ISL3295EIHZ-T [RENESAS]

±16.5kV ESD Protected, SOT-23, 20Mbps, RS-485/RS-422 Transmitter; SOT6; Temp Range: See Datasheet;
ISL3295EIHZ-T
型号: ISL3295EIHZ-T
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

±16.5kV ESD Protected, SOT-23, 20Mbps, RS-485/RS-422 Transmitter; SOT6; Temp Range: See Datasheet

驱动 信息通信管理 光电二极管 接口集成电路 驱动器
文件: 总17页 (文件大小:929K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL3295E, ISL3298E  
±16.5kV ESD Protected, +125°C, 3.0V to 5.5V, SOT-23/TDFN Packaged, Low  
Power, RS-485/RS-422 Transmitters  
FN6544  
Rev.4.00  
Oct 9, 2019  
The ISL3295E and ISL3298E are ±16.5kV HBM ESD Protected  
Features  
(7kV IEC61000 contact), 3.0V to 5.5V powered, single  
• High ESD protection on RS-485 outputs . . . . ±16.5kV HBM  
- IEC61000-4-2 contact test method . . . . . . . . . . . . . . . ±7kV  
- Class 3 ESD level on all other pins. . . . . . . . . . . .>8kV HBM  
transmitters for balanced communication using the RS-485  
and RS-422 standards. These drivers have very low output  
leakage current (±40µA), so they present less than a “1/8 unit  
load” to the RS-485 bus. This allows more than 256  
transmitters on the network without violating the RS-485  
specification’s 32 unit load maximum, and without using  
repeaters.  
• Specified for +125°C operation (V 3.6V only)  
CC  
• Logic supply pin (V ) eases operation in mixed supply  
L
systems (ISL3298E only)  
Hot Plug circuitry ensures that the Tx outputs remain in a high  
impedance state while the power supply stabilizes.  
• Hot plug - Tx outputs remain three-state during power-up  
• Low Tx leakage allows >256 devices on the bus  
• High data rates. . . . . . . . . . . . . . . . . . . . . . . . . . up to 20Mbps  
Drivers on the ISL3295E and ISL3298E are not limited, so they  
can achieve the 20Mbps data rate. They are offered in industrial  
and extended industrial (-40°C to +125°C) temperature  
ranges.  
• Low quiescent supply current. . . . . . . . . . . . . . . 150µA (max)  
- Very low shutdown supply current . . . . . . . . . . . 1µA (max)  
• -7V to +12V common-mode output voltage range  
A 26% smaller footprint is available with the ISL3298E TDFN  
(V 3.6V only)  
CC  
package. This device also features a logic supply pin (V ) that  
L
sets the switching points of the DE and DI inputs to be  
compatible with a lower supply voltage in mixed voltage  
systems.  
• Current limiting and thermal shutdown for driver overload  
protection (V 3.6V only)  
CC  
• Tri-statable Tx outputs  
For companion single RS-485 receivers in micro packages,  
please see the ISL3280E, ISL3281E, ISL3282E, ISL3283E,  
ISL3284E datasheet.  
• 5V tolerant logic inputs when V 5V  
CC  
• Pb-free (RoHS compliant)  
Related Literature  
For a full list of related documents, visit our website  
Applications  
• Clock distribution  
ISL3295E and ISL3298E device pages  
• High node count systems  
• Space constrained systems  
• Security camera networks  
• Building environmental control/lighting systems  
• Industrial/process control networks  
TABLE 1. SUMMARY OF FEATURES  
DATA  
TX  
MAXIMUM  
RATE SLEW RATE HOT  
V
ENABLE? QUIESCENT LOW POWER  
PIN  
L
PART NUMBER  
FUNCTION (Mbps) LIMITED? PLUG? PIN? (Note 11)  
I
(µA)  
SHUTDOWN?  
YES  
COUNT  
CC  
150  
150  
ISL3295E  
ISL3298E  
1 Tx  
1 Tx  
20  
20  
NO  
NO  
YES  
NO  
YES  
YES  
6 Ld SOT  
YES YES  
YES  
8 Ld TDFN  
FN6544 Rev.4.00  
Oct 9, 2019  
Page 1 of 17  
ISL3295E, ISL3298E  
Pin Configurations  
ISL3295E  
(6 LD SOT-23)  
TOP VIEW  
ISL3298E  
(8 LD TDFN)  
TOP VIEW  
DI  
1
2
3
6
5
4
Y
V
V
Z
Y
1
2
3
4
8
7
6
5
L
CC  
V
D
GND  
Z
CC  
DE  
DI  
DE  
D
GND  
GND  
NOTE: BOTH GND PINS MUST BE CONNECTED  
Truth Tables  
Pin Descriptions  
TRANSMITTING  
PIN  
NAME  
FUNCTION  
INPUTS  
OUTPUTS  
DE  
Driver output enable. The driver outputs, Y and Z, are enabled by  
bringing DE high, and are high impedance when DE is low. If the  
DE (Note 11)  
DI  
Z
0
1
Y
driver enable function isn’t needed, connect DE to V (or V )  
1
1
0
X
1
0
CC  
L
through a 1kΩ to 3kΩ resistor.  
1
DI  
Driver input. A low on DI forces output Y low and output Z high.  
Similarly, a high on DI forces output Y high and output Z low.  
0
High-Z *  
High-Z *  
NOTE: *Shutdown Mode  
GND Ground connection. This is also the potential of the TDFN  
thermal pad.  
Y
±15kV HBM, ±7kV IEC61000 (contact method) ESD Protected  
RS-485/422 level, noninverting transmitter output.  
Z
±15kV HBM, ±7kV IEC61000 (contact method) ESD Protected  
RS-485/422 level, inverting transmitter output.  
V
System power supply input (3.0V to 5.5V). On devices with a V  
L
CC  
pin powered from a separate supply, power-up V first.  
CC  
V
Logic-level supply which sets the V /V levels for the DI and DE  
IL IH  
L
pins (ISL3298E only). If V and V are different supplies,  
L
CC  
power-up this supply after V , and keep V V  
.
CC CC  
L
FN6544 Rev.4.00  
Oct 9, 2019  
Page 2 of 17  
ISL3295E, ISL3298E  
Ordering Information  
PART NUMBER  
(Notes 1, 3)  
PART MARKING  
TEMP. RANGE  
(°C)  
TAPE AND REEL  
(UNITS) (Note 2)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
(Note 4)  
ISL3295EFHZ-T  
295F  
-40 to +125  
-40 to +125  
-40 to +85  
-40 to +85  
-40 to +125  
3k  
250  
3k  
6 Ld SOT-23  
P6.064  
P6.064  
P6.064  
P6.064  
L8.2x3A  
ISL3295EFHZ-T7A  
ISL3295EIHZ-T  
ISL3295EIHZ-T7A  
ISL3298EFRTZ-T  
NOTES:  
295F  
295I  
295I  
98F  
6 Ld SOT-23  
6 Ld SOT-23  
6 Ld SOT-23  
8 Ld TDFN  
250  
6k  
1. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate  
plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Pb-free products are  
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J-STD-020.  
2. See TB347 for details about reel specifications.  
3. For Moisture Sensitivity Level (MSL), see the ISL3295E and ISL3298E device pages. For more information about MSL, see TB363.  
4. SOT-23 “PART MARKING” is branded on the bottom side.  
FN6544 Rev.4.00  
Oct 9, 2019  
Page 3 of 17  
ISL3295E, ISL3298E  
Typical Operating Circuits  
+3.3V TO 5V  
+3.3V  
2
+
+
0.1µF  
0.1µF  
1
V
V
CC  
CC  
ISL3281E  
ISL329xE  
R
6
4
T
6
4
Y
Z
A
B
RO  
RE  
3
5
1
3
DI  
R
D
DE  
GND  
2
GND  
5
FIGURE 1. NETWORK WITH ENABLES  
+3.3V TO 5V  
1
+3.3V  
1kΩ TO 3kΩ  
Note 10  
+
+
0.1µF  
0.1µF  
2
3
V
V
CC  
CC  
ISL3280E  
ISL329xE  
DE  
R
6
Y
Z
5
4
T
A
RO  
3
1
DI  
R
4
B
D
GND  
2
GND  
5
FIGURE 2. NETWORK WITHOUT ENABLE  
2.5V +3.3V TO 5V  
+3.3V  
8
1.8V  
1
+
+
0.1µF  
0.1µF  
4
6
V
V
V
V
L
CC  
L
CC  
V
V
CC  
CC  
ISL3282E  
R
ISL3298E  
D
LOGIC  
DEVICE  
P, ASIC,  
UART)  
LOGIC  
R
DEVICE  
P, ASIC,  
UART)  
5
8
T
6
7
Y
A
B
RO  
RE  
1
7
3
2
DI  
Z
DE  
GND  
2
GND  
4, 5  
NOTE: IF POWERED FROM SEPARATE SUPPLIES,  
POWER-UP V BEFORE V  
CC  
L
FIGURE 3. NETWORK WITH VL PIN FOR INTERFACING TO LOWER VOLTAGE LOGIC DEVICES  
FN6544 Rev.4.00  
Oct 9, 2019  
Page 4 of 17  
ISL3295E, ISL3298E  
Absolute Maximum Ratings  
Thermal Information  
V
V
to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 7V  
Thermal Resistance (Typical)  
6 Ld SOT-23 Package (Note 5) . . . . . . . . . .  
8 Ld TDFN Package (Notes 6, 7). . . . . . . . .  
θJA (°C/W) θJC (°C/W)  
CC  
to GND (ISL3298E Only) . . . . . . . . . . . . . . . . . . . . . -0.3V to (V + 0.3V)  
177  
65  
N/A  
8
L
CC  
Input Voltages  
DI, DE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 7V  
Output Voltages  
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . +150°C  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Pb-free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
Y, Z (V 3.6V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -8V to +13V  
CC  
Y, Z (V > 3.6V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to V +0.5V  
CC  
CC  
Short-circuit Duration  
Operating Conditions  
Y, Z (V 3.6V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous  
CC  
Y, Z (V > 3.6V, (Note 13). . . . . . . . . . . . . . . . . . . . . . . . . 1s at <300mA  
Temperature Range  
CC  
ESD Rating . . . . . . . . . . . . . . . . . . See Electrical Specifications on page 6  
F Suffix (V 3.6V only). . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +125°C  
CC  
I Suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
5. θ is measured with the component mounted on a high-effective thermal conductivity test board in free air. See TB379 for details.  
JA  
6. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See TB379.  
JA  
7. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications Test Conditions: V = 3.0V to 5.5V, V = V (ISL3298E only), typicals are at T = +25°C, unless otherwise  
CC  
L
CC  
A
specified. (Note 8)  
TEMP  
(°C)  
MIN  
(Note 12)  
TYP  
(Note 14)  
MAX  
(Note 12)  
PARAMETER  
DC CHARACTERISTICS  
Driver Differential V  
SYMBOL  
TEST CONDITIONS  
UNIT  
V
R
= 100Ω (RS-422)  
V
V
V
V
3.15V  
4.5V  
3.0V  
4.5V  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
2
3
2.3  
3.8  
2
-
-
V
V
V
V
OUT  
OD  
L
CC  
CC  
CC  
CC  
(Figure 4A)  
R
= 54Ω (RS-485)  
1.5  
2.5  
-
V
V
V
L
CC  
(Figure 4A)  
3.4  
-
CC  
No load  
CC  
-
R
R
= 60Ω, -7V V 12V (Figure 4B)  
1.5  
-
2, 3.4  
0.01  
V
V
L
L
CM  
Change in Magnitude of Driver  
Differential V for  
ΔV  
= 54Ω or 100Ω (Figure 4A)  
0.2  
OD  
OUT  
Complementary Output States  
Driver Common-mode V  
OUT  
V
R
= 54Ω or 100Ω  
V
V
3.6V  
5.5V  
Full  
Full  
Full  
-
-
-
2
-
3
V
V
V
OC  
L
CC  
(Figure 4A)  
3.2  
0.2  
CC  
Change in Magnitude of Driver  
Common-mode V for  
ΔV  
R
= 54Ω or 100Ω (Figure 4A)  
0.01  
OC  
L
L
OUT  
Complementary Output States  
Input High Voltage (DI, DE)  
V
V
V
V
V
V
V
= V if ISL3298E  
CC  
V
V
3.6V  
5.5V  
Full  
Full  
Full  
Full  
Full  
25  
2.2  
3
-
-
-
-
-
-
-
-
-
-
-
V
V
V
V
V
V
IH1  
IH2  
IH3  
IH4  
IH5  
IH6  
CC  
CC  
2.7V V < 3.0V (ISL3298E only)  
2
L
2.3V V < 2.7V (ISL3298E only)  
1.65  
L
1.6V V < 2.3V (ISL3298E only)  
0.7*V  
-
L
L
1.35V V < 1.6V (ISL3298E only)  
0.5*V  
L
L
FN6544 Rev.4.00  
Oct 9, 2019  
Page 5 of 17  
ISL3295E, ISL3298E  
Electrical Specifications Test Conditions: V = 3.0V to 5.5V, V = V (ISL3298E only), typicals are at T = +25°C, unless otherwise  
CC  
L
CC  
A
specified. (Note 8) (Continued)  
TEMP  
(°C)  
MIN  
(Note 12)  
TYP  
(Note 14)  
MAX  
(Note 12)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
UNIT  
V
Input Low Voltage (DI, DE)  
V
V
V
V
V
V
V
= V if ISL3298E  
Full  
Full  
Full  
Full  
25  
-
-
-
-
-
0.8  
0.8  
IL1  
IL2  
IL3  
IL4  
IL5  
L
L
CC  
2.7V (ISL3298E only)  
-
V
2.3V V < 2.7V (ISL3298E only)  
-
0.65  
V
L
1.6V V < 2.3V (ISL3298E only)  
-
0.22*V  
V
L
L
1.35V V < 1.6V (ISL3298E only)  
-
0.3*V  
-
V
L
L
Logic Input Current  
I
DI = DE = 0V or V (Note 11)  
CC  
Full  
Full  
Full  
Full  
-2  
-
0.1  
-10  
-
2
µA  
µA  
µA  
mA  
mA  
°C  
IN  
Output Leakage Current  
(Y, Z, Note 11)  
I
DE = 0V,  
= 0V, 3.6V, or 5.5V  
V
V
= 12V  
= -7V  
-
40  
OZ  
IN  
IN  
V
CC  
-40  
-
Driver Short-circuit Current,  
I
DE = V , -7V V 12V, V 3.6V  
CC CC  
-
-
-
±250  
±450  
-
OSD1  
O
V
= High or Low (Note 9)  
O
DE = V , 0V V V , V > 3.6V (Note 13) Full  
-
CC  
O
CC CC  
Thermal Shutdown Threshold  
SUPPLY CURRENT  
T
Full  
160  
SD  
No-load Supply Current  
Shutdown Supply Current  
ESD PERFORMANCE  
RS-485 Pins (Y, Z)  
I
DI = 0V or V  
DE = V  
CC  
Full  
Full  
-
-
120  
150  
1
µA  
µA  
CC  
CC  
I
DE = 0V, DI = 0V or V  
CC  
0.01  
SHDN  
Human Body Model, from bus pins to GND  
IEC61000 Contact, from bus pins to GND  
HBM, per MIL-STD-883 Method 3015  
Machine Model  
25  
25  
25  
25  
-
-
-
-
±16.5  
±7  
-
-
-
-
kV  
kV  
kV  
V
All Pins  
±8  
±400  
DRIVER SWITCHING CHARACTERISTICS  
Maximum Data Rate  
f
V
= ±1.5V, C = 360pF (Figure 7)  
Full  
Full  
25  
20  
-
29, 23  
32  
36  
40  
-
-
Mbps  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MAX  
OD  
D
Driver Single-ended Output  
Delay  
t
R
C
= 54Ω,  
V
V
V
V
= V  
CC  
15  
42  
SD  
DIFF  
= 50pF (Figure 5)  
L
L
L
L
D
1.8V  
= 1.5V  
= 1.35V  
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
-
25  
-
Part-to-part Output Delay Skew  
t
R
R
= 54Ω, C = 50pF (Figure 5, Note 10)  
Full  
Full  
25  
25  
SKPP  
DIFF  
DIFF  
D
Driver Single-ended Output  
Skew  
t
= 54Ω,  
V
V
V
V
V
V
V
V
= V  
CC  
3
7
SSK  
L
L
L
L
L
L
L
L
C
= 50pF (Figure 5)  
D
1.8V  
= 1.5V  
= 1.35V  
3
-
25  
4
-
25  
5
-
Driver Differential Output Delay  
t
R
C
= 54Ω,  
= V  
CC  
Full  
25  
29, 22  
32  
36  
42  
42  
DD  
DIFF  
= 50pF (Figure 5)  
D
1.8V  
= 1.5V  
= 1.35V  
-
-
-
25  
25  
FN6544 Rev.4.00  
Oct 9, 2019  
Page 6 of 17  
ISL3295E, ISL3298E  
Electrical Specifications Test Conditions: V = 3.0V to 5.5V, V = V (ISL3298E only), typicals are at T = +25°C, unless otherwise  
CC  
L
CC  
A
specified. (Note 8) (Continued)  
TEMP  
(°C)  
MIN  
(Note 12)  
TYP  
(Note 14)  
MAX  
(Note 12)  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Driver Differential Output Skew  
t
R
= 54Ω,  
V
V
V
V
V
V
V
= V 3.6V  
CC  
Full  
25  
-
-
-
-
-
-
-
-
-
-
-
0.5  
2
3
DSK  
DIFF  
= 50pF (Figure 5)  
L
L
L
L
L
L
L
C
D
= V = 5V  
CC  
-
1.8V  
1.5V  
= 1.35V  
25  
0.5, 1  
1, 2  
-
-
25  
25  
2, 4  
-
Driver Differential Rise or Fall  
Time  
t , t  
R
= 54Ω,  
= V  
CC  
Full  
25  
9
15  
-
R
F
DIFF  
= 50pF (Figure 5)  
C
D
1.35V  
9
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable from Output High  
Driver Disable from Output Low  
NOTES:  
t
R
R
R
R
= 500Ω, C = 50pF, SW = GND (Figure 6)  
Full  
Full  
Full  
Full  
100, 60  
60, 35  
30, 22  
25, 20  
250  
250  
60  
60  
ZH  
L
L
L
L
L
t
= 500Ω, C = 50pF, SW = V (Figure 6)  
CC  
ZL  
L
t
= 500Ω C = 50pF, SW = GND (Figure 6)  
L
HZ  
t
= 500Ω, C = 50pF, SW = V (Figure 6)  
CC  
LZ  
L
8. All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise  
specified.  
9. Applies to peak current. See “Typical Performance Curves” on page 11 for more information.  
10. t  
is the magnitude of the difference in propagation delays of the specified terminals of two units tested with identical test conditions (such as  
SKPP  
, temperature).  
V
CC  
11. If the driver enable function is not needed, connect DE to V (or V ) through a 1kΩ to 3kΩ resistor.  
CC  
12. Parts are 100% tested at +25°C. Over-temperature limits established by characterization and are not production tested.  
13. Due to the high short-circuit current at V > 3.6V, the outputs must not be shorted outside the range of GND to V or damage may occur. To prevent  
L
C
C
C
C
excessive power dissipation that may damage the output, the short-circuit current should be limited to 300mA during testing. It is best to use an  
external resistor for this purpose, because the current limiting on the V supply may respond too slowly to protect the output.  
O
14. Typicals are measured at V = 3.3V for parameters specified with 3V V 3.6V, and are measured at V = 5V for parameters specified with  
CC CC CC  
4.5V V 5.5V. If V isn’t specified, then a single “TYP” entry applies to both V = 3.3V and 5V, and two entries separated by a comma refer to  
CC CC CC  
V
= 3.3V and 5V, respectively.  
CC  
Test Circuits and Waveforms  
R /2  
L
375Ω  
DE  
DI  
DE  
DI  
V
OR V  
V
OR V  
CC  
L
CC L  
Z
Y
Z
Y
V
CM  
R
= 60Ω  
V
V
OD  
L
D
D
OD  
-7V TO +12V  
375Ω  
V
R /2  
L
OC  
FIGURE 4B. V WITH COMMON-MODE LOAD  
OD  
FIGURE 4A. V AND V  
OD OC  
FIGURE 4. DC DRIVER TEST CIRCUITS  
FN6544 Rev.4.00  
Oct 9, 2019  
Page 7 of 17  
ISL3295E, ISL3298E  
Test Circuits and Waveforms(Continued)  
3V OR V  
0V  
L
DI  
50%  
SD1  
50%  
SD2  
DE  
t
t
V
OR V  
L
CC  
V
OH  
OUT (Z)  
OUT (Y)  
Z
Y
DI  
50%  
50%  
R
CD  
DIFF  
D
V
OL  
t
t
DDLH  
DDHL  
SIGNAL  
GENERATOR  
+V  
OD  
90%  
50%  
10%  
90%  
50%  
10%  
DIFF OUT (Y - Z)  
-V  
OD  
t
t
R
F
t
= |t  
- t  
SD1(Y) SD2(Y)  
| OR |t  
- t  
SD1(Z) SD2(Z)  
|
t
= |t  
DSK  
- t |  
DDLH DDHL  
SSK  
FIGURE 5A. TEST CIRCUIT  
FIGURE 5. DRIVER PROPAGATION DELAY AND DIFFERENTIAL TRANSITION TIMES  
FIGURE 5B. MEASUREMENT POINTS  
DE  
DI  
3V OR V  
Z
Y
L
500Ω  
V
CC  
DE  
50%  
50%  
HZ  
D
GND  
SW  
SIGNAL  
GENERATOR  
0V  
50pF  
t
ZH  
t
OUTPUT HIGH  
50%  
V
OH  
V
- 0.25V  
OH  
OUT (Y, Z)  
OUT (Y, Z)  
0V  
PARAMETER  
OUTPUT  
Y/Z  
DI  
SW  
GND  
t
1/0  
0/1  
1/0  
0/1  
HZ  
t
ZL  
t
LZ  
t
Y/Z  
V
CC  
GND  
LZ  
V
CC  
OL  
t
Y/Z  
ZH  
50%  
t
Y/Z  
V
V
+ 0.25V  
V
ZL  
CC  
OL  
OUTPUT LOW  
FIGURE 6A. TEST CIRCUIT  
FIGURE 6B. MEASUREMENT POINTS  
FIGURE 6. DRIVER ENABLE AND DISABLE TIMES  
DE  
DI  
V
OR V  
L
3V OR V  
0V  
CC  
+
L
Z
DI  
V
C
54Ω  
D
OD  
-
D
Y
SIGNAL  
GENERATOR  
+V  
OD  
DIFF OUT (Y - Z)  
0V  
-V  
OD  
FIGURE 7B. MEASUREMENT POINTS  
FIGURE 7A. TEST CIRCUIT  
FIGURE 7. DRIVER DATA RATE  
FN6544 Rev.4.00  
Oct 9, 2019  
Page 8 of 17  
ISL3295E, ISL3298E  
powered DI or DE input. Connecting the V pin to the power  
L
Application Information  
supply of the logic device (as shown in Figure 8) reduces the DI  
and DE input switching points to values compatible with the logic  
device’s output levels. Tailoring the logic pin input switching  
points and output levels to the supply voltage of the UART, ASIC,  
or µcontroller eliminates the need for a level shifter/translator  
between the two ICs.  
RS-485 and RS-422 are differential (balanced) data  
transmission standards for use in long haul or noisy  
environments. RS-422 is a subset of RS-485, so RS-485  
transmitters and receivers are also RS-422 compliant. RS-422 is  
a point-to-multipoint (multidrop) standard, which allows only one  
driver and up to 10 (assuming one unit load devices) receivers on  
each bus. RS-485 is a true multipoint standard, which allows up  
to 32 one unit load devices (any combination of drivers and  
receivers) on each bus. To allow for multipoint operation, the  
RS-485 specification requires that drivers must handle bus  
contention without sustaining any damage.  
V
= +3.3V  
V
= +2V  
CC  
CC  
V
V
≥ 2V  
IH  
IH  
T
XD  
DI  
V
≤ 2V  
≤ 2V  
OH  
Another important advantage of RS-485 is the extended  
Common-Mode Range (CMR), which specifies that the driver  
outputs and receiver inputs withstand signals that range from  
+12V to -7V. RS-422 and RS-485 are intended for runs as long as  
4000’, so the wide CMR is necessary to handle ground potential  
differences, as well as voltages induced in the cable by external  
fields.  
≥ 2V  
DEN  
DE  
V
OH  
GND  
GND  
ISL3295E  
= +3.3V  
UART/PROCESSOR  
= +2V  
Driver Features  
V
V
CC  
CC  
These RS-485/RS-422 drivers are differential output devices that  
delivers at least 1.5V across a 54Ω load (RS-485) and at least 2V  
across a 100Ω load (RS-422). The drivers feature low  
propagation delay skew to maximize bit width and to minimize  
EMI.  
V
L
V
= 1.4V  
T
IH  
XD  
DI  
V
≤ 2V  
≤ 2V  
OH  
All drivers are tri-statable via the active high DE input. If the Tx  
V
= 1.4V  
IH  
enable function is not needed, tie DE to V (or V ) through a 1kΩ  
DEN  
DE  
CC  
L
V
OH  
to 3kΩ resistor.  
GND  
GND  
The outputs of the ISL3295E and ISL3298E drivers are not slew  
rate limited, so faster output transition times allow data rates of  
at least 20Mbps.  
ISL3298E  
UART/PROCESSOR  
FIGURE 8. USING V PIN TO ADJUST LOGIC LEVELS  
L
Wide Supply Range  
The ISL3295E and ISL3298E are optimized for 3.3V operation,  
but can be operated with supply voltages as high as 5.5V. These  
devices meet the RS-422 and RS-485 specifications for supply  
voltages less than 4V, and are RS-422 and RS-485 compatible  
for supplies greater than 4V. Operation at +125°C requires  
V can be anywhere from V down to 1.35V, but the input  
CC  
L
switching points may not provide enough noise margin and  
20Mbps data rates may not be achievable, when V < 1.5V.  
L
Table 2 indicates typical V and V values for various V settings  
IH IL  
L
so you can ascertain whether or not a particular V voltage meets  
L
V
3.6V, while 5V operation requires adding output current  
CC  
his needs.  
limiting resistors (as described in the “Driver Overload  
Protection” on page 10) if output short-circuits (for example,  
from bus contention) are a possibility.  
TABLE 2. V AND V vs V FOR V = 3.3V OR 5V  
IH  
IL  
L
CC  
V
(V)  
V
(V)  
V (V)  
IL  
L
IH  
1.35  
1.5  
0.7  
0.8  
0.9  
1.1  
1.3  
1.5  
2.7  
0.4  
0.5  
0.7  
1.0  
1.1  
1.4  
2.3  
5.5V Tolerant Logic Pins  
Logic input pins (DI, DE) contain no ESD nor parasitic diodes to  
1.8  
V
(nor to V ), so they withstand input voltages exceeding 5.5V  
CC  
regardless of the V and V voltages.  
L
2.3  
CC  
L
2.7  
Logic Supply (V Pin, ISL3298E)  
L
3.3  
Note: If powered from separate supplies, power-up V before  
CC  
5.0 (i.e., V  
)
CC  
powering up the V supply and keep V V  
.
L
L
CC  
The V supply current (I ) is typically much less than 20µA, as  
shown in Figure 12 on page 11, when DE and DI are  
The ISL3298E includes a V pin that powers the logic inputs (DI  
L
L
L
and DE). This pin interfaces with “logic” devices such as UARTs,  
ASICs, and µcontrollers, and today most of these devices use  
power supplies significantly lower than 3.3V. Thus, the logic  
above/below V /V .  
IH IL  
device’s low V might not exceed the V of a 3.3V or 5V  
OH  
IH  
FN6544 Rev.4.00  
Oct 9, 2019  
Page 9 of 17  
ISL3295E, ISL3298E  
Hot Plug Function  
Driver Overload Protection  
When a piece of equipment powers up, there is a period of time  
where the processor or ASIC driving the RS-485 control line (DE)  
is unable to ensure that the RS-485 Tx outputs are kept disabled.  
If the equipment is connected to the bus, a driver activating  
prematurely during power-up can crash the bus. To avoid this  
scenario, the ISL329xE family incorporates a “Hot Plug” function.  
As stated previously, the RS-485 specification requires that  
drivers survive worst case bus contentions undamaged. These  
drivers meet this requirement, for V 3.6V, via driver output  
CC  
short-circuit current limits and on-chip thermal shutdown  
circuitry.  
The driver output stages incorporate short-circuit current limiting  
circuitry, which ensures that the output current never exceeds the  
During power-up, circuitry monitoring V ensures that the Tx  
CC  
outputs remain disabled for a period of time, regardless of the state  
of DE. This gives the processor/ASIC a chance to stabilize and drive  
the RS-485 control lines to the proper states.  
RS-485 specification, for V 3.6V, even at the common-mode  
CC  
voltage range extremes. Additionally, these devices utilize a  
foldback circuit which reduces the short-circuit current and thus  
the power dissipation, whenever the contending voltage exceeds  
ESD Protection  
either V or GND.  
CC  
All pins on these devices include class 3 (8kV) Human Body  
Model (HBM) ESD protection structures, but the RS-485 pins  
(driver outputs) incorporate advanced structures allowing them  
to survive ESD events in excess of ±16.5kV HBM and ±7kV to  
the IEC61000 contact test method. The RS-485 pins are  
particularly vulnerable to ESD damage because they typically  
connect to an exposed port on the exterior of the finished  
product. Simply touching the port pins, or connecting a cable,  
can cause an ESD event that might destroy unprotected ICs.  
These new ESD structures protect the device whether or not it is  
powered up and without degrading the RS-485 common-mode  
range of -7V to +12V. This built-in ESD protection eliminates the  
need for board level protection structures (such as transient  
suppression diodes) and the associated, undesirable capacitive  
load they present.  
In the event of a major short-circuit condition, devices also include  
a thermal shutdown feature that disables the drivers whenever the  
die temperature becomes excessive. This eliminates the power  
dissipation, allowing the die to cool. The drivers automatically  
reenable after the die temperature drops about +20°C. If the  
contention persists, the thermal shutdown/reenable cycle repeats  
until the fault is cleared.  
At V > 3.6V, the instantaneous short-circuit current is high  
CC  
enough that output stage damage can occur during short-circuit  
conditions to voltages outside of GND to V , before the  
CC  
short-circuit limiting and thermal shutdown activate. For  
V
= 5V operation, if output short-circuits are a possibility (for  
CC  
example, due to bus contention), it is recommended that a 5Ω  
resistor be inserted in series with each output. This resistor limits  
the instantaneous current below levels that can cause damage.  
Data Rate, Cables and Terminations  
The driver V at V = 5V is so large that this small added  
resistance has little impact.  
OD CC  
The length of RS-485/RS-422 networks operating at 20Mbps is  
limited to less than 100'. Twisted pair is the cable of choice for  
RS-485/RS-422 networks. Twisted pair cables tend to pick up  
noise and other electromagnetically induced voltages as  
common-mode signals, which are effectively rejected by the  
differential receivers in these ICs.  
High Temperature Operation  
Due to power dissipation and instantaneous output short-circuit  
current levels at V = 5V, these transmitters may not be  
CC  
operated at +125°C with V > 3.6V.  
CC  
Proper termination is imperative to minimize reflections. In  
point-to-point, or point-to-multipoint (single driver on bus)  
networks, the main cable should be terminated in its  
characteristic impedance (typically 120Ω) at the end farthest  
from the driver. In multireceiver applications, stubs connecting  
receivers to the main cable should be kept as short as possible.  
Multipoint (multidriver) systems require that the main cable be  
terminated in its characteristic impedance at both ends. Stubs  
connecting a transmitter or receiver to the main cable should be  
kept as short as possible.  
At V = 3.6V, even the SOT-23 versions may be operated at  
CC  
+125°C, while driving a 100’, double terminated, CAT 5 cable at  
20Mbps, without triggering the thermal SHDN circuit.  
Low Power Shutdown Mode  
These BiCMOS transmitters all use a fraction of the power  
required by their bipolar counterparts, but they also include a  
shutdown feature that reduces the already low quiescent I to a  
CC  
1µA trickle. These devices enter shutdown whenever the driver  
disables (DE = GND).  
FN6544 Rev.4.00  
Oct 9, 2019  
Page 10 of 17  
ISL3295E, ISL3298E  
Typical Performance Curves  
V
= V = 3.3V, T = +25°C, unless otherwise specified.  
CC  
L
A
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
240  
220  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
R
= 100Ω  
DIFF  
VCC = 5V  
R
= 54Ω  
DIFF  
VCC = 3.3V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
-40  
10  
60  
TEMPERATURE (°C)  
110 125  
-15  
35  
85  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
FIGURE 9. DRIVER OUTPUT CURRENT vs DIFFERENTIAL OUTPUT  
VOLTAGE  
FIGURE 10. DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs  
TEMPERATURE  
40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
CC  
= 3.3V  
35  
30  
25  
20  
15  
10  
5
V
= 3.3V  
L
V
= 2.5V  
L
V
≤ 2V  
3
L
DE = V  
85  
= V  
L
CC  
0
0
0
1
2
4
5
6
7
7.5  
-40  
10  
60  
TEMPERATURE (°C)  
110 125  
-15  
35  
DI VOLTAGE (V)  
FIGURE 11. SUPPLY CURRENT vs TEMPERATURE  
FIGURE 12. V SUPPLY CURRENT vs LOGIC PIN VOLTAGE  
L
50  
45  
40  
35  
30  
25  
20  
4.5  
4.0  
3.5  
3.0  
V
= 1.35V, t  
DDLH  
L
V
= 1.35V, t  
DDHL  
L
V
= 1.5V, t  
, t  
DDLH DDHL  
L
V
= 1.35V  
= 1.5V  
L
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 1.8V, t  
, t  
L
DDLH DDHL  
V
L
V
= V , t  
, t  
L
CC DDLH DDHL  
V
≥ 1.8V  
35  
L
-40  
-15  
10  
35  
60  
85  
110 125  
-40  
-15  
10  
60  
85  
110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 13. DRIVER DIFFERENTIAL PROPAGATION DELAY vs  
TEMPERATURE  
FIGURE 14. DRIVER DIFFERENTIAL SKEW vs TEMPERATURE  
FN6544 Rev.4.00  
Oct 9, 2019  
Page 11 of 17  
ISL3295E, ISL3298E  
V
= V = 3.3V, T = +25°C, unless otherwise specified. (Continued)  
CC  
L
A
200  
150  
100  
50  
6
5
4
3
2
1
0
V
= 1.35V  
L
V
= 1.5V  
Y OR Z = LOW  
L
0
V
≥ 1.8V  
L
-50  
-100  
-150  
Y OR Z = HIGH  
-7 -6  
-4  
-2  
0
2
4
6
8
10  
12  
-40  
-15  
10  
35  
60  
85  
110 125  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
FIGURE 16. DRIVER OUTPUT CURRENT vs SHORT-CIRCUIT  
VOLTAGE  
FIGURE 15. DRIVER SINGLE-ENDED SKEW vs TEMPERATURE  
R
= 54Ω, C = 50pF  
R
= 54Ω, C = 50pF  
DIFF D  
DIFF  
D
3
0
3
0
DI  
Z
DI  
Y
3.0  
1.5  
3.0  
1.5  
Y
Z
0
0
3
2
3
2
1
1
Y - Z  
Y - Z  
0
0
-1  
-2  
-3  
-1  
-2  
-3  
TIME (10ns/DIV)  
TIME (10ns/DIV)  
FIGURE 18. DRIVER WAVEFORMS, HIGH-TO-LOW  
FIGURE 17. DRIVER WAVEFORMS, LOW-TO-HIGH  
V
= 1.35V  
R
= 54Ω C = 50pF  
V
= 1.35V  
DI  
R
= 54Ω, C = 50pF  
DIFF D  
L
DIFF  
D
L
3
0
3
0
DI  
3.0  
1.5  
3.0  
1.5  
Z
Y
Y
Z
0
0
3
2
3
2
1
1
Y - Z  
0
0
Y - Z  
-1  
-2  
-3  
-1  
-2  
-3  
TIME (10ns/DIV)  
TIME (10ns/DIV)  
FIGURE 19. DRIVER WAVEFORMS, LOW-TO-HIGH  
FIGURE 20. DRIVER WAVEFORMS, HIGH-TO-LOW  
FN6544 Rev.4.00  
Oct 9, 2019  
Page 12 of 17  
ISL3295E, ISL3298E  
Die Characteristics  
SUBSTRATE AND TDFN THERMAL PAD POTENTIAL  
(POWERED UP):  
GND  
TRANSISTOR COUNT:  
516  
PROCESS:  
Si Gate BiCMOS  
FN6544 Rev.4.00  
Oct 9, 2019  
Page 13 of 17  
ISL3295E, ISL3298E  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make sure that  
you have the latest revision.  
DATE  
REVISION  
FN6544.4  
CHANGE  
Oct 9, 2019  
Updated links throughout.  
Removed ISL3293E, ISL3294E, ISL3296E, and ISL3297E information from document.  
Updated Pin Configuration diagrams  
Updated ordering information table by adding tape and reel quantity column and updating notes.  
Updated Figure 9.  
Removed About Intersil section  
Updated Disclaimer.  
Sep 25, 2015  
Jul 27, 2015  
FN6544.3  
FN6544.2  
On page 1, table 1, for ISL3293E entry, added "Recommended replacement: ISL32613E" after "No longer  
available or supported". For ISL3294E entry, added "Recommended replacement: ISL32614E" after "No  
longer available or supported".  
On page 3, "Ordering Information" table, for ISL3293E entries (rows 1 and 2), added "Recommended  
replacement: ISL32613E" after "No longer available or supported". For ISL3294E entries (rows 3 and 4),  
added "Recommended replacement: ISL32614E" after "No longer available or supported".  
Table 1 Summary of Features on page 1, added “No longer available or supported” to ISL3293E, ISL3294E,  
ISL3296E, ISL3297E.  
Ordering Information table on page 3, added “No longer available or supported” to the following parts:  
ISL3293E and ISL3294E (1st 4 rows) and to ISL3296E and ISL3297E (rows 7-10).  
Electrical Spec table, added “(Parts no longer available or supported)” to DRIVER SWITCHING  
CHARACTERISTICS sections on page 6 (for parts ISL3293E, ISL3296E and ISL3294E, ISL3297E).  
POD on page 16, updated from ref 1 to rev 2. Changes since rev 1:  
Tiebar Note updated  
From: Tiebar shown (if present) is a non-functional feature.  
To: Tiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends).  
Dec 11, 2014  
Sep 19, 2007  
FN6544.1  
FN6544.0  
Updated entire datasheet to Intersil new standard.  
Added text in several places to clarify that VL can be connected to Vcc.  
Updated PODs P6.064 and L8.2x3A to latest revisions with changes as follows:  
Updated to new POD format by removing table listing dimensions and moving dimensions onto drawing.  
Added Typical Recommended Land Pattern.  
Initial Release.  
FN6544 Rev.4.00  
Oct 9, 2019  
Page 14 of 17  
ISL3295E, ISL3298E  
For the most recent package outline drawing, see P6.064.  
Package Outline Drawings  
P6.064  
6 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE  
Rev 4, 2/10  
0-8°  
1.90  
0.95  
0.08-0.22  
D
A
6
5
4
1.60 +0.15/-0.10  
2.80  
3
3
(0.60)  
PIN 1  
INDEX AREA  
1
2
3
0.20  
2x  
C
SEE DETAIL X  
END VIEW  
B
0.40 ±0.10  
0.20 M  
3
A-B  
C
D
TOP VIEW  
10° TYP  
(2 PLCS)  
3
2.90 ±0.10  
(0.25)  
GAUGE  
PLANE  
1.45 MAX  
1.15 +0.15/-0.25  
C
0.10  
C
SEATING PLANE  
0.00-0.15  
0.45±0.1  
4
SIDE VIEW  
DETAIL "X"  
(0.95)  
(0.60)  
(1.20)  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
(2.40)  
2. Dimensioning and tolerancing conform to ASME Y14.5M-1994.  
3. Dimension is exclusive of mold flash, protrusions or gate burrs.  
4. Foot length is measured at reference to guage plane.  
Package conforms to JEDEC MO-178AB.  
5.  
TYPICAL RECOMMENDED LAND PATTERN  
FN6544 Rev.4.00  
Oct 9, 2019  
Page 15 of 17  
ISL3295E, ISL3298E  
L8.2x3A  
For the most recent package outline drawing, see L8.2x3A.  
8 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE WITH E-PAD  
Rev 2, 05/15  
6
0.25  
2.00  
PIN #1 INDEX AREA  
A
B
0.50  
6
PIN 1  
INDEX AREA  
(4X)  
0.15  
(8x0.40)  
1.65 +0.1/ -0.15  
TOP VIEW  
BOTTOM VIEW  
(8x0.25)  
PACKAGE  
OUTLINE  
(6x0.50)  
SEE DETAIL "X"  
C
BASE PLANE  
SEATING PLANE  
0.05  
0.08 C  
SIDE VIEW  
5
0.20 REF  
(8x0.40)  
(8x0.20)  
C
1.65  
2.00  
0.05  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.20mm and 0.32mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature and may  
be located on any of the 4 sides (or ends).  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
FN6544 Rev.4.00  
Oct 9, 2019  
Page 16 of 17  
1RWLFH  
ꢃꢅ 'HVFULSWLRQVꢀRIꢀFLUFXLWVꢆꢀVRIWZDUHꢀDQGꢀRWKHUꢀUHODWHGꢀLQIRUPDWLRQꢀLQꢀWKLVꢀGRFXPHQWꢀDUHꢀSURYLGHGꢀRQO\ꢀWRꢀLOOXVWUDWHꢀWKHꢀRSHUDWLRQꢀRIꢀVHPLFRQGXFWRUꢀSURGXFWVꢀ  
DQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ<RXꢀDUHꢀIXOO\ꢀUHVSRQVLEOHꢀIRUꢀWKHꢀLQFRUSRUDWLRQꢀRUꢀDQ\ꢀRWKHUꢀXVHꢀRIꢀWKHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀDQGꢀLQIRUPDWLRQꢀLQꢀWKHꢀGHVLJQꢀRIꢀ\RXUꢀ  
SURGXFWꢀRUꢀV\VWHPꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀDQGꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ  
WKHVHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀRUꢀLQIRUPDWLRQꢅ  
ꢁꢅ 5HQHVDVꢀ(OHFWURQLFVꢀKHUHE\ꢀH[SUHVVO\ꢀGLVFODLPVꢀDQ\ꢀZDUUDQWLHVꢀDJDLQVWꢀDQGꢀOLDELOLW\ꢀIRUꢀLQIULQJHPHQWꢀRUꢀDQ\ꢀRWKHUꢀFODLPVꢀLQYROYLQJꢀSDWHQWVꢆꢀFRS\ULJKWVꢆꢀRUꢀ  
RWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀWKLUGꢀSDUWLHVꢆꢀE\ꢀRUꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRUꢀWHFKQLFDOꢀLQIRUPDWLRQꢀGHVFULEHGꢀLQꢀWKLVꢀ  
GRFXPHQWꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢆꢀWKHꢀSURGXFWꢀGDWDꢆꢀGUDZLQJVꢆꢀFKDUWVꢆꢀSURJUDPVꢆꢀDOJRULWKPVꢆꢀDQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ  
ꢇꢅ 1RꢀOLFHQVHꢆꢀH[SUHVVꢆꢀLPSOLHGꢀRUꢀRWKHUZLVHꢆꢀLVꢀJUDQWHGꢀKHUHE\ꢀXQGHUꢀDQ\ꢀSDWHQWVꢆꢀFRS\ULJKWVꢀRUꢀRWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀRUꢀ  
RWKHUVꢅ  
ꢈꢅ <RXꢀVKDOOꢀQRWꢀDOWHUꢆꢀPRGLI\ꢆꢀFRS\ꢆꢀRUꢀUHYHUVHꢀHQJLQHHUꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢆꢀZKHWKHUꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀ  
DQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀRUꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀVXFKꢀDOWHUDWLRQꢆꢀPRGLILFDWLRQꢆꢀFRS\LQJꢀRUꢀUHYHUVHꢀHQJLQHHULQJꢅ  
ꢉꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀFODVVLILHGꢀDFFRUGLQJꢀWRꢀWKHꢀIROORZLQJꢀWZRꢀTXDOLW\ꢀJUDGHVꢊꢀꢋ6WDQGDUGꢋꢀDQGꢀꢋ+LJKꢀ4XDOLW\ꢋꢅꢀ7KHꢀLQWHQGHGꢀDSSOLFDWLRQVꢀIRUꢀ  
HDFKꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀGHSHQGVꢀRQꢀWKHꢀSURGXFWꢌVꢀTXDOLW\ꢀJUDGHꢆꢀDVꢀLQGLFDWHGꢀEHORZꢅ  
ꢋ6WDQGDUGꢋꢊ  
&RPSXWHUVꢍꢀRIILFHꢀHTXLSPHQWꢍꢀFRPPXQLFDWLRQVꢀHTXLSPHQWꢍꢀWHVWꢀDQGꢀPHDVXUHPHQWꢀHTXLSPHQWꢍꢀDXGLRꢀDQGꢀYLVXDOꢀHTXLSPHQWꢍꢀKRPHꢀ  
HOHFWURQLFꢀDSSOLDQFHVꢍꢀPDFKLQHꢀWRROVꢍꢀSHUVRQDOꢀHOHFWURQLFꢀHTXLSPHQWꢍꢀLQGXVWULDOꢀURERWVꢍꢀHWFꢅ  
ꢋ+LJKꢀ4XDOLW\ꢋꢊ 7UDQVSRUWDWLRQꢀHTXLSPHQWꢀꢎDXWRPRELOHVꢆꢀWUDLQVꢆꢀVKLSVꢆꢀHWFꢅꢏꢍꢀWUDIILFꢀFRQWUROꢀꢎWUDIILFꢀOLJKWVꢏꢍꢀODUJHꢐVFDOHꢀFRPPXQLFDWLRQꢀHTXLSPHQWꢍꢀNH\ꢀ  
ILQDQFLDOꢀWHUPLQDOꢀV\VWHPVꢍꢀVDIHW\ꢀFRQWUROꢀHTXLSPHQWꢍꢀHWFꢅ  
8QOHVVꢀH[SUHVVO\ꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀSURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀQRWꢀLQWHQGHGꢀRUꢀDXWKRUL]HGꢀIRUꢀXVHꢀLQꢀSURGXFWVꢀRUꢀV\VWHPVꢀWKDWꢀPD\ꢀSRVHꢀDꢀGLUHFWꢀWKUHDWꢀWRꢀ  
KXPDQꢀOLIHꢀRUꢀERGLO\ꢀLQMXU\ꢀꢎDUWLILFLDOꢀOLIHꢀVXSSRUWꢀGHYLFHVꢀRUꢀV\VWHPVꢍꢀVXUJLFDOꢀLPSODQWDWLRQVꢍꢀHWFꢅꢏꢆꢀRUꢀPD\ꢀFDXVHꢀVHULRXVꢀSURSHUW\ꢀGDPDJHꢀꢎVSDFHꢀV\VWHPꢍꢀ  
XQGHUVHDꢀUHSHDWHUVꢍꢀQXFOHDUꢀSRZHUꢀFRQWUROꢀV\VWHPVꢍꢀDLUFUDIWꢀFRQWUROꢀV\VWHPVꢍꢀNH\ꢀSODQWꢀV\VWHPVꢍꢀPLOLWDU\ꢀHTXLSPHQWꢍꢀHWFꢅꢏꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀ  
DQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀGDPDJHVꢀRUꢀORVVHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀDQ\ꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀWKDWꢀLVꢀ  
LQFRQVLVWHQWꢀZLWKꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢆꢀXVHUꢌVꢀPDQXDOꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢅ  
ꢑꢅ :KHQꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀUHIHUꢀWRꢀWKHꢀODWHVWꢀSURGXFWꢀLQIRUPDWLRQꢀꢎGDWDꢀVKHHWVꢆꢀXVHUꢌVꢀPDQXDOVꢆꢀDSSOLFDWLRQꢀQRWHVꢆꢀꢋ*HQHUDOꢀ1RWHVꢀIRUꢀ  
+DQGOLQJꢀDQGꢀ8VLQJꢀ6HPLFRQGXFWRUꢀ'HYLFHVꢋꢀLQꢀWKHꢀUHOLDELOLW\ꢀKDQGERRNꢆꢀHWFꢅꢏꢆꢀDQGꢀHQVXUHꢀWKDWꢀXVDJHꢀFRQGLWLRQVꢀDUHꢀZLWKLQꢀWKHꢀUDQJHVꢀVSHFLILHGꢀE\ꢀ  
5HQHVDVꢀ(OHFWURQLFVꢀZLWKꢀUHVSHFWꢀWRꢀPD[LPXPꢀUDWLQJVꢆꢀRSHUDWLQJꢀSRZHUꢀVXSSO\ꢀYROWDJHꢀUDQJHꢆꢀKHDWꢀGLVVLSDWLRQꢀFKDUDFWHULVWLFVꢆꢀLQVWDOODWLRQꢆꢀHWFꢅꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀPDOIXQFWLRQVꢆꢀIDLOXUHꢀRUꢀDFFLGHQWꢀDULVLQJꢀRXWꢀRIꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRXWVLGHꢀRIꢀVXFKꢀ  
VSHFLILHGꢀUDQJHVꢅ  
ꢒꢅ $OWKRXJKꢀ5HQHVDVꢀ(OHFWURQLFVꢀHQGHDYRUVꢀWRꢀLPSURYHꢀWKHꢀTXDOLW\ꢀDQGꢀUHOLDELOLW\ꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVHPLFRQGXFWRUꢀSURGXFWVꢀKDYHꢀVSHFLILFꢀ  
FKDUDFWHULVWLFVꢆꢀVXFKꢀDVꢀWKHꢀRFFXUUHQFHꢀRIꢀIDLOXUHꢀDWꢀDꢀFHUWDLQꢀUDWHꢀDQGꢀPDOIXQFWLRQVꢀXQGHUꢀFHUWDLQꢀXVHꢀFRQGLWLRQVꢅꢀ8QOHVVꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀ  
SURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀ  
DUHꢀQRWꢀVXEMHFWꢀWRꢀUDGLDWLRQꢀUHVLVWDQFHꢀGHVLJQꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀLPSOHPHQWLQJꢀVDIHW\ꢀPHDVXUHVꢀWRꢀJXDUGꢀDJDLQVWꢀWKHꢀSRVVLELOLW\ꢀRIꢀERGLO\ꢀLQMXU\ꢆꢀ  
LQMXU\ꢀRUꢀGDPDJHꢀFDXVHGꢀE\ꢀILUHꢆꢀDQGꢓRUꢀGDQJHUꢀWRꢀWKHꢀSXEOLFꢀLQꢀWKHꢀHYHQWꢀRIꢀDꢀIDLOXUHꢀRUꢀPDOIXQFWLRQꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVXFKꢀDVꢀVDIHW\ꢀ  
GHVLJQꢀIRUꢀKDUGZDUHꢀDQGꢀVRIWZDUHꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢀUHGXQGDQF\ꢆꢀILUHꢀFRQWUROꢀDQGꢀPDOIXQFWLRQꢀSUHYHQWLRQꢆꢀDSSURSULDWHꢀWUHDWPHQWꢀIRUꢀDJLQJꢀ  
GHJUDGDWLRQꢀRUꢀDQ\ꢀRWKHUꢀDSSURSULDWHꢀPHDVXUHVꢅꢀ%HFDXVHꢀWKHꢀHYDOXDWLRQꢀRIꢀPLFURFRPSXWHUꢀVRIWZDUHꢀDORQHꢀLVꢀYHU\ꢀGLIILFXOWꢀDQGꢀLPSUDFWLFDOꢆꢀ\RXꢀDUHꢀ  
UHVSRQVLEOHꢀIRUꢀHYDOXDWLQJꢀWKHꢀVDIHW\ꢀRIꢀWKHꢀILQDOꢀSURGXFWVꢀRUꢀV\VWHPVꢀPDQXIDFWXUHGꢀE\ꢀ\RXꢅ  
ꢔꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀIRUꢀGHWDLOVꢀDVꢀWRꢀHQYLURQPHQWDOꢀPDWWHUVꢀVXFKꢀDVꢀWKHꢀHQYLURQPHQWDOꢀFRPSDWLELOLW\ꢀRIꢀHDFKꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀFDUHIXOO\ꢀDQGꢀVXIILFLHQWO\ꢀLQYHVWLJDWLQJꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢀWKDWꢀUHJXODWHꢀWKHꢀLQFOXVLRQꢀRUꢀXVHꢀRIꢀ  
FRQWUROOHGꢀVXEVWDQFHVꢆꢀLQFOXGLQJꢀZLWKRXWꢀOLPLWDWLRQꢆꢀWKHꢀ(8ꢀ5R+6ꢀ'LUHFWLYHꢆꢀDQGꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀLQꢀFRPSOLDQFHꢀZLWKꢀDOOꢀWKHVHꢀ  
DSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀGDPDJHVꢀRUꢀORVVHVꢀRFFXUULQJꢀDVꢀDꢀUHVXOWꢀRIꢀ\RXUꢀQRQFRPSOLDQFHꢀ  
ZLWKꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅ  
ꢄꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDQGꢀWHFKQRORJLHVꢀVKDOOꢀQRWꢀEHꢀXVHGꢀIRUꢀRUꢀLQFRUSRUDWHGꢀLQWRꢀDQ\ꢀSURGXFWVꢀRUꢀV\VWHPVꢀZKRVHꢀPDQXIDFWXUHꢆꢀXVHꢆꢀRUꢀVDOHꢀLVꢀ  
SURKLELWHGꢀXQGHUꢀDQ\ꢀDSSOLFDEOHꢀGRPHVWLFꢀRUꢀIRUHLJQꢀODZVꢀRUꢀUHJXODWLRQVꢅꢀ<RXꢀVKDOOꢀFRPSO\ꢀZLWKꢀDQ\ꢀDSSOLFDEOHꢀH[SRUWꢀFRQWUROꢀODZVꢀDQGꢀUHJXODWLRQVꢀ  
SURPXOJDWHGꢀDQGꢀDGPLQLVWHUHGꢀE\ꢀWKHꢀJRYHUQPHQWVꢀRIꢀDQ\ꢀFRXQWULHVꢀDVVHUWLQJꢀMXULVGLFWLRQꢀRYHUꢀWKHꢀSDUWLHVꢀRUꢀWUDQVDFWLRQVꢅ  
ꢃꢂꢅ ,WꢀLVꢀWKHꢀUHVSRQVLELOLW\ꢀRIꢀWKHꢀEX\HUꢀRUꢀGLVWULEXWRUꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀRUꢀDQ\ꢀRWKHUꢀSDUW\ꢀZKRꢀGLVWULEXWHVꢆꢀGLVSRVHVꢀRIꢆꢀRUꢀRWKHUZLVHꢀVHOOVꢀRUꢀ  
WUDQVIHUVꢀWKHꢀSURGXFWꢀWRꢀDꢀWKLUGꢀSDUW\ꢆꢀWRꢀQRWLI\ꢀVXFKꢀWKLUGꢀSDUW\ꢀLQꢀDGYDQFHꢀRIꢀWKHꢀFRQWHQWVꢀDQGꢀFRQGLWLRQVꢀVHWꢀIRUWKꢀLQꢀWKLVꢀGRFXPHQWꢅ  
ꢃꢃꢅ 7KLVꢀGRFXPHQWꢀVKDOOꢀQRWꢀEHꢀUHSULQWHGꢆꢀUHSURGXFHGꢀRUꢀGXSOLFDWHGꢀLQꢀDQ\ꢀIRUPꢆꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢆꢀZLWKRXWꢀSULRUꢀZULWWHQꢀFRQVHQWꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢃꢁꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀLIꢀ\RXꢀKDYHꢀDQ\ꢀTXHVWLRQVꢀUHJDUGLQJꢀWKHꢀLQIRUPDWLRQꢀFRQWDLQHGꢀLQꢀWKLVꢀGRFXPHQWꢀRUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWVꢅ  
ꢎ1RWHꢃꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢋꢀDVꢀXVHGꢀLQꢀWKLVꢀGRFXPHQWꢀPHDQVꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢀDQGꢀDOVRꢀLQFOXGHVꢀLWVꢀGLUHFWO\ꢀRUꢀLQGLUHFWO\ꢀFRQWUROOHGꢀ  
VXEVLGLDULHVꢅ  
ꢎ1RWHꢁꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢎVꢏꢋꢀPHDQVꢀDQ\ꢀSURGXFWꢀGHYHORSHGꢀRUꢀPDQXIDFWXUHGꢀE\ꢀRUꢀIRUꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢎ5HYꢅꢈꢅꢂꢐꢃꢀꢀ1RYHPEHUꢀꢁꢂꢃꢒꢏ  
Corporate Headquarters  
ContactInformation
TOYOSU FORESIA, 3-2-24 Toyosu,  
For further information on a product, technology, the most up-to-date  
Koto-ku, Tokyo 135-0061, Japan  
www.renesas.com  
version of a document, or your nearest sales office, please visit:  
www.renesas.com/contact/  
Trademarks  
Renesas and the Renesas logo are trademarks of Renesas Electronics  
Corporation. All trademarks and registered trademarks are the property  
of their respective owners.  
‹ꢀꢁꢂꢃꢄꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢅꢀ$OOꢀULJKWVꢀUHVHUYHGꢅ  

相关型号:

ISL3295EIHZ-T7A

±16.5kV ESD Protected, +125&deg;C, 3.0V to 5.5V, SOT-23/TDFN Packaged, Low Power, RS-485/RS-422 Transmitters
RENESAS

ISL3296E

【16.5kV ESD Protected, +125∑C, 3.0V to 5.5V, SOT-23/TDFN Packaged, Low Power, RS-485/RS-422 Transmitters
INTERSIL

ISL3296EFRTZ-

Line Driver/Receiver
RENESAS

ISL3296EFRTZ-T

【16.5kV ESD Protected, +125∑C, 3.0V to 5.5V, SOT-23/TDFN Packaged, Low Power, RS-485/RS-422 Transmitters
INTERSIL

ISL3296EIRTZ-T

【16.5kV ESD Protected, +125∑C, 3.0V to 5.5V, SOT-23/TDFN Packaged, Low Power, RS-485/RS-422 Transmitters
INTERSIL

ISL3297E

【16.5kV ESD Protected, +125∑C, 3.0V to 5.5V, SOT-23/TDFN Packaged, Low Power, RS-485/RS-422 Transmitters
INTERSIL

ISL3297EFRTZ-

ISL3297EFRTZ-
RENESAS

ISL3297EFRTZ-T

【16.5kV ESD Protected, +125∑C, 3.0V to 5.5V, SOT-23/TDFN Packaged, Low Power, RS-485/RS-422 Transmitters
INTERSIL

ISL3297EIRTZ-T

【16.5kV ESD Protected, +125∑C, 3.0V to 5.5V, SOT-23/TDFN Packaged, Low Power, RS-485/RS-422 Transmitters
INTERSIL

ISL3297EIRTZ-T

LINE DRIVER, PDSO8, 2 X 3 MM, ROHS COMPLIANT, PLASTIC, TDFN-8
RENESAS

ISL3298E

【16.5kV ESD Protected, +125∑C, 3.0V to 5.5V, SOT-23/TDFN Packaged, Low Power, RS-485/RS-422 Transmitters
INTERSIL

ISL3298EFRTZ-T

【16.5kV ESD Protected, +125∑C, 3.0V to 5.5V, SOT-23/TDFN Packaged, Low Power, RS-485/RS-422 Transmitters
INTERSIL