ISL6208C [RENESAS]

High Voltage Synchronous Rectified Buck MOSFET Drivers;
ISL6208C
型号: ISL6208C
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

High Voltage Synchronous Rectified Buck MOSFET Drivers

文件: 总12页 (文件大小:594K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL6208C  
FN8395  
Rev 1.00  
Jun 1, 2016  
High Voltage Synchronous Rectified Buck MOSFET Drivers  
The ISL6208C is a high frequency, dual MOSFET driver,  
Features  
optimized to drive two N-channel power MOSFETs in a  
synchronous-rectified buck converter topology. It is especially  
suited for mobile computing applications that require high  
efficiency and excellent thermal performance. The driver,  
combined with an Intersil multiphase buck PWM controller,  
forms a complete single-stage core-voltage regulator solution  
for advanced mobile microprocessors.  
• Dual MOSFET drives for synchronous rectified bridge  
• Adaptive shoot-through protection  
• 0.5Ω ON-resistance and 4A sink current capability  
• Supports high switching frequency up to 2MHz  
- Fast output rise and fall time  
- Low propagation delay  
The ISL6208C features 4A typical sinking current for the lower  
gate driver. This current is capable of holding the lower  
MOSFET gate off during the rising edge of the phase node. This  
prevents shoot-through power loss caused by the high dv/dt of  
phase voltages. The operating voltage matches the 30V  
breakdown voltage of the MOSFETs commonly used in mobile  
computer power supplies.  
• Three-state PWM input for power stage shutdown  
• Internal bootstrap Schottky diode  
• Low bias supply current (5V, 80µA)  
• Diode emulation for enhanced light load efficiency and  
prebiased start-up applications  
The ISL6208C also features a three-state PWM input that,  
working together with Intersil’s multiphase PWM controllers,  
will prevent negative voltage output during CPU shutdown. This  
feature eliminates a protective Schottky diode usually seen in  
microprocessor power systems.  
• VCC POR (Power-On-Reset) feature integrated  
• Low three-state shutdown holdoff time (typical 160ns)  
• Pin-to-pin compatible with ISL6207  
• DFN package  
MOSFET gates can be efficiently switched up to 2MHz using  
the ISL6208C. Each driver is capable of driving a 3000pF load  
with propagation delays of 8ns and transition times under  
10ns. Bootstrapping is implemented with an internal Schottky  
diode. This reduces system cost and complexity, while allowing  
the use of higher performance MOSFETs. Adaptive  
• Pb-free (RoHS compliant)  
Applications  
• Core voltage supplies for Intel™ and AMD™ mobile  
microprocessors  
• High frequency low profile DC/DC converters  
• High current low output voltage DC/DC converters  
• High input voltage DC/DC converters  
shoot-through protection is integrated to prevent both  
MOSFETs from conducting simultaneously.  
A diode emulation feature is integrated in the ISL6208C to  
enhance converter efficiency at light load conditions. This  
feature also allows for monotonic start-up into prebiased  
outputs. When diode emulation is enabled, the driver will allow  
discontinuous conduction mode by detecting when the  
inductor current reaches zero and subsequently turning off the  
low-side MOSFET gate.  
Related Literature  
• Technical Brief TB363 “Guidelines for Handling and  
Processing Moisture Sensitive Surface Mount Devices  
(SMDs)”  
• Technical Brief TB389 “PCB Land Pattern Design and  
Surface Mount Guidelines for MLFP Packages”  
• Technical Brief TB447 “Guidelines for Preventing  
Boot-to-Phase Stress on Half-Bridge MOSFET Driver ICs”  
FN8395 Rev 1.00  
Jun 1, 2016  
Page 1 of 12  
ISL6208C  
Table of Contents  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Typical Application with 2-Phase Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Functional Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Theory of Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Performance Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Diode Emulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Three-State PWM Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Adaptive Shoot-Through Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Reducing Phase Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Thermal Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
About Intersil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
FN8395 Rev 1.00  
Jun 1, 2016  
Page 2 of 12  
ISL6208C  
Block Diagram  
VCC  
BOOT  
FCCM  
UGATE  
PHASE  
SHOOT-  
THROUGH  
PROTECTION  
CONTROL  
LOGIC  
VCC  
PWM  
LGATE  
GND  
10kΩ  
THERMAL PAD  
FIGURE 1. BLOCK DIAGRAM  
Typical Application with 2-Phase Converter  
+5V  
+5V  
V
BAT  
VCC  
+V  
CORE  
BOOT  
UGATE  
+5V  
FB  
COMP  
FCCM  
VCC  
VSEN  
PWM  
PHASE  
LGATE  
DRIVE  
ISL6208C  
PWM1  
PWM2  
PGOOD  
THERMAL  
PAD  
FCCM  
MAIN  
CONTROL  
ISEN1  
VID  
ISEN2  
+5V  
V
VCC  
BAT  
BOOT  
FS  
DACOUT  
FCCM  
PWM  
UGATE  
PHASE  
GND  
DRIVE  
ISL6208C  
LGATE  
THERMAL  
PAD  
FIGURE 2. TYPICAL APPLICATION WITH 2-PHASE CONVERTER  
FN8395 Rev 1.00  
Jun 1, 2016  
Page 3 of 12  
ISL6208C  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 3)  
PART  
MARKING  
TEMP. RANGE  
(°C)  
TAPE AND REEL  
(UNITS)  
PACKAGE  
(RoHS Compliant)  
PKG.  
DWG. #  
ISL6208CHRZ-T  
8CH  
8CI  
-10 to +100  
-40 to +100  
6k  
6k  
8 Ld 2x2 DFN  
8 Ld 2x2 DFN  
L8.2x2D  
L8.2x2D  
ISL6208CIRZ-T  
NOTES:  
1. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL6208C. For more information on MSL please see techbrief TB363.  
Pin Configuration  
ISL6208C  
(8 LD 2x2 DFN)  
TOP VIEW  
UGATE  
8
PHASE  
1
2
3
BOOT  
PWM  
7
FCCM  
VCC  
6
4
5
LGATE  
GND  
Pin Description  
PIN  
SYMBOL  
UGATE  
BOOT  
DESCRIPTION  
1
The UGATE pin is the upper gate drive output. Connect to gate of the high-side power N-channel MOSFET.  
2
BOOT is the floating bootstrap supply pin for the upper gate drive. Connect the bootstrap capacitor between this pin  
and the PHASE pin. The bootstrap capacitor provides the charge to turn on the upper MOSFET. See “Internal  
Bootstrap Diode” on page 9 for guidance in choosing the appropriate capacitor value.  
3
PWM  
The PWM signal is the control input for the driver. The PWM signal can enter three distinct states during operation. See  
“Three-State PWM Input” on page 9 for further details. Connect this pin to the PWM output of the controller.  
4
5
6
GND  
LGATE  
VCC  
GND is the ground pin for the IC.  
LGATE is the lower gate drive output. Connect to gate of the low-side power N-Channel MOSFET.  
Connect the VCC pin to a +5V bias supply. Place a high quality bypass capacitor from this pin to GND. The VCC pin  
of the driver(s) and related VCC or +5V bias supply pin of the Intersil controller must share a common +5V supply.  
7
8
FCCM  
The FCCM pin enables or disables Diode Emulation. When FCCM is LOW, diode emulation is allowed. Otherwise,  
continuous conduction mode is forced. See “Diode Emulation” on page 9 for more detail.  
PHASE  
Connect the PHASE pin to the source of the upper MOSFET and the drain of the lower MOSFET. This pin provides a  
return path for the upper gate driver.  
FN8395 Rev 1.00  
Jun 1, 2016  
Page 4 of 12  
ISL6208C  
Absolute Maximum Ratings  
Thermal Information  
Supply Voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3V to 7V  
Thermal Resistance (Typical)  
8 Ld 2x2 DFN Package (Notes 5, 6). . . . . .  
(°C/W)  
89  
(°C/W)  
24  
JA  
JC  
Input Voltage (V  
, V ) . . . . . . . . . . . . . . . . . . . . -0.3V to VCC + 0.3V  
FCCM PWM  
BOOT Voltage (V  
BOOT To PHASE Voltage (V  
) . . . . . . . . . . . -0.3V to 33V (DC) or 36V (<20ns)  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
BOOT-GND  
). . . . . . . . . . . . . . . . -0.3V to 7V (DC)  
BOOT-PHASE  
-0.3V to 9V (<10ns)  
PHASE Voltage (Note 4). . . . . . . . . . . . . . . . . . . . . . . . . . (GND - 0.3V) to 30V  
GND - 8V (<20ns Pulse Width, 10µJ)  
Recommended Operating Conditions  
UGATE Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . V  
- 0.3V (DC) to V  
Ambient Temperature Range  
PHASE  
- 5V (<20ns Pulse Width, 10µJ) to V  
BOOT  
BOOT  
V
Industrial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +100°C  
Hi-Temp Commercial . . . . . . . . . . . . . . . . . . . . . . . . . . . .-10°C to +100°C  
Maximum Operating Junction Temperature . . . . . . . . . . . . . . . . . . +125°C  
Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V ±10%  
PHASE  
LGATE Voltage. . . . . . . . . . . . . . . . . . . . . . . . .GND - 0.3V (DC) to VCC + 0.3V  
GND - 2.5V (<20ns Pulse Width, 5µJ) to VCC + 0.3V  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. The Phase Voltage is capable of withstanding -7V when the BOOT pin is at GND.  
5. is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
6. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications Recommended operating conditions, unless otherwise noted. Boldface limits apply across the operating  
temperature range, -40°C to +100°C (Industrial), -10°C to +100°C (Hi-Temp Commercial).  
MIN  
MAX  
SYMBOL  
SUPPLY CURRENT  
PARAMETER  
TEST CONDITIONS  
(Note 7) TYP (Note 7) UNIT  
V
CC  
I
Bias Supply Current  
PWM pin floating, V  
= 5V  
FCCM  
-
80  
-
µA  
VCC  
POR  
V
V
Rising  
Falling  
-
2.40  
-
3.40  
2.90  
500  
3.90  
V
V
CC  
-
-
CC  
Hysteresis  
BOOTSTRAP DIODE  
mV  
V
Forward Voltage  
V
= 5V, forward bias current = 2mA  
0.50  
0.55  
0.65  
V
F
VCC  
PWM INPUT  
I
Input Current  
V
V
V
V
V
= 5V  
= 0V  
-
250  
-250  
1.00  
3.8  
-
µA  
µA  
V
PWM  
PWM  
-
-
PWM  
PWM Three-State Rising Threshold  
PWM Three-State Falling Threshold  
Three-State Shutdown Hold-Off Time  
= 5V  
0.70  
3.5  
100  
1.30  
4.1  
250  
VCC  
VCC  
VCC  
= 5V  
V
t
= 5V, temperature = +25°C  
175  
ns  
TSSHD  
FCCM INPUT  
FCCM LOW Threshold  
FCCM HIGH Threshold  
0.50  
-
-
-
V
V
-
2.0  
SWITCHING TIME  
t
UGATE Rise Time  
V
V
V
V
V
= 5V, 3nF load  
-
-
-
-
-
8.0  
8.0  
8.0  
4.0  
18  
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
RU  
VCC  
VCC  
VCC  
VCC  
VCC  
t
t
LGATE Rise Time  
= 5V, 3nF load  
RL  
FU  
UGATE Fall Time  
= 5V, 3nF load  
t
LGATE Fall Time  
= 5V, 3nF load  
FL  
t
UGATE Turn-Off Propagation Delay  
= 5V, outputs unloaded  
PDLU  
FN8395 Rev 1.00  
Jun 1, 2016  
Page 5 of 12  
ISL6208C  
Electrical Specifications Recommended operating conditions, unless otherwise noted. Boldface limits apply across the operating  
temperature range, -40°C to +100°C (Industrial), -10°C to +100°C (Hi-Temp Commercial). (Continued)  
MIN  
MAX  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
= 5V, outputs unloaded  
(Note 7) TYP (Note 7) UNIT  
t
LGATE Turn-Off Propagation Delay  
UGATE Turn-On Propagation Delay  
LGATE Turn-On Propagation Delay  
UG/LG Three-State Propagation Delay  
Minimum LG ON-TIME in DCM  
V
V
V
V
-
10  
10  
-
25  
20  
-
30  
30  
-
ns  
ns  
ns  
ns  
ns  
PDLL  
VCC  
VCC  
VCC  
VCC  
t
= 5V, outputs unloaded  
= 5V, outputs unloaded  
= 5V, outputs unloaded  
PDHU  
t
20  
PDHL  
t
35  
PTS  
t
-
400  
-
LGMIN  
OUTPUT  
R
Upper Drive Source Resistance  
Upper Driver Source Current  
Upper Drive Sink Resistance  
Upper Driver Sink Current  
500mA source current  
= 2.5V  
-
-
-
-
-
-
-
-
1
2.5  
Ω
A
Ω
A
Ω
A
Ω
A
U
I
V
2.00  
1
-
U
UGATE-PHASE  
500mA sink current  
= 2.5V  
R
2.5  
U
I
V
2.00  
1
-
2.5  
-
U
UGATE-PHASE  
500mA source current  
= 2.5V  
R
Lower Drive Source Resistance  
Lower Driver Source Current  
Lower Drive Sink Resistance  
Lower Driver Sink Current  
L
I
V
2.00  
0.5  
4.00  
L
LGATE  
500mA sink current  
V = 2.5V  
LGATE  
R
1.0  
-
L
I
L
NOTE:  
7. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization  
and are not production tested.  
Timing Diagram  
2.5V  
t
PWM  
PDHU  
t
t
PDLU  
TSSHD  
t
t
RU  
RU  
t
t
FU  
FU  
t
PTS  
1V  
UGATE  
LGATE  
t
PTS  
1V  
t
RL  
t
FL  
t
TSSHD  
t
PDHL  
t
PDLL  
t
FL  
FIGURE 3. TIMING DIAGRAM  
FN8395 Rev 1.00  
Jun 1, 2016  
Page 6 of 12  
ISL6208C  
Functional Pin Description  
UGATE  
The UGATE pin is the upper gate drive output. Connect to gate of  
the high-side power N-channel MOSFET.  
Theory of Operation  
Designed for speed, the ISL6208C dual MOSFET driver controls  
both high-side and low-side N-channel FETs from one externally  
provided PWM signal.  
A rising edge on PWM initiates the turn-off of the lower MOSFET  
(see “Timing Diagram”). After a short propagation delay [t  
],  
BOOT  
PDLL  
the lower gate begins to fall. Typical fall times [t ] are provided  
FL  
BOOT is the floating bootstrap supply pin for the upper gate drive.  
Connect the bootstrap capacitor between this pin and the PHASE  
pin. The bootstrap capacitor provides the charge to turn on the  
upper MOSFET. See “Internal Bootstrap Diode” on page 9 for  
guidance in choosing the appropriate capacitor value.  
in the “Electrical Specifications” on page 5. Adaptive  
shoot-through circuitry monitors the LGATE voltage. When LGATE  
has fallen below 1V, UGATE is allowed to turn ON. This prevents  
both the lower and upper MOSFETs from conducting  
simultaneously, or shoot-through.  
PWM  
A falling transition on PWM indicates the turn-off of the upper  
MOSFET and the turn-on of the lower MOSFET. A short  
The PWM signal is the control input for the driver. The PWM signal  
can enter three distinct states during operation. See “Three-State  
PWM Input” on page 9 for further details. Connect this pin to the  
PWM output of the controller.  
propagation delay (t  
) is encountered before the upper gate  
PDLU  
begins to fall (t ). The upper MOSFET gate-to-source voltage is  
FU  
monitored, and the lower gate is allowed to rise after the upper  
MOSFET gate-to-source voltage drops below 1V. The lower gate  
then rises (t ), turning on the lower MOSFET.  
GND  
RL  
GND is the ground pin for the IC.  
This driver is optimized for converters with large step-down  
compared to the upper MOSFET because the lower MOSFET  
conducts for a much longer time in a switching period. The lower  
gate driver is therefore sized much larger to meet this application  
requirement.  
LGATE  
LGATE is the lower gate drive output. Connect to gate of the  
low-side power N-channel MOSFET.  
The 0.5Ω ON-resistance and 4A sink current capability enables  
the lower gate driver to absorb the current injected to the lower  
gate through the drain-to-gate capacitor of the lower MOSFET and  
prevents a shoot-through caused by the high dv/dt of the phase  
node.  
VCC  
Connect the VCC pin to a +5V bias supply. Place a high quality  
bypass capacitor from this pin to GND.  
FCCM  
The FCCM pin enables or disables Diode Emulation. When FCCM  
is LOW, diode emulation is allowed. Otherwise, continuous  
conduction mode is forced. See “Diode Emulation” on page 9 for  
more detail.  
PHASE  
Connect the PHASE pin to the source of the upper MOSFET and  
the drain of the lower MOSFET. This pin provides a return path for  
the upper gate driver.  
FN8395 Rev 1.00  
Jun 1, 2016  
Page 7 of 12  
ISL6208C  
Typical Performance Waveforms  
FIGURE 4. LOAD TRANSIENT (0A TO 30A, 3-PHASE)  
FIGURE 6. DCM TO CCM TRANSITION AT NO LOAD  
FIGURE 8. PREBIASED START-UP IN CCM MODE  
FIGURE 5. LOAD TRANSIENT (30A TO 0A, 3-PHASE)  
FIGURE 7. CCM TO DCM TRANSITION AT NO LOAD  
FIGURE 9. PREBIASED START-UP IN DCM MODE  
FN8395 Rev 1.00  
Jun 1, 2016  
Page 8 of 12  
ISL6208C  
voltage over a PWM cycle is 200mV. One will find that a  
bootstrap capacitance of at least 0.125µF is required. The next  
larger standard value capacitance is 0.15µF. A good quality  
ceramic capacitor is recommended.  
Diode Emulation  
Diode emulation allows for higher converter efficiency under light  
load situations. With diode emulation active, the ISL6208C will  
detect the zero current crossing of the output inductor and turn  
off LGATE. This ensures that discontinuous conduction mode  
(DCM) is achieved. Diode emulation is asynchronous to the PWM  
signal. Therefore, the ISL6208C will respond to the FCCM input  
immediately after it changes state. Refer to“Typical Performance  
Waveforms” on page 8. Note: Intersil does not recommend Diode  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
Emulation use with r  
current sensing topologies. The  
DS(ON)  
turn-OFF of the low-side MOSFET can cause gross current  
measurement inaccuracies.  
Q
= 100nC  
0.6  
0.4  
0.2  
0.0  
GATE  
Three-State PWM Input  
A unique feature of the ISL6208C and other Intersil drivers is the  
addition of a shutdown window to the PWM input. If the PWM  
signal enters and remains within the shutdown window for a set  
holdoff time, the output drivers are disabled and both MOSFET  
gates are pulled and held low. The shutdown state is removed  
when the PWM signal moves outside the shutdown window.  
Otherwise, the PWM rising and falling thresholds outlined in the  
“Electrical Specifications” table on page 5 determine when the  
lower and upper gates are enabled.  
20nC  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
V (V)  
BOOT_CAP  
FIGURE 10. BOOTSTRAP CAPACITANCE vs BOOT RIPPLE VOLTAGE  
Power Dissipation  
Package power dissipation is mainly a function of the switching  
frequency and total gate charge of the selected MOSFETs.  
Calculating the power dissipation in the driver for a desired  
application is critical to ensuring safe operation. Exceeding the  
maximum allowable power dissipation level will push the IC  
beyond the maximum recommended operating junction  
temperature of +125°C. The maximum allowable IC power  
dissipation is approximately 800mW. When designing the driver  
into an application, it is recommended that the following  
calculation be performed to ensure safe operation at the desired  
frequency for the selected MOSFETs. The power dissipated by the  
driver is approximated, as shown in Equation 2:  
The VCC pin of the driver(s) and related VCC or +5V bias supply  
pin of the Intersil controller must share a common +5V supply.  
Adaptive Shoot-Through  
Protection  
Both drivers incorporate adaptive shoot-through protection to  
prevent upper and lower MOSFETs from conducting  
simultaneously and shorting the input supply. This is  
accomplished by ensuring the falling gate has turned off one  
MOSFET before the other is allowed to turn on.  
P = f 1.5V Q + V Q + I V  
VCC  
CC  
(EQ. 2)  
During turn-off of the lower MOSFET, the LGATE voltage is  
monitored until it reaches a 1V threshold, at which time the  
UGATE is released to rise. Adaptive shoot-through circuitry  
monitors the upper MOSFET gate-to-source voltage during UGATE  
turn-off. Once the upper MOSFET gate-to-source voltage has  
dropped below a threshold of 1V, the LGATE is allowed to rise.  
sw  
U
L
U
L
Where f is the switching frequency of the PWM signal. V and  
sw  
U
V represent the upper and lower gate rail voltage. Q and Q is  
L
U
L
the upper and lower gate charge determined by MOSFET  
selection and any external capacitance added to the gate pins.  
The lV product is the quiescent power of the driver and is  
V
CC CC  
typically negligible.  
Internal Bootstrap Diode  
This driver features an internal bootstrap Schottky diode. Simply  
adding an external capacitor across the BOOT and PHASE pins  
completes the bootstrap circuit.  
The bootstrap capacitor must have a maximum voltage rating  
above the maximum battery voltage plus 5V. The bootstrap  
capacitor can be chosen from Equation 1:  
Q
GATE  
(EQ. 1)  
-----------------------  
C
BOOT  
V  
BOOT  
Where Q  
is the amount of gate charge required to fully  
GATE  
charge the gate of the upper MOSFET. The V  
term is  
BOOT  
defined as the allowable droop in the rail of the upper drive.  
As an example, suppose an upper MOSFET has a gate charge,  
Q
, of 25nC at 5V and also assume the droop in the drive  
GATE  
FN8395 Rev 1.00  
Jun 1, 2016  
Page 9 of 12  
ISL6208C  
Thermal Management  
1000  
Q
Q
= 50nC  
= 100nC  
=100nC  
= 200nC  
U
U
L
Q
Q
= 50nC  
= 50nC  
For maximum thermal performance in high current, high  
switching frequency applications, connecting the thermal pad of  
the DFN to the power ground with multiple vias is recommended.  
This heat spreading allows the part to achieve its full thermal  
potential.  
U
L
Q
Q
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
L
Q
= 20nC  
=50nC  
U
L
Q
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
FREQUENCY (kHz)  
FIGURE 11. POWER DISSIPATION vs FREQUENCY  
Layout Considerations  
Reducing Phase Ring  
The parasitic inductances of the PCB and power devices (both  
upper and lower FETs) could cause increased PHASE ringing,  
which may lead to voltages that exceed the absolute maximum  
rating of the devices. When PHASE rings below ground, the  
negative voltage could add charge to the bootstrap capacitor  
through the internal bootstrap diode. Under worst-case  
conditions, the added charge could overstress the BOOT and/or  
PHASE pins. To prevent this from happening, the user should  
perform a careful layout inspection to reduce trace inductances,  
2
and select low lead inductance MOSFETs and drivers. D PAK and  
DPAK packaged MOSFETs have high parasitic lead inductances,  
as opposed to SOIC-8. If higher inductance MOSFETs must be  
used, a Schottky diode is recommended across the lower  
MOSFET to clamp negative PHASE ring.  
A good layout would help reduce the ringing on the phase and  
gate nodes significantly:  
• Avoid using vias for decoupling components where possible,  
especially in the BOOT-to-PHASE path. Little or no use of vias  
for VCC and GND is also recommended. Decoupling loops  
should be short.  
• All power traces (UGATE, PHASE, LGATE, GND, VCC) should be  
short and wide, and avoid using vias. If vias must be used, two  
or more vias per layer transition is recommended.  
• Keep the SOURCE of the upper FET as close as thermally  
possible to the DRAIN of the lower FET.  
• Keep the connection in between the SOURCE of lower FET and  
power ground wide and short.  
• Input capacitors should be placed as close to the DRAIN of the  
upper FET and the SOURCE of the lower FET as thermally  
possible.  
Note: Refer to Intersil Tech Brief TB447 for more information.  
FN8395 Rev 1.00  
Jun 1, 2016  
Page 10 of 12  
ISL6208C  
Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted.  
Please go to web to make sure you have the latest revision.  
DATE  
REVISION  
FN8395.1  
CHANGE  
June 1, 2016  
Added note to VCC pin description on page 4 and to “Three-State PWM Input” on page 9 that +5V supply  
should be common with Intersil controller.  
Added AC specification to BOOT-GND Absolute Maximum Rating on page 5.  
On page 12 - Updated L8.2x2D POD from rev 0 to rev 1. Updates since rev 0:  
Tiebar Note 5 updated From: "Tiebar shown (if present) is a non-functional feature."  
To: "Tiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or  
ends)."  
November 29, 2012  
FN8395.0  
Initial Release  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support.  
© Copyright Intersil Americas LLC 2012-2016. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8395 Rev 1.00  
Jun 1, 2016  
Page 11 of 12  
ISL6208C  
Package Outline Drawing  
L8.2x2D  
8 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE (DFN) WITH EXPOSED PAD  
Rev 1, 3/15  
2.00  
6
A
PIN #1  
6
B
INDEX AREA  
PIN 1  
INDEX AREA  
8
1
6x 0.50  
1.55±0.10  
(4X)  
0.15  
0.22  
0.10M C AB  
( 8x0.30 )  
4
TOP VIEW  
0.90±0.10  
BOTTOM VIEW  
SEE DETAIL "X"  
C
0 . 2 REF  
0.10  
C
C
0.90±0.10  
BASE PLANE  
0 . 00 MIN.  
0 . 05 MAX.  
SEATING PLANE  
0.08  
C
SIDE VIEW  
DETAIL "X"  
( 8x0.20 )  
( 8x0.30 )  
PACKAGE  
OUTLINE  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
( 6x0.50 )  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance: Decimal ± 0.05  
1.55  
2.00  
4. Dimension applies to the metallized terminal and is measured  
between 0.15mm and 0.30mm from the terminal tip.  
( 8x0.22 )  
5. Tiebar shown (if present) is a non-functional feature and may  
be located on any of the 4 sides (or ends).  
0.90  
2.00  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
6.  
TYPICAL RECOMMENDED LAND PATTERN  
FN8395 Rev 1.00  
Jun 1, 2016  
Page 12 of 12  

相关型号:

ISL6208CB

High Voltage Synchronous Rectified Buck MOSFET Driver
INTERSIL

ISL6208CB-T

High Voltage Synchronous Rectified Buck MOSFET Driver
INTERSIL

ISL6208CBZ

High Voltage Synchronous Rectified Buck MOSFET Driver
INTERSIL

ISL6208CBZ-T

High Voltage Synchronous Rectified Buck MOSFET Driver
INTERSIL

ISL6208CBZ-T

High Voltage Synchronous Rectified Buck MOSFET Drivers; QFN8, SOIC8; Temp Range: See Datasheet
RENESAS

ISL6208CBZ-T13

HALF BRDG BASED MOSFET DRIVER
RENESAS

ISL6208CBZA

ISL6208CBZA
RENESAS

ISL6208CHRZ

High Voltage Synchronous Rectified Buck MOSFET Drivers
INTERSIL

ISL6208CHRZ-T

High Voltage Synchronous Rectified Buck MOSFET Drivers
RENESAS

ISL6208CIRZ

High Voltage Synchronous Rectified Buck MOSFET Drivers
INTERSIL

ISL6208CIRZ-T

High Voltage Synchronous Rectified Buck MOSFET Drivers
RENESAS

ISL6208CR

High Voltage Synchronous Rectified Buck MOSFET Driver
INTERSIL