-9  
13  
14  
Notes8-9 to Notes10-11  
Capacitance  
Change of condition  
CI/O: Change of Parameter  
Change of Notes2  
14  
15  
AC Characteristics  
Output load condition: Change of the figure  
V
IH (AC), VIL (AC): Addition of Notes4  
Addition of Notes2  
Notes2-3 to Notes3-4  
Change of Notes3  
16  
17  
t
t
KC reset, tCQHQV, tCQHQX: Addition of Notes7  
CHQZ, tCHQX1: Change of Parameter  
Remarks1 to Notes7  
Change of Notes7  
Remarks2-5 to Remarks1-4  
Addition of Remarks5  
Timing Waveforms  
Change of the figure  
Notes3 to Notes5  
Addition of Notes3-4  
TAP DC Operating Characteristics  
Addition of Notes4  
18  
20  
Rev.  
0.01  
Date  
Contents of Modification  
Description  
Page  
22  
Apr.05.2004  
TAP Controller Timing Diagram  
Change of the figure  
23-24 TAP Controller Instruction Set  
SAMPLE(-PRELOAD) to SAMPLE(/PRELOAD)  
EXTEST, SAMPLE-Z, RESERVED, SAMPLE(/PRELOAD):  
Change of Description  
Addition of Notes3-4  
24  
ID Register  
Vendor JEDEC code:  
00000000111 to 01000100011  
25-26 Boundary Scan Order  
Change of Note  
28  
Package Dimensions  
Change of the figure of BP-165A  
1.00  
Sep.06.2006  
Change format revised by Renesas Technology Corp.  
Ordering Information to Part No. Information  
Part No. Information  
2
2
Type No. to Catalogue Part No.  
Addition of Ordering Part No.  
Addition of the Renesas package code  
Package Dimensions  
20  
Addition of the Renesas package code  
Changed to the Renesas format  
Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan  
Keep safety first in your circuit designs!  
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble  
may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.  
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary  
circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's  
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.  
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,  
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.  
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of  
publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is  
therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product  
information before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors.  
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.  
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor  
home page (http://www.renesas.com).  
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to  
evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes  
no responsibility for any damage, liability or other loss resulting from the information contained herein.  
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life  
is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a  
product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater  
use.  
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.  
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and  
cannot be imported into a country other than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.  
RENESAS SALES OFFICES  
http://www.renesas.com  
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.  
Renesas Technology America, Inc.  
450 Holger Way, San Jose, CA 95134-1368, U.S.A  
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501  
Renesas Technology Europe Limited  
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.  
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900  
Renesas Technology (Shanghai) Co., Ltd.  
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120  
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898  
Renesas Technology Hong Kong Ltd.  
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong  
Tel: <852> 2265-6688, Fax: <852> 2730-6071  
Renesas Technology Taiwan Co., Ltd.  
10th Floor, No.99, Fushing North Road, Taipei, Taiwan  
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999  
Renesas Technology Singapore Pte. Ltd.  
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632  
Tel: <65> 6213-0200, Fax: <65> 6278-8001  
Renesas Technology Korea Co., Ltd.  
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea  
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145  
Renesas Technology Malaysia Sdn. Bhd  
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia  
Tel: <603> 7955-9390, Fax: <603> 7955-9510  
© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan.  
Colophon .6.0  

相关型号:

HM6AEB9404BPL50

4MX9 DDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, 1 MM PITCH, PLASTIC, FBGA-165
RENESAS

HM6AEB9404BPL60

4MX9 DDR SRAM, 0.5ns, PBGA165, 15 X 17 MM, 1 MM PITCH, PLASTIC, FBGA-165
RENESAS

HM6AEB9405BP30

4MX9 DDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, 1 MM PITCH, PLASTIC, FBGA-165
RENESAS

HM6AEB9405BP33

4MX9 DDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, 1 MM PITCH, PLASTIC, FBGA-165
RENESAS

HM6AEB9405BP40

4MX9 DDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, 1 MM PITCH, PLASTIC, FBGA-165
RENESAS

HM6AQB18202BP40

2MX18 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, 1 MM PITCH, PLASTIC, FBGA-165
RENESAS

HM6AQB18202BPL50

2MX18 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, 1 MM PITCH, PLASTIC, FBGA-165
RENESAS

HM6AQB18202BPL60

2MX18 QDR SRAM, 0.5ns, PBGA165, 15 X 17 MM, 1 MM PITCH, PLASTIC, FBGA-165
RENESAS

HM6AQB18204BP30

2MX18 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, 1 MM PITCH, PLASTIC, FBGA-165
RENESAS

HM6AQB18204BP33

2MX18 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, 1 MM PITCH, PLASTIC, FBGA-165
RENESAS

HM6AQB18204BP40

2MX18 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, 1 MM PITCH, PLASTIC, FBGA-165
RENESAS

HM6AQB18204BPL50

2MX18 QDR SRAM, 0.45ns, PBGA165, 15 X 17 MM, 1 MM PITCH, PLASTIC, FBGA-165
RENESAS