HS3002 [RENESAS]

High Performance Relative Humidity and Temperature Sensor;
HS3002
型号: HS3002
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

High Performance Relative Humidity and Temperature Sensor

文件: 总21页 (文件大小:733K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Performance Relative  
HS300x  
Humidity and Temperature Sensor  
Datasheet  
Description  
Features  
The HS300x series is a highly accurate, fully calibrated relative  
humidity and temperature sensor. The MEMS sensor features a  
proprietary sensor-level protection, ensuring high reliability and  
long-term stability.  
.
RH accuracy: ±1.5%RH, typical (HS3001, 10 to 90%RH,  
25°C)  
.
.
14-bit resolution: 0.01%RH, typical  
Independent programmable resolution settings: 8, 10, 12, 14-  
bits  
Integrated calibration and temperature-compensation logic pro-  
vides fully corrected RH and temperature values via a standard I2C  
output. No user calibration of the output data is required.  
.
.
Fast RH response time: 4 seconds time constant, typical  
Temperature sensor accuracy: ±0.2°C, typical (HS3001,  
HS3002, -10 to +80°C)  
The high accuracy, fast measurement response time, and long-  
term stability combined with the small package size makes the  
HS300x series ideal for a wide number of applications ranging from  
portable devices to products designed for harsh environments.  
.
Low current consumption: 1.0µA average (8-bit resolution,  
1.8V supply), 24.4µA average (14-bit resolution, 3.3V  
supply), one RH and temperature measurement per second  
The HS300x series digital sensor accurately measures relative  
humidity and temperature levels. The measured data is internally  
corrected and compensated for accurate operation over a wide  
range of temperature and humidity levels – user calibration is not  
required.  
.
.
Excellent stability against aging  
Highly robust protection from harsh environmental conditions  
and mechanical shock  
.
Very low power consumption  
Physical Characteristics  
Typical Applications  
.
.
.
.
Supply voltage: 2.3V to 5.5V  
.
.
.
.
.
.
Climate control systems  
Home appliances  
Extended supply voltage: 1.8V (-20°C to +125°C)  
Operating temperature: -40°C to +125°C  
3.0 × 2.41 × 0.8 mm DFN-style 6-LGA package  
Weather stations  
Industrial automation  
Medical equipment  
Automotive cabin climate control  
Product Image  
© 2020 Renesas Electronics Corporation  
1
April 22, 2020  
HS300x Datasheet  
Contents  
1. Pin Assignments...........................................................................................................................................................................................4  
2. Pin Descriptions............................................................................................................................................................................................4  
3. Absolute Maximum Ratings..........................................................................................................................................................................5  
4. Recommended Operating Conditions...........................................................................................................................................................5  
5. Humidity and Temperature Sensor Performance.........................................................................................................................................6  
5.1 Humidity Sensor Specification.............................................................................................................................................................6  
5.2 Temperature Sensor Specification ......................................................................................................................................................7  
5.3 Sleep Current ......................................................................................................................................................................................7  
5.4 Humidity Sensor Accuracy Graphs......................................................................................................................................................8  
5.5 Temperature Sensor Accuracy Graphs...............................................................................................................................................9  
6. Sensor Interface.........................................................................................................................................................................................10  
6.1 I2C Features and Timing...................................................................................................................................................................10  
6.2 Sensor Slave Address.......................................................................................................................................................................10  
6.3 I2C Communication...........................................................................................................................................................................11  
6.4 Measurement Mode...........................................................................................................................................................................11  
6.5 Measurement Requests (MR) ...........................................................................................................................................................11  
6.6 Data Fetch (DF).................................................................................................................................................................................12  
6.7 Status Bits .........................................................................................................................................................................................13  
6.8 Accessing the Non-volatile Memory ..................................................................................................................................................13  
6.9 Setting the Measurement Resolution.................................................................................................................................................14  
6.10 Reading the HS300x ID Number.......................................................................................................................................................14  
7. Calculating Humidity and Temperature Output...........................................................................................................................................15  
8. Application Circuit.......................................................................................................................................................................................15  
9. Package Outline Drawings and Land Pattern.............................................................................................................................................16  
10. Soldering Information .................................................................................................................................................................................16  
11. PCB Layout Guide......................................................................................................................................................................................17  
12. Storage and Handling.................................................................................................................................................................................17  
13. Quality and Reliability.................................................................................................................................................................................17  
14. Ordering Information...................................................................................................................................................................................18  
15. Revision History..........................................................................................................................................................................................18  
List of Figures  
Figure 1. Pin Assignments for 3mm × 2.41mm 6-LGA Package (Top View) .....................................................................................................4  
Figure 2. Sleep Current Variation over Temperature, VDD at 3.3V......................................................................................................................7  
Figure 3. HS3001 RH Accuracy Tolerance at 25°C ...........................................................................................................................................8  
Figure 4. HS3001 RH Accuracy over Temperature............................................................................................................................................8  
Figure 5. HS3002 RH Accuracy Tolerance at 25°C ...........................................................................................................................................8  
© 2020 Renesas Electronics Corporation  
2
April 22, 2020  
HS300x Datasheet  
Figure 6. HS3002 RH Accuracy over Temperature............................................................................................................................................8  
Figure 7. HS3003 RH Accuracy Tolerance at 25°C ...........................................................................................................................................8  
Figure 8. HS3003 RH Accuracy over Temperature............................................................................................................................................8  
Figure 9. HS3004 RH Accuracy Tolerance at 25°C ...........................................................................................................................................9  
Figure 10. HS3004 RH Accuracy over Temperature.............................................................................................................................................9  
Figure 11. HS3001/HS3002 Temperature Sensor Accuracy Tolerance...............................................................................................................9  
Figure 12. HS3003 Temperature Sensor Accuracy Tolerance.............................................................................................................................9  
Figure 13. HS3004 Temperature Sensor Accuracy Tolerance.............................................................................................................................9  
Figure 14. Timing Diagram.................................................................................................................................................................................10  
Figure 15. START and STOP Condition Waveform............................................................................................................................................11  
Figure 16. Measurement Request......................................................................................................................................................................11  
Figure 17. Data Fetch........................................................................................................................................................................................12  
Figure 18. Sequence of Commands to Enter Programming Mode.....................................................................................................................13  
Figure 19. Sequence of Commands to Change the Relative Humidity Resolution..............................................................................................14  
Figure 20. HS300x Application Circuit (Top View)..............................................................................................................................................15  
Figure 21. Recommended Soldering Profile.......................................................................................................................................................16  
Figure 22. Milled PCB Openings for Thermal Isolation.......................................................................................................................................17  
List of Tables  
Table 1. Pin Descriptions...................................................................................................................................................................................4  
Table 2. Absolute Maximum Ratings.................................................................................................................................................................5  
Table 3. Operating Conditions...........................................................................................................................................................................5  
Table 4. Humidity Sensor Specification, TA = +25°C, VDD = 2.3V to 5.5V.........................................................................................................6  
Table 5. Temperature Sensor Specification, TA = +25°C, VDD = 2.3V to 5.5V ..................................................................................................7  
Table 6. I2C Timing Parameters......................................................................................................................................................................10  
Table 7. Status Bits .........................................................................................................................................................................................13  
Table 8. Non-volatile Memory Registers .........................................................................................................................................................13  
Table 9. Register Values for Different Resolution Settings..............................................................................................................................14  
© 2020 Renesas Electronics Corporation  
3
April 22, 2020  
HS300x Datasheet  
1. Pin Assignments  
Figure 1. Pin Assignments for 3mm × 2.41mm 6-LGA Package (Top View)  
VC SDA SCL  
3
2
1
Pin 1 marker  
on bottom side  
4
5
6
VDD NC VSS  
2. Pin Descriptions  
Table 1.  
Pin Descriptions  
Pin Number  
Name  
SCL  
SDA  
VC  
Type  
In/out  
In/out  
Description  
1
Serial clock.  
Serial data.  
2
3
4
5
6
Connect a 0.1µF decoupling capacitor from VC to ground.  
VDD  
NC  
In  
Supply voltage.  
Do not connect.  
Ground.  
VSS  
In  
[a] “NC” stands for not connected / no connection required / not bonded.  
© 2020 Renesas Electronics Corporation  
4
April 22, 2020  
 
 
 
 
HS300x Datasheet  
3. Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device.  
Functional operation of the HS300x at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions might affect  
device reliability.  
Table 2.  
Symbol  
Absolute Maximum Ratings  
Parameter  
Analog Supply Voltage  
Conditions  
Minimum  
-0.3  
Maximum  
6.0  
Units  
V
Storage Temperature Range  
-55  
150  
°C  
4. Recommended Operating Conditions  
Important note: The HS300x series sensors are optimized to perform best in the more common temperature and humidity ranges of 10°C to  
50°C and 20% RH to 80% RH, respectively. If operated outside of these conditions for extended periods, especially at high humidity levels, the  
sensors may exhibit an offset. In most cases, this offset is temporary and will gradually disappear once the sensor is returned to normal  
temperature and humidity conditions. The amount of the shift and the duration of the offset vary depending on the duration of exposure and the  
severity of the relative humidity and temperature conditions. The time needed for the offset to disappear can also be decreased by using the  
procedures described in sections 10 and 12.  
Table 3.  
Operating Conditions  
Parameter  
Condition  
Minimum  
Typical  
Maximum  
Units  
Operating Supply Voltage  
Extended Operating Supply Voltage  
Sleep Current  
3.3  
5.5  
5.5  
1
V
V
Operating temperature from -20°C to 125°C  
1.8  
-40°C to 85°C  
Sleep Mode  
0.6  
1
µA  
-40°C to 125°C  
3
8-bit resolution  
1.0  
2.0  
1.5  
1.7  
2.8  
7.1  
24.4  
10-bit resolution  
2.6  
One RH + temperature  
measurement/second  
Average Current[a]  
µA  
12-bit resolution  
5.5  
7.0  
14-bit resolution  
20.1  
24.4  
0.10  
0.55  
1.31  
4.50  
16.90  
Wake-up  
8-bit resolution  
Humidity or temperature  
including the digital  
compensation  
Measurement Time  
10-bit resolution  
12-bit resolution  
14-bit resolution  
ms  
°C  
Operating Temperature Range  
-40  
125  
[a] Minimum, typical and maximum average currents are given at 1.8V, 3.3V and 5.5V VDD respectively.  
© 2020 Renesas Electronics Corporation  
5
April 22, 2020  
 
 
 
 
 
HS300x Datasheet  
5. Humidity and Temperature Sensor Performance  
5.1 Humidity Sensor Specification  
Table 4.  
Humidity Sensor Specification, TA = +25°C, VDD = 2.3V to 5.5V  
Parameter  
Condition  
Minimum  
Typical  
Maximum  
Units  
Range  
0
100  
±1.8  
±2.0  
±3.5  
±4.5  
1.0  
%RH  
HS3001  
HS3002  
HS3003  
HS3004  
8-bit  
±1.5  
±1.8  
±2.5  
±3.5  
0.7  
10% to 90%RH  
Accuracy[a]  
%RH  
20% to 80%RH  
Resolution  
Hysteresis  
%RH  
14-bit  
0.01  
0.015  
±1.0  
%RH  
%RH  
Noise in Humidity (RMS)  
14-bit  
0.014  
±0.15  
HS3001  
HS3002  
HS3003  
HS3004  
10% to 90%RH  
20% to 80%RH  
Non-Linearity from Response Curve  
±0.25  
%RH  
Long-Term Stability  
±0.1  
4.0  
±0.25  
6.0  
%RH/Yr  
sec  
20% to 80% RH Still Air  
3.0  
Response Time Constant[b] (τH)  
[a] Monotonic increases from 10 to 90%RH after sensor has been stabilized at 50%RH.  
[b] Initial value to 63% of total variation.  
© 2020 Renesas Electronics Corporation  
6
April 22, 2020  
 
 
 
 
 
HS300x Datasheet  
5.2 Temperature Sensor Specification  
Table 5.  
Temperature Sensor Specification, TA = +25°C, VDD = 2.3V to 5.5V  
Parameter  
Condition  
Minimum  
Typical  
Maximum  
Units  
Range  
-40  
125  
°C  
HS3001  
HS3002  
HS3003  
HS3004  
8- bit  
-10°C to 80°C  
±0.2  
±0.3  
Accuracy  
°C  
±0.25  
±0.3  
0.9  
±0.35  
±0.5  
1.5  
0°C to 70°C  
0.6  
0.01  
2..0  
Resolution  
°C  
14-bit  
0.015  
0.025  
Sec.  
Response Time Constant[a] (τT)  
Long-Term Stability  
0.02  
0.1  
°C/Yr  
°C/V  
°C/V  
VDD ≥ 2.8V  
0.03  
1.25  
Supply Voltage Dependency[b]  
1.8V < VDD < 2.8V  
2.25  
[a] Response time depends on system thermal mass and air flow.  
[b] Temperature accuracy can be optimized for specified supply voltages upon request.  
5.3 Sleep Current  
The sleep current of the HS300x series depends on the operating temperature, as shown in the following figure. Note that there is no significant  
dependence of the sleep current on the supply voltage.  
Figure 2. Sleep Current Variation over Temperature, VDD at 3.3V  
© 2020 Renesas Electronics Corporation  
7
April 22, 2020  
 
 
 
 
 
 
HS300x Datasheet  
5.4 Humidity Sensor Accuracy Graphs  
The typical and maximum relative humidity sensor accuracy tolerances are shown in the following figures.  
Figure 3. HS3001 RH Accuracy Tolerance at 25°C  
Figure 4. HS3001 RH Accuracy over Temperature  
90  
±2.0 ±2.5  
±3.0  
±2.0  
70  
50  
30  
10  
±1.5  
±2.0  
±2.0  
0
10  
20  
40  
30  
50  
60  
70  
Temperature (°C)  
Figure 5. HS3002 RH Accuracy Tolerance at 25°C  
Figure 6. HS3002 RH Accuracy over Temperature  
90  
±2.5  
±3.0  
70  
50  
30  
10  
±1.8  
±2.5  
±2.5  
0
10  
20  
40  
30  
50  
60  
70  
Temperature (°C)  
Figure 7. HS3003 RH Accuracy Tolerance at 25°C  
Figure 8. HS3003 RH Accuracy over Temperature  
90  
±3.5  
±4.0  
70  
50  
30  
10  
±3.0  
±2.5  
±3.5  
0
10  
20  
40  
30  
50  
60  
70  
Temperature (°C)  
© 2020 Renesas Electronics Corporation  
8
April 22, 2020  
 
 
 
 
 
 
 
HS300x Datasheet  
Figure 9. HS3004 RH Accuracy Tolerance at 25°C  
Figure 10. HS3004 RH Accuracy over Temperature  
90  
±4.5  
70  
50  
30  
10  
±3.5  
±4.5  
0
10  
20  
40  
30  
50  
60  
70  
Temperature (°C)  
5.5 Temperature Sensor Accuracy Graphs  
The typical and maximum temperature sensor accuracy tolerances are shown in the following figures.  
Figure 11. HS3001/HS3002 Temperature  
Sensor Accuracy Tolerance  
Figure 12. HS3003 Temperature Sensor  
Accuracy Tolerance  
Figure 13. HS3004 Temperature Sensor  
Accuracy Tolerance  
© 2020 Renesas Electronics Corporation  
9
April 22, 2020  
 
 
 
 
 
 
HS300x Datasheet  
6. Sensor Interface  
The HS300x series sensor uses a digital I2C-compatible communication protocol. To accommodate multiple devices, the protocol uses two  
bi-directional open-drain lines: the Serial Data Line (SDA) and the Serial Clock Line (SCL). Pull-up resistors to VDD are required. Several slave  
devices can share the bus; however only one master device can be present on the line.  
6.1 I2C Features and Timing  
The HS300x series sensor operates as a slave device on the I2C bus with support for 100kHz and 400kHz bit rates. Each transmission is  
initiated when the master sends a 0 START bit (S), and the transmission is terminated when the master sends a 1 STOP bit (P). These bits are  
only transmitted while the SCL line is HIGH.  
Figure 14. Timing Diagram  
SDA  
tSUDAT  
tHDSTA  
tBUS  
tLOW  
SCL  
tHDSTA  
tHDDAT  
tHIGH  
tSUSTA  
tSUSTO  
Table 6.  
I2C Timing Parameters  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Units  
SCL Clock Frequency[a]  
fSCL  
tHDSTA  
tLOW  
20  
0.1  
0.6  
0.6  
0.1  
0
400  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
START Condition Hold Time Relative to SCL Edge  
Minimum SCL Clock LOW Width[b]  
Minimum SCL Clock HIGH Width[b]  
tHIGH  
START Condition Setup Time Relative to SCL Edge  
Data Hold Time on SDA Relative to SCL Edge  
Data Setup Time on SDA Relative to SCL Edge  
STOP Condition Setup Time on SCL  
tSUSTA  
tHDDAT  
tSUDAT  
tSUSTO  
tBUS  
0.5  
0.1  
0.1  
1
Bus Free Time Between STOP Condition and START Condition  
[a] The minimum frequency of 20kHz applies to test only; no minimum under normal operations.  
[b] Combined LOW and HIGH widths must equal or exceed the minimum SCL period.  
6.2 Sensor Slave Address  
The HS300x series default I2C address is 44HEX. The device will respond only to this 7-bit address. See section 6.3 for further information.  
Custom I2C address can be provided upon request.  
© 2020 Renesas Electronics Corporation  
10  
April 22, 2020  
 
 
 
 
 
 
 
HS300x Datasheet  
6.3 I2C Communication  
The sensor transmission is initiated when the master sends a 0 START bit (S). The transmission is terminated when the master sends a 1 STOP  
bit (P). These bits are only transmitted while the SCL line is HIGH (see Figure 155 for waveforms).  
Once the START condition has been set, the SCL line is toggled at the prescribed data rate, clocking subsequent data transfers. Data on the  
SDA line is always sampled on the rising edge of the SCL line and must remain stable while SCL is HIGH to prevent false START or STOP  
conditions.  
Figure 15. START and STOP Condition Waveform  
START Condition  
STOP Condition  
SCL  
SCL  
START  
STOP  
SDA  
SDA  
After the START bit, the master device sends the 7-bit slave address (see section 6.2) to the HS300x, followed by the read/write bit, which  
indicates the transfer direction of any subsequent data. This bit is set to 1 to indicate a read from slave to master or set to 0 to indicate a write  
from master to slave.  
All transfers consist of 8 bits and a response bit: 0 for Acknowledge (ACK) or 1 for Not Acknowledge (NACK). After the ACK is received, another  
data byte can be transferred or the communication can be stopped with a STOP bit.  
6.4 Measurement Mode  
The HS300x is factory-programmed to operate in Sleep Mode. In Sleep Mode, the sensor waits for commands from the master before taking  
measurements. The digital core only performs conversions when it receives a Measurement Request command (MR); otherwise, it is always  
powered down.  
6.5 Measurement Requests (MR)  
The MR command is required to wake up the HS300x from its Sleep Mode. Initiate the Measurement Request by sending the 7-bit slave address  
followed by an eighth bit = 0 (WRITE).  
A measurement cycle consists of a humidity and temperature conversion followed by the digital signal processor (DSP) correction calculations.  
At the end of a measurement cycle, the digital output register will be updated before powering down.  
The output is always scaled to 14 bits. The order of the bits is big-endian.  
Figure 16. Measurement Request  
S
1
0
0
0
1
0
0
W A  
(0)  
S
Wait for  
Device Slave Address [6:0]  
Slave ACK  
Start Condition  
Stop Condition  
Acknowledge (ACK)  
Slave Address Bit  
(MSB first)  
Read/Write  
(Example: Write = 0)  
S
S
A
W
© 2020 Renesas Electronics Corporation  
11  
April 22, 2020  
 
 
 
 
 
HS300x Datasheet  
6.6 Data Fetch (DF)  
At the end of a measurement cycle, valid data can be fetched. The status bits of the DF results can be used to detect if the data is valid or stale  
(see section 6.7); otherwise, wait for the measurements to complete before performing the DF.  
The DF command starts with the 7-bit slave address followed by an eighth bit = 1 (READ). The HS300x as a slave sends an acknowledge  
(ACK) indicating success.  
The number of data bytes returned by the HS300x is determined by when the master sends the NACK and STOP condition. The full 14 bits of  
the humidity data are fetched in the first two bytes. The two MSBs of the first byte are the status bits.  
The 14 bits of temperature data follow the humidity data. The last two bits (LSBs) of the fourth data byte are undetermined and should be  
masked off. In the event that the temperature data is not needed, the read can be terminated by sending a NACK after the second byte.  
Alternatively, if only 8-bit resolution is desired for the temperature output, the read can be terminated after the 3rd byte by issuing a NACK  
followed by a stop bit. The measurement time depends on the configured sensor resolution. The table below lists examples when the resolutions  
for the relative humidity and temperature measurements are the same. For different relative humidity and temperature resolution settings, the  
measurement times in 3 should be used, along with the 0.1 ms wake-up time.  
For example, an 8-bit relative humidity measurement and a 12-bit temperature measurement results in a total measurement time of:  
0.1 ms + 0.55 ms + 4.5 ms = 5.15 ms.  
RH+T measurement times (including wake-up time) at different resolution settings.  
Resolution1  
(bits)  
Measurement  
time (ms)  
8
1.20  
2.72  
9.10  
10  
12  
14  
33.90  
1Same resolutions are assumed for both relative humidity and temperature.  
Figure 17.  
Data Fetch  
S
1
0
0
0
1
0
0
R
(1)  
A 15 14 13 12 11 10 9 8 A 7 6 5 4 3 2 1 0 N S  
Device Slave Address [6:0]  
Humidity Data [13:8]  
Humidity Data [7:0]  
Wait for  
Slave ACK  
Master ACK  
Master ACK  
Master NACK  
S
1
0
0
0
1
0
0
R
(1)  
A 15 14 13 12 11 10  
9
8
A
7
6 5 4 3 2 1 0 A 15 14 13 12 11 10 9 8 A 7 6 5 4 3 2 1 0 N S  
Device Slave Address [6:0]  
Humidity Data [13:8]  
Acknowledge (ACK)  
Humidity Data [7:0]  
Temp. Data [15:8]  
Temp. Data [7:2] Mask [1:0]  
Start Condition  
Stop Condition  
Not Acknowledge  
(NACK)  
Read/Write  
(Read = 1)  
S
S
A
2
N
R
Slave Address Bit (MSB first)  
Command or Data Bit (Example: Bit 2)  
Status Bit  
© 2020 Renesas Electronics Corporation  
12  
April 22, 2020  
 
 
HS300x Datasheet  
6.7 Status Bits  
The status bits are used to indicate the current state of the fetched data. The two MSBs of the humidity data byte are the status bits (see the  
following table).  
Table 7.  
Status Bits  
Status Bits  
Definition  
00B  
01B  
Valid Data: Data that has not been fetched since the last measurement cycle.  
Stale Data: Data that has already been fetched since the last measurement cycle.  
Note: If a data fetch is performed before or during the first measurement after power-on reset, then the stale status will be  
returned, but this data is actually invalid since the first measurement has not been completed.  
6.8 Accessing the Non-volatile Memory  
The HS300x series non-volatile memory stores its measurement resolution setting and its ID number. To change the sensor resolution or read  
the ID number, the master must place the HS300x into programming mode while the chip is powering up. The figure below shows the sequence  
of commands needed to enter the programming mode, which must be sent within 10ms after applying power to the sensor. The master must  
send the I2C address and a Write bit followed by the command 0xA0|0x00|0x00.  
Figure 18. Sequence of Commands to Enter Programming Mode  
This command takes 120µs to process, after which the master has access to the non-volatile memory registers listed in the following table. All  
of these registers are 16 bits wide.  
To return to normal sensor operation and perform measurements, the master must send the I2C address and a Write bit, followed by the  
command: 0x80|0x00|0x00.  
Table 8.  
Non-volatile Memory Registers  
Register Description  
Address  
0x06  
0x46  
0x11  
0x51  
0x1E  
0x1F  
Humidity Sensor Resolution – Read Register (bits [11:10])  
Humidity Sensor Resolution – Write Register (bits [11:10])  
Temperature Sensor Resolution – Read Register (bits [11:10])  
Temperature Sensor Resolution – Write Register (bits [11:10])  
Read Sensor ID – Upper 2 bytes  
Read Sensor ID – Lower 2 bytes  
© 2020 Renesas Electronics Corporation  
13  
April 22, 2020  
 
 
 
 
 
HS300x Datasheet  
6.9 Setting the Measurement Resolution  
The HS300x series relative humidity and temperature measurement resolutions can be set independently to 8, 10, 12, or 14-bits by writing to  
the non-volatile memory, and are initially set to 14-bits by default. The procedure to set the humidity sensor resolution is illustrated in Figure  
19. The relative humidity and temperature resolution can be read in registers 0x06 and 0x11, respectively, or written in registers 0x46 or 0x51.  
The resolution information is stored in bits [11:10] of these registers, as listed in the Table 9. All of the other bits in these registers must be left  
unchanged. As such, before writing new resolution settings, the contents of the read registers must be read, and only bits [11:10] can be  
changed in the write registers. Once bits [11:10] are changed to set the desired resolution, the entire register must be written back to the HS300x  
sensor.  
Figure 19. Sequence of Commands to Change the Relative Humidity Resolution  
Table 9.  
Register Values for Different Resolution Settings  
Resolution register  
bits [11:10]  
Resolution  
(bits)  
00B  
01B  
10B  
11B  
8
10  
12  
14  
The sensor non-volatile memory requires 120µs to load the data into the registers after step 1, and requires 14ms to write the data after step  
4. Failure to comply with these processing times may result in data corruption and introduce errors in sensor measurements. The procedure to  
change the temperature sensor resolution is the same as that depicted in Figure 19, except the register address in Step 1 must be set to 0x11  
and the register address in Step 4 will be 0x51.  
6.10Reading the HS300x ID Number  
The sensor ID is a 32-bit number, and can be read in a similar fashion as illustrated in steps 1 and 2 of Figure 19, using the appropriate register  
address values. The ID number is stored in two registers, with the upper and lower 16 bits stored in register addresses 0x1E and 0x1F,  
respectively.  
© 2020 Renesas Electronics Corporation  
14  
April 22, 2020  
 
 
 
 
HS300x Datasheet  
7. Calculating Humidity and Temperature Output  
The entire output of the HS300x is 4 bytes. The relative humidity (in percent) and the temperature (in degrees Celsius) are calculated with  
Equation 1 and Equation 2, respectively.  
Humidity [13 : 0]  
Humidity [%RH] =  
100  
Equation 1  
2
14 1  
Temperature [15 : 2]  
Temperature [ oC] =  
165 40  
Equation 2  
2
14 1  
8. Application Circuit  
Figure 20. HS300x Application Circuit (Top View)  
VDD  
RP  
RP  
1 SCL  
2 SDA  
3 VC  
VSS 6  
NC 5  
VDD 4  
0.1µF  
0.1µF  
RP = Pull-up resistor (2.2kΩ typical)  
© 2020 Renesas Electronics Corporation  
15  
April 22, 2020  
 
 
 
 
 
HS300x Datasheet  
9. Package Outline Drawings and Land Pattern  
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is  
the most current data available.  
www.idt.com/document/psc/6-lga-package-outline-drawing-30-x-241-x-08-mm-body-10mm-pitch-lhg6d1  
10. Soldering Information  
This section discusses soldering considerations for the HS300x. When a relative humidity sensor is exposed to the high heat associated with  
the soldering process, the sensor element tends to dry out. To avoid an offset in the relative humidity readings, the sensor element must be  
rehydrated after the soldering process. Care must also be taken when selecting the temperatures and durations involved in the soldering  
process to avoid irreversibly damaging the sensor element.  
The recommended soldering profile for a lead-free (RoHS-compliant) process is shown below.  
Figure 21. Recommended Soldering Profile  
It is important to ensure this temperature profile is measured at the sensor itself. Measuring the profile at a larger component with a higher  
thermal mass means the temperature at the small sensor will be higher than expected.  
For manual soldering, the contact time must be limited to 5 seconds with a maximum iron temperature of 350°C.  
In either case, a board wash after soldering is not recommended. Therefore, if a solder paste is used, it is strongly recommended that a  
“no-clean” solder paste is used to avoid the need to wash the PCB.  
After soldering, the recommended rehydration conditions are either:  
.
.
A relative humidity of 75% RH at room temperature for at least 12 hours  
A relative humidity of 40% to 50% RH at room temperature for 3 to 5 days  
Otherwise, in the relative humidity readings, there might be an initial offset, which will slowly disappear as the sensor is exposed to ambient  
conditions.  
© 2020 Renesas Electronics Corporation  
16  
April 22, 2020  
 
 
 
HS300x Datasheet  
11. PCB Layout Guide  
When designing the PCB, undesired heat transfer paths to the HS300x series must be minimized. Excessive heat from other components on  
the PCB will result in inaccurate temperature and relative humidity measurements. As such, solid metal planes for power supplies should  
be avoided in the vicinity of the sensor since these will act as thermal conductors. To further reduce the heat transfer from other components  
on the board, openings can be milled into the PCB as shown in Figure 22.  
Figure 22. Milled PCB Openings for Thermal Isolation  
12. Storage and Handling  
Recommendation: Once the sensors are removed from their original packaging, store them in metal-in antistatic bags.  
Avoid using polyethylene antistatic bags as they may affect sensor accuracy.  
The nominal storage conditions are 10 to 50°C and humidity levels within 20% to 60%RH. If stored outside of these conditions for extended  
periods of time, the sensor readings may exhibit an offset. The sensor can be reconditioned and brought back to its calibration state by applying  
the following procedure:  
1. Bake at a temperature of 100°C with a humidity < 10%RH for 10 to 12 hours.  
2. Rehydrate the sensor at a humidity of 75%RH and a temperature between 20 to 30°C for 12 to 14 hours.  
13. Quality and Reliability  
The HS300x series is available as a qualified product for consumer and industrial market applications. All data specified parameters are  
guaranteed if not stated otherwise.  
© 2020 Renesas Electronics Corporation  
17  
April 22, 2020  
 
 
 
 
HS300x Datasheet  
14. Ordering Information  
Orderable Part Number  
Description and Package  
Carrier Type  
Temperature  
HS3001  
HS3002  
HS3003  
HS3004  
Digital Relative Humidity and Temperature Sensor.  
Cut Tape  
-40°C to +125°C  
±1.5%RH (Typical), 3.0 × 2.41 × 0.8 mm, 6-LGA (LHG6D1)  
Digital Relative Humidity and Temperature Sensor.  
Cut Tape  
Cut Tape  
Cut Tape  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
±1.8%RH (Typical), 3.0 × 2.41 × 0.8 mm, 6-LGA (LHG6D1)  
Digital Relative Humidity and Temperature Sensor.  
±2.5%RH (Typical), 3.0 × 2.41 × 0.8 mm, 6-LGA (LHG6D1)  
Digital Relative Humidity and Temperature Sensor.  
±3.5%RH (Typical), 3.0 × 2.41 × 0.8 mm, 6-LGA (LHG6D1)  
15. Revision History  
Revision Date  
Description of Change  
April 22, 2020  
.
.
.
.
Updated Table 3, 4, 5 specifications.  
Added non-volatile memory programming instruction.  
Added measurement resolution programming and reading sensor ID instructions.  
Added PCB layout guide.  
August 6, 2018  
April 24, 2018  
.
Updated temperature sensor response time in Table 5.  
.
.
.
.
Clarified Figure 16 and Figure 17.  
Update for Equation 2.  
Edits for section 6.6.  
Template updates for section 9.  
February 14, 2018  
November 8, 2017  
Changed operating voltage and added recommended operating conditions.  
Initial release.  
© 2020 Renesas Electronics Corporation  
18  
April 22, 2020  
 
 
6-LGA Package Outline Drawing  
3.0 x 2.41 x 0.8 mm Body, 1.0mm Pitch  
LHG6D1, PSC-4719-01, Rev 01, Page 1  
2
3
1
6
5
4
6-LGA Package Outline Drawing  
3.0 x 2.41 x 0.8 mm Body, 1.0mm Pitch  
LHG6D1, PSC-4719-01, Rev 01, Page 2  
6
5
4
1
2
3
Package Revision History  
Description  
Date Created Rev No.  
June 25, 2018 Rev 01 Revise Lead Length  
Initial Release  
Sept 25, 2017 Rev 00  
IMPORTANT NOTICE AND DISCLAIMER  
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL  
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING  
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND  
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,  
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A  
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible  
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)  
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These  
resources are subject to change without notice. Renesas grants you permission to use these resources only for  
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly  
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.  
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,  
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject  
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources  
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.  
(Rev.1.0 Mar 2020)  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
For further information on a product, technology, the most  
up-to-date version of a document, or your nearest sales  
office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas  
Electronics Corporation. All trademarks and registered  
trademarks are the property of their respective owners.  
© 2020 Renesas Electronics Corporation. All rights reserved.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY