ISL60002CIH310Z-TK [RENESAS]

Precision Low Power FGA Voltage References; SOT3; Temp Range: -40° to 85°C;
ISL60002CIH310Z-TK
型号: ISL60002CIH310Z-TK
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Precision Low Power FGA Voltage References; SOT3; Temp Range: -40° to 85°C

光电二极管
文件: 总40页 (文件大小:2447K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL60002  
Precision Low Power FGA Voltage References  
FN8082  
Rev.23.01  
Oct 16, 2019  
The ISL60002 FGA voltage references are very high precision  
analog voltage references fabricated using the Renesas  
proprietary Floating Gate Analog (FGA) technology and feature  
low supply voltage operation at ultra-low 350nA operating  
current.  
Features  
• Reference voltages . . . . . 1.024V, 1.2V, 1.25V, 1.8V, 2.048V,  
2.5V, 2.6V, 3.0V, and 3.3V  
• Absolute initial accuracy options . . . . . . . . .±1.0mV,±2.5mV,  
and ±5.0mV  
Additionally, the ISL60002 family features ensured initial  
accuracy as low as ±1.0mV and 20ppm/°C temperature  
coefficient. The initial accuracy and temperature stability  
performance of the ISL60002 family, plus the low supply  
voltage and 350nA power consumption, eliminates the need  
to compromise thermal stability for reduced power  
consumption, making it an ideal companion to high resolution,  
low power data conversion systems.  
• Supply voltage range  
- ISL60002-10, -11, -12, -18, -20, -25 . . . . . . . . 2.7V to 5.5V  
- ISL60002-26 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8V to 5.5V  
- ISL60002-30 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2V to 5.5V  
- ISL60002-33 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5V to 5.5V  
• Ultra-low supply current. . . . . . . . . . . . . . . . . . . . . . .350nA typ  
• Low 20ppm/°C temperature coefficient  
Special Note: Post-assembly x-ray inspection can lead to  
permanent changes in device output voltage and should be  
minimized or avoided. For further information, please see  
“Applications Information” on page 34 and AN1533, “X-Ray  
Effects on FGA References”.  
• I  
• I  
and I  
= 7mA  
SINK  
SOURCE  
and I  
= 20mA for ISL60002-33 only  
SOURCE  
SINK  
• ESD protection . . . . . . . . . . . . . . . 5.5kV (Human Body Model)  
• Standard 3 Ld SOT-23 packaging  
Applications  
• High resolution A/Ds and D/As  
• Digital meters  
• Operating temperature range  
- ISL60002-10, -11, -12, -18, -20, -25,  
-26, -30 . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C  
• Bar code scanners  
- ISL60002-33 . . . . . . . . . . . . . . . . . . . . . . .-40°C to +105°C  
• Mobile communications  
• PDAs and notebooks  
• Medical systems  
• Pb-free (RoHS compliant)  
Related Literature  
For a full list of related documents, visit our website:  
ISL60002 device page  
V
= +3.0V  
IN  
0.1µF  
10µF  
V
IN  
V
OUT  
ISL60002-25  
= 2.50V  
0.001µF (see Note 1)  
V
OUT  
GND  
REF IN  
ENABLE  
SCK  
SERIAL  
BUS  
SDAT  
16 TO 24-BIT  
A/D CONVERTER  
NOTE:  
1. Also see Figure 118 on page 35 in Applications Information.  
FIGURE 1. TYPICAL APPLICATION  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 1 of 40  
ISL60002  
Table of Contents  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Environmental Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical Specifications ISL60002-10, V  
Electrical Specifications ISL60002-11, V  
Electrical Specifications ISL60002-12, V  
Electrical Specifications ISL60002-18, V  
Electrical Specifications ISL60002-20, V  
Electrical Specifications ISL60002-25, V  
Electrical Specifications ISL60002-26, V  
Electrical Specifications ISL60002-30, V  
Electrical Specifications ISL60002-33, V  
= 1.024V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
= 1.200V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
= 1.250V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
= 1.800V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
= 2.048V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
= 2.500V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
= 2.600V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
= 3.000V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
= 3.300V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
Common Electrical Specifications ISL60002 -10, -11, -12, -18, -20, and -25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Typical Performance Characteristic Curves, V  
Typical Performance Characteristic Curves, V  
Typical Performance Characteristic Curves, V  
= 1.024V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
= 1.20V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
= 1.25V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
OUT  
OUT  
OUT  
Typical Performance Curves, V  
Typical Performance Curves, V  
= 1.8V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
= 2.048V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
OUT  
OUT  
Typical Performance Characteristic Curves, V  
Typical Performance Characteristic Curves, V  
Typical Performance Characteristic Curves, V  
= 2.50V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
= 3.0V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
= 3.3V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
OUT  
OUT  
OUT  
High Current Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
FGA Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Nanopower Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Board Mounting Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Board Assembly Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Special Applications Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Noise Performance and Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Turn-On Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Temperature Coefficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 2 of 40  
ISL60002  
Pin Configuration  
Pin Descriptions  
3 LD SOT-23  
TOP VIEW  
PIN #  
PIN NAME  
DESCRIPTION  
1
2
3
V
IN  
Power Supply Input  
V
1
2
V
Voltage Reference Output  
Ground  
IN  
OUT  
GND  
3
GND  
V
OUT  
Ordering Information  
PART  
PART NUMBER  
(Notes 3, 4)  
MARKING  
(Note 5)  
V
(V)  
TEMP. RANGE  
(°C)  
TAPE AND REEL  
(UNITS) (Note 2)  
PACKAGE  
(RoHS COMPLIANT)  
PKG.  
DWG. #  
OUT  
GRADE  
ISL60002BIH310Z-T7A  
ISL60002BIH310Z-TK  
ISL60002CIH310Z-TK  
ISL60002DIH310Z-T7A  
ISL60002DIH310Z-TK  
ISL60002BIH311Z-TK  
ISL60002CIH311Z-TK  
ISL60002DIH311Z-TK  
ISL60002BIH312Z-TK  
ISL60002CIH312Z-TK  
ISL60002DIH312Z-T7A  
ISL60002DIH312Z-TK  
ISL60002BIH318Z-TK  
ISL60002CIH318Z-TK  
ISL60002DIH318Z-TK  
ISL60002BIH320Z-T7A  
ISL60002BIH320Z-TK  
ISL60002CIH320Z-TK  
ISL60002DIH320Z-TK  
ISL60002BIH325Z-T7A  
ISL60002BIH325Z-TK  
ISL60002CIH325Z-T7A  
ISL60002CIH325Z-TK  
ISL60002DIH325Z-T7A  
ISL60002DIH325Z-TK  
ISL60002BIH326Z-TK  
ISL60002CIH326Z-TK  
ISL60002DIH326Z-TK  
DFB  
DFB  
DFC  
DFD  
DFD  
APM  
AOR  
AOY  
AOM  
AOS  
APA  
APA  
DEO  
DEP  
DEQ  
DEY  
DEY  
DEZ  
DFA  
AON  
AON  
AOT  
AOT  
APB  
APB  
DFK  
DFL  
DFM  
1.024  
1.024  
1.024  
1.024  
1.024  
1.200  
1.200  
1.200  
1.250  
1.250  
1.250  
1.250  
1.800  
1.800  
1.800  
2.048  
2.048  
2.048  
2.048  
2.500  
2.500  
2.500  
2.500  
2.500  
2.500  
2.600  
2.600  
2.600  
±1.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
250  
1k  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
1k  
250  
1k  
1k  
1k  
1k  
1k  
1k  
250  
1k  
1k  
1k  
1k  
250  
1k  
1k  
1k  
250  
1k  
250  
1k  
250  
1k  
1k  
1k  
1k  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 3 of 40  
ISL60002  
Ordering Information(Continued)  
PART  
PART NUMBER  
(Notes 3, 4)  
MARKING  
(Note 5)  
V
(V)  
TEMP. RANGE  
(°C)  
TAPE AND REEL  
(UNITS) (Note 2)  
PACKAGE  
(RoHS COMPLIANT)  
PKG.  
DWG. #  
OUT  
GRADE  
ISL60002BIH330Z-TK  
ISL60002CIH330Z-TK  
ISL60002DIH330Z-T7A  
ISL60002DIH330Z-TK  
ISL60002BAH333Z-T7A  
ISL60002BAH333Z-TK  
ISL60002CAH333Z-TK  
ISL60002DAH333Z-T7A  
ISL60002DAH333Z-TK  
NOTES:  
DFI  
DFJ  
3.000  
3.000  
3.000  
3.000  
3.300  
3.300  
3.300  
3.300  
3.300  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±1.0mV, 20ppm/°C  
±2.5mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
±5.0mV, 20ppm/°C  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +105  
-40 to +105  
-40 to +105  
-40 to +105  
-40 to +105  
1k  
1k  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
3 Ld SOT-23  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
P3.064A  
DFH  
DFH  
AOP  
AOP  
AOU  
APC  
APC  
250  
1k  
250  
1k  
1k  
250  
1k  
2. See TB347 for details about reel specifications.  
3. These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate  
plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Pb-free products are  
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
4. For Moisture Sensitivity Level (MSL), see the ISL60002BIH310, ISL60002BIH311, ISL60002B12, ISL60002BIH318, ISL60002BIH320,  
ISL60002BIH326, ISL60002BIH330, ISL60002B25, ISL60002BAH333, ISL60002CIH310, ISL60002CIH311, ISL60002C12, ISL60002CIH318,  
ISL60002CIH320, ISL60002CIH326, ISL60002CIH330, ISL60002C25, ISL60002CAH333, ISL60002DIH310, ISL60002DIH311, ISL60002D12,  
ISL60002DIH318, ISL60002DIH320, ISL60002DIH326, ISL60002DIH330, ISL60002D25, ISL60002DAH333 device pages. For more information  
about MSL see TB363.  
5. The part marking is located on the bottom of the part.  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 4 of 40  
ISL60002  
Absolute Maximum Ratings  
Thermal Information  
Maximum Voltage V to GND. . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to +6.5V  
Thermal Resistance (Typical)  
3 Ld SOT-23 (Notes 7, 8) . . . . . . . . . . . . . . .  
θ
(°C/W)  
275  
θ
(°C/W)  
110  
IN  
JA  
JC  
Maximum Voltage V  
OUT  
to GND (10s) . . . . . . . . . . . . . . -0.5V to +V  
OUT + 1V  
Voltage on “DNC” Pins . . . . . . . . . .No connections permitted to these pins  
ESD Ratings  
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.5kV  
Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550V  
Charged Device Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2kV  
Continuous Power Dissipation (T = +85°C) . . . . . . . . . . . . . . . . . . .99mW  
A
Maximum Junction Temperature (Plastic Package) . . . . . . . . . . . .+107°C  
Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
Recommended Operating Conditions  
Temperature Range  
Environmental Operating Conditions  
X-Ray Exposure (Note 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mRem  
Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
3.3V Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +105°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions can adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
6. Measured with no filtering, distance of 10” from source, intensity set to 55kV and 70µA current, 30s duration. Other exposure levels should be  
analyzed for Output Voltage drift effects. See “Applications Information” on page 34.  
7. θ is measured with the component mounted on a high-effective thermal conductivity test board in free air. See TB379 for details.  
JA  
8. For θ , the “case temp” location is taken at the package top center.  
JC  
9. Post-reflow drift for the ISL60002 devices range from 100µV to 1.0mV based on experimental results with devices on FR4 double-sided boards. The  
design engineer must take this into account when considering the reference voltage after assembly.  
10. Post-assembly X-ray inspection can also lead to permanent changes in device output voltage and should be minimized or avoided. Initial accuracy  
can change 10mV or more under extreme radiation. Most inspection equipment does not affect the FGA reference voltage, but if X-ray inspection is  
required, it is advisable to monitor the reference output voltage to verify excessive shift has not occurred.  
Electrical Specifications ISL60002-10, V  
= 1.024V (Additional specifications on page 9, “Common Electrical  
OUT  
Specifications”). Operating conditions: V = 3.0V, I  
IN OUT  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply  
OUT A  
across the operating temperature range, -40°C to +85°C.  
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 11)  
TYP  
(Note 11)  
UNIT  
V
Output Voltage  
Accuracy (Notes 10, 12)  
V
1.024  
OUT  
V
V
T = +25°C  
A
OUT  
OA  
ISL60002B10  
ISL60002C10  
ISL60002D10  
-1.0  
-2.5  
-5.0  
2.7  
1.0  
2.5  
5.0  
5.5  
mV  
mV  
mV  
V
Input Voltage Range  
V
IN  
Electrical Specifications ISL60002-11, V  
= 1.200V (Additional specifications on page 9, “Common Electrical  
OUT  
Specifications”). Operating conditions: V = 3.0V, I  
IN OUT  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply  
OUT A  
across the operating temperature range, -40°C to +85°C.  
MIN  
MAX  
PARAMETER  
Output Voltage  
Accuracy (Note 12)  
SYMBOL  
TEST CONDITIONS  
(Note 11)  
TYP  
(Note 11)  
UNIT  
V
V
1.200  
OUT  
V
V
T = +25°C  
A
OUT  
OA  
ISL60002B11  
-1.0  
-2.5  
-5.0  
2.7  
1.0  
2.5  
5.0  
5.5  
mV  
mV  
mV  
V
ISL60002C11  
ISL60002D11  
Input Voltage Range  
V
IN  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 5 of 40  
ISL60002  
Electrical Specifications ISL60002-12, V  
= 1.250V (Additional specifications on page 9, “Common Electrical  
OUT  
Specifications”). Operating conditions: V = 3.0V, I  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply  
OUT A  
IN  
OUT  
across the operating temperature range, -40°C to +85°C.  
MIN  
MAX  
PARAMETER  
Output Voltage  
Accuracy (Note 12)  
SYMBOL  
TEST CONDITIONS  
(Note 11)  
TYP  
(Note 11)  
UNIT  
V
V
1.250  
OUT  
V
V
T = +25°C  
A
OUT  
OA  
ISL60002B12  
ISL60002C12  
ISL60002D12  
-1.0  
-2.5  
-5.0  
2.7  
1.0  
2.5  
5.0  
5.5  
mV  
mV  
mV  
V
Input Voltage Range  
V
IN  
Electrical Specifications ISL60002-18, V  
= 1.800V (Additional specifications on page 9, “Common Electrical  
OUT  
Specifications”). Operating conditions: V = 3.0V, I  
IN OUT  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply  
OUT A  
across the operating temperature range, -40°C to +85°C.  
MIN  
MAX  
PARAMETER  
Output Voltage  
Accuracy (Note 12)  
SYMBOL  
TEST CONDITIONS  
(Note 11)  
TYP  
(Note 11)  
UNIT  
V
V
1.800  
OUT  
V
V
T = +25°C  
A
OUT  
OA  
ISL60002B18  
-1.0  
-2.5  
-5.0  
2.7  
1.0  
2.5  
5.0  
5.5  
mV  
mV  
mV  
V
ISL60002C18  
ISL60002D18  
Input Voltage Range  
V
IN  
Electrical Specifications ISL60002-20, V  
= 2.048V (Additional specifications on page 9, “Common Electrical  
OUT  
Specifications”). Operating Conditions: V = 3.0V, I  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply  
IN OUT  
OUT A  
across the operating temperature range, -40°C to +85°C.  
MIN  
MAX  
PARAMETER  
Output Voltage  
Accuracy (Note 12)  
SYMBOL  
TEST CONDITIONS  
(Note 11)  
TYP  
(Note 11)  
UNIT  
V
V
2.048  
OUT  
V
V
T = +25°C  
A
OUT  
OA  
ISL60002B20  
-1.0  
-2.5  
-5.0  
2.7  
1.0  
2.5  
5.0  
5.5  
mV  
mV  
mV  
V
ISL60002C20  
ISL60002D20  
Input Voltage Range  
V
IN  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 6 of 40  
ISL60002  
Electrical Specifications ISL60002-25, V  
= 2.500V (Additional specifications on page 9, “Common Electrical  
OUT  
Specifications”). Operating conditions: V = 3.0V, I  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply  
OUT A  
IN  
OUT  
across the operating temperature range, -40°C to +85°C.  
MIN  
MAX  
PARAMETER  
Output Voltage  
Accuracy (Note 12)  
SYMBOL  
TEST CONDITIONS  
(Note 11)  
TYP  
(Note 11)  
UNIT  
V
V
2.500  
OUT  
V
V
T = +25°C  
A
OUT  
OA  
ISL60002B25  
ISL60002C25  
ISL60002D25  
-1.0  
-2.5  
-5.0  
2.7  
1.0  
2.5  
5.0  
5.5  
mV  
mV  
mV  
V
Input Voltage Range  
V
IN  
Electrical Specifications ISL60002-26, V  
OUT  
across the operating temperature range, -40°C to +85°C.  
= 2.600V (Additional specifications on page 9, “Common Electrical  
OUT  
Specifications”). Operating conditions: V = 3.0V, I  
IN  
= 0mA, C  
= 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply  
OUT A  
MIN  
MAX  
PARAMETER  
Output Voltage  
Accuracy (Note 12)  
SYMBOL  
TEST CONDITIONS  
(Note 11)  
TYP  
(Note 11)  
UNIT  
V
V
2.600  
OUT  
V
V
T = +25°C  
A
OUT  
OA  
ISL60002B26  
-1.0  
-2.5  
-5.0  
2.8  
1.0  
2.5  
5.0  
5.5  
20  
mV  
mV  
ISL60002C26  
ISL60002D26  
mV  
Input Voltage Range  
V
V
IN  
Output Voltage Temperature Coefficient  
(Note 12)  
TC V  
ppm/°C  
OUT  
Supply Current  
Line Regulation  
Load Regulation  
I
350  
80  
900  
350  
100  
250  
nA  
µV/V  
µV/mA  
µV/mA  
ppm  
IN  
ΔV  
/ΔV  
+2.8V V +5.5V  
IN  
OUT  
IN  
ΔV  
/ΔI  
0mA I  
7mA  
25  
OUT OUT  
SOURCE  
-7mA I 0mA  
50  
SINK  
ΔT = +125°C  
Thermal Hysteresis (Note 13)  
Long Term Stability (Note 14)  
Short-Circuit Current (to GND)  
Output Voltage Noise  
ΔV  
/ΔT  
100  
50  
OUT  
A
A
ΔV  
/Δt  
T
= +25°C; first 1khrs  
= +25°C  
A
ppm  
OUT  
A
I
T
50  
mA  
SC  
V
0.1Hz f 10Hz  
30  
µV  
P-P  
N
FN8082 Rev.23.01  
Oct 16, 2019  
Page 7 of 40  
ISL60002  
Electrical Specifications ISL60002-30, V  
= 3.000V Operating conditions: V = 5.0V, I  
= 0mA, C  
MAX  
= 0.001µF,  
OUT  
IN  
OUT  
OUT  
T
= -40 to +85°C, unless otherwise specified. Boldface limits apply across the operating temperature range, -40°C to +85°C.  
A
MIN  
PARAMETER  
Output Voltage  
Accuracy (Note 12)  
SYMBOL  
TEST CONDITIONS  
(Note 11)  
TYP  
(Note 11)  
UNIT  
V
V
3.000  
OUT  
V
V
T = +25°C  
A
OUT  
OA  
ISL60002B30  
ISL60002C30  
ISL60002D30  
-1.0  
-2.5  
-5.0  
3.2  
1.0  
2.5  
5.0  
5.5  
20  
mV  
mV  
mV  
Input Voltage Range  
V
V
IN  
Output Voltage Temperature Coefficient  
(Note 12)  
TC V  
ppm/°C  
OUT  
Supply Current  
Line Regulation  
Load Regulation  
I
350  
80  
900  
250  
100  
150  
nA  
µV/V  
µV/mA  
µV/mA  
ppm  
IN  
ΔV  
/ΔV  
+3.2V V +5.5V  
IN  
OUT  
IN  
ΔV  
/ΔI  
0mA I  
SOURCE  
7mA  
25  
OUT  
OUT  
-7mA I 0mA  
50  
SINK  
Thermal Hysteresis (Note 13)  
Long Term Stability (Note 14)  
Short-Circuit Current (to GND)  
Output Voltage Noise  
ΔV  
/ΔT  
ΔT = +125°C  
100  
50  
OUT  
A
A
ΔV  
/Δt  
T
= +25°C; first 1khrs  
= +25°C  
A
ppm  
OUT  
A
I
T
50  
mA  
SC  
V
0.1Hz f 10Hz  
30  
µV  
P-P  
N
Electrical Specifications ISL60002-33, V  
= 3.300V Operating conditions: V = 5.0V, I  
= 0mA, C = 0.001µF,  
OUT  
IN  
OUT  
OUT  
T
= -40 to +105°C, unless otherwise specified. Boldface limits apply across the operating temperature range, -40°C to +105°C.  
A
MIN  
MAX  
PARAMETER  
Output Voltage  
Accuracy (Note 12)  
SYMBOL  
TEST CONDITIONS  
(Note 11)  
TYP  
(Note 11)  
UNIT  
V
V
3.300  
OUT  
V
V
T = +25°C  
A
OUT  
OA  
ISL60002B33  
ISL60002C33  
ISL60002D33  
-1.0  
-2.5  
-5.0  
1.0  
2.5  
5.0  
20  
mV  
mV  
mV  
Output Voltage Temperature Coefficient  
(Note 12)  
TC V  
OUT  
ppm/°C  
Input Voltage Range  
Supply Current  
V
3.5  
5.5  
700  
200  
100  
150  
V
IN  
I
350  
80  
nA  
IN  
Line Regulation  
Load Regulation  
ΔV  
ΔV  
/ΔV  
+3.5V V +5.5V  
IN  
µV/V  
µV/mA  
µV/mA  
ppm  
ppm  
mA  
OUT  
IN  
/ΔI  
0mA I  
20mA  
0mA  
25  
OUT  
OUT  
SOURCE  
-20mA I  
50  
SINK  
Thermal Hysteresis (Note 13)  
Long Term Stability (Note 14)  
Short-Circuit Current (to GND)  
Output Voltage Noise  
ΔV  
/ΔT  
ΔT = +145°C  
100  
50  
OUT  
A
A
ΔV  
/Δt  
T
= +25°C; first 1khrs  
= +25°C  
A
OUT  
A
I
T
50  
SC  
V
0.1Hz f 10Hz  
30  
µV  
P-P  
N
FN8082 Rev.23.01  
Oct 16, 2019  
Page 8 of 40  
ISL60002  
Common Electrical Specifications ISL60002 -10, -11, -12, -18, -20, and -25 Operating conditions:  
V
= 3.0V, I  
OUT  
= 0mA, C = 0.001µF, T = -40 to +85°C, unless otherwise specified. Boldface limits apply across the operating temperature range,  
OUT A  
IN  
-40°C to +85°C.  
MIN  
MAX  
PARAMETER  
SYMBOL  
TC V  
TEST CONDITIONS  
(Note 11)  
TYP  
(Note 11)  
UNIT  
Output Voltage Temperature Coefficient  
(Note 12)  
20  
ppm/°C  
OUT  
Supply Current  
Line Regulation  
Load Regulation  
I
350  
80  
900  
250  
100  
150  
nA  
µV/V  
µV/mA  
µV/mA  
ppm  
IN  
ΔV  
/ΔV  
+2.7V V +5.5V  
OUT  
IN  
IN  
ΔV  
/ΔI  
0mA I  
7mA  
25  
OUT  
OUT  
SOURCE  
-7mA I  
0mA  
50  
SINK  
Thermal Hysteresis (Note 13)  
Long Term Stability (Note 14)  
Short-Circuit Current (to GND) (Note 15)  
Output Voltage Noise  
ΔV  
/ΔT  
ΔT = +125°C  
100  
50  
OUT  
A
A
ΔV  
/Δt  
T
= +25°C; first 1khrs  
= +25°C  
A
ppm  
OUT  
A
I
T
50  
mA  
SC  
V
0.1Hz f 10Hz  
30  
µV  
P-P  
N
NOTES:  
11. Compliance to datasheet limits is assured by one or more methods: production test, characterization, and/or design.  
12. Across the specified temperature range. Temperature coefficient is measured by the box method where the change in V  
temperature range: (-40°C to +85°C = +125°C, or -40°C to +105°C = +145°C for the ISL60002-33).  
is divided by the  
OUT  
13. Thermal hysteresis is the change in V  
OUT  
measured at T = +25°C after temperature cycling over a specified range, ΔT , V is read initially at  
OUT  
A
A
T
= +25°C for the device under test. The device is temperature cycled and a second V  
measurement is taken at +25°C. The difference between  
A
OUT  
the initial V  
reading and the second V  
OUT  
reading is then expressed in ppm. For ΔT = +125°C, the device under test is cycled from +25°C to  
OUT  
A
+85°C to -40°C to +25°C, and for ΔT = +145°C, the device under test is cycled from +25°C to +105°C to -40°C to +25°C.  
A
14. Long term drift is logarithmic in nature and diminishes over time. Drift after the first 1000 hours is approximately 10ppm.  
15. Short-circuit current (to V ) for ISL60002-25 at V = 5.0V and +25°C is typically around 30mA. Shorting V  
CC IN OUT  
to V is not recommended due to  
CC  
risk of resetting the part.  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 9 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.024V  
V
= 3.0V,  
IN  
OUT  
I
= 0mA, T = +25°C unless otherwise specified.  
A
OUT  
700  
600  
500  
500  
450  
400  
350  
300  
250  
200  
150  
100  
+85°C  
+25°C  
-40°C  
UNIT 3  
400  
300  
200  
100  
0
UNIT 2  
UNIT 1  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
VIN (V)  
V
(V)  
IN  
FIGURE 2. I vs V OVER-TEMPERATURE  
FIGURE 1. I vs V , 3 UNITS  
IN IN  
IN  
IN  
1.0244  
1.0243  
1.0242  
1.0241  
1.0240  
1.0239  
1.0238  
1.0237  
1.0236  
150  
125  
100  
75  
-40°C  
+85°C  
UNIT 3  
50  
25  
0
UNIT 2  
UNIT 1  
-25  
-50  
-75  
-100  
-125  
-150  
+25°C  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
(V)  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
V
(V)  
IN  
IN  
FIGURE 3. LINE REGULATION, 3 UNITS  
FIGURE 4. LINE REGULATION OVER-TEMPERATURE  
1.0250  
UNIT 2  
1.0248  
1.0246  
1.0244  
1.0242  
1.0240  
1.0238  
1.0236  
1.0234  
1.0232  
1.0230  
UNIT 3  
UNIT 1  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 5. V  
OUT  
vs TEMPERATURE NORMALIZED to +25°C  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 10 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.024V  
V
= 3.0V,  
IN  
OUT  
I
= 0mA, T = +25°C unless otherwise specified. (Continued)  
A
OUT  
C
= 0pF  
C
= 500pF  
L
L
DV = 0.3V  
DV = 0.3V  
DV = -0.3V  
DV = -0.3V  
1ms/DIV  
1ms/DIV  
FIGURE 7. LINE TRANSIENT RESPONSE  
FIGURE 6. LINE TRANSIENT RESPONSE, WITH CAPACITIVE LOAD  
0.6  
0.5  
0.4  
+85°C  
0.3  
+25°C  
0.2  
0.1  
0
-40°C  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
SINKING OUTPUT CURRENT  
SOURCING  
FIGURE 8. LOAD REGULATION OVER-TEMPERATURE  
DI = 7mA  
L
DI = 50µA  
L
DI = -50µA  
L
DI = -7mA  
L
1ms/DIV  
2ms/DIV  
FIGURE 9. LOAD TRANSIENT RESPONSE  
FIGURE 10. LOAD TRANSIENT RESPONSE  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 11 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.024V  
V
= 3.0V,  
IN  
OUT  
I
= 0mA, T = +25°C unless otherwise specified. (Continued)  
A
OUT  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
3.2  
V
IN  
V
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
IN  
UNIT 3  
V
REF  
UNIT 2  
UNIT 1  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
TIME (ms)  
TIME (ms)  
FIGURE 12. TURN-ON TIME (+25°C)  
FIGURE 11. TURN-ON TIME (+25°C)  
160  
140  
120  
100  
80  
NO LOAD  
1nF LOAD  
10nF  
LOAD  
60  
100nF LOAD  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FIGURE 13. Z  
vs FREQUENCY  
OUT  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 12 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.20V  
V
= 3.0V, I  
= 0mA,  
OUT  
IN  
OUT  
T
= +25°C unless otherwise specified.  
A
700  
500  
450  
400  
350  
300  
250  
200  
150  
100  
600  
500  
400  
300  
200  
100  
0
+85°C  
+25°C  
UNIT 3  
UNIT 2  
UNIT 1  
-40°C  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
(V)  
IN  
IN  
FIGURE 15. I vs V OVER-TEMPERATURE  
IN IN  
FIGURE 14. I vs V , 3 UNITS  
IN IN  
1.2006  
1.2004  
1.2002  
1.2000  
1.1998  
1.1996  
1.1994  
UNIT 2  
UNIT 3  
UNIT 1  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 16. V  
OUT  
vs TEMPERATURE NORMALIZED TO +25°C  
1.20010  
1.20008  
1.20006  
1.20004  
1.20002  
1.20000  
1.19998  
1.19996  
1.19994  
1.19992  
1.19990  
150  
125  
100  
75  
+85°C  
+25°C  
50  
UNIT 3  
25  
0
UNIT 2  
UNIT 1  
-25  
-50  
-40°C  
-75  
-100  
-125  
-150  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
IN  
IN  
FIGURE 17. LINE REGULATION, 3 UNITS  
FIGURE 18. LINE REGULATION OVER-TEMPERATURE  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 13 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.20V  
V
= 3.0V, I  
= 0mA,  
OUT  
IN  
OUT  
T
= +25°C unless otherwise specified. (Continued)  
A
C
= 0nF  
C = 500pF  
L
L
DV = 0.30V  
IN  
DV = 0.30V  
IN  
DV = -0.30V  
IN  
DV = -0.30V  
IN  
1ms/DIV  
1ms/DIV  
FIGURE 19. LINE TRANSIENT RESPONSE  
FIGURE 20. LINE TRANSIENT RESPONSE WITH CAPACITIVE LOAD  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0.6  
0.5  
+85°C  
NO LOAD  
0.4  
+25°C  
0.3  
0.2  
1nF LOAD  
0.1  
0.0  
10nF LOAD  
-40°C  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
100nF LOAD  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
1
10  
100  
1k  
10k  
100k  
1M  
SINKING OUTPUT CURRENT (mA)  
SOURCING  
FREQUENCY (Hz)  
FIGURE 21. PSRR vs CAPACITIVE LOAD  
FIGURE 22. LOAD REGULATION OVER-TEMPERATURE  
I
= -50µA  
I = 50µA  
L
L
I
= -7mA  
I = 7mA  
L
L
200µs/DIV  
500µs/DIV  
FIGURE 23. LOAD TRANSIENT RESPONSE  
FIGURE 24. LOAD TRANSIENT RESPONSE  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 14 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.20V  
V
= 3.0V, I  
= 0mA,  
OUT  
IN  
OUT  
T
= +25°C unless otherwise specified. (Continued)  
A
160  
140  
120  
100  
80  
3.2  
2.8  
2.4  
0
1nF LOAD  
NO LOAD  
V
IN  
10nF LOAD  
1.6  
1.2  
0.8  
0.4  
0
60  
V
REF  
100nF LOAD  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
0
2
4
6
8
10  
12  
TIME (ms)  
FREQUENCY (Hz)  
FIGURE 25. TURN-ON TIME (+25°C)  
FIGURE 26. Z  
vs FREQUENCY  
OUT  
10s/DIV  
FIGURE 27. V  
OUT  
NOISE  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 15 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.25V  
V
= 3.0V, I  
= 0mA,  
OUT  
IN  
OUT  
T
= +25°C unless otherwise specified.  
A
460  
440  
420  
400  
380  
360  
340  
320  
300  
700  
650  
+25°C  
UNIT 3  
+85°C  
600  
550  
500  
-40°C  
450  
UNIT 2  
400  
350  
300  
250  
200  
UNIT 1  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
IN  
V
IN  
FIGURE 29. I vs V OVER-TEMPERATURE  
IN IN  
FIGURE 28. I vs V , 3 UNITS  
IN IN  
1.2510  
1.2508  
1.2506  
1.2504  
1.2502  
1.2500  
1.2498  
1.2496  
1.2494  
UNIT 2  
UNIT 3  
UNIT 1  
1.2492  
1.249  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 30. V  
vs TEMPERATURE NORMALIZED TO +25°C  
OUT  
1.25030  
1.25025  
1.25020  
1.25015  
1.25010  
1.25005  
1.25000  
1.24995  
1.24990  
50  
UNIT 1  
25  
0
UNIT 3  
-40°C  
+25°C  
UNIT 2  
+85°C  
-25  
2.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
FIGURE 31. LINE REGULATION, 3 UNITS  
FIGURE 32. LINE REGULATION OVER-TEMPERATURE  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 16 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.25V  
V
= 3.0V, I  
= 0mA,  
OUT  
IN  
OUT  
T
= +25°C unless otherwise specified. (Continued)  
A
C
= 0nF  
L
C
= 1nF  
L
DV = 0.30V  
IN  
DV = -0.30V  
IN  
DV = 0.30V  
IN  
DV = -0.30V  
IN  
1ms/DIV  
1ms/DIV  
FIGURE 34. LINE TRANSIENT RESPONSE, WITH CAPACITIVE LOAD  
FIGURE 33. LINE TRANSIENT RESPONSE  
0.3  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
+85°C  
NO LOAD  
+25°C  
0.2  
1nF LOAD  
0.1  
-40°C  
0.0  
10nF LOAD  
100nF LOAD  
-0.1  
-7 -6 -5 -4 -3 -2 -1  
SINKING  
0
1
2
3
4
5
6
7
1
10  
100  
1k  
10k  
100k  
1M  
SOURCING  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
FIGURE 35. PSRR vs CAPACITIVE LOAD  
FIGURE 36. LOAD REGULATION  
I = 50µA  
L
I
= -50µA  
L
I
= -7mA  
I = 7mA  
L
L
100µs/DIV  
500µs/DIV  
FIGURE 37. LOAD TRANSIENT RESPONSE  
FIGURE 38. LOAD TRANSIENT RESPONSE  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 17 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 1.25V  
V
= 3.0V, I  
= 0mA,  
OUT  
IN  
OUT  
T
= +25°C unless otherwise specified. (Continued)  
A
3.0  
180  
160  
140  
120  
100  
80  
NO LOAD  
V
IN  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10nF LOAD  
1nF LOAD  
60  
V
100nF LOAD  
REF  
40  
20  
0
-1  
1
3
5
7
9
11  
1
10  
100  
1k  
10k  
1M  
TIME (ms)  
FREQUENCY (Hz)  
FIGURE 39. TURN-ON TIME (+25°C)  
FIGURE 40. Z  
vs FREQUENCY  
OUT  
10s/DIV  
FIGURE 41. V  
OUT  
NOISE  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 18 of 40  
ISL60002  
Typical Performance Curves, V  
= 1.8V  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise  
OUT A  
IN  
OUT  
specified.  
700  
500  
450  
400  
350  
300  
250  
200  
150  
100  
600  
+85°C  
+25°C  
500  
UNIT 3  
400  
UNIT 2  
-40°C  
300  
200  
100  
0
UNIT 1  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
(V)  
IN  
IN  
FIGURE 42. I vs V , 3 UNITS  
IN IN  
FIGURE 43. I vs V OVER-TEMPERATURE  
IN IN  
1.80020  
1.80015  
1.80010  
1.80005  
1.80000  
1.79995  
1.79990  
1.79985  
1.7998  
150  
125  
100  
75  
-40°C  
+85°C  
50  
UNIT 3  
25  
0
UNIT 1  
UNIT 2  
-25  
-50  
-75  
-100  
-125  
-150  
+25°C  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
IN  
V
(V)  
IN  
FIGURE 44. LINE REGULATION (3 REPRESENTATIVE UNITS)  
FIGURE 45. LINE REGULATION OVER-TEMPERATURE  
C
= 500pF  
C = 500pF  
L
L
DV = 0.3V  
DV = 0.3V  
DV = -0.3V  
DV = -0.3V  
1ms/DIV  
1ms/DIV  
FIGURE 46. LINE TRANSIENT RESPONSE, WITH CAPACITIVE LOAD  
FIGURE 47. LINE TRANSIENT RESPONSE  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 19 of 40  
ISL60002  
Typical Performance Curves, V  
= 1.8V  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise  
OUT A  
IN  
OUT  
specified. (Continued)  
0
0.8  
+85°C  
+25°C  
-10  
0.6  
NO LOAD  
-20  
0.4  
-30  
-40  
0.2  
-40°C  
1nF LOAD  
10nF LOAD  
-50  
-60  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-70  
-80  
100nF LOAD  
-90  
-100  
1
10  
100  
1k  
10k  
100k  
1G  
-10  
-8  
-6  
-4  
-2  
0
2
4
6
8
10  
FREQUENCY (Hz)  
SINKING  
OUTPUT CURRENT  
SOURCING  
FIGURE 48. PSRR vs CAPACITIVE LOAD  
FIGURE 49. LOAD REGULATION OVER-TEMPERATURE  
ΔI = 10mA  
L
ΔI = 50µA  
L
ΔI = -50µA  
L
ΔI = -10mA  
L
2ms/DIV  
1ms/DIV  
FIGURE 50. LOAD TRANSIENT RESPONSE  
FIGURE 51. LOAD TRANSIENT RESPONSE  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
V
V
IN  
IN  
UNIT 3  
V
REF  
UNIT 2  
UNIT 1  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
TIME (ms)  
TIME (ms)  
FIGURE 53. TURN-ON TIME (+25°C)  
FIGURE 52. TURN-ON TIME (+25°C)  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 20 of 40  
ISL60002  
Typical Performance Curves, V  
= 1.8V  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise  
OUT A  
IN  
OUT  
specified. (Continued)  
160  
1nF LOAD  
140  
120  
NO LOAD  
100  
100nF LOAD  
80  
60  
10nF LOAD  
40  
20  
0
1
10  
100  
1k  
10k  
100k  
1ms/DIV  
FREQUENCY (Hz)  
FIGURE 54. Z  
vs FREQUENCY  
FIGURE 55. V  
OUT  
NOISE  
OUT  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 21 of 40  
ISL60002  
Typical Performance Curves, V  
= 2.048V  
V
= 3.0V, I = 0mA, T = +25°C unless otherwise  
OUT A  
IN  
OUT  
specified.  
700  
500  
450  
400  
350  
300  
250  
200  
150  
100  
600  
+85°C  
-40°C  
+25°C  
500  
UNIT 3  
400  
UNIT 2  
300  
UNIT 1  
200  
100  
0
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
(V)  
IN  
IN  
FIGURE 57. I vs V OVER-TEMPERATURE  
IN IN  
FIGURE 56. I vs V (3 REPRESENTATIVE UNITS)  
IN IN  
200  
175  
150  
125  
100  
75  
2.0484  
2.0483  
2.0482  
2.0481  
2.0480  
2.0479  
2.0478  
2.0477  
2.0476  
-40°C  
+25°C  
UNIT 1  
UNIT 2  
50  
25  
0
UNIT 3  
+85°C  
-25  
-50  
-75  
-100  
-125  
-150  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
(V)  
V
(V)  
IN  
IN  
FIGURE 58. LINE REGULATION (3 REPRESENTATIVE UNITS)  
FIGURE 59. LINE REGULATION OVER-TEMPERATURE  
2.0484  
2.0483  
2.0482  
2.0481  
2.0480  
2.0479  
2.0478  
2.0477  
2.0476  
2.0475  
2.0474  
UNIT 2  
UNIT 1  
UNIT 3  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 60. V  
OUT  
vs TEMPERATURE NORMALIZED to +25°C  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 22 of 40  
ISL60002  
Typical Performance Curves, V  
= 2.048V  
V
= 3.0V, I  
OUT  
= 0mA, T = +25°C unless otherwise  
A
IN  
OUT  
specified. (Continued)  
C
= 0pF  
C
= 500pF  
L
L
ΔV = 0.3V  
ΔV = 0.3V  
ΔV = -0.3V  
ΔV = -0.3V  
1ms/DIV  
1ms/DIV  
FIGURE 62. LINE TRANSIENT RESPONSE  
FIGURE 61. LINE TRANSIENT RESPONSE, WITH CAPACITIVE LOAD  
1.4  
1.2  
+85°C  
1.0  
0.8  
+25°C  
0.6  
0.4  
0.2  
-40°C  
0
-0.2  
-0.4  
-0.6  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
SINKING  
OUTPUT CURRENT  
SOURCING  
FIGURE 63. LOAD REGULATION OVER-TEMPERATURE  
DI = 7mA  
L
ΔI = 50µA  
L
ΔI = -50µA  
L
DI = -7mA  
L
2ms/DIV  
2ms/DIV  
FIGURE 65. LOAD TRANSIENT RESPONSE  
FIGURE 64. LOAD TRANSIENT RESPONSE  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 23 of 40  
ISL60002  
Typical Performance Curves, V  
= 2.048V  
V
= 3.0V, I  
= 0mA, T = +25°C unless otherwise  
IN  
OUT A  
OUT  
specified. (Continued)  
3.2  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
V
V
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
IN  
IN  
V
UNIT 3  
UNIT 2  
UNIT 1  
REF  
0
0
0
2
4
6
8
10  
12  
2
4
6
8
10  
12  
TIME (ms)  
TIME (ms)  
FIGURE 66. TURN-ON TIME (+25°C)  
FIGURE 67. TURN-ON TIME (+25°C)  
160  
140  
120  
100  
80  
NO LOAD  
10nF LOAD  
1nF LOAD  
60  
40  
100nF LOAD  
20  
0
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FIGURE 68. Z  
vs FREQUENCY  
OUT  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 24 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 2.50V  
V
= 3.0V, I  
OUT  
= 0mA,  
IN  
OUT  
T
= +25°C unless otherwise specified.  
A
600  
550  
460  
440  
420  
400  
380  
360  
340  
320  
300  
+85°C  
500  
UNIT 3  
450  
400  
+25°C  
-40°C  
UNIT 2  
350  
300  
UNIT 1  
3.5  
250  
200  
2.5  
3.0  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
FIGURE 69. I vs V , 3 UNITS  
IN IN  
FIGURE 70. I vs V OVER-TEMPERATURE  
IN IN  
2.5020  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
2.4985  
UNIT 2  
UNIT 3  
UNIT 1  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 71. V  
OUT  
vs TEMPERATURE NORMALIZED TO +25°C  
200  
150  
100  
50  
2.50016  
2.50012  
2.50008  
2.50004  
2.50000  
2.49996  
2.49992  
-40°C  
UNIT 2  
+25°C  
UNIT 1  
+85°C  
0
UNIT 3  
-50  
-100  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
FIGURE 72. LINE REGULATION, 3 UNITS  
FIGURE 73. LINE REGULATION OVER-TEMPERATURE  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 25 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 2.50V  
V
= 3.0V, I  
OUT  
= 0mA,  
IN  
OUT  
T
= +25°C unless otherwise specified. (Continued)  
A
C
= 0nF  
C = 1nF  
L
L
DV = -0.30V  
IN  
DV = 0.30V  
IN  
DV = 0.30V  
IN  
DV = -0.30V  
IN  
1ms/DIV  
1ms/DIV  
FIGURE 74. LINE TRANSIENT RESPONSE  
FIGURE 75. LINE TRANSIENT RESPONSE  
0.2  
0.1  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
+85°C  
+25°C  
NO LOAD  
1nF LOAD  
0.0  
-40°C  
10nF LOAD  
100nF LOAD  
-0.1  
-7 -6 -5 -4 -3 -2 -1  
SINKING  
0
1
2
3
4
5
6
7
1
10  
100  
1k  
10k  
100k  
1M  
SOURCING  
FREQUENCY (Hz)  
OUTPUT CURRENT (mA)  
FIGURE 76. PSRR vs CAPACITIVE LOAD  
FIGURE 77. LOAD REGULATION OVER-TEMPERATURE  
I
= -50µA  
I = 50µA  
L
L
I
= -7mA  
I = 7mA  
L
L
200µs/DIV  
500µs/DIV  
FIGURE 78. LOAD TRANSIENT RESPONSE  
FIGURE 79. LOAD TRANSIENT RESPONSE  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 26 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 2.50V  
V
= 3.0V, I = 0mA,  
OUT  
IN  
OUT  
T
= +25°C unless otherwise specified. (Continued)  
A
200  
150  
100  
50  
3.5  
1nF LOAD  
NO LOAD  
3.0  
V
REF  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10nF LOAD  
100nF LOAD  
0
1
10  
100  
1k  
10k  
100k  
-1  
1
3
5
7
9
11  
FREQUENCY (Hz)  
TIME (ms)  
FIGURE 81. Z  
vs FREQUENCY  
OUT  
FIGURE 80. TURN-ON TIME (+25°C)  
10s/DIV  
FIGURE 82. V  
OUT  
NOISE  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 27 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.0V  
V
= 5.0V, I  
OUT  
= 0mA,  
IN  
OUT  
T
= +25°C unless otherwise specified.  
A
500  
350  
335  
320  
305  
290  
275  
260  
450  
400  
UNIT 1  
+85°C  
UNIT 2  
350  
300  
250  
200  
+25°C  
UNIT 3  
-40°C  
4.8  
3.2  
3.6  
4.0  
4.4  
(V)  
4.8  
5.2  
5.6  
3.2  
3.6  
4.0  
4.4  
(V)  
5.2  
5.6  
V
V
IN  
IN  
FIGURE 83. I vs V , 3 UNITS  
FIGURE 84. I vs V OVER-TEMPERATURE  
IN IN  
IN  
IN  
3.0008  
3.0006  
3.0004  
3.0002  
3.0000  
2.9998  
2.9996  
2.9994  
2.9992  
2.9990  
UNIT 1  
UNIT 2  
UNIT 3  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 85. V  
vs TEMPERATURE NORMALIZED TO +25°C  
OUT  
3.0001  
3.0000  
3.0000  
2.9999  
40  
+85°C  
20  
+25°C  
UNIT 3  
0
UNIT 2  
-20  
-40  
-60  
-40°C  
UNIT 1  
-80  
3.2  
3.2  
3.6  
4.0  
4.4  
4.8  
5.2  
5.6  
3.6  
4.0  
4.4  
(V)  
4.8  
5.2  
5.6  
V
(V)  
IN  
V
IN  
FIGURE 86. LINE REGULATION (3 REPRESENTATIVE UNITS)  
FIGURE 87. LINE REGULATION OVER-TEMPERATURE  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 28 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.0V  
V
= 5.0V, I  
= 0mA,  
IN  
OUT  
OUT  
T
= +25°C unless otherwise specified. (Continued)  
A
C
= 0nF  
L
C = 1nF  
L
DV = 0.30V  
IN  
DV = -0.30V  
IN  
DV = 0.30V  
IN  
DV = -0.30V  
IN  
1ms/DIV  
1ms/DIV  
FIGURE 88. LINE TRANSIENT RESPONSE  
FIGURE 89. LINE TRANSIENT RESPONSE  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
NO LOAD  
+85°C  
1nF LOAD  
+25°C  
-40°C  
10nF LOAD  
100nF LOAD  
-7 -6 -5 -4 -3 -2 -1  
SINKING  
0
1
2
3
4
5
6
7
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
SOURCING  
OUTPUT CURRENT (mA)  
FIGURE 90. PSRR vs CAPACITIVE LOAD  
FIGURE 91. LOAD REGULATION OVER-TEMPERATURE  
I
= -50µA  
I = 50µA  
L
I
= -1mA  
I = 1mA  
L
L
L
200µs/DIV  
200µs/DIV  
FIGURE 92. LOAD TRANSIENT RESPONSE  
FIGURE 93. LOAD TRANSIENT RESPONSE  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 29 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.0V  
V
= 5.0V, I = 0mA,  
OUT  
IN  
OUT  
T
= +25°C unless otherwise specified. (Continued)  
A
I
= -7mA  
I = 7mA  
L
I
= -20mA  
I = 20mA  
L
L
L
200µs/DIV  
200µs/DIV  
FIGURE 94. LOAD TRANSIENT RESPONSE  
FIGURE 95. LOAD TRANSIENT RESPONSE  
160  
140  
120  
100  
80  
1nF LOAD  
NO LOAD  
5
4
3
2
1
0
V
IN  
10nF LOAD  
V
REF  
60  
40  
100nF LOAD  
20  
0
1
10  
100  
1k  
10k  
100k  
0
2
4
6
8
10  
12  
TIME (ms)  
FREQUENCY (Hz)  
FIGURE 96. TURN-ON TIME (+25°C)  
FIGURE 97. Z  
vs FREQUENCY  
OUT  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 30 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.3V  
V
= 5.0V, I  
= 0mA,  
OUT  
IN  
OUT  
T
= +25°C unless otherwise specified.  
A
400  
380  
360  
340  
320  
300  
280  
260  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
+105°C  
UNIT 3  
UNIT 2  
+25°C  
-40°C  
UNIT 1  
3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
(V)  
3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
(V)  
V
V
IN  
IN  
FIGURE 99. I vs V OVER-TEMPERATURE  
FIGURE 98. I vs V , 3 UNITS  
IN IN  
IN  
IN  
3.3008  
3.3006  
3.3004  
3.3002  
3.3000  
3.2998  
UNIT 1  
UNIT 3  
UNIT 2  
3.2996  
3.2994  
3.2992  
3.2990  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
FIGURE 100. V  
vs TEMPERATURE NORMALIZED TO +25°C  
OUT  
150  
125  
100  
75  
3.30020  
3.30015  
3.30010  
3.30005  
3.30000  
3.29995  
3.29990  
3.29985  
3.29980  
3.29975  
3.29970  
UNIT 3  
UNIT 2  
UNIT 1  
50  
+105°C  
-40°C  
25  
0
-25  
-50  
-75  
-100  
-125  
-150  
+25°C  
3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
(V)  
3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V
IN  
V
(V)  
IN  
FIGURE 102. LINE REGULATION OVER-TEMPERATURE  
FIGURE 101. LINE REGULATION, 3 UNITS  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 31 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.3V  
V
= 5.0V, I  
= 0mA,  
OUT  
IN  
OUT  
T
= +25°C unless otherwise specified. (Continued)  
A
C
= 0nF  
C = 1nF  
L
L
ΔV = -0.30V  
ΔV = -0.30V  
IN  
ΔV = 0.30V  
IN  
ΔV = 0.30V  
IN  
IN  
1ms/DIV  
1ms/DIV  
FIGURE 103. LINE TRANSIENT RESPONSE  
FIGURE 104. LINE TRANSIENT RESPONSE  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
NO LOAD  
1nF LOAD  
10nF LOAD  
100nF LOAD  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FIGURE 105. PSRR vs CAPACITIVE LOAD  
1.00  
0.60  
0.50  
0.40  
0.30  
+105°C  
0.80  
+105°C  
+25°C  
0.60  
+25°C  
0.40  
0.20  
0.10  
0.20  
-40°C  
-40°C  
0.00  
0.00  
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
-0.60  
-0.20  
-0.40  
-0.60  
-0.80  
-1.00  
-7 -6 -5 -4 -3 -2 -1  
SINKING  
0
1
2
3
4
5
6
7
-20-18-16-14-12-10 -8 -6 -4 -2  
SINKING  
0
2
4
6
8 10 12 14 16 18 20  
SOURCING  
OUTPUT CURRENT (mA)  
SOURCING  
OUTPUT CURRENT (mA)  
FIGURE 106. LOAD REGULATION  
FIGURE 107. LOAD REGULATION OVER-TEMPERATURE  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 32 of 40  
ISL60002  
Typical Performance Characteristic Curves, V  
= 3.3V  
V
= 5.0V, I  
= 0mA,  
OUT  
IN  
OUT  
T
= +25°C unless otherwise specified. (Continued)  
A
I = 1mA  
L
I
= -1mA  
I
= -50µA  
I
= 50µA  
L
L
L
200µs/DIV  
200µs/DIV  
FIGURE 109. LOAD TRANSIENT RESPONSE  
FIGURE 108. LOAD TRANSIENT RESPONSE  
I
= -7mA  
I
= 7mA  
I
= -20mA  
I = 20mA  
L
L
L
L
200µs/DIV  
200µs/DIV  
FIGURE 110. LOAD TRANSIENT RESPONSE  
FIGURE 111. LOAD TRANSIENT RESPONSE  
160  
140  
120  
100  
80  
1nF LOAD  
NO LOAD  
5
4
3
2
1
0
V
IN  
10nF LOAD  
V
REF  
60  
40  
100nF LOAD  
20  
0
1
10  
100  
1k  
10k  
100k  
0
2
4
6
8
10  
12  
TIME (ms)  
FREQUENCY (Hz)  
FIGURE 112. TURN-ON TIME (+25°C)  
FIGURE 113. Z  
vs FREQUENCY  
OUT  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 33 of 40  
ISL60002  
High Current Application  
2.5001  
2.4998  
2.4995  
2.4992  
2.4989  
2.4986  
2.4983  
2.4980  
2.502  
2.500  
2.498  
2.496  
V
= 5V  
IN  
5V , +85°C  
IN  
V
= 3.3V  
IN  
2.494  
2.492  
2.490  
2.488  
2.486  
3.2V , +85°C  
IN  
V
= 3.5V  
25  
IN  
3.3V , +85°C  
IN  
0
5
10  
15  
(mA)  
20  
30  
0
4
8
12  
16  
20  
24  
28  
32  
I
(mA)  
I
LOAD  
LOAD  
FIGURE 115. DIFFERENT V AT HIGH TEMPERATURE  
IN  
FIGURE 114. DIFFERENT V AT ROOM TEMPERATURE  
IN  
Figure 116. Data acquisition circuits providing 12 to 24 bits of  
accuracy can operate with the reference device continuously  
biased with no power penalty, providing the highest accuracy and  
lowest possible long term drift.  
Applications Information  
FGA Technology  
The ISL60002 series of voltage references use the floating gate  
technology to create references with very low drift and supply  
current. Essentially, the charge stored on a floating gate cell is  
set precisely in manufacturing. The reference voltage output  
itself is a buffered version of the floating gate voltage. The  
resulting reference device has excellent characteristics, that are  
unique in the industry: very low temperature drift, high initial  
accuracy, and almost zero supply current. Also, the reference  
voltage itself is not limited by voltage bandgaps or zener settings,  
so a wide range of reference voltages can be programmed  
(standard voltage settings are provided, but customer-specific  
voltages are available).  
Other reference devices consuming higher supply currents need to  
be disabled in between conversions to conserve battery capacity.  
Absolute accuracy suffers as the device is biased and requires  
time to settle to its final value, or, may not actually settle to a final  
value as power on time can be short.  
V
= +3.0V  
IN  
10µF  
0.01µF  
V
IN  
V
OUT  
ISL60002-25  
= 2.5V  
V
OUT  
GND  
The process used for these reference devices is a floating gate  
CMOS process, and the amplifier circuitry uses CMOS transistors  
for amplifier and output transistor circuitry. While providing  
excellent accuracy, there are limitations in output noise level and  
load regulation due to the MOS device characteristics. These  
limitations are addressed with circuit techniques discussed in  
other sections.  
0.001µF TO 0.01µF  
REF IN  
ENABLE  
SCK  
SERIAL  
BUS  
SDAT  
12 TO 24-BIT  
A/D CONVERTER  
Nanopower Operation  
Reference devices achieve their highest accuracy when powered  
up continuously, and after initial stabilization has taken place.  
This drift can be eliminated by leaving the power on continuously.  
FIGURE 116.  
Board Mounting Considerations  
The ISL60002 is the first high precision voltage reference with  
ultra low power consumption that makes it possible to leave  
power on continuously in battery operated circuits. The ISL60002  
consumes extremely low supply current due to the proprietary  
FGA technology. Supply current at room temperature is typically  
350nA, which is 1 to 2 orders of magnitude lower than  
competitive devices. Application circuits using battery power  
benefit greatly from having an accurate, stable reference that  
essentially presents no load to the battery.  
For applications requiring the highest accuracy, board mounting  
location should be reviewed. Placing the device in areas subject to  
slight twisting can cause degradation of the accuracy of the  
reference voltage due to die stresses. It is normally best to place the  
device near the edge of a board, or the shortest side, as the axis of  
bending is most limited at that location. Obviously mounting the  
device on flexprint or extremely thin PC material causes loss of  
reference accuracy.  
In particular, battery powered data converter circuits that would  
normally require the entire circuit to be disabled when not in use,  
can remain powered up between conversions as shown in  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 34 of 40  
ISL60002  
Board Assembly Considerations  
400  
350  
300  
250  
200  
150  
100  
C
C
C
C
= 0  
L
L
L
L
FGA references provide high accuracy and low temperature drift  
but some PC board assembly precautions are necessary. Normal  
output voltage shifts of 100µV to 1mV can be expected with  
Pb-free reflow profiles. Avoid excessive heat or extended  
exposure to high reflow or wave solder temperatures. This can  
reduce device initial accuracy.  
= 0.001µF  
= 0.1µF  
= 0.01µF AND 10µF + 2kΩ  
Post-assembly X-ray inspection can also lead to permanent  
changes in device output voltage and should be minimized or  
avoided. If X-ray inspection is required, it is advisable to monitor  
the reference output voltage to verify excessive shift has not  
occurred. If large amounts of shift are observed, it is best to add  
an X-ray shield consisting of thin zinc (300µm) sheeting to allow  
clear imaging, yet block X-ray energy that affects the FGA  
reference.  
50  
0
10  
100  
1k  
10k  
100k  
1M  
NOISE FREQUENCY (Hz)  
FIGURE 117. NOISE REDUCTION  
Special Applications Considerations  
In addition to post-assembly examination, there are also other  
X-ray sources that can affect the FGA reference long term  
accuracy. Airport screening machines contain X-rays and have a  
cumulative effect on the voltage reference output accuracy.  
Carry-on luggage screening uses low level X-rays and is not a  
major source of output voltage shift, however, if a product is  
expected to pass through that type of screening over 100 times,  
consider shielding with copper or aluminum. Checked luggage  
X-rays are higher intensity and can cause output voltage shift in  
much fewer passes, therefore devices expected to go through  
those machines should definitely consider shielding. Note that  
just two layers of 1/2 ounce copper planes reduce the received  
dose by over 90%. The leadframe for the device that is on the  
bottom also provides similar shielding.  
V
= 3.0V  
IN  
V
IN  
10µF  
V
O
ISL60002-25  
= 2.50V  
0.1µF  
V
OUT  
GND  
2kΩ  
0.01µF  
10µF  
FIGURE 118. NOISE REDUCTION NETWORK  
If a device is expected to pass through luggage X-ray machines  
numerous times, it is advised to mount a 2-layer (minimum) PC  
board on the top, and along with a ground plane underneath  
effectively shields it from 50 to 100 passes through the machine.  
Because these machines vary in X-ray dose delivered, it is  
difficult to produce an accurate maximum pass  
recommendation.  
Noise Performance and Reduction  
The output noise voltage in a 0.1Hz to 10Hz bandwidth is  
typically 30µV . Noise in the 10kHz to 1MHz bandwidth is  
P-P  
approximately 400µV  
P-P  
with no capacitance on the output, as  
shown in Figure 117. These noise measurements are made with  
a 2 decade bandpass filter made of a 1-pole high-pass filter with  
a corner frequency at 1/10 of the center frequency and 1-pole  
low-pass filter with a corner frequency at 10 times the center  
frequency. Figure 117 also shows the noise in the 10kHz to 1MHz  
band can be reduced to about 50µV  
using a 0.001µF  
P-P  
capacitor on the output. Noise in the 1kHz to 100kHz band can  
be further reduced using a 0.1µF capacitor on the output, but  
noise in the 1Hz to 100Hz band increases due to instability of the  
very low power amplifier with a 0.1µF capacitance load. For load  
capacitances above 0.001µF the noise reduction network shown  
in Figure 118 is recommended. This network reduces noise  
significantly over the full bandwidth. As shown in Figure 117,  
noise is reduced to less than 40µV  
from 1Hz to 1MHz using  
P-P  
this network with a 0.01µF capacitor and a 2kΩ resistor in series  
with a 10µF capacitor.  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 35 of 40  
ISL60002  
Turn-On Time  
Temperature Coefficient  
The ISL60002 devices have ultra-low supply current and  
The limits stated for temperature coefficient (tempco) are  
governed by the method of measurement. The overwhelming  
standard for specifying the temperature drift of a reference is to  
measure the reference voltage at two temperatures, take the  
therefore the time to bias up internal circuitry to final values is  
longer than with higher power references. Normal turn-on time is  
typically 4ms. This is shown in Figure 119. Because devices can  
vary in supply current down to >300nA, turn-on time can last up  
to about 12ms. Care should be taken in system design to include  
this delay before measurements or conversions are started.  
total variation, (V  
– V  
), and divide by the temperature  
HIGH  
LOW  
extremes of measurement (T  
– T  
). The result is divided  
LOW  
HIGH  
by the nominal reference voltage (at T = +25°C) and multiplied  
6
by 10 to yield ppm/°C. This is the “Box” method for specifying  
3.5  
3.0  
temperature coefficient.  
V
IN  
2.5  
2.0  
1.5  
1.0  
0.5  
UNIT 3  
UNIT 1  
UNIT 2  
0
-1  
1
3
5
7
9
11  
TIME (ms)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
IN  
UNIT 3  
UNIT 1  
UNIT 2  
0
-1  
1
3
5
7
9
11  
TIME (ms)  
FIGURE 119. TURN-ON TIME  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 36 of 40  
ISL60002  
Typical Application Circuits  
V
= 3.0V  
IN  
R = 200Ω  
2N2905  
V
IN  
V
2.5V/50mA  
OUT  
ISL60002  
V
= 2.50V  
OUT  
0.001µF  
GND  
FIGURE 120. PRECISION 2.5V 50mA REFERENCE  
2.7V TO 5.5V  
0.1µF  
10µF  
V
IN  
V
OUT  
ISL60002-25  
V
= 2.50V  
OUT  
GND  
0.001µF  
V
R
CC  
V
H
OUT  
X9119  
SDA  
SCL  
+
2-WIRE BUS  
V
OUT  
(BUFFERED)  
V
R
L
SS  
FIGURE 121. 2.5V FULL SCALE LOW-DRIFT 10-BIT ADJUSTABLE VOLTAGE SOURCE  
2.7V TO 5.5V  
0.1µF  
10µF  
V
IN  
+
V
SENSE  
OUT  
V
OUT  
ISL60002-25  
= 2.50V  
LOAD  
V
OUT  
GND  
FIGURE 122. KELVIN SENSED LOAD  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 37 of 40  
ISL60002  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Please visit our website to make sure you have the latest revision.  
DATE  
REVISION  
23.01  
CHANGE  
Oct 16, 2019  
Jan 14, 2019  
Updated Figure 117.  
23.00  
Page 1 Features - corrected ESD rating listed as 5.5V (Human Body Model) to 5.5kV.  
Changed the ESD HBM in Abs Max section on page 5 from 5500V to 5.5kV.  
Updated Disclaimer.  
Mar 9, 2018  
22.00  
Updated Note 6 by fixing the induced error caused from importing new formatting, changed 70mA to 70µA.  
Updated Noise Performance and Reduction section.  
Removed About Intersil section and updated disclaimer.  
Nov 17, 2016  
Jan 8, 2015  
21.00  
20.00  
Updated Related Literature on page 1 to new standard.  
Updated Ordering Information table - added Tape and Real quantity column.  
-Updated ordering information table on page 3 by removing withdrawn part numbers: ISL60002BIH320Z,  
ISL60002BIH325Z, ISL60002CIH320Z, ISL60002DAH333Z.  
- Changed the y-axis units on Figure 55, on page 21 from 5mV/DIV to 5µV/DIV.  
Added revision history and about Intersil verbiage.  
Updated POD from P3.064 to P3.064A. Changes are as follows:  
Detail A changes:  
0.085 - 0.19 to 0.13 ±0.05  
Removed 0.25 above Gauge Plane  
0.38±0.10 to 0.31 ±0.10  
Side View changes:  
0.95±0.07 to 0.91 ±0.03  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 38 of 40  
ISL60002  
For the most recent package outline drawing, see P3.064A.  
Package Outline Drawing  
P3.064A  
3 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE (SOT23-3)  
Rev 0, 7/14  
4
2.92 ±0.12  
DETAIL "A"  
C
L
2.37 ±0.27  
C
1.30 ±0.10  
4
L
0 to 8°  
0.950  
0.435 ±0.065  
0.20 M C  
TOP VIEW  
10° TYP  
(2 plcs)  
0.91 ±0.03  
GAUGE PLANE  
SEATING PLANE  
1.00 ±0.12  
C
SEATING PLANE  
0.10 C  
5
0.31 ±0.10  
0.013(MIN)  
0.100(MAX)  
SIDE VIEW  
DETAIL "A"  
(0.60)  
NOTES:  
(2.15)  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to ASME Y14.5M-1994.  
3.  
(1.25)  
Reference JEDEC TO-236.  
4. Dimension does not include interlead flash or protrusions.  
Interlead flash or protrusions shall not exceed 0.25mm per side.  
5. Footlength is measured at reference to gauge plane.  
(0.4 RAD typ)  
(0.95 typ.)  
TYPICAL RECOMMENDED LAND PATTERN  
FN8082 Rev.23.01  
Oct 16, 2019  
Page 39 of 40  
1RWLFH  
ꢃꢅ 'HVFULSWLRQVꢀRIꢀFLUFXLWVꢆꢀVRIWZDUHꢀDQGꢀRWKHUꢀUHODWHGꢀLQIRUPDWLRQꢀLQꢀWKLVꢀGRFXPHQWꢀDUHꢀSURYLGHGꢀRQO\ꢀWRꢀLOOXVWUDWHꢀWKHꢀRSHUDWLRQꢀRIꢀVHPLFRQGXFWRUꢀSURGXFWVꢀ  
DQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ<RXꢀDUHꢀIXOO\ꢀUHVSRQVLEOHꢀIRUꢀWKHꢀLQFRUSRUDWLRQꢀRUꢀDQ\ꢀRWKHUꢀXVHꢀRIꢀWKHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀDQGꢀLQIRUPDWLRQꢀLQꢀWKHꢀGHVLJQꢀRIꢀ\RXUꢀ  
SURGXFWꢀRUꢀV\VWHPꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀDQGꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ  
WKHVHꢀFLUFXLWVꢆꢀVRIWZDUHꢆꢀRUꢀLQIRUPDWLRQꢅ  
ꢁꢅ 5HQHVDVꢀ(OHFWURQLFVꢀKHUHE\ꢀH[SUHVVO\ꢀGLVFODLPVꢀDQ\ꢀZDUUDQWLHVꢀDJDLQVWꢀDQGꢀOLDELOLW\ꢀIRUꢀLQIULQJHPHQWꢀRUꢀDQ\ꢀRWKHUꢀFODLPVꢀLQYROYLQJꢀSDWHQWVꢆꢀFRS\ULJKWVꢆꢀRUꢀ  
RWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀWKLUGꢀSDUWLHVꢆꢀE\ꢀRUꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRUꢀWHFKQLFDOꢀLQIRUPDWLRQꢀGHVFULEHGꢀLQꢀWKLVꢀ  
GRFXPHQWꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢆꢀWKHꢀSURGXFWꢀGDWDꢆꢀGUDZLQJVꢆꢀFKDUWVꢆꢀSURJUDPVꢆꢀDOJRULWKPVꢆꢀDQGꢀDSSOLFDWLRQꢀH[DPSOHVꢅꢀ  
ꢇꢅ 1RꢀOLFHQVHꢆꢀH[SUHVVꢆꢀLPSOLHGꢀRUꢀRWKHUZLVHꢆꢀLVꢀJUDQWHGꢀKHUHE\ꢀXQGHUꢀDQ\ꢀSDWHQWVꢆꢀFRS\ULJKWVꢀRUꢀRWKHUꢀLQWHOOHFWXDOꢀSURSHUW\ꢀULJKWVꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀRUꢀ  
RWKHUVꢅ  
ꢈꢅ <RXꢀVKDOOꢀQRWꢀDOWHUꢆꢀPRGLI\ꢆꢀFRS\ꢆꢀRUꢀUHYHUVHꢀHQJLQHHUꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢆꢀZKHWKHUꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀ  
DQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀORVVHVꢀRUꢀGDPDJHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀVXFKꢀDOWHUDWLRQꢆꢀPRGLILFDWLRQꢆꢀFRS\LQJꢀRUꢀUHYHUVHꢀHQJLQHHULQJꢅ  
ꢉꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀFODVVLILHGꢀDFFRUGLQJꢀWRꢀWKHꢀIROORZLQJꢀWZRꢀTXDOLW\ꢀJUDGHVꢊꢀꢋ6WDQGDUGꢋꢀDQGꢀꢋ+LJKꢀ4XDOLW\ꢋꢅꢀ7KHꢀLQWHQGHGꢀDSSOLFDWLRQVꢀIRUꢀ  
HDFKꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀGHSHQGVꢀRQꢀWKHꢀSURGXFWꢌVꢀTXDOLW\ꢀJUDGHꢆꢀDVꢀLQGLFDWHGꢀEHORZꢅ  
ꢋ6WDQGDUGꢋꢊ  
&RPSXWHUVꢍꢀRIILFHꢀHTXLSPHQWꢍꢀFRPPXQLFDWLRQVꢀHTXLSPHQWꢍꢀWHVWꢀDQGꢀPHDVXUHPHQWꢀHTXLSPHQWꢍꢀDXGLRꢀDQGꢀYLVXDOꢀHTXLSPHQWꢍꢀKRPHꢀ  
HOHFWURQLFꢀDSSOLDQFHVꢍꢀPDFKLQHꢀWRROVꢍꢀSHUVRQDOꢀHOHFWURQLFꢀHTXLSPHQWꢍꢀLQGXVWULDOꢀURERWVꢍꢀHWFꢅ  
ꢋ+LJKꢀ4XDOLW\ꢋꢊ 7UDQVSRUWDWLRQꢀHTXLSPHQWꢀꢎDXWRPRELOHVꢆꢀWUDLQVꢆꢀVKLSVꢆꢀHWFꢅꢏꢍꢀWUDIILFꢀFRQWUROꢀꢎWUDIILFꢀOLJKWVꢏꢍꢀODUJHꢐVFDOHꢀFRPPXQLFDWLRQꢀHTXLSPHQWꢍꢀNH\ꢀ  
ILQDQFLDOꢀWHUPLQDOꢀV\VWHPVꢍꢀVDIHW\ꢀFRQWUROꢀHTXLSPHQWꢍꢀHWFꢅ  
8QOHVVꢀH[SUHVVO\ꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀSURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDUHꢀQRWꢀLQWHQGHGꢀRUꢀDXWKRUL]HGꢀIRUꢀXVHꢀLQꢀSURGXFWVꢀRUꢀV\VWHPVꢀWKDWꢀPD\ꢀSRVHꢀDꢀGLUHFWꢀWKUHDWꢀWRꢀ  
KXPDQꢀOLIHꢀRUꢀERGLO\ꢀLQMXU\ꢀꢎDUWLILFLDOꢀOLIHꢀVXSSRUWꢀGHYLFHVꢀRUꢀV\VWHPVꢍꢀVXUJLFDOꢀLPSODQWDWLRQVꢍꢀHWFꢅꢏꢆꢀRUꢀPD\ꢀFDXVHꢀVHULRXVꢀSURSHUW\ꢀGDPDJHꢀꢎVSDFHꢀV\VWHPꢍꢀ  
XQGHUVHDꢀUHSHDWHUVꢍꢀQXFOHDUꢀSRZHUꢀFRQWUROꢀV\VWHPVꢍꢀDLUFUDIWꢀFRQWUROꢀV\VWHPVꢍꢀNH\ꢀSODQWꢀV\VWHPVꢍꢀPLOLWDU\ꢀHTXLSPHQWꢍꢀHWFꢅꢏꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀ  
DQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀGDPDJHVꢀRUꢀORVVHVꢀLQFXUUHGꢀE\ꢀ\RXꢀRUꢀDQ\ꢀWKLUGꢀSDUWLHVꢀDULVLQJꢀIURPꢀWKHꢀXVHꢀRIꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢀWKDWꢀLVꢀ  
LQFRQVLVWHQWꢀZLWKꢀDQ\ꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢆꢀXVHUꢌVꢀPDQXDOꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢅ  
ꢑꢅ :KHQꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀUHIHUꢀWRꢀWKHꢀODWHVWꢀSURGXFWꢀLQIRUPDWLRQꢀꢎGDWDꢀVKHHWVꢆꢀXVHUꢌVꢀPDQXDOVꢆꢀDSSOLFDWLRQꢀQRWHVꢆꢀꢋ*HQHUDOꢀ1RWHVꢀIRUꢀ  
+DQGOLQJꢀDQGꢀ8VLQJꢀ6HPLFRQGXFWRUꢀ'HYLFHVꢋꢀLQꢀWKHꢀUHOLDELOLW\ꢀKDQGERRNꢆꢀHWFꢅꢏꢆꢀDQGꢀHQVXUHꢀWKDWꢀXVDJHꢀFRQGLWLRQVꢀDUHꢀZLWKLQꢀWKHꢀUDQJHVꢀVSHFLILHGꢀE\ꢀ  
5HQHVDVꢀ(OHFWURQLFVꢀZLWKꢀUHVSHFWꢀWRꢀPD[LPXPꢀUDWLQJVꢆꢀRSHUDWLQJꢀSRZHUꢀVXSSO\ꢀYROWDJHꢀUDQJHꢆꢀKHDWꢀGLVVLSDWLRQꢀFKDUDFWHULVWLFVꢆꢀLQVWDOODWLRQꢆꢀHWFꢅꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀDQ\ꢀPDOIXQFWLRQVꢆꢀIDLOXUHꢀRUꢀDFFLGHQWꢀDULVLQJꢀRXWꢀRIꢀWKHꢀXVHꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀRXWVLGHꢀRIꢀVXFKꢀ  
VSHFLILHGꢀUDQJHVꢅ  
ꢒꢅ $OWKRXJKꢀ5HQHVDVꢀ(OHFWURQLFVꢀHQGHDYRUVꢀWRꢀLPSURYHꢀWKHꢀTXDOLW\ꢀDQGꢀUHOLDELOLW\ꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVHPLFRQGXFWRUꢀSURGXFWVꢀKDYHꢀVSHFLILFꢀ  
FKDUDFWHULVWLFVꢆꢀVXFKꢀDVꢀWKHꢀRFFXUUHQFHꢀRIꢀIDLOXUHꢀDWꢀDꢀFHUWDLQꢀUDWHꢀDQGꢀPDOIXQFWLRQVꢀXQGHUꢀFHUWDLQꢀXVHꢀFRQGLWLRQVꢅꢀ8QOHVVꢀGHVLJQDWHGꢀDVꢀDꢀKLJKꢀUHOLDELOLW\ꢀ  
SURGXFWꢀRUꢀDꢀSURGXFWꢀIRUꢀKDUVKꢀHQYLURQPHQWVꢀLQꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀGDWDꢀVKHHWꢀRUꢀRWKHUꢀ5HQHVDVꢀ(OHFWURQLFVꢀGRFXPHQWꢆꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀ  
DUHꢀQRWꢀVXEMHFWꢀWRꢀUDGLDWLRQꢀUHVLVWDQFHꢀGHVLJQꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀLPSOHPHQWLQJꢀVDIHW\ꢀPHDVXUHVꢀWRꢀJXDUGꢀDJDLQVWꢀWKHꢀSRVVLELOLW\ꢀRIꢀERGLO\ꢀLQMXU\ꢆꢀ  
LQMXU\ꢀRUꢀGDPDJHꢀFDXVHGꢀE\ꢀILUHꢆꢀDQGꢓRUꢀGDQJHUꢀWRꢀWKHꢀSXEOLFꢀLQꢀWKHꢀHYHQWꢀRIꢀDꢀIDLOXUHꢀRUꢀPDOIXQFWLRQꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀVXFKꢀDVꢀVDIHW\ꢀ  
GHVLJQꢀIRUꢀKDUGZDUHꢀDQGꢀVRIWZDUHꢆꢀLQFOXGLQJꢀEXWꢀQRWꢀOLPLWHGꢀWRꢀUHGXQGDQF\ꢆꢀILUHꢀFRQWUROꢀDQGꢀPDOIXQFWLRQꢀSUHYHQWLRQꢆꢀDSSURSULDWHꢀWUHDWPHQWꢀIRUꢀDJLQJꢀ  
GHJUDGDWLRQꢀRUꢀDQ\ꢀRWKHUꢀDSSURSULDWHꢀPHDVXUHVꢅꢀ%HFDXVHꢀWKHꢀHYDOXDWLRQꢀRIꢀPLFURFRPSXWHUꢀVRIWZDUHꢀDORQHꢀLVꢀYHU\ꢀGLIILFXOWꢀDQGꢀLPSUDFWLFDOꢆꢀ\RXꢀDUHꢀ  
UHVSRQVLEOHꢀIRUꢀHYDOXDWLQJꢀWKHꢀVDIHW\ꢀRIꢀWKHꢀILQDOꢀSURGXFWVꢀRUꢀV\VWHPVꢀPDQXIDFWXUHGꢀE\ꢀ\RXꢅ  
ꢔꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀIRUꢀGHWDLOVꢀDVꢀWRꢀHQYLURQPHQWDOꢀPDWWHUVꢀVXFKꢀDVꢀWKHꢀHQYLURQPHQWDOꢀFRPSDWLELOLW\ꢀRIꢀHDFKꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWꢅꢀ<RXꢀDUHꢀUHVSRQVLEOHꢀIRUꢀFDUHIXOO\ꢀDQGꢀVXIILFLHQWO\ꢀLQYHVWLJDWLQJꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢀWKDWꢀUHJXODWHꢀWKHꢀLQFOXVLRQꢀRUꢀXVHꢀRIꢀ  
FRQWUROOHGꢀVXEVWDQFHVꢆꢀLQFOXGLQJꢀZLWKRXWꢀOLPLWDWLRQꢆꢀWKHꢀ(8ꢀ5R+6ꢀ'LUHFWLYHꢆꢀDQGꢀXVLQJꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀLQꢀFRPSOLDQFHꢀZLWKꢀDOOꢀWKHVHꢀ  
DSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅꢀ5HQHVDVꢀ(OHFWURQLFVꢀGLVFODLPVꢀDQ\ꢀDQGꢀDOOꢀOLDELOLW\ꢀIRUꢀGDPDJHVꢀRUꢀORVVHVꢀRFFXUULQJꢀDVꢀDꢀUHVXOWꢀRIꢀ\RXUꢀQRQFRPSOLDQFHꢀ  
ZLWKꢀDSSOLFDEOHꢀODZVꢀDQGꢀUHJXODWLRQVꢅ  
ꢄꢅ 5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢀDQGꢀWHFKQRORJLHVꢀVKDOOꢀQRWꢀEHꢀXVHGꢀIRUꢀRUꢀLQFRUSRUDWHGꢀLQWRꢀDQ\ꢀSURGXFWVꢀRUꢀV\VWHPVꢀZKRVHꢀPDQXIDFWXUHꢆꢀXVHꢆꢀRUꢀVDOHꢀLVꢀ  
SURKLELWHGꢀXQGHUꢀDQ\ꢀDSSOLFDEOHꢀGRPHVWLFꢀRUꢀIRUHLJQꢀODZVꢀRUꢀUHJXODWLRQVꢅꢀ<RXꢀVKDOOꢀFRPSO\ꢀZLWKꢀDQ\ꢀDSSOLFDEOHꢀH[SRUWꢀFRQWUROꢀODZVꢀDQGꢀUHJXODWLRQVꢀ  
SURPXOJDWHGꢀDQGꢀDGPLQLVWHUHGꢀE\ꢀWKHꢀJRYHUQPHQWVꢀRIꢀDQ\ꢀFRXQWULHVꢀDVVHUWLQJꢀMXULVGLFWLRQꢀRYHUꢀWKHꢀSDUWLHVꢀRUꢀWUDQVDFWLRQVꢅ  
ꢃꢂꢅ ,WꢀLVꢀWKHꢀUHVSRQVLELOLW\ꢀRIꢀWKHꢀEX\HUꢀRUꢀGLVWULEXWRUꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWVꢆꢀRUꢀDQ\ꢀRWKHUꢀSDUW\ꢀZKRꢀGLVWULEXWHVꢆꢀGLVSRVHVꢀRIꢆꢀRUꢀRWKHUZLVHꢀVHOOVꢀRUꢀ  
WUDQVIHUVꢀWKHꢀSURGXFWꢀWRꢀDꢀWKLUGꢀSDUW\ꢆꢀWRꢀQRWLI\ꢀVXFKꢀWKLUGꢀSDUW\ꢀLQꢀDGYDQFHꢀRIꢀWKHꢀFRQWHQWVꢀDQGꢀFRQGLWLRQVꢀVHWꢀIRUWKꢀLQꢀWKLVꢀGRFXPHQWꢅ  
ꢃꢃꢅ 7KLVꢀGRFXPHQWꢀVKDOOꢀQRWꢀEHꢀUHSULQWHGꢆꢀUHSURGXFHGꢀRUꢀGXSOLFDWHGꢀLQꢀDQ\ꢀIRUPꢆꢀLQꢀZKROHꢀRUꢀLQꢀSDUWꢆꢀZLWKRXWꢀSULRUꢀZULWWHQꢀFRQVHQWꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢃꢁꢅ 3OHDVHꢀFRQWDFWꢀDꢀ5HQHVDVꢀ(OHFWURQLFVꢀVDOHVꢀRIILFHꢀLIꢀ\RXꢀKDYHꢀDQ\ꢀTXHVWLRQVꢀUHJDUGLQJꢀWKHꢀLQIRUPDWLRQꢀFRQWDLQHGꢀLQꢀWKLVꢀGRFXPHQWꢀRUꢀ5HQHVDVꢀ  
(OHFWURQLFVꢀSURGXFWVꢅ  
ꢎ1RWHꢃꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢋꢀDVꢀXVHGꢀLQꢀWKLVꢀGRFXPHQWꢀPHDQVꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢀDQGꢀDOVRꢀLQFOXGHVꢀLWVꢀGLUHFWO\ꢀRUꢀLQGLUHFWO\ꢀFRQWUROOHGꢀ  
VXEVLGLDULHVꢅ  
ꢎ1RWHꢁꢏ ꢋ5HQHVDVꢀ(OHFWURQLFVꢀSURGXFWꢎVꢏꢋꢀPHDQVꢀDQ\ꢀSURGXFWꢀGHYHORSHGꢀRUꢀPDQXIDFWXUHGꢀE\ꢀRUꢀIRUꢀ5HQHVDVꢀ(OHFWURQLFVꢅ  
ꢎ5HYꢅꢈꢅꢂꢐꢃꢀꢀ1RYHPEHUꢀꢁꢂꢃꢒꢏ  
&RUSRUDWHꢀ+HDGTXDUWHUV  
72<268ꢀ)25(6,$ꢆꢀꢇꢐꢁꢐꢁꢈꢀ7R\RVXꢆ  
.RWRꢐNXꢆꢀ7RN\Rꢀꢃꢇꢉꢐꢂꢂꢑꢃꢆꢀ-DSDQ  
ZZZꢅUHQHVDVꢅFRP  
&RQWDFWꢀ,QIRUPDWLRQ  
)RUꢀIXUWKHUꢀLQIRUPDWLRQꢀRQꢀDꢀSURGXFWꢆꢀWHFKQRORJ\ꢆꢀWKHꢀPRVWꢀXSꢐWRꢐGDWHꢀ  
YHUVLRQꢀRIꢀDꢀGRFXPHQWꢆꢀRUꢀ\RXUꢀQHDUHVWꢀVDOHVꢀRIILFHꢆꢀSOHDVHꢀYLVLWꢊ  
ZZZꢅUHQHVDVꢅFRPꢓFRQWDFWꢓ  
7UDGHPDUNV  
5HQHVDVꢀDQGꢀWKHꢀ5HQHVDVꢀORJRꢀDUHꢀWUDGHPDUNVꢀRIꢀ5HQHVDVꢀ(OHFWURQLFVꢀ  
&RUSRUDWLRQꢅꢀ$OOꢀWUDGHPDUNVꢀDQGꢀUHJLVWHUHGꢀWUDGHPDUNVꢀDUHꢀWKHꢀSURSHUW\ꢀ  
RIꢀWKHLUꢀUHVSHFWLYHꢀRZQHUVꢅ  
‹ꢀꢁꢂꢃꢄꢀ5HQHVDVꢀ(OHFWURQLFVꢀ&RUSRUDWLRQꢅꢀ$OOꢀULJKWVꢀUHVHUYHGꢅ  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY