IPS2200BI1R [RENESAS]

Inductive Position Sensor IC;
IPS2200BI1R
型号: IPS2200BI1R
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Inductive Position Sensor IC

文件: 总35页 (文件大小:1855K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Datasheet  
IPS2200  
Inductive Position Sensor IC  
Description  
Features  
The IPS2200 is a magnet-free, inductive position  
sensor ICs that can be used for high-speed absolute  
position sensing in industrial, medical, and consumer  
applications. The IPS2200 uses the physical principle  
of eddy currents to detect the position of a simple  
metallic target that is moving above a set of coils,  
consisting of one transmitter coil and two receiver coils.  
Position sensing based on an inductive principle  
Cost effective; no magnet required  
Immune to magnetic stray fields; no shielding  
required  
Suitable for harsh environments and extreme  
temperatures  
Differential and single-ended sine and cosine outputs  
Digital incremental outputs: 4 counts per period  
The three coils are typically printed as copper traces on  
a printed circuit board (PCB). They are arranged such  
that the transmitter coil induces a secondary voltage in  
the two receiver coils, which depends on the position of  
the metallic target above the coils.  
Nonvolatile user-configurable memory,  
programmable via I2C or SPI interface  
Single IC supports on-axis and off-axis rotation,  
linear motion, and arc motion sensing  
A signal representative of the target’s position over the  
coils is obtained by demodulating and processing the  
secondary voltages from the receiver coils. The target  
can be any kind of metal, such as aluminum, steel, or a  
PCB with a printed copper layer.  
Adaptable to any full-scale angle range  
High accuracy: ≤ 0.2% full scale  
Rotation sensing up to 360º angle range  
±18V over-voltage and reverse-polarity protection on  
output pins  
The IPS2200 provides two independent interfaces:  
A high-speed analog or digital interface providing  
position information in the form of demodulated  
analog sine/cosine raw data or digital incremental  
outputs  
Fast diagnostic alarm through interrupt pin  
Wide operation temperature: -40°C up to +125°C  
Supply voltage programmable for 3.0V to 3.6V or  
An I2C or SPI digital interface for diagnostics and  
4.5V to 5.5V  
programming  
Small 16-TSSOP package (4.4 5.0 mm body)  
The IPS2200 operates at rotation speeds up to 250000  
RPM (with coil designs using 1 period per turn). An  
ultra-low propagation delay down to 10µs or less  
provides high dynamic control for fast-moving objects.  
Available Support  
Renesas provides application modules that  
demonstrate IPS2200 position sensing, including  
rotary, arc, and linear applications.  
The IPS2200 is available in a TSSOP package and is  
qualified for industrial use at -40°C to +125°C ambient  
temperature.  
Application Circuit Example  
Typical Applications  
1
2
16  
15  
CSN_IRQN  
RX1  
SIO_SDA  
SCK_SCL  
Rotor position detection for brushless DC motors;  
adaptable to any pole pair count  
Rx  
(sin)  
3
4
RX2  
RX3  
14  
13  
12  
11  
SIN  
SINN  
COS  
Replacement of brushless resolvers  
Magnet-free rotor speed sensors  
Rx  
(cos)  
5
6
RX4  
TX1  
COSN  
3.3V / 5V  
CVD  
Tx  
CT  
10  
9
7
8
VDD  
GND  
TX2  
VDDA  
CVA  
Jan.19.21  
Page 1  
Datasheet  
IPS2200  
Inductive Position Sensor IC  
Contents  
1. Pin Assignments............................................................................................................................................ 5  
2. Pin Descriptions ............................................................................................................................................ 5  
3. Absolute Maximum Ratings.......................................................................................................................... 7  
4. Operating Conditions.................................................................................................................................... 7  
5. Ambient Temperature Range........................................................................................................................ 8  
6. Electrical Characteristics.............................................................................................................................. 9  
7. Circuit Description....................................................................................................................................... 14  
7.1 Overview.............................................................................................................................................. 14  
8. Sampling Rate, Resolution, Output Data Rate, and Propagation Delay ................................................ 17  
9. Output Modes............................................................................................................................................... 18  
9.1 Analog Differential Sine-Cosine Analog Output Mode ........................................................................ 18  
9.2 Analog Single Ended Sine-Cosine Analog Output Mode .................................................................... 19  
9.3 Digital Incremental Differential AB Mode............................................................................................. 19  
10. Operating at High Speed............................................................................................................................. 20  
11. Digital Diagnostics and Programming Interfaces .................................................................................... 21  
11.1 Block Diagram ..................................................................................................................................... 21  
12. Connection Options .................................................................................................................................... 22  
13. Digital Diagnostics and Programming Interfaces .................................................................................... 24  
13.1 Supply Voltage Operation: 3.3V or 5V ................................................................................................ 24  
13.2 Half-Duplex SPI Interface.................................................................................................................... 24  
13.3 I2C Interface ........................................................................................................................................ 25  
13.3.1. I2C with Address Selection (Programming Option) .............................................................. 26  
13.3.2. I2C Interface with Interrupt (Programming Option)............................................................... 26  
14. Protection and Diagnostics ........................................................................................................................ 27  
14.1 I/O Protection....................................................................................................................................... 27  
15. Programming Options................................................................................................................................. 27  
15.1 Lock Feature (Cyber Security)............................................................................................................. 27  
16. Diagnostics................................................................................................................................................... 28  
16.1 Internal Register and Memory Errors .................................................................................................. 29  
16.2 LC Oscillator Frequency Out of Range ............................................................................................... 29  
17. Application Examples ................................................................................................................................. 30  
18. Electromagnetic Compatibility (EMC) ....................................................................................................... 31  
19. Package Outline Drawings.......................................................................................................................... 31  
20. Marking Diagram.......................................................................................................................................... 31  
20.1 Marking of Production Parts ................................................................................................................ 31  
Jan.19.21  
Page 2  
IPS2200 Datasheet  
21. Ordering Information................................................................................................................................... 32  
22. Revision History .......................................................................................................................................... 32  
Figures  
Figure 1. Pin Assignments for 4.4mm 5.0mm 16-TSSOP Package Top View...................................................5  
Figure 2. LC Oscillator Connection with a Single Capacitor...................................................................................10  
Figure 3. LC Oscillator Connection with Split TX Capacitors .................................................................................11  
Figure 4. Parallel Resonator Circuit........................................................................................................................11  
Figure 5. Response of the IPS2200 .......................................................................................................................15  
Figure 6. Coil Design for a Linear Motion Sensor...................................................................................................16  
Figure 7. Coil Design for a 360° Rotary Sensor .....................................................................................................16  
Figure 8. Data Update Rate vs. LC Oscillator Frequency vs. Integration Factor ...................................................18  
Figure 9. Sine-Cosine Analog Mode Output Signals..............................................................................................18  
Figure 10. Sine-Cosine Analog Mode Output Signals............................................................................................19  
Figure 11. Digital Incremental Differential AB Mode Output Signals......................................................................19  
Figure 12. Block Diagram .......................................................................................................................................21  
Figure 13. Analog Interface with Diagnostics Mode, Fixed Configuration..............................................................22  
Figure 14. Analog and Digital Interface, On-The-Fly Gain and Offset Correction, Extended Diagnostics.............23  
Figure 15. Analog and Digital Interface, On-The-Fly Gain and Offset Correction, Extended Diagnostics with MCU  
Interrupt...................................................................................................................................................................23  
Figure 16. Half Duplex 3-3 Wire SPI Interface .......................................................................................................24  
Figure 17. Half Duplex 3-3 Wire SPI Multi-slave Interface.....................................................................................25  
Figure 18. I2C Interface with Address Select .........................................................................................................26  
Figure 19. I2C Interface Configuration with Interrupt on a Single Slave ................................................................26  
Figure 20. I2C Interface Configuration with Multi-slave Interrupt ...........................................................................27  
Figure 21. Coil Design and Signal Output for a 360° Rotary Sensor .....................................................................30  
Figure 22. Coil Design and Signal Output for a 2 180° Rotary Sensor ...............................................................30  
Figure 23. Coil Design and Signal Output for a 3 120° Rotary Sensor ...............................................................30  
Figure 24. Coil Design and Signal Output for a 4 90° Rotary Sensor .................................................................31  
Tables  
Table 1. Pin Descriptions..........................................................................................................................................5  
Table 2. Buffered Output Configuration....................................................................................................................6  
Table 3. Digital Interface and Interrupt Output Configuration...................................................................................6  
Table 4. Absolute Maximum Ratings........................................................................................................................7  
Table 5. Operating Conditions..................................................................................................................................7  
Table 6. IPS2200 Electrical Characteristics, 3.3V Mode..........................................................................................9  
Table 7. IPS2200 Electrical Characteristics, 5.0V Mode..........................................................................................9  
Table 8. LC Oscillator Specifications......................................................................................................................10  
Table 9. Coil Receiver Front-End Specifications....................................................................................................12  
Table 10. Diagnostic Checks..................................................................................................................................12  
Table 11. Back-End Specification, Analog Outputs SIN, SINN, COS, COSN........................................................12  
Table 12. Back-End Specification, Quadrature Pulse Output Option, Pins A, A_N, B, and B_N...........................13  
Jan.19.21  
Page 3  
IPS2200 Datasheet  
Table 13. Digital Control Interface, Pins CSN_IRQN, SIO_SDA, SCK_SCL .........................................................13  
Table 14. Nonvolatile Memory................................................................................................................................13  
Table 15. Electrostatic Discharges (ESD) ..............................................................................................................14  
Table 16. Output Data Rate, Propagation Delay....................................................................................................17  
Table 17. Output Status in AB Incremental Mode ..................................................................................................19  
Table 18. Output Modes and Maximum Speed......................................................................................................20  
Table 19. SPI Interface Parameters .......................................................................................................................25  
Table 20. I2C Interface Parameters .......................................................................................................................25  
Table 21. Programming Options Overview.............................................................................................................27  
Table 22. Diagnostic Features................................................................................................................................28  
Jan.19.21  
Page 4  
IPS2200 Datasheet  
1. Pin Assignments  
The IPS2200 is available in a 16-TSSOP 4.4 5.0 mm RoHS package. It is qualified for an ambient temperature  
of -40°C to +125°C.  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
CSN_IRQN  
RX1  
SIO_SDA  
SCK_SCL  
OUT4  
RX2  
RX3  
OUT3  
RX4  
OUT2  
TX1  
OUT1  
TX2  
VDD  
VDDA  
GND  
Figure 1. Pin Assignments for 4.4mm 5.0mm 16-TSSOP Package Top View  
2. Pin Descriptions  
Table 1. Pin Descriptions  
Pin Number  
1
Name  
CSN_IRQN  
Type  
Digital  
Input/Output  
Description  
Chip select input for the SPI interface; external pull-up resistor required.  
Push/pull interrupt output for I2C or SPI interface.  
Programmable options, see Table 3.  
2
3
4
5
6
7
RX1  
Analog Input  
Analog Input  
Connect the receiver coil 1 (sine) between the RX2 and RX1 pins.  
Connect the receiver coil 2 (cosine) between the RX4 and RX3 pins.  
RX2  
RX3  
RX4  
TX1  
TX2  
Connect the transmitter coil between the TX1 and TX2 pins. The resonant frequency  
is adjusted with a parallel capacitor CT between TX1 and TX2 or with capacitors CT1  
from TX2 to GND and CT2 from TX1 to GND.  
Analog  
Input/Output  
8
VDDA  
GND  
Supply  
Supply  
Supply  
Internal analog voltage supply. Connect a capacitor CVA to the GND pin.  
Common ground connection.  
9
10  
11  
VDD  
External supply voltage. Connect two parallel capacitors CVD to the GND pin.  
Buffered analog or digital output; see Table 2.  
OUT1  
Analog  
Output, Digital  
Output  
12  
13  
14  
15  
OUT2  
Analog  
Output, Digital  
Output  
Buffered analog or digital output; see Table 2.  
Buffered analog or digital output; see Table 2.  
Buffered analog or digital output; see Table 2.  
OUT3  
Analog  
Output, Digital  
Output  
OUT4  
Analog  
Output, Digital  
Output  
SCK_SCL  
Digital Input  
Clock input for digital programming and diagnostic interfaces:  
I2C interface: SCL clock input; external pull-up resistor mandatory,  
see Figure 18, Figure 19, and Figure 20.  
SPI interface: SCK clock input; external pull-up resistor is optional,  
see Figure 16 and Figure 17.  
Jan.19.21  
Page 5  
 
IPS2200 Datasheet  
Pin Number  
16  
Name  
SIO_SDA  
Type  
Digital  
Input/Output  
Description  
Bi-directional data I/O line for digital programming and diagnostic interfaces:  
I2C interface: SDA open drain data line; external pull-up resistor is mandatory,  
see Figure 18, Figure 19, and Figure 20.  
SPI interface: SIO bi-directional push-pull data line; external pull-up resistor is  
optional,  
see Figure 16 and Figure 17.  
Table 2. Buffered Output Configuration  
Pin (See Figure 1)  
Output Depending on Mode[a]  
Diagnostic State  
Pin Number  
Pin Name  
OUT4  
Analog Differential Analog Single-Ended Digital AB Incremental  
All Modes, if enabled  
LOW  
14  
13  
12  
11  
SIN  
SIN  
A
OUT3  
SINN  
COS  
COSN  
REF_SIN  
COS  
A_N  
B
LOW  
HIGH  
HIGH  
OUT2  
OUT1  
REF_COS  
B_N  
[a] Abbreviations used in Table 2:  
SIN:  
Demodulated and buffered output of RX1 (sine, non-inverted)  
Demodulated and buffered output of RX2 (sine, inverted)  
Demodulated and buffered output of RX3 (cosine, non-inverted)  
Demodulated and buffered output of RX4 (cosine, inverted)  
SINN:  
COS:  
COSN:  
REF_SIN: Bias voltage of sine signal, typical VDD/2  
REF_COS: Bias voltage of cosine signal, typical VDD/2  
A:  
Sign output of RX1 (A, non-inverted): HIGH if positive, LOW if negative  
Sign output of RX2 (A, inverted): HIGH if positive, LOW if negative  
Sign output of RX3 (B, non-inverted): HIGH if positive, LOW if negative  
Sign output of RX4 (B, inverted): HIGH if positive, LOW if negative  
A_N:  
B:  
B_N:  
Diagnostic state: Alarm status indication if an enabled alarm occurs  
Table 3. Digital Interface and Interrupt Output Configuration  
Pin (See Figure 1)  
TSSOP  
Input/Output Depending on Interface Mode [a]  
Half Duplex SPI  
with Interrupt  
SIO  
I2C with Address  
Select  
Pin Number  
Pin Name  
SIO_SDA  
SCK_SCL  
CSN_IRQN  
Half Duplex SPI  
SIO  
I2C with Interrupt  
SDA (PU)  
16  
15  
1
SDA (PU)  
SCL (PU)  
SEL  
SCK  
CSN (PU)  
SCK  
SCL (PU)  
IRQN  
CSN/IRQN (PU)  
[a] Abbreviations used in Table 3:  
CSN: Chip-Select Input  
CSN/IRQN: Combined Chip-Select Input and Interrupt Output  
SIO:  
Serial Bi-directional Data I/O Port for SPI Modes  
Serial Clock Input for SPI Modes  
SCK:  
SEL:  
SDA:  
SCL:  
IRQN:  
PU:  
Hardware Address-Select Input for I2C Mode (two address options)  
Serial Bi-directional Data I/O Port for I2C Modes`  
Serial Clock Input for I2C Modes  
Interrupt Output  
External Pull-up resistor required  
Jan.19.21  
Page 6  
 
 
 
 
IPS2200 Datasheet  
3. Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause  
permanent damage to the device. Functional operation of the IPS2200 at the absolute maximum ratings is not  
implied. Exposure to absolute maximum rating conditions could affect device reliability.  
Table 4. Absolute Maximum Ratings  
Symbol  
VVDDmax  
Parameter  
External supply voltage  
Conditions  
Minimum  
-18  
Maximum  
Units  
Continuous  
7.5  
7.5  
18  
V
V
V
IC not supplied, permanent  
IC supplied, permanent  
-18  
OUT1, OUT2, OUT3, and OUT4 output  
voltage  
VOUT  
-15  
VRX1  
Receiver coil pin: RX1  
Receiver coil pin: RX2  
Receiver coil pin: RX3  
Receiver coil pin: RX4  
VRX2  
-12  
12  
18  
V
VRX3  
VRX4  
VDIGITAL  
Digital IO pins: SCK_SCL, SIO_SDA,  
CSN_IRQN  
-0.3  
V
V
VCSN_IRQN  
Digital IO pin CSN_IRQN  
When used as input for I2C  
Refer to VVDDmax  
address selection and tied to VDD  
directly or with pull-up resistor.  
VVDDAmax  
VDDA internal LDO output  
VDDA is internally regulated, no  
connection to external voltage  
Refer to VVDDA in Table  
5
V
4. Operating Conditions  
Conditions: VDD = 5V ±10%, TAMB = -40°C to +125°C, unless otherwise noted.  
Table 5. Operating Conditions  
Note: See important notes at the end of the table.  
Symbol  
TAMB_TSSOP  
TJ  
Parameter  
Ambient temperature: 16-TSSOP  
Junction temperature  
Conditions  
Minimum Typical  
-40  
-40  
Maximum  
125  
Units  
ºC  
145  
ºC  
TSTOR  
Storage temperature  
Unmounted units must be  
limited to 10 hours at  
-55  
150  
ºC  
temperatures above 125°C  
RTHJA_TSSOP  
tpup  
Thermal resistance junction to  
ambient: 16-TSSOP package  
Start-up time  
JEDEC MO-153  
89  
ºC/W  
ms  
Power-on reset (POR) to valid  
output signal  
3
VEL  
Input rotational velocity  
Electrical speed  
Sine or cosine periods per  
minute  
250000  
rpm  
VVDDA_TH_H  
Power on reset, high threshold  
Power on reset, low threshold  
The device is activated when  
VDDA increases above this  
threshold  
2.6  
V
V
VVDDA_TH_L:  
The device is deactivated when  
VDDA decreases below this  
threshold  
2.1  
50  
VDDAPOR_HYST  
IVDDA  
Power-on reset hysteresis  
VDDA load current limitation  
At VDDA pin  
mV  
mA  
mA  
75  
8.4  
Without coils. no load  
12  
Programmable transmitter coil  
drive current (depending on  
inductance of transmitter coil)  
IDD  
Current consumption  
For values, refer to Table 8  
mA  
CVA  
Capacitor from VDDA pin to GND  
Capacitor from VDD pin to GND  
100  
nF  
CVD  
70  
nF  
INLUV3V  
Accuracy, 3.3V mode, VDD=  
under-voltage alarm level to 3.0V  
±0.3  
% FS [a]  
With ideal coil input signals,  
relative to an output signal of  
1.8Vpp  
INL3V  
Accuracy, 3.3V mode,  
VDD= 3.0 to 3.6V  
±0.2  
% FS  
Jan.19.21  
Page 7  
 
 
IPS2200 Datasheet  
Symbol  
Parameter  
Conditions  
Minimum Typical  
Maximum  
Units  
INLOV3V  
INLUV5V  
INL5V  
Accuracy, 3.3V mode, VDD=  
3.6V to over-voltage alarm level  
±0.3  
% FS  
Accuracy, 5V mode, VDD=  
under-voltage alarm level to 4.5V  
±0.3  
±0.2  
±0.3  
% FS  
% FS  
% FS  
With ideal coil input signals,  
relative to an output signal of  
3.0Vpp  
Accuracy, 5.0V mode,  
VDD= 4.5 to 5.5V  
INLOV5V  
Accuracy, 5.0V mode, VDD=  
5.5V to over-voltage alarm level  
[a] % FS = percent of full scale = accuracy in % per period, where 100% is the angle range of one electrical period.  
For rotary multi-period designs, one electrical period = 360° (one full turn) divided by the number of periods per turn.  
Examples:  
.
.
A 3-periodic coil design (3 120°) has a typical mechanical accuracy of ±0.2% per 120° = ±0.24°  
A 4-periodic coil design (4 90°) has a typical mechanical accuracy of ±0.2% per 90° = ±0.18°  
5. Ambient Temperature Range  
The minimum ambient temperature for the IPS2200 is -40°C.  
The maximum ambient temperature depends on the following factors:  
The maximum junction temperature. See Table 5 for details.  
The selected transmitter coil current. The total power consumption of the chip depends on the internal power  
consumption and the user programmable current for the transmitter coil.  
The minimum usable coil current in a given application. Note that smaller coil inductances require more  
transmitter coil current, and larger coil inductances can operate with less coil current. The maximum allowed  
transmitter coil current is shown in Table 5.  
The Renesas internal part qualification. The IPS2200 is qualified for -40°C to +125°C ambient temperature.  
Jan.19.21  
Page 8  
IPS2200 Datasheet  
6. Electrical Characteristics  
The following electrical specifications are valid for the operating conditions as specified in Table 5: (TAMB = -40°C  
to 125°C).  
Table 6. IPS2200 Electrical Characteristics, 3.3V Mode  
Symbol  
VDD3  
Parameter  
Supply voltage  
Conditions  
Minimum  
3.0[a]  
Typical  
3.3  
Maximum Units  
3.6[b]  
V
V
VDDA3  
Analog supply voltage  
Internally regulated. Connect a  
CVA = 100nF capacitor from VDDA to  
GND.  
2.85  
3.0  
3.1  
V3OVR  
Over-voltage detection,  
VDD rising  
An over-voltage alarm is created if  
VDD rises above these limits.  
An over-voltage alarm is cleared if  
VDD falls below these limits.  
3.8  
4.3  
4.1  
V
V3OVF  
Over-voltage detection,  
VDD falling  
3.5[c]  
150  
2.2  
V
V3OVH  
Over-voltage detection  
hysteresis  
mV  
V
V3UVR  
Under-voltage detection,  
VDD falling  
An under-voltage alarm is created if  
VDD falls below these limits.  
2.95  
3.1[d]  
V3UVF  
Under-voltage detection,  
VDD rising  
An under-voltage alarm is cleared if  
VDD rises above these limits.  
2.6  
V
V3UVH  
Under-voltage detection  
hysteresis  
100  
2.6  
mV  
V
V3VDDAUVF  
V3VDDAUVRr  
VDDA under-voltage  
detection  
An under-voltage alarm is created if  
VDDA falls below these limits.  
2.85  
2.9  
VDDA under-voltage  
detection  
An under-voltage alarm is created if  
VDDA rises above these limits.  
2.7  
V
[a] If the VDD under-voltage alarm is enabled, the VDD3 must be at least 3.1V.  
[b] If the VDD over-voltage alarm is enabled, the VDD3 must be maximum 3.5V.  
[c] If the VDD over-voltage alarm is enabled, the VDD3 must be maximum 3.5V.  
[d] If the VDD under-voltage alarm is enabled, the VDD3 must be at least 3.1V.  
Table 7. IPS2200 Electrical Characteristics, 5.0V Mode  
Symbol  
VDD5  
Parameter  
Supply voltage  
Conditions  
Minimum  
4.5[a]  
Typical  
5.0  
Maximum Units  
5.5  
4.1  
V
V
VDDA5  
Analog supply voltage  
Internally regulated. Connect a  
CVA = 100nF capacitor from VDDA to  
GND.  
3.9  
4.0  
V5OVR  
Over-voltage detection,  
VDD rising  
An over-voltage alarm is created if  
VDD rises above these limits.  
6.2  
6.9  
6.6  
V
V5OVF  
Over-voltage detection,  
VDD falling  
An over-voltage alarm is cleared if  
VDD falls below these limits.  
5.9  
V
V5OVH  
Over-voltage detection  
hysteresis  
150  
3.8  
mV  
V
V5UVR  
Under-voltage detection,  
VDD falling  
An under-voltage alarm is created if  
VDD falls below these limits.  
4.4  
V5UVF  
Under-voltage detection,  
VDD rising  
An under-voltage alarm is cleared if  
VDD rises above these limits.  
4.0  
4.6[b]  
V
V5UVH  
Under-voltage detection  
hysteresis  
100  
3.45  
mV  
V
V5VDDAUVF  
VDDA under-voltage  
detection  
A VDDA under-voltage alarm is  
triggered when VDDA falls below  
these limits.  
3.9  
3.9  
V5VDDAUVRr  
VDDA under-voltage  
detection  
A VDDA under-voltage alarm is  
cleared if VDDA rises above these  
limits.  
3.5  
V
[a] If the VDD under-voltage alarm is enabled, the VDD5 must be at least 4.6V.  
[b] If the VDD under-voltage alarm is enabled, the VDD5 must be at least 4.6V.  
Jan.19.21  
Page 9  
 
 
 
 
 
 
 
 
IPS2200 Datasheet  
Table 8. LC Oscillator Specifications  
Symbol  
RP,eq  
Parameter  
Equivalent parallel  
resistance of the LC  
resonant circuit  
Conditions  
See Equation 1 and Equation 2.  
Minimum  
100  
Typical  
Maximum Units  
Ω
fLC  
Excitation frequency  
LC oscillator; determined by external  
components L and C.  
1.7  
-10  
5.8  
10  
MHz  
%
FOSC_ACC  
fLC_DIAG_L  
fLC_DIAG_H  
VTX_P  
Accuracy of transmitter  
oscillator frequency  
measurement  
Gated by the internal oscillator.  
LC oscillator lower  
frequency diagnostics  
range  
0.007  
Programmable frequency where an  
out-of-range frequency diagnostics  
alarm can be enabled.  
MHz  
LC oscillator upper  
frequency diagnostics  
range  
10  
11  
LC oscillator amplitude  
Peak-to-peak voltage; pins TX1 vs.  
TX2; all modes. The coil current is  
user programmable.  
Vpp  
mA  
mA  
ILC  
Programmable transmitter  
coil drive current  
Equivalent DC current.  
Programmable, depending on  
transmitter coil inductance.  
0
3
20  
22  
ILCmax  
Maximum transmitter coil  
drive current tolerance  
At room temperature  
18  
20  
Configuration with a single capacitor CT in the LC  
oscillator.  
1
2
16  
15  
CSN_IRQN  
RX1  
SIO_SDA  
SCK_SCL  
Rx  
(sin)  
The oscillator frequency is determined by the values of  
coil L and capacitor CT:  
3
4
RX2  
RX3  
14  
13  
12  
11  
SIN  
SINN  
COS  
1
Rx  
(cos)  
푇푋  
=
5
6
2휋 퐿퐶  
RX4  
TX1  
COSN  
Where:  
fTX = Oscillator frequency in MHz  
L = Coil impedance in µHenry  
CT = Capacitance in µFarad  
3.3V / 5V  
CVD  
L
CT  
10  
9
7
8
VDD  
GND  
TX2  
VDDA  
CVA  
Figure 2. LC Oscillator Connection with a Single Capacitor  
Jan.19.21  
Page 10  
 
IPS2200 Datasheet  
Configuration with split capacitors CT1 and CT2 for  
improved EMC performance. Both capacitors must  
have the same capacitance.  
1
16  
15  
CSN_IRQN  
SIO_SDA  
SCK_SCL  
2
RX1  
The oscillator frequency is determined by the values of  
coil L and capacitors CT1 and CT2:  
Rx  
(sin)  
3
4
RX2  
RX3  
14  
13  
12  
11  
SIN  
SINN  
COS  
푇푋  
=
ꢄ∗ꢅ ∗ꢅ  
ꢆꢇ ꢆꢈ  
ꢁꢂ  
Rx  
(cos)  
+ꢅ  
ꢆꢇ ꢆꢈ  
5
6
RX4  
TX1  
for CT1 = CT2 : 푇푋 =  
COSN  
ꢆꢇ  
ꢁꢂ ꢉ  
3.3V / 5V  
CVD  
L
10  
9
7
8
VDD  
GND  
TX2  
Where:  
CT1  
CT2  
fTX = Oscillator frequency in MHz  
L = Coil impedance in µHenry  
CT1, CT2 = Capacitance in µFarad  
VDDA  
CVA  
Figure 3. LC Oscillator Connection with Split TX Capacitors  
The equivalent parallel resistance RPeq of the LC oscillator can be calculated using Equation 2:  
1
L
Equation 1  
RPeq  
RS =  
=
×
R
C
S
1
L
Equation 2  
×
R
C
Peq  
Where  
RPeq Equivalent parallel resistance of the LC oscillator.  
RS Serial resistance of the transmitter coil at the transmitter frequency.  
L
Coil reactance at the resonant frequency.  
C
Capacitance of the parallel capacitor CT.  
Note that the capacitor losses are not included in the equation.  
L
C
C
L
RPeq  
V
V
RS  
Figure 4. Parallel Resonator Circuit  
Jan.19.21  
Page 11  
 
IPS2200 Datasheet  
Table 9. Coil Receiver Front-End Specifications  
Symbol  
VRX  
Parameter  
Receiver coil amplitude  
Conditions  
Input signal full range.  
Minimum  
Typical Maximum Units  
5[a]  
0
5200[a]  
mVpp  
Vout = 3.0Vpp (single ended)  
ΑIN_MM  
Amplitude mismatch  
correction range  
11  
%
Programmable individual gain  
mismatch correction of Receiver  
coil signals (SIN and COS)  
AMM_RES  
Amplitude mismatch  
correction granularity  
7
Bit  
%
AIN_OFFSET_MIN  
AIN_OFFSET_MAX  
Input offset minimum  
correction range  
Offset of sine and cosine signal,  
percentage of transmitter coil  
amplitude.  
Minimum and maximum values  
depend on the Rx gain setting.  
-0.09  
-0.27  
+0.09  
+0.27  
Input offset maximum  
correction range  
%
OFFCORR_RES  
RRX  
Input offset correction  
granularity  
Programmable step size.  
7
Bit  
Coil receiver DC input  
resistance  
Single-ended to GND.  
Differential.  
200  
800  
kΩ  
kΩ  
[a] Minimum and maximum Receiver voltage input levels depend on front-end gain setting, integration cycles, and LC oscillator  
frequency  
Table 10. Diagnostic Checks  
Symbol  
tFAIL  
Parameter  
Failure reaction time (time  
to flag an error condition at  
the IRQN pin)  
Conditions  
Chip internal diagnostic checks.  
Minimum  
Typical  
Maximum  
500  
Units  
µs  
Rx coil short/open error flag activated.  
Rx coil short/open error flag cleared.  
Rx coil short/open error flag activated.  
Rx coil short/open error flag cleared.  
2200  
630  
k  
k  
k  
k  
Resistance of Rx coil, open  
coil detection  
R_OPEN_TH  
354  
19  
External resistance from  
any coil input to GND, short  
to ground detection  
R_SHORT_GND  
Rx coil short short/open error flag  
activated;  
160  
k  
External resistance from  
any coil input to VDD, short  
to VDD detection  
VDD = 2.7 to 6.4V.  
R_SHORT_VDD  
Rx coil short/open error flag cleared.  
VDD = 2.7 to 6.4V  
840  
35  
20  
100  
0
k  
R1R2 short error flag threshold;  
VDD = 3.0 to 3.6V.  
140  
70  
410  
180  
200  
3
k  
External resistance between  
coils for detection of a short  
between coils  
R_SHORT_TH  
R1R2 short error flag threshold;  
VDD = 4.5 to 5.5V.  
k  
DCOFF_AL  
DiagLO  
DiagHI  
DC common mode output  
offset alarm limits  
Absolute value relative to VDD/2.  
Output offset alarm flag activated.  
mV  
Diagnostic Low indication  
SIN, SINN, A, AN Outputs, ILOAD = 1mA  
sink current  
1
%VDD  
%VDD  
Diagnostic High indication  
COS, COSN, B, BN Outputs  
ILOAD = 1mA source current  
97  
98.6  
100  
Table 11. Back-End Specification, Analog Outputs SIN, SINN, COS, COSN  
Symbol  
V3OUT  
Parameter  
Conditions  
Minimum  
GND +  
0.7  
Typical Maximum  
Units  
Analog output range, 3.3V option  
VDD 0.4  
V
-1mA ≤ IOUT ≤ 1mA  
GND +  
1.0  
V5OUT  
Analog output range, 5V option  
VDD 1.0  
V
V3OUT_PP  
Analog output voltage amplitude, 3.3V  
option  
0.9  
1.275  
1.95  
1.65  
2.5  
VPP  
Single ended peak-to-  
peak voltage range  
V5OUT_PP  
Analog output voltage amplitude, 5V  
option  
1.4  
VPP  
VDDOUT_CM  
Output DC offset voltage, common  
mode voltage  
All modes  
47.5  
52.5  
%VDD  
DCOFFDRIFT  
DCOFF  
DC offset voltage drift  
Over temperature range  
-50  
-6  
50  
6
μV/°C  
At trim temperature,  
over gain range and  
DC offset voltage after trimming  
mV  
Jan.19.21  
Page 12  
 
 
IPS2200 Datasheet  
Symbol  
Parameter  
Conditions  
Minimum  
Typical Maximum  
Units  
transmitter frequency  
range, VDD= 3.0 to 5.5V  
IOUT3  
IOUT5  
IOL  
Output current; 3.3V option  
Output current; 5V option  
Output overload current,  
Capacitive load, EMC filters  
-1  
-2  
20  
+1  
+2  
30  
47  
mA  
Output load current  
mA  
mA  
nF  
CRAW_l  
Refer to section 18 for  
CO1 to CO4  
Noise  
Device output noise  
Maximum gain,  
2
mVrms  
maximum setting for  
integration cycles, no  
output filtering, shorted  
coil inputs  
Table 12. Back-End Specification, Quadrature Pulse Output Option, Pins A, A_N, B, and B_N  
Symbol  
VQUAD_OH  
VQUAD_OL  
IO_QUAD3  
Parameter  
Conditions  
Minimum  
70  
0
Typical  
Maximum  
100  
30  
Units  
High level output voltage  
Low level output voltage  
Output current; 3.3V option  
Output current; 5V option  
Sign of demodulated input voltage:  
high = positive; low = negative  
%VDD  
-0.5  
-1  
+0.5  
+1  
mA  
mA  
nF  
V
Output load current  
IO_QUAD5  
CRAW_l  
Capacitive load  
Output switching positive  
threshold  
22  
VQUAD_TH_POS  
VOUT_CM  
0.05  
+
Comparator levels for changing  
state of A, A_N, B, B_N digital  
outputs, relative to amplified input  
voltage  
VQUAD_TH_NEG  
VQUAD_TH_HYST  
Output switching negative  
threshold  
VOUT_CM  
0.05  
-
V
Quadrature pulse  
hysteresis  
Relative to opposite channel  
R1(Sin) vs. R2(Cos)  
5
%
[a] See Table 2 regarding which of the pins OUT1, OUT2, OUT3, and OUT4 are assigned as A, A_N, B, and B_N.  
Table 13. Digital Control Interface, Pins CSN_IRQN, SIO_SDA, SCK_SCL  
Symbol  
Parameter  
High level input voltage,  
all modes  
Conditions  
Minimum  
Typical  
Maximum  
100  
Units  
%VDD  
VIH  
70  
0
CSN_IRQN address  
select input,  
SCK_SCL clock input,  
SIO_SDA data input  
VIL3  
VIL3  
ILEAK  
Low level input voltage,  
3.3V mode  
30  
20  
5
%VDD  
%VDD  
Low level input voltage,  
5V mode  
0
Input leakage current  
-5  
µA  
VI_HYST  
VOH  
Input hysteresis  
SCK_SCL clock input  
All modes  
100  
80  
0
mV  
High level output voltage  
Low level output voltage  
push/pull  
100  
20  
%VDD  
%VDD  
VOL_PP  
Push/pull output  
CSN_IRQN  
VOL_OD  
VIRQN_H  
RPULLUP  
Low level output voltage  
open drain  
Open-drain output  
SIO_SDA, 3mA sink  
current  
0
0.4  
7.9  
V
Over-voltage detection at  
CSN_IRQN, SCK_SCL,  
or SIO_SDA  
Over-voltage on these  
pins can be monitored  
as a diagnostic feature  
6.9  
7.4  
V
Pull-up resistors for data  
and chip select lines  
SIO_SDA for I2C Mode; 1.8  
CSN_IRQN for SPI  
Mode.  
10  
kΩ  
IOUT_SIO_SDA  
CL  
Digital interface output  
current  
Pin SIO_SDA  
-2  
2
mA  
pF  
Capacitive load  
All modes  
400  
Table 14. Nonvolatile Memory  
Symbol  
Parameter  
Data retention  
Conditions  
According to AEC Q100  
Minimum  
Typical  
Maximum  
> 100 at 25°C  
>13 at 85°C  
Units  
Years  
Jan.19.21  
Page 13  
푃표푠푖푡푖표푛 = 푎푟푐푡푎푛  
                                             
(
)
IPS2200 Datasheet  
Symbol  
Parameter  
Write  
temperature  
Conditions  
Allowed ambient  
temperature range for read  
and write access  
Minimum  
-40  
Typical  
Maximum  
125  
Units  
°C  
°C  
Read  
temperature  
Endurance[a]  
-40  
125  
100  
Over product lifetime  
NVM Write Cycles  
NVM Read events  
Read Cycles  
5x 1011  
1x 1012  
[a] Verified number of program/erase cycles. Qualified with 200 cycles  
Table 15. Electrostatic Discharges (ESD)  
Symbol  
VESD,OUT  
Parameter  
ESD tolerance for pins OUT1, OUT2,  
OUT3, OUT4, CSN_IRQN, VDD  
Conditions  
According to AEC-Q100-002 / JS-001,  
Classification  
Units  
V
3A: 4000 to < 8000  
2: 2000 to < 4000  
1A: 250 to < 500  
HBM100pF/1.5kΩ  
VESD  
ESD tolerance for pins RX1, RX2, RX3,  
RX4, VDDA, SCK_SCL, SIO_SDA  
VESD,OSC  
ESD tolerance for pins TX1, TX2  
[a] When handling semiconductor devices such as IPS2200, always observe ESD guidelines to avoid electrostatic discharges on  
these parts.  
7. Circuit Description  
7.1  
Overview  
The IPS2200 sensor circuit consists of one transmitter coil and two receiver coils, which are typically designed  
as traces on a printed circuit board. The two receiver coils have a sinusoidal shape and are shifted by 90° with  
respect to each other; refer to Figure 6 and Figure 7 for typical coil shapes. A metal target is placed above the  
coil arrangement.  
Circuit signal flow:  
1. The IPS2200 drives AC current into the transmitter coil and generates an alternating magnetic field.  
2. The magnetic field induces voltages in the receiver coils. Without a metallic target, due to the balanced, anti-  
serial connection of their segments, the voltages are compensated to achieve zero output at each pair of  
terminals.  
3. If a metal target is placed above the coils:  
a. The magnetic field induces eddy currents on the surface of the metal target.  
b. The eddy currents generate a counter magnetic field, thus reducing the total flux density underneath.  
c. The voltage induced in the receiver coil areas underneath the target is reduced, creating an imbalance in  
the anti-serial coil segment voltages  
d. An output voltage occurs on the terminals, changing amplitude and polarity with the target position.  
4. The IPS2200 IC amplifies, rectifies, and filters the receiver voltages and outputs them for external signal  
processing.  
Due to the 90° phase shift of the two receiver coils, the output signals also have a 90° phase shift in relation to  
the target position, generating ratiometric sine and cosine signals. The signals can be converted into an absolute  
position, for example by applying an arctangent operation of Vsin and Vcos.  
푉푠푖푛  
Equation 3  
푉푐표푠  
Jan.19.21  
Page 14  
 
IPS2200 Datasheet  
VDD  
CSN_IRQN  
SIO_SDA  
SCK_SCL  
Digital Interface for  
Diagnostics and  
Programming  
Power  
Supply  
VDDA  
GND  
Tx  
CT  
Transmitter  
OUT2  
OUT1  
Rx  
(cos)  
Receiver  
Coil 1  
Analog Output  
for Position and  
Diagnostics  
OUT4  
OUT3  
Rx Receiver  
(sin) Coil 2  
IPS2200  
Position, Rotation Angle  
Position, Rotation Angle  
Note: See Table 2 for definitions of the OUT1, OUT2, OUT3, and OUT4 pins.  
Figure 5. Response of the IPS2200  
Figure 6 shows an example of a linear motion sensor with one transmitter coil (transmitter loop) and two receiver  
coils (Sin loop and Cos loop). Due to the alternating clockwise and counterclockwise winding direction of each  
segment in a loop (for example RxCos = clockwise Cos Loop1 + counterclockwise Cos Loop 2), the induced  
voltages in each segment have alternating opposite polarity.  
VCos Loop1 = -VCos Loop2  
Equation 4  
If no target is present, the secondary voltages cancel each other:  
VCos = VCos Loop1 VCos Loop2 = 0V  
Equation 5  
With a target placed above the coils, the secondary voltage induced in the covered area is lower than the  
secondary voltage without a target above it.  
VCos Loop1 -VCos Loop2  
Equation 6  
This creates an imbalance of the secondary voltage segments, and thus, a secondary voltage ≠ 0V is generated,  
depending on the location of the target.  
VCos = VCos Loop1 VCos Loop2 ≠ 0V  
Equation 7  
Jan.19.21  
Page 15  
IPS2200 Datasheet  
Cos Loop 1  
(cw)  
Cos Loop 2  
(ccw)  
Tx Loop  
RxCos  
Tx  
RxSin  
Metallic Target  
Sin Loop 2  
(ccw)  
Sin Loop 3  
(cw)  
Sin Loop 1  
(cw)  
Figure 6. Coil Design for a Linear Motion Sensor  
The same principles shown for the linear motion sensor in Figure 6 can be applied to an arc or rotary sensor as  
shown in Figure 7.  
Sin Loop 1  
(cw)  
Tx Loop  
Cos Loop 1  
(cw)  
Cos Loop 2  
(ccw)  
Metallic  
Target  
Sin Loop 2  
(ccw)  
Figure 7. Coil Design for a 360° Rotary Sensor  
Jan.19.21  
Page 16  
 
 
IPS2200 Datasheet  
8. Sampling Rate, Resolution, Output Data Rate, and Propagation Delay  
Since the IPS2200 uses analog signal processing (no ADC), there is no sampling rate and the resolution is  
virtually infinite.  
Due to the internal chopping and demodulation processes, there is a programmable output data rate and  
corresponding propagation delay.  
The overall signal processing is very fast, allowing operation at very high speeds up to 250000 rpm (electrical)  
and more with very fast update rates and propagation delays in the range of 4.3µs to 7.7µs for the shortest  
integration factor (5) and 13.6µs to 31.3µs for the longest integration factor (31).  
The coil receiver circuit automatically locks to the transmitter coil oscillator frequency. It automatically corrects for  
LC oscillator frequency drifts due to temperature changes or air gap changes for the target. Consequently, the  
demodulator at the receiver is also dependent on the LC oscillator frequency.  
In addition to the LC oscillator frequency, a second contributing factor is the integration factor of the demodulator  
(essentially a digital filtering process). The data rate and propagation delay are defined as a step response on  
the input when the output reaches > 90% of the maximum signal level.  
It can be calculated via Equation 8:  
(퐼퐹ꢊꢀ)  
Output Data Rate [µs] = ⁡⁡  
Equation 8  
Equation 9  
ꢄꢅ  
ꢁ⁡∙⁡(퐼퐹ꢊꢀ)  
Data Propagation Delay [µs] =⁡⁡⁡  
⁡ꢌ 1 ∙ 휏  
ꢄꢅ  
Where  
IF Integration factor: a programmable factor of 5 to 31  
fLC LC oscillator frequency  
τ
Internal time constant (tau) = 2.2µs  
Table 16. Output Data Rate, Propagation Delay  
Symbol  
Parameter  
Conditions  
Minimum Typical  
Maximum  
Units  
fLC = 5.6MHz, integration factor =  
5to 31(programmable)  
fLC = 2.2MHz, integration factor =  
5to 31(programmable)  
4.3  
13.6  
µs  
Raw data update rate, propagation  
delay of R1 and R2 input signals at  
output.  
tPD  
7.65  
31.3  
µs  
Jan.19.21  
Page 17  
 
IPS2200 Datasheet  
Figure 8. Data Update Rate vs. LC Oscillator Frequency vs. Integration Factor  
9. Output Modes  
9.1  
Analog Differential Sine-Cosine Analog Output Mode  
In this mode, both sine and cosine signals are available as full differential outputs. This configuration is  
recommended for best signal integrity and EMC performance.  
COS  
SIN  
COS_N SIN_N  
Vout  
VDD  
VDD/2  
0V  
α (el), 1 period  
0°  
90°  
180°  
270°  
360°  
Figure 9. Sine-Cosine Analog Mode Output Signals  
Jan.19.21  
Page 18  
IPS2200 Datasheet  
9.2  
Analog Single Ended Sine-Cosine Analog Output Mode  
In single ended mode, the SIN and COS signals are available with respect to GND. SIN_N and COS _N signals  
provide a buffered reference signal (VDD/2).  
COS  
SIN  
COS_N  
SIN_N  
Vout  
VDD  
VDD/2  
0V  
α (el), 1 period  
0°  
90°  
180°  
270°  
360°  
Figure 10. Sine-Cosine Analog Mode Output Signals  
9.3  
Digital Incremental Differential AB Mode  
In AB incremental mode, four digital output signals have one symmetric period in every 360° electrical period.  
Signal B is shifted by 90° (electrical) relative to signal A, allowing four states per 360° (electrical period), see  
Table 17.  
Table 17. Output Status in AB Incremental Mode  
State #  
Position (Electrical)  
0° >pos >=90°  
Signal A  
Signal A_N  
Signal B  
Signal B_N  
1
2
3
4
1
1
0
0
0
0
1
1
1
0
0
1
0
1
1
0
90° >pos >=180°  
180° >pos >=270°  
270° >pos >=360°  
Signals A_N and B_N are the inverted signals of A and B, allowing differential signal transmission for best signal  
integrity and EMC performance.  
By having A and B phase shifted, the direction of rotation can be determined:  
Clockwise rotation: signal B is high at rising edge of A as shown in Figure 11 at 360° where moving from left to  
right (0° to 360°)  
Counter clockwise rotation: signal B is low at rising edge of A as shown in Figure 11 at 180° where moving  
from right to left (360° to 0°)  
Vdig  
A
VOH  
VOL  
VOH  
VOL  
A_N  
VOH  
VOL  
B
VOH  
VOL  
B_N  
α (el), 1 period  
0°  
90°  
180°  
270°  
360°  
Figure 11. Digital Incremental Differential AB Mode Output Signals  
Note that the AB output provides only one pulse per phase on each output. The number of pulses per revolution  
can be increased by coil designs having multiple periods per turn.  
Jan.19.21  
Page 19  
 
 
IPS2200 Datasheet  
10. Operating at High Speed  
The IPS2200 uses analog signal processing, so it can handle inputs signals at very high speed. The input signal  
can have a frequency of up to 4.16kHz, which is equivalent to 250000 RPM (electrical phases per minute). Even  
higher frequencies and therefore higher speeds are possible, but with reduced performance and signal  
amplitude.  
The mechanical rotor speed can be calculated with Equation 10:  
( )  
rpm el  
rpm(mech)=⁡  
Equation 10  
coil periods  
Where  
rpm (mech) Rotation speed of the rotor (and target) in revolutions per minute.  
rpm (el) Maximum electrical input frequency of the sensor in rpm (electrical)  
= 250000 electrical periods per minute (rpm)  
= 4166 electrical periods per second = 4.166kHz  
coil periods Number of electrical periods per turn  
= number of coil periods per 360° circle  
= number of metal target segments  
Figure 23 shows a design for a 6 pole motor (having 3 pole pairs) using a 3-periodic coil design.  
The maximum mechanical rotation speed of this motor is calculated according to Equation 11.  
250000 rpm  
=83333 rpm  
3
Equation 11  
Table 18. Output Modes and Maximum Speed  
SIN/COS Output Mode  
AB Output Mode  
Maximum Rotor Speed  
Target Design  
(metal/no metal)  
Sine, Cosine Cycles  
per Revolution  
Quadrature Pulses per  
Revolution  
Quadrature Counts  
per Revolution  
Mechanical  
Speed  
1 (180° / 180°)  
2 (90° / 90°)  
3 (60° / 60°)  
4 (45° / 45°)  
6 (30° / 30°)  
8 (22.5° / 22.5°)  
10 (18° / 18°)  
1 360°  
2 180°  
3 120°  
4 90°  
1
4
250000 rpm  
2
8
125000 rpm  
3
12  
83333 rpm  
4
16  
62500 rpm  
660°  
6
24  
41666 rpm  
8 45°  
8
32  
31250 rpm  
10 36°  
1 cycle per target  
10  
40  
25000 rpm  
1 pulse per target  
4 counts per target  
250000 RPM / targets per wheel  
Jan.19.21  
Page 20  
 
 
IPS2200 Datasheet  
11. Digital Diagnostics and Programming Interfaces  
In order to program the IPS2200 and to enable fast diagnostics without interrupting the analog high speed signal  
path, an additional digital serial interface is available.  
The IPS2200 offers four modes of digital communication for the diagnostics and programming interface:  
Half duplex SPI interface (default setting).  
Half duplex SPI interface with interrupt (programming option).  
I2C interface with interrupt (programming option).  
I2C interface with address select (programming option).  
11.1 Block Diagram  
Figure 12 shows the block diagram of the IPS2200.  
VDDA  
VDD  
GND  
VDDDigital  
IPS2200  
Power  
Management  
offset Sin  
offset Cos  
Offset  
Control  
OUT4  
OUT3  
OUT2  
OUT1  
Gain  
Control  
gain Sin  
gain Cos  
Sin_n / A_n  
RX1  
RX2  
Protection  
Rx Sine  
Analog Front-End,  
Demodulation,  
Gain Adjustment  
RX3  
RX4  
Rx  
Cosine  
TX1  
TX2  
SIO_SDA  
SCK_SCL  
Configuration,  
NVM  
Programming  
Interface (SPI, I2C)  
Tx  
Oscillator  
Diagnostics, Timer  
CSN_IRQN  
(SSN chip select for SPI or  
IRQN interrupt for I2C or SPI)  
Figure 12. Block Diagram  
The main building blocks include the following:  
Power Management: power-on-reset (POR) circuit; low drop-out (LDO) regulators for analog and digital  
supplies.  
Oscillator: generation of the transmitter coil signal.  
Analog Front-End:  
o Input filter, offset, and gain setting: analog AM signal preconditioning.  
o Synchronous integrator: demodulation of the AM signal.  
Offset Control: correction of offsets at the receiver coil inputs RX1/RX2 and RX3/RX4.  
Gain Control: correction of amplitude mismatching from RX1/RX2 and RX3/RX4 input signals.  
Configuration, NVM: nonvolatile storage of factory and user-programmable settings.  
Programming Interface: configuration, communication, and diagnostics via selectable I2C or SPI bidirectional  
interface.  
Diagnostics, Timer: Diagnostics for critical blocks to ensure functional safety and watchdog timer.  
Protection: over-voltage, reverse polarity and short circuit protection.  
Jan.19.21  
Page 21  
 
IPS2200 Datasheet  
There are four interface options for the OUT1, OUT2, OUT3, and OUT4 pins (see Table 2):  
Differential analog output  
Single-ended analog output with reference  
Incremental digital AB pulse output (one pulse per phase)  
12. Connection Options  
Note: In Figure 13, Figure 14, and Figure 15, the active function of dual function pins is shown in bold font.  
The IPS2200 must be programmed to match to the correct VDD voltage supply level (3.3V or 5.0V).  
SIN  
SIN  
SINN  
SINN  
Position,  
Diagnostics (0/1)  
COS  
COS  
COSN  
COSN  
I2C Programming:  
fixed gain, offset, coil  
current, ...  
SIO_SDA  
SCK_SCL  
VDD  
GND  
VDD  
GND  
CVD  
SIN  
SIN  
SINN  
SINN  
Position,  
Diagnostics (0/1)  
COS  
COS  
COSN  
COSN  
SIO_SDA  
SCK_SCL  
CSN_IRQN  
SPI Programming:  
fixed gain, offset, coil  
current, ...  
VDD  
GND  
VDD  
GND  
CVD  
Figure 13. Analog Interface with Diagnostics Mode, Fixed Configuration  
When using the digital interface pins as shown in Figure 14 and Figure 15, IPS2200 and ECU must share the  
same VDD voltage supply level to match the digital HIGH and LOW signal levels.  
Jan.19.21  
Page 22  
 
IPS2200 Datasheet  
SIN  
SIN  
SIN_  
SINN  
Position,  
Diagnostics (0/1)  
COS  
COS  
COS_  
COSN  
I2C Interface:  
NVM programming  
SDA  
SCL  
SIO_SDA  
SCK_SCL  
on-the-fly gain and offset.  
coil current, Tx frequency,  
diagnostics (detailed)  
VDD  
GND  
VDD  
GND  
CVD  
SIN  
SIN  
SINN  
SINN  
Position,  
Diagnostics (0/1)  
COS  
COS  
COSN  
COSN  
SPI Interface:  
NVM programming  
on-the-fly gain and offset.  
coil current, Tx frequency,  
diagnostics (detailed)  
SIO_SDA  
SCK_SCL  
CSN_IRQN  
SIO_SDA  
SCK_SCL  
CSN_IRQN  
VDD  
GND  
VDD  
GND  
CVD  
Figure 14. Analog and Digital Interface, On-The-Fly Gain and Offset Correction, Extended Diagnostics  
SIN  
SIN  
SINN  
SINN  
Position,  
Diagnostics (0/1)  
COS  
COS  
COSN  
COSN  
I2C Interface:  
NVM programming  
on-the-fly gain and offset.  
coil current, Tx frequency,  
diagnostics (detailed)  
SDA  
SCL  
SIO_SDA  
SCK_SCL  
CSN_IRQN  
Immediate alert  
IRQN  
VDD  
VDD  
CVD  
GND  
GND  
SIN  
SIN  
SINN  
SINN  
Position,  
Diagnostics (0/1)  
COS  
COS  
COSN  
COSN  
SPI Interface:  
NVM programming  
on-the-fly gain and offset.  
coil current, Tx frequency,  
diagnostics (detailed)  
SIO_SDA  
SCK_SCL  
CSN_IRQN  
SIO  
SCK  
CSN  
IRQN  
VDD  
Immediate alert  
VDD  
GND  
CVD  
GND  
Figure 15. Analog and Digital Interface, On-The-Fly Gain and Offset Correction, Extended Diagnostics with MCU  
Interrupt  
Jan.19.21  
Page 23  
IPS2200 Datasheet  
13. Digital Diagnostics and Programming Interfaces  
In order to program the chip and to enable fast diagnostics without interrupting the analog high speed signal  
path, an additional digital serial interface is available.  
The IPS2200 offers four modes of digital communication for the diagnostics and programming interface:  
1. Half duplex SPI interface (programming option)  
2. Half duplex SPI interface with interrupt (programming option)  
3. I2C interface with interrupt (programming option)  
4. I2C interface with address select (default interface)  
13.1 Supply Voltage Operation: 3.3V or 5V  
The IPS2200 can be programmed to operate with either a 3.3V ±10% or a 5.0V ±10% supply voltage.  
If the IPS2200 is programmed for the 5V operation, but connected to a 3.3V supply, it will be in a 5V under-  
voltage state. However, it can still be programmed for 3.3V operation. After the next power-on-reset, the  
IPS2200 boots as a 3.3V device.  
If the IPS2200 is programmed for 3.3V operation, but connected to a 5V supply, it will be in a 3.3V over-voltage  
state. However, it can still be programmed for 5.0V operation. After the next power-on-reset, the IPS2200 boots  
as a 5.0V device.  
13.2 Half-Duplex SPI Interface  
This is a standard bi-directional, half-duplex SPI interface.  
Note: By default, I2C is enabled as the standard communication interface. To enable communication over SPI, it  
must be enabled through programming over the I2C interface.  
To operate the I2C interface, pull-up resistors are required for pins SIO_SDA and SCK_SCL. Optionally, these  
two resistors can either remain active or be removed for SPI operation. A pull-up resistor is always required for  
pin CSN, see Figure 16.  
After re-programming, the SPI interface becomes active with the next POR and the chip remains with SPI  
enabled as communication interface.  
VDD  
4.7k ꢀ  
4.7k ꢀ  
4.7k ꢀ  
SIO_SDA  
SCK_SCL  
CSN_IRQN  
Data In/Out  
Clock  
DIO  
IPS2200  
MCU  
SCK  
CSN  
Chip Select  
Figure 16. Half Duplex 3-3 Wire SPI Interface  
Jan.19.21  
Page 24  
 
IPS2200 Datasheet  
A master can communicate with multiple slaves. Each slave device has an independent CSN line but shares the  
SCK and SIO lines with all slaves. A slave is only addressed when the corresponding CSN pin is pulled low.  
VDD  
4.7k ꢀ  
Data In/Out  
4.7k  
SIO_SDA  
SCK_SCL  
CSN_IRQN  
DIO  
IPS2200  
#1  
Clock  
SCK  
MCU  
Chip Select #1  
SSN1  
SSN2  
SIO_SDA  
SCK_SCL  
CSN_IRQN  
IPS2200  
#2  
Chip Select #2  
Figure 17. Half Duplex 3-3 Wire SPI Multi-slave Interface  
The SPI slave module is activated by the SPI 3-wire master, which initiates the transaction by pulling the chip-  
select pin low (CSN_IRQN, pin 1). A serial clock (SCK_SCL, pin 15), is driven by the master. The Serial Data  
In/Out line (SIO_SDA, pin 16) is a bidirectional data line between master and slave. In a typical scenario, the  
master transmits a command with a specified length of 8-bit over the SIO line. If it is a write command, the  
master keeps transmitting data over the same line. If the first bits were a READ command, the slave transmits a  
fixed length of data over the SIO line to the master.  
Table 19. SPI Interface Parameters  
Symbol  
CL_SPI  
Parameter  
SPI clock rate  
Conditions  
Minimum Typical  
Maximum  
100  
35  
Units  
Kbit/s  
ns  
tR_SIO  
Rise time of SIO  
Signal level change from 10 to  
90%; ≤15pF capacitive load  
tF_SIOL  
Fall time of SDA or SCL  
Signal level change from 90 to  
10%;  
35  
ns  
≤15pF capacitive load  
Note: In Figure 16, Figure 17, Figure 18, Figure 19, and Figure 20, for IPS2200 pins that have dual functions, the  
function that is active is shown in bold font.  
For a detailed description of the SPI interface, refer to the IPS2200 Programming Guide.  
13.3 I2C Interface  
The IPS2200 includes a standard I2C interface as the default interface. The I2C address is programmable. In  
addition, the CSN_IRQN pin can be programmed as either an I2C address selection (SEL) pin or as an interrupt  
output (IRQN) pin when using the I2C interface (see Table 3). The IPS2200 is configured as a I2C slave, several  
slaves can be connected in parallel on the I2C bus.  
Table 20. I2C Interface Parameters  
Symbol  
CL_I2C  
Parameter  
I2C clock rate  
Conditions  
Minimum Typical  
Maximum  
100  
Units  
Kbit/s  
µs  
tSCL_LOW  
Low level state of SCL clock  
High level state of SCL clock  
Rise time of SDA or SCL  
Fall time of SDA or SCL  
4.7  
4.0  
tSCL_HIGH  
tR_SDA_SCL  
tF_SDA_SCL  
µs  
Signal level change from 10 to 90%  
Signal level change from 90 to 10%  
1000  
300  
ns  
ns  
Jan.19.21  
Page 25  
 
IPS2200 Datasheet  
Two wires, serial data (SIO_SDA, pin 16) and serial clock (SCK_SCL, pin 15), carry information between the  
devices connected to the bus. Both SDA and SCL are connected to the positive supply voltage VDD via an  
external pull-up resistor. When the bus is free, both lines are HIGH. The output stages of devices connected to  
the bus must have an open-drain or open-collector to perform the wired-AND function.  
An external master (host controller) initiates a transfer, generates clock signals, and terminates a transfer. The  
implementation supports the I2C slave function, which is addressed by the master and supports the I2C bus  
specification version 2.1.  
13.3.1. I2C with Address Selection (Programming Option)  
When the IPS2200 is programed to use the I2C interface with address selection, the CSN_IRQN pin is used to  
select the I2C slave address by hardware.  
VDD  
4.7k ꢀ  
Data In/Out  
Clock  
4.7k  
SIO_SDA  
SCK_SCL  
CSN_IRQN  
SDA  
SCL  
IPS2200  
#1  
MCU  
VDD  
SIO_SDA  
SCK_SCL  
CSN_IRQN  
IPS2200  
#2  
GND  
Figure 18. I2C Interface with Address Select  
13.3.2. I2C Interface with Interrupt (Programming Option)  
When the IPS2200 is programed to use the I2C interface with the interrupt function, it operates as a standard  
I2C interface. The I2C address is programmable. In addition, the CSN_IRQN pin is used as an interrupt output  
for fast signaling of a diagnostic event.  
VDD  
4.7k  
Data In/Out  
Clock  
4.7k  
SIO_SDA  
SCK_SCL  
CSN_IRQN  
SDA  
SCL  
IRQ  
MCU  
IPS2200  
Interrupt  
Figure 19. I2C Interface Configuration with Interrupt on a Single Slave  
Jan.19.21  
Page 26  
IPS2200 Datasheet  
VDD  
4.7k  
Data In/Out  
Clock  
4.7k  
SIO_SDA  
SCK_SCL  
CSN_IRQN  
SDA  
SCL  
IPS2200  
#1  
MCU  
Interrupt  
IRQ1  
IRQ2  
SIO_SDA  
SCK_SCL  
CSN_IRQN  
IPS2200  
#2  
Interrupt  
Note: In this mode, several I2C slaves are connected in  
parallel. Each I2C slave must have an individual I2C address.  
Figure 20. I2C Interface Configuration with Multi-slave Interrupt  
For a detailed description of the I2C interface, refer to the IPS2200 Programming Guide.  
14. Protection and Diagnostics  
14.1 I/O Protection  
In order to meet the requirements for over-voltage and reverse-polarity protection on both the output and power  
supply pins, the IPS2200 includes several protection and diagnosis features:  
1. Protection against short circuit of the output pins SIN, SINN, COS, and COSN to GND or to VDD  
2. Over-voltage and reverse-polarity protection:  
a. On supply pin VDD to GND  
b. On analog output pins SIN, SINN, COS, and COSN to GND  
c. On digital output pins SIO_SDA, CSN_IRQN, and SCK_SCL to GND  
15. Programming Options  
The IPS2200 family offers a variety of programming options. The IC is programmed through the digital bi-  
directional SPI or I2C interface. The main programming functions are described in Table 21.  
15.1 Lock Feature (Cyber Security)  
The IPS2200 contains a write lock bit option, which can be set by the user. Once the write lock bit is set, no  
further writing to the chip is possible.  
Note: For programming details, see the IPS2200 Programming Guide, which is available from Renesas on  
request.  
Table 21. Programming Options Overview  
Function  
Programming Options  
3.3V ±10% or 5.0V ±10%, alarm levels  
Supply voltage range  
High speed interface  
Sine/cosine differential, single-ended, A/B  
Half-duplex SPI, half-duplex SPI with interrupt, I2C with address select,  
I2C with interrupt  
Digital diagnostic and programming interface  
SPI interface  
SPI modes with/without interrupt, clock polarity, clock phase  
Data order: MSB first / LSB first  
Jan.19.21  
Page 27  
 
IPS2200 Datasheet  
Function  
Programming Options  
Slave address, I2C mode with address select or with interrupt  
Enable/disable: Output pins are pulled low or high in diagnostic state  
Register access R/W / read-only  
I2C interface  
Diagnostic signaling on high speed interface  
Security lock function  
RF front end integration cycles  
Receiver overall gain  
Sine, cosine channel gain  
Sine, cosine offset  
Number of integration cycles; adjust noise vs. speed  
Overall gain coarse adjustment  
Amplitude mismatch correction, fine adjustment  
Pre-adjustment of input offsets  
Tx oscillator  
Bias current, optimization of coil performance  
Measurement of Tx oscillator frequency, upper/lower frequency alarm  
Enable/disable interrupt events  
Time base counter  
Interrupt  
16. Diagnostics  
The diagnostics described in Table 22 are performed on the chip level and are flagged in corresponding  
registers if a fault detection occurs. Each of these diagnostic functions can be enabled or disabled to generate  
an interrupt event at the CSN_IRQN output. In addition, an interrupt event can also be signaled through the high  
speed interface pins (SIN, SINN, COS, COSN; see Table 2) by putting them into the diagnostic state.  
Alarm types marked as “Static” will remain set while the error persists and are cleared only by power-on-reset  
(POR); alarm types marked as “Temporary” will be cleared when the source of the error is removed.  
Diagnostic flags marked as “Continuous” are continuously tested; diagnostic flags marked as “Start-up” are  
checked at start-up only.  
Table 22. Diagnostic Features  
Diagnostic Flag  
Type  
Active  
Description  
VDD over-voltage  
Temporary  
Continuous  
If the external supply voltage exceeds the maximum limit of typical +10%,  
this flag is asserted. To avoid a flag toggling, a comparator hysteresis is  
implemented. See Table 6 for alarm levels in 3.3V Mode and Table 7 for  
alarm levels in 5V Mode.  
VDD under-voltage  
Temporary  
Continuous  
If the external supply voltage falls short of the minimum limit of typical -10%,  
this flag is asserted. To avoid a flag toggling, a comparator hysteresis is  
implemented. See Table 6 for alarm levels in 3.3V Mode and Table 7 for  
alarm levels in 5V Mode.  
Data access fail  
Temporary  
Temporary  
Static  
Continuous  
Continuous  
Continuous  
Continuous  
Chip internal failure.  
Protocol integrity fail  
Shadow register DED  
Shadow register SED  
Failure in the I2C/SPI data transfer.  
Shadow register bank double-bit error detection.  
Temporary  
Shadow register bank single-bit error detection. Each single-bit error  
detection triggers a single-bit error correction (SEC) of the register output.  
Nonvolatile memory  
DED  
Static  
Start-up  
Start-up  
NVM double-bit error detection. Each individual addressed word is checked  
and flagged for bit error.  
Nonvolatile memory  
SED  
Temporary  
NVM single-bit error detection. Each individual addressed word is checked  
and flagged for bit errors.  
Each single-bit error detection triggers a single-bit error correction (SEC) of  
the NVM output.  
LC oscillator failure  
LC oscillator stuck  
Temporary  
Continuous  
This flag is set when the LC oscillator frequency is out of range. The  
frequency range is programmable; see section 16.2 for details.  
Temporary  
Temporary  
Continuous  
Continuous  
This flag is set when the LC oscillator stops running.  
VDDA under-voltage or  
CSN_IRQN over-voltage  
or SIO_SDA over-  
voltage  
This flag is set when the internally regulated analog supply voltage VDDA  
falls below specified limits or when an over-voltage on pins CSN_IRQN or  
SIO_SDA is detected.  
See Table 6 or Table 7 for VDDA alarm levels and Table 4 for IRQN_CSN  
and SIO_SDA over-voltage alarm levels.  
Low amplitude  
Temporary  
Temporary  
Continuous  
Continuous  
In the Incremental Digital Mode, a minimum signal level must be defined  
(gain factor) for a valid output function. If this flag is asserted, the gain factor  
must be increased.  
Internal bus failure  
Chip internal failure.  
Jan.19.21  
Page 28  
 
IPS2200 Datasheet  
Diagnostic Flag  
IRQN watchdog failure  
Type  
Static  
Active  
Continuous  
Description  
A cyclic interrupt request can be initiated by starting a watchdog counter.  
When the timer is expired, the interrupt flag is asserted and the timer  
restarts. The timer can be stopped by resetting the watchdog value to zero.  
Mechanical damage  
Output buffer failure  
Static  
Continuous  
Continuous  
The chip is checked for mechanical damage (cracks in the silicon)  
Temporary  
This flag is set when the mean value of analog outputs SIN+SINN or  
COS+COSN differs from VDD/2 by more than the specified limits described  
in Table 11.  
Output buffer overload  
R1 to R2 coil short  
R2 coil failure  
Temporary  
Static  
Continuous  
Start-up  
This flag is set when the output amplifier load current is above the specified  
limits.  
A short between the receiver coils R1 and R2 is checked after POR. The  
check result is stored and flagged until the next POR.  
Temporary  
Temporary  
Continuous  
Continuous  
This flag is set if there is a short between receiver coil R2 and GND, a short  
between receiver coil R2 and VDD, or an open receiver coil R2.  
R1 coil failure  
This flag is set if there is a short between receiver coil R1 and GND, a short  
between receiver coil R1 and VDD, or an open receiver coil R1.  
16.1 Internal Register and Memory Errors  
For all registers, volatile and nonvolatile memories, a cyclic redundancy check (CRC) is implemented, allowing  
2-bit error detection and 1-bit error correction. An alarm flag is set when a CRC error occurs.  
16.2 LC Oscillator Frequency Out of Range  
The typical frequency range for the transmitter LC oscillator is from ~2MHz to 5MHz, which is the open  
frequency band between the medium-wave radio band (0.52MHz to 1.73MHz) and the short-wave radio band  
(5.8MHz to 6.3MHz). Due to the use of external components (printed inductor and discrete capacitor), the Tx  
oscillation frequency will change over temperature, mainly depending on the temperature coefficient of the  
discrete capacitor (see CT in the application circuit on page 1).  
Recommendation: Use a capacitor with a low temperature coefficient (see the recommendation given below  
Table 8).  
In order to ensure that the oscillation frequency is within the boundaries of a given application, the oscillation  
frequency of the Tx oscillator is internally measured and displayed as a proportional value in a register. The user  
can select upper and lower limits for these register values that will create an alarm flag when the oscillation  
frequency is outside of these programmable boundaries.  
Jan.19.21  
Page 29  
IPS2200 Datasheet  
17. Application Examples  
Typical coil and target arrangements are shown in Figure 21 to Figure 24: As examples, rotary designs for 1   
360°, 2 180°, 3 120° and 4 90° are shown. Many other combinations (essentially any n x 360/n) are  
possible, where n is an integer number.  
For example, in sensor designs for brushless DC rotor position feedback, n could be the number of pole pairs on  
the rotor. In such cases, the output signal of the IPS2200 would be one electric period per each pole pair.  
Figure 21. Coil Design and Signal Output for a 360° Rotary Sensor  
Figure 22. Coil Design and Signal Output for a 2 180° Rotary Sensor  
Figure 23. Coil Design and Signal Output for a 3 120° Rotary Sensor  
Jan.19.21  
Page 30  
 
IPS2200 Datasheet  
Figure 24. Coil Design and Signal Output for a 4 90° Rotary Sensor  
18. Electromagnetic Compatibility (EMC)  
Guidelines for EMC compliant circuit designs are available in a separate document “IPS2200 EMC recommendations” on request.  
19. Package Outline Drawings  
The package outline drawings are appended at the end of this document and are accessible from the link below.  
The package information is the most current data available.  
www.idt.com/document/psc/16-tssop-package-outline-drawing-44mm-body-065mm-pitch-pgg16t1  
20. Marking Diagram  
20.1 Marking of Production Parts  
Line 1: First characters of part code (IPS); “ES” is added for engineering  
samples  
IPS  
2200BI  
Line 2: Next four characters of the part code (2200) followed by  
B = Design revision  
LOT  
I = Operation temperature range, Industrial  
YYWW  
R
Line 3: “LOT” = Lot number  
Line 4: “YYWW” = Manufacturing date:  
YY = last two digits of manufacturing year  
WW = manufacturing week  
R = RoHS compliant statement  
Jan.19.21  
Page 31  
IPS2200 Datasheet  
21. Ordering Information  
Orderable Part Number  
IPS2200BI1W  
Description and Package  
16-TSSOP, 4.4 5.0 mm  
16-TSSOP, 4.4 5.0 mm  
MSL Rating  
1
Carrier Type  
7” Reel, 500 parts / reel  
13” Reel, 4000 parts / reel  
Temperature  
-40° to +125°C  
-40° to +125°C  
IPS2200BI1R  
1
Note: For communication and programming, the IPS2200 Application Modules listed below require an IPS-COMBOARD, which is  
available separately.  
IPS2200STKIT  
IPS2200 Starter Kit including USB communication board, application module and connection cables  
22. Revision History  
Revision  
1.3  
Date  
Description  
Jan.18.21  
Jul.15.20  
Jul.1.20  
SPI interface description updated  
1.2  
1.1  
1.0  
Pin naming aligned with other position sensor products  
Formulas added for calculating the LC oscillator frequency.  
Apr.15.20  
Official release for product launch  
3.3V and 5V supply voltage operation changed.  
Circuit and block descriptions updated.  
Values updated for absolute maximum ratings, operating conditions, and electrical  
characteristics.  
Updated formatting.  
Section 9 (Output Modes) is added.  
0.1  
Feb.16.19  
Preliminary release.  
Jan.19.21  
Page 32  
16-TSSOP Package Outline Drawing  
4.4mm Body, 0.65mm Pitch  
PGG16T1, PSC-4749-01, Rev 00, Page 1  
16-TSSOP Package Outline Drawing  
4.4mm Body, 0.65mm Pitch  
PGG16T1, PSC-4749-01, Rev 00, Page 2  
Package Revision History  
Description  
Date Created Rev No.  
Revised from PSC-4056-02 PGG16  
Jan 26, 2018  
Rev 00  
1RWLFH  
ꢄꢃ 'HVFULSWLRQVꢀRIꢀFLUFXLWVꢅꢀVRIWZDUHꢀDQGꢀRWKHUꢀUHODWHGꢀLQIRUPDWLRQꢀLQꢀWKLVꢀGRFXPHQWꢀDUHꢀSURYLGHGꢀRQO\ꢀWRꢀLOOXVWUDWHꢀWKHꢀRSHUDWLRQꢀRIꢀVHPLFRQGXFWRUꢀSURGXFWVꢀ  
DQGꢀDSSOLFDWLRQꢀH[DPSOHVꢃꢀ<RXꢀDUHꢀIXOO\ꢀUHVSRQVLEOHꢀIRUꢀWKHꢀLQFRUSRUDWLRQꢀRUꢀDQ\ꢀRWKHUꢀXVHꢀRIꢀWKHꢀFLUFXLWVꢅꢀVRIWZDUHꢅꢀDQGꢀLQIRUPDWLRQꢀLQꢀWKHꢀGHVLJQꢀRIꢀ\RXUꢀ  
SURGXFWꢀRUꢀV\VWHPꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀDQGꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ  
WKHVHꢀFLUFXLWVꢅꢀVRIWZDUHꢅꢀRUꢀLQIRUPDWLRQꢃ  
ꢁꢃ 5HQHVDVꢀ(OHFWURQLFVꢀKHUHE\ꢀH[SUHVVO\ꢀGLVFODLPVꢀDQ\ꢀZDUUDQWLHVꢀDJDLQVWꢀDQGꢀOLDELOLW\ꢀIRUꢀLQIULQJHPHQWꢀRUꢀDQ\ꢀRWKHUꢀFODLPVꢀLQYROYLQJꢀSDWHQWVꢅꢀFRS\ULJKWVꢅꢀRUꢀ  
RWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀWKLUGꢀSDUWLHVꢅꢀE\ꢀRUꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRUꢀWHFKQLFDOꢀLQIRUPDWLRQꢀGHVFULEHGꢀLQꢀWKLVꢀ  
GRFXPHQWꢅꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢅꢀWKHꢀSURGXFWꢀGDWDꢅꢀGUDZLQJVꢅꢀFKDUWVꢅꢀSURJUDPVꢅꢀDOJRULWKPVꢅꢀDQGꢀDSSOLFDWLRQꢀH[DPSOHVꢃꢀ  
ꢆꢃ 1RꢀOLFHQVHꢅꢀH[SUHVVꢅꢀLPSOLHGꢀRUꢀRWKHUZLVHꢅꢀLVꢀJUDQWHGꢀKHUHE\ꢀXQGHUꢀDQ\ꢀSDWHQWVꢅꢀFRS\ULJKWVꢀRUꢀRWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀRUꢀ  
RWKHUVꢃ  
ꢇꢃ <RXꢀVKDOOꢀQRWꢀDOWHUꢅꢀPRGLI\ꢅꢀFRS\ꢅꢀRUꢀUHYHUVHꢀHQJLQHHUꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢅꢀZKHWKHUꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀ  
DQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀRUꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀVXFKꢀDOWHUDWLRQꢅꢀPRGLILFDWLRQꢅꢀFRS\LQJꢀRUꢀUHYHUVHꢀHQJLQHHULQJꢃ  
ꢈꢃ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀFODVVLILHGꢀDFFRUGLQJꢀWRꢀWKHꢀIROORZLQJꢀWZRꢀTXDOLW\ꢀJUDGHVꢉꢀꢊ6WDQGDUGꢊꢀDQGꢀꢊ+LJKꢀ4XDOLW\ꢊꢃꢀ7KHꢀLQWHQGHGꢀDSSOLFDWLRQVꢀIRUꢀ  
HDFKꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀGHSHQGVꢀRQꢀWKHꢀSURGXFWꢋVꢀTXDOLW\ꢀJUDGHꢅꢀDVꢀLQGLFDWHGꢀEHORZꢃ  
ꢊ6WDQGDUGꢊꢉ  
&RPSXWHUVꢌꢀRIILFHꢀHTXLSPHQWꢌꢀFRPPXQLFDWLRQVꢀHTXLSPHQWꢌꢀWHVWꢀDQGꢀPHDVXUHPHQWꢀHTXLSPHQWꢌꢀDXGLRꢀDQGꢀYLVXDOꢀHTXLSPHQWꢌꢀKRPHꢀ  
HOHFWURQLFꢀDSSOLDQFHVꢌꢀPDFKLQHꢀWRROVꢌꢀSHUVRQDOꢀHOHFWURQLFꢀHTXLSPHQWꢌꢀLQGXVWULDOꢀURERWVꢌꢀHWFꢃ  
ꢊ+LJKꢀ4XDOLW\ꢊꢉ 7UDQVSRUWDWLRQꢀHTXLSPHQWꢀꢍDXWRPRELOHVꢅꢀWUDLQVꢅꢀVKLSVꢅꢀHWFꢃꢎꢌꢀWUDIILFꢀFRQWUROꢀꢍWUDIILFꢀOLJKWVꢎꢌꢀODUJHꢏVFDOHꢀFRPPXQLFDWLRQꢀHTXLSPHQWꢌꢀNH\ꢀ  
ILQDQFLDOꢀWHUPLQDOꢀV\VWHPVꢌꢀVDIHW\ꢀFRQWUROꢀHTXLSPHQWꢌꢀHWFꢃ  
8QOHVVꢀH[SUHVVO\ꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀSURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGRFXPHQWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀQRWꢀLQWHQGHGꢀRUꢀDXWKRUL]HGꢀIRUꢀXVHꢀLQꢀSURGXFWVꢀRUꢀV\VWHPVꢀWKDWꢀPD\ꢀSRVHꢀDꢀGLUHFWꢀWKUHDWꢀWRꢀ  
KXPDQꢀOLIHꢀRUꢀERGLO\ꢀLQMXU\ꢀꢍDUWLILFLDOꢀOLIHꢀVXSSRUWꢀGHYLFHVꢀRUꢀV\VWHPVꢌꢀVXUJLFDOꢀLPSODQWDWLRQVꢌꢀHWFꢃꢎꢅꢀRUꢀPD\ꢀFDXVHꢀVHULRXVꢀSURSHUW\ꢀGDPDJHꢀꢍVSDFHꢀV\VWHPꢌꢀ  
XQGHUVHDꢀUHSHDWHUVꢌꢀQXFOHDUꢀSRZHUꢀFRQWUROꢀV\VWHPVꢌꢀDLUFUDIWꢀFRQWUROꢀV\VWHPVꢌꢀNH\ꢀSODQWꢀV\VWHPVꢌꢀPLOLWDU\ꢀHTXLSPHQWꢌꢀHWFꢃꢎꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀ  
DQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀGDPDJHVꢀRUꢀORVVHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀDQ\ꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀWKDWꢀLVꢀ  
LQFRQVLVWHQWꢀZLWKꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢅꢀXVHUꢋVꢀPDQXDOꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢃ  
ꢐꢃ :KHQꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀUHIHUꢀWRꢀWKHꢀODWHVWꢀSURGXFWꢀLQIRUPDWLRQꢀꢍGDWDꢀVKHHWVꢅꢀXVHUꢋVꢀPDQXDOVꢅꢀDSSOLFDWLRQꢀQRWHVꢅꢀꢊ*HQHUDOꢀ1RWHVꢀIRUꢀ  
+DQGOLQJꢀDQGꢀ8VLQJꢀ6HPLFRQGXFWRUꢀ'HYLFHVꢊꢀLQꢀWKHꢀUHOLDELOLW\ꢀKDQGERRNꢅꢀHWFꢃꢎꢅꢀDQGꢀHQVXUHꢀWKDWꢀXVDJHꢀFRQGLWLRQVꢀDUHꢀZLWKLQꢀWKHꢀUDQJHVꢀVSHFLILHGꢀE\ꢀ  
5HQHVDVꢀ(OHFWURQLFVꢀZLWKꢀUHVSHFWꢀWRꢀPD[LPXPꢀUDWLQJVꢅꢀRSHUDWLQJꢀSRZHUꢀVXSSO\ꢀYROWDJHꢀUDQJHꢅꢀKHDWꢀGLVVLSDWLRQꢀFKDUDFWHULVWLFVꢅꢀLQVWDOODWLRQꢅꢀHWFꢃꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀPDOIXQFWLRQVꢅꢀIDLOXUHꢀRUꢀDFFLGHQWꢀDULVLQJꢀRXWꢀRIꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRXWVLGHꢀRIꢀVXFKꢀ  
VSHFLILHGꢀUDQJHVꢃ  
ꢑꢃ $OWKRXJKꢀ5HQHVDVꢀ(OHFWURQLFVꢀHQGHDYRUVꢀWRꢀLPSURYHꢀWKHꢀTXDOLW\ꢀDQGꢀUHOLDELOLW\ꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀVHPLFRQGXFWRUꢀSURGXFWVꢀKDYHꢀVSHFLILFꢀ  
FKDUDFWHULVWLFVꢅꢀVXFKꢀDVꢀWKHꢀRFFXUUHQFHꢀRIꢀIDLOXUHꢀDWꢀDꢀFHUWDLQꢀUDWHꢀDQGꢀPDOIXQFWLRQVꢀXQGHUꢀFHUWDLQꢀXVHꢀFRQGLWLRQVꢃꢀ8QOHVVꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀ  
SURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀ  
DUHꢀQRWꢀVXEMHFWꢀWRꢀUDGLDWLRQꢀUHVLVWDQFHꢀGHVLJQꢃꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀLPSOHPHQWLQJꢀVDIHW\ꢀPHDVXUHVꢀWRꢀJXDUGꢀDJDLQVWꢀWKHꢀSRVVLELOLW\ꢀRIꢀERGLO\ꢀLQMXU\ꢅꢀ  
LQMXU\ꢀRUꢀGDPDJHꢀFDXVHGꢀE\ꢀILUHꢅꢀDQGꢒRUꢀGDQJHUꢀWRꢀWKHꢀSXEOLFꢀLQꢀWKHꢀHYHQWꢀRIꢀDꢀIDLOXUHꢀRUꢀPDOIXQFWLRQꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀVXFKꢀDVꢀVDIHW\ꢀ  
GHVLJQꢀIRUꢀKDUGZDUHꢀDQGꢀVRIWZDUHꢅꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢀUHGXQGDQF\ꢅꢀILUHꢀFRQWUROꢀDQGꢀPDOIXQFWLRQꢀSUHYHQWLRQꢅꢀDSSURSULDWHꢀWUHDWPHQWꢀIRUꢀDJLQJꢀ  
GHJUDGDWLRQꢀRUꢀDQ\ꢀRWKHUꢀDSSURSULDWHꢀPHDVXUHVꢃꢀ%HFDXVHꢀWKHꢀHYDOXDWLRQꢀRIꢀPLFURFRPSXWHUꢀVRIWZDUHꢀDORQHꢀLVꢀYHU\ꢀGLIILFXOWꢀDQGꢀLPSUDFWLFDOꢅꢀ\RXꢀDUHꢀ  
UHVSRQVLEOHꢀIRUꢀHYDOXDWLQJꢀWKHꢀVDIHW\ꢀRIꢀWKHꢀILQDOꢀSURGXFWVꢀRUꢀV\VWHPVꢀPDQXIDFWXUHGꢀE\ꢀ\RXꢃ  
ꢓꢃ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀIRUꢀGHWDLOVꢀDVꢀWRꢀHQYLURQPHQWDOꢀPDWWHUVꢀVXFKꢀDVꢀWKHꢀHQYLURQPHQWDOꢀFRPSDWLELOLW\ꢀRIꢀHDFKꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWꢃꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀFDUHIXOO\ꢀDQGꢀVXIILFLHQWO\ꢀLQYHVWLJDWLQJꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢀWKDWꢀUHJXODWHꢀWKHꢀLQFOXVLRQꢀRUꢀXVHꢀRIꢀ  
FRQWUROOHGꢀVXEVWDQFHVꢅꢀLQFOXGLQJꢀZLWKRXWꢀOLPLWDWLRQꢅꢀWKHꢀ(8ꢀ5R+6ꢀ'LUHFWLYHꢅꢀDQGꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀLQꢀFRPSOLDQFHꢀZLWKꢀDOOꢀWKHVHꢀ  
DSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢃꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀGDPDJHVꢀRUꢀORVVHVꢀRFFXUULQJꢀDVꢀDꢀUHVXOWꢀRIꢀ\RXUꢀQRQFRPSOLDQFHꢀ  
ZLWKꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢃ  
ꢔꢃ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDQGꢀWHFKQRORJLHVꢀVKDOOꢀQRWꢀEHꢀXVHGꢀIRUꢀRUꢀLQFRUSRUDWHGꢀLQWRꢀDQ\ꢀSURGXFWVꢀRUꢀV\VWHPVꢀZKRVHꢀPDQXIDFWXUHꢅꢀXVHꢅꢀRUꢀVDOHꢀLVꢀ  
SURKLELWHGꢀXQGHUꢀDQ\ꢀDSSOLFDEOHꢀGRPHVWLFꢀRUꢀIRUHLJQꢀODZVꢀRUꢀUHJXODWLRQVꢃꢀ<RXꢀVKDOOꢀFRPSO\ꢀZLWKꢀDQ\ꢀDSSOLFDEOHꢀH[SRUWꢀFRQWUROꢀODZVꢀDQGꢀUHJXODWLRQVꢀ  
SURPXOJDWHGꢀDQGꢀDGPLQLVWHUHGꢀE\ꢀWKHꢀJRYHUQPHQWVꢀRIꢀDQ\ꢀFRXQWULHVꢀDVVHUWLQJꢀMXULVGLFWLRQꢀRYHUꢀWKHꢀSDUWLHVꢀRUꢀWUDQVDFWLRQVꢃ  
ꢄꢂꢃ ,WꢀLVꢀWKHꢀUHVSRQVLELOLW\ꢀRIꢀWKHꢀEX\HUꢀRUꢀGLVWULEXWRUꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢅꢀRUꢀDQ\ꢀRWKHUꢀSDUW\ꢀZKRꢀGLVWULEXWHVꢅꢀGLVSRVHVꢀRIꢅꢀRUꢀRWKHUZLVHꢀVHOOVꢀRUꢀ  
WUDQVIHUVꢀWKHꢀSURGXFWꢀWRꢀDꢀWKLUGꢀSDUW\ꢅꢀWRꢀQRWLI\ꢀVXFKꢀWKLUGꢀSDUW\ꢀLQꢀDGYDQFHꢀRIꢀWKHꢀFRQWHQWVꢀDQGꢀFRQGLWLRQVꢀVHWꢀIRUWKꢀLQꢀWKLVꢀGRFXPHQWꢃ  
ꢄꢄꢃ 7KLVꢀGRFXPHQWꢀVKDOOꢀQRWꢀEHꢀUHSULQWHGꢅꢀUHSURGXFHGꢀRUꢀGXSOLFDWHGꢀLQꢀDQ\ꢀIRUPꢅꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢅꢀZLWKRXWꢀSULRUꢀZULWWHQꢀFRQVHQWꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢃ  
ꢄꢁꢃ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀLIꢀ\RXꢀKDYHꢀDQ\ꢀTXHVWLRQVꢀUHJDUGLQJꢀWKHꢀLQIRUPDWLRQꢀFRQWDLQHGꢀLQꢀWKLVꢀGRFXPHQWꢀRUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWVꢃ  
ꢍ1RWHꢄꢎ ꢊ5HQHVDVꢀ(OHFWURQLFVꢊꢀDVꢀXVHGꢀLQꢀWKLVꢀGRFXPHQWꢀPHDQVꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢀDQGꢀDOVRꢀLQFOXGHVꢀLWVꢀGLUHFWO\ꢀRUꢀLQGLUHFWO\ꢀFRQWUROOHGꢀ  
VXEVLGLDULHVꢃ  
ꢍ1RWHꢁꢎ ꢊ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢍVꢎꢊꢀPHDQVꢀDQ\ꢀSURGXFWꢀGHYHORSHGꢀRUꢀPDQXIDFWXUHGꢀE\ꢀRUꢀIRUꢀ5HQHVDVꢀ(OHFWURQLFVꢃ  
ꢍ5HYꢃꢇꢃꢂꢏꢄꢀꢀ1RYHPEHUꢀꢁꢂꢄꢑꢎ  
Corporate Headquarters  
Contact Information  
TOYOSU FORESIA, 3-2-24 Toyosu,  
For further information on a product, technology, the most up-to-date version  
of a document, or your nearest sales office, please visit:  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com/contact/  
www.renesas.com  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas Electronics  
Corporation. All trademarks and registered trademarks are the property of  
their respective owners.  
‹ꢀꢁꢂ20ꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢃꢀ$OOꢀULJKWVꢀUHVHUYHGꢃ  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY