ISL6398IRTZ-TK [RENESAS]

Advanced Linear EAPP 6-Ph Green PWM Controller for Digital Power with NVM and AUTO Phase Shedding;
ISL6398IRTZ-TK
型号: ISL6398IRTZ-TK
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

Advanced Linear EAPP 6-Ph Green PWM Controller for Digital Power with NVM and AUTO Phase Shedding

文件: 总57页 (文件大小:2881K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET  
ISL6398  
FN8575  
Rev 1.00  
Aug 13, 2015  
Advanced Linear EAPP Digital 6-Phase Green PWM Controller for Digital Power  
Management with NVM and AUTO Phase Shedding  
The ISL6398 is a smart and smallest 6-Phase Green PWM  
Features  
controller, designed for networking, datacenter, and POL  
2
• SMBus/PMBus/I C Compatible  
applications. It includes programmable functions and  
telemetries for easy use and system flexibility using SMBus,  
PMBus, or I C interface, which is designed to program NVM  
banks up to 8 different compensations and system  
parameters. This minimizes external components and  
significantly reduces design complexity and PCB area, and  
simplifies the manufacturing process.  
- Programmable IMAX, TMAX, BOOT, and address  
- Programmable soft-start rate and DVID rate  
- Up to 1.5MHz  
2
- NVM to store up to 8 Configurations with programmable  
frequency, droop, auto, faults (OCP, UVP, CFP), etc.  
- No firmware requirement and hassle  
The ISL6398 utilizes Intersil’s proprietary Advanced Linear EAPP  
(Enhanced Active Pulse Positioning) Digital control scheme to  
achieve the extremely fast linear transient response with fewer  
output capacitors and overcomes many hurdles of traditional  
digital approach, which uses non-linear, discrete control method  
for both voltage loop and current balance loop and runs into beat  
frequency oscillation and non-linear response. The ISL6398  
accurately monitors the load current via the IMON pin and  
reports this information via the READ_IOUT register for power  
management. The ISL6398 features auto-phase shedding. In low  
power operation, the magnetic core and switching losses are  
significantly reduced with lower phase count operation, yielding  
high efficiency at light load. When APA is triggered, the dropped  
phase(s) are added back to sustain heavy load transient  
response and efficiency. It optimizes the efficiency from light to  
full load for Greener Environment without sacrificing the transient  
performance.  
Advanced Linear EAPP Digital control scheme (patented)  
- Digitally programmable compensation  
- Auto phase shedding option for greener environment  
- Variable frequency control during load transients to  
reduce beat frequency oscillation  
- Linear control with evenly distributed PWM pulses for  
better phase current balance during load transients  
- Voltage feed-forward and ramp adjustable options  
- High frequency compensation option  
- Active phase adding and dropping for enhanced light load  
efficiency  
• Phase doubler and coupled-inductor compatibility  
• Differential remote voltage sensing with ±0.5% accuracy  
• Programmable minimum phase count operation  
• Programmable slew rate of dynamic VID with dynamic VID  
compensation (DVC)  
The ISL6398 senses the output current continuously by a  
dedicated current sense resistor or the DCR of the output  
inductor. The sensed current flows through a digitally  
programmable 1% droop resistor for precision load line control.  
Current sensing circuits also provide the needed signals for  
channel-current balancing, average overcurrent protection and  
individual phase current limiting. The TM pin senses an NTC  
thermistor’s temperature, which is internally digitized for thermal  
monitoring and for integrated thermal compensation of the  
current sense elements of the regulator.  
• Support 3-state 5V or 3.3V PWM DrMOS and driver  
• Zero current shutdown with ISL6627  
• Precision resistor or DCR differential current sensing  
- Accurate load-line (Droop) programming and control  
- Accurate current monitoring and channel-current  
balancing with calibration capability  
• True input current sensing for catastrophic failure protection  
• Average overcurrent protection and channel current limiting  
• High common mode current sense input (VCC-1.5V)  
• Open sensing and single point of loop failure protection  
• Thermal monitoring and integrated compensation  
• 1- to 6-Phase option and up to 2MHz per phase  
• Start-up into precharged load  
The ISL6398 features remote voltage sensing and completely  
eliminates any potential difference between remote and local  
grounds. This improves regulation and protection accuracy. The  
threshold-sensitive enable input is available to accurately  
coordinate the start-up of the ISL6398 with other voltage rails.  
• Pb-free (RoHS Compliant)  
• 40 Ld 5x5 Plastic Package  
Applications  
• High efficiency and high density digital power  
• High performance multi-phase POL and network  
• Cloud Computing, Router, Data Center and Storage  
• General processor power  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 1 of 57  
ISL6398  
Fault Monitoring and Protection . . . . . . . . . . . . . . . . . . . . . 26  
Table of Contents  
VR_Ready Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Overvoltage Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Overcurrent Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Thermal Monitoring (VR_HOT#) . . . . . . . . . . . . . . . . . . . . . . . 27  
Temperature Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Integrated Temperature Compensation . . . . . . . . . . . . . . . . 29  
Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Dynamic VID Compensation (DVC) . . . . . . . . . . . . . . . . . . . . . . . . .30  
Programmable Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Catastrophic Fault Protection . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Driver Recommendation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
ISL6398 Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 5  
Typical Application: 6-Phase VR with DrMOS and  
2
PMBus/SMBus/I C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Typical Application: 4-Phase VR with DrMOS and  
2
PMBus/SMBus/I C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Application: 6-Phase VR for General Processor  
Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Input Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Auto-phase Shedding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Resistor Reader (Patented) . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Memory Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Typical Application: 12-Phase VR for Over-clocking  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . .10  
Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Recommended Operating Conditions . . . . . . . . . . . . . . . . .10  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Functional Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . .14  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2
SMBus, PMBus and I C Operation . . . . . . . . . . . . . . . . . . . . 35  
General Design Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Current Sensing Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Load-line Regulation Resistor . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Output Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Switching Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . 52  
Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Multiphase Power Conversion . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Interleaving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
PWM Modulation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
PWM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
DrMOS and Driver Compatibility . . . . . . . . . . . . . . . . . . . . . . . 17  
Phase Doubler Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Precharged Start-up Capability . . . . . . . . . . . . . . . . . . . . . . . . 17  
Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Layout and Design Considerations . . . . . . . . . . . . . . . . . . . . . . 53  
Pin Noise Sensitivity, Design and Layout Consideration . . . 53  
Component Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Powering Up And Open-Loop Test . . . . . . . . . . . . . . . . . . . . 55  
Voltage Regulator (VR) Design Materials. . . . . . . . . . . . . . 55  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
About Intersil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
R
and L/DCR Matching for Coupled inductor. . . . . . . . . . 19  
SET  
Channel-current Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Voltage Regulation (5mV and 10mV Mode). . . . . . . . . . . . . . 20  
Load-line Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Dynamic VID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Operation Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Enable and Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Soft-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Current Sense Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 2 of 57  
ISL6398  
Ordering Information  
PART NUMBER  
PART  
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-Free)  
PKG.  
DWG. #  
(Notes 1, 2, 3)  
MARKING  
ISL6398HRTZ  
ISL6398 HRTZ  
ISL6398 IRTZ  
-10 to +100  
-40 to +85  
40 Ld 5x5 TQFN  
40 Ld 5x5 TQFN  
L40.5x5  
L40.5x5  
ISL6398IRTZ  
ISL6398EVAL1Z  
NOTES:  
120A 3-Phase Evaluation Board with On Board Transient  
1. Add “-T*” suffix for tape and reel. Please refer to TB347 for details on reel specifications  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte  
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil  
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. For Moisture Sensitivity Level (MSL), please see product information page for ISL6398. For more information on MSL please see techbrief TB363.  
Pin Configuration  
ISL6398  
(40 LD 5X5 TQFN)  
TOP VIEW  
35  
32 31  
40 39 38 37  
36  
34  
33  
ISEN6-  
ISEN6+  
ISENIN-  
1
2
30 PWM6  
29  
28  
27  
26  
25  
24  
PWM3  
PWM1  
3
4
PWM4  
PWM2  
ISENIN+  
EN_PWR_CFP  
RGND  
5
GND  
6
PWM5  
7
VSEN  
VCC  
VSEN_OVP  
8
23  
22  
RSET  
9
VRSEL_ADDR  
AUTO  
10  
NVM_BANK_BT  
21  
TM_EN_OTP  
11  
12 13 14 15 16 17 18 19 20  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 3 of 57  
ISL6398  
Driver Recommendation  
QUIESCENT  
CURRENT (mA)  
GATE DRIVE  
# OF  
DRIVERS  
DIODE EMULATION  
(DE)  
DRIVER  
ISL6627  
(V)  
COMMENTS  
1.0  
5V  
Single  
Yes  
For dropped phases or all channels with Diode Emulation  
(DE) for low stress shutdown or phase dropping.  
ISL6596  
0.19  
0.24  
5V  
5V  
Single  
Dual  
No  
No  
For dropped phases or all channels without DE.  
For dropped phases or all channels without DE.  
ISL6610  
ISL6610A  
ISL6611A  
ISL6617  
1.25  
5.0  
5V  
N/A  
5V  
Dual  
N/A  
No  
No  
Phase Doubler with Integrated Drivers, up to 12-Phase. For  
all channels with DE Disabled.  
PWM Doubler for DrMOS, up to 12- or 24-Phase. For all  
channels with DE Disabled.  
ISL99140  
0.47  
Single  
Yes  
DrMOS with 40A current capability. ISL99140’s diode  
emulation is not compatible with ISL6398. Both DrMOS and  
ISL6398 should disable their diode emulation operation.  
NOTE: Intersil 5V and 12V drivers are mostly pin-to-pin compatible and allow for dual footprint layout implementation to optimize MOSFET selection and  
efficiency. The 5V Drivers are more suitable for high frequency and high power density applications.  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 4 of 57  
ISL6398  
ISL6398 Internal Block Diagram  
RSET  
HIGH SPEED AND  
HIGH FREQUENCY  
ISEN1+  
BALANCE  
ISEN1-  
PWM1  
ISEN2+  
ISEN2-  
TEMPERATURE  
COMPENSATION  
LINEAR CONTROL  
EAPP PWM  
MODULATOR  
PWM2  
PWM3  
PWM4  
ISEN3+  
ISEN3-  
ISEN4+  
CHANNEL  
CURRENT  
SENSE  
PWM  
DRIVERS  
DIGITAL  
COMPENSATION:  
DROOP, DVID,  
PSICOMP, AUTO,  
THERMAL COMP  
PWM5  
PWM6  
ISEN4-  
ISEN5+  
ISEN5-  
ISEN6+  
ISEN6-  
AVERAGE  
OVERCURRENT AND  
CYCLE-BY-CYCLE  
CURRENT LIMITING  
PROTECTION  
RGND  
VSEN  
OUTPUT VOLTAGE  
SENSE  
VSEN_OVP  
DAC (VID AND OFFSET)  
AND SOFT-START  
VR_RDY  
PROTECTION  
FEEDFORWARD  
CLOCK AND RAMP  
CONTROL  
REAL-TIME AND  
HIGH-SPEED  
VR_HOT#  
FAULT LOGIC  
ISENIN+  
ISENIN-  
INPUT I/V  
SENSE  
STATE MACHINE  
TEMP SENSE  
TM_EN_OTP  
INTERFACES  
CONTROL, MONITOR  
REGISTERS, TELEMETRY  
AND CALIBRATION  
POWER-ON  
RESET (POR)  
VCC  
IMON  
AUTO  
AUTO PHASE  
CONTROL  
EN_PWR_CFP  
SM_PM_I2CLK  
SM_PM_ALERT#  
SM_PM_I2DATA  
CORE/MEMORY  
ADDRESS AND  
NVM  
VRSEL_ADDR  
PMBus  
NVM_BANKS_BT  
BANKS CONTROL  
NVM  
ADC  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 5 of 57  
ISL6398  
2
Typical Application: 6-Phase VR with DrMOS and PMBus/SMBus/I C  
+5V  
VCC  
VSEN_OVP  
VSEN  
VIN  
RGND  
VINF  
RSENIN  
RISENIN2  
RISENIN1  
ISENIN-  
ISENIN+  
VR_RDY  
VR_HOT#  
VINF  
+5V  
ISL99140  
UG  
SM_PM_I2DA  
VCC  
BOOT  
PHASE  
SM_PMALERT#  
SM_PM_I2CLK  
PWM1  
PWM  
LG  
VINF  
ISEN1-  
ISEN1+  
EN_PWR_CFP  
VINF  
+5V  
ISL99140  
UG  
BOOT  
PHASE  
VCC  
CFP  
ISL6398  
PWM4  
PWM  
LG  
IMON  
ISEN4-  
ISEN4+  
+5V  
PWM2,5  
ISEN2,5-  
NVM_BANKS_BT  
VRSEL_ADDR  
2X  
ISEN2,5+  
+5V  
VINF  
AUTO  
ISL99140  
UG  
LOAD  
BOOT  
PHASE  
VCC  
PWM3  
PWM  
LG  
RSET  
ISEN3-  
ISEN3+  
VINF  
+5V  
+5V  
ISL99140  
UG  
BOOT  
PHASE  
VCC  
TM_EN_OTP  
PWM6  
PWM  
LG  
NTC  
ISEN6-  
ISEN6+  
GND  
NTC: BETA = 3477  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 6 of 57  
ISL6398  
2
Typical Application: 4-Phase VR with DrMOS and PMBus/SMBus/I C  
+5V  
VCC  
VSEN_OVP  
VSEN  
VIN  
VINF  
RGND  
RSENIN  
RISENIN2  
RISENIN1  
ISENIN-  
ISENIN+  
VR_RDY  
VINF  
+5V  
VR_HOT#  
ISL99140  
UG  
BOOT  
PHASE  
VCC  
SM_PM_I2DA  
SM_PMALERT#  
SM_PM_I2CLK  
PWM1  
PWM  
LG  
VINF  
ISEN1-  
ISEN1+  
EN_PWR_CFP  
VINF  
+5V  
ISL99140  
UG  
VCC  
BOOT  
PHASE  
ISL6398  
CFP  
PWM3  
PWM  
LG  
IMON  
ISEN3-  
ISEN3+  
+5V  
VINF  
+5V  
ISL99140  
UG  
BOOT  
PHASE  
VCC  
NVM_BANK_BT  
VRSEL_ADDR  
2X  
PWM2  
PWM  
LG  
AUTO  
LOAD  
ISEN2-  
ISEN2+  
VINF  
+5V  
ISL99140  
UG  
RSET  
BOOT  
PHASE  
VCC  
PWM4  
ISEN4-  
PWM  
LG  
+5V  
ISEN4+  
PWM6  
TM_EN_OTP  
NTC  
OPEN  
ISEN5,6+  
ISEN5,6-  
PWM5  
NTC: BETA = 3477  
VCC  
GND  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 7 of 57  
ISL6398  
Typical Application: 6-Phase VR for General Processor Power  
+5V  
VCC  
VSEN_OVP  
VSEN  
VIN  
VINF  
RGND  
RSENIN  
RISENIN2  
RISENIN1  
ISENIN-  
ISENIN+  
VINF  
VR_RDY  
BOOT  
UGATE  
VR_HOT#  
+5V  
SM_PM_I2DA  
VCC  
PHASE  
GND  
ISL6627  
DRIVER  
SM_PMALERT#  
SM_PM_I2CLK  
LGATE  
PWM1  
VINF  
ISEN1-  
ISEN1+  
EN_PWR_CFP  
VINF  
CFP  
BOOT  
+5V  
ISL6398  
UGATE  
VCC  
PHASE  
GND  
ISL6627  
DRIVER  
IMON  
LGATE  
PWM4  
+5V  
ISEN4-  
ISEN4+  
NVM_BANK_BT  
VRSEL_ADDR  
2X  
AUTO  
LOAD  
PWM2,3,5  
ISEN2,3,5-  
ISEN2,3,5+  
RSET  
VINF  
BOOT  
+5V  
+5V  
UGATE  
VCC  
PHASE  
GND  
ISL6627  
DRIVER  
TM_EN_OTP  
NTC  
LGATE  
PWM6  
ISEN6-  
ISEN6+  
GND  
NTC: BETA = 3477  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 8 of 57  
ISL6398  
Typical Application: 12-Phase VR for Over-clocking Applications  
+12V  
+5V  
ISL99140  
+5V  
V
IN  
V
CC  
PWMA  
PWM PHASE  
GND  
+5V  
EN_PH_SYNC  
+5V  
V
+5V  
V
ISENA-  
CC  
PWMA  
ISENA+  
ISENB+  
CC  
PWMIN  
ISENB-  
EN_PH_SYNC  
+12V  
ISL99140  
VSEN_OVP  
VSEN  
ISL6617  
VIN  
PWM PHASE  
GND  
V
ISENA-  
ISENA+  
I
O
OUT  
PWMB  
RGND  
GND  
LOAD  
+12V  
PWMIN  
PWM1  
+5V  
ISL99140  
+5V  
V
IN  
V
CC  
ISL6617  
PWM PHASE  
GND  
PWMA  
EN_PH_SYNC  
I
ISEN1-  
ISEN1+  
OUT  
I
ISENB-  
ISENB+  
OUT  
ISENA-  
ISENA+  
ISENB+  
ISL99140  
MAIN  
ISENB-  
PWMIN  
PWMB  
GND  
CONTROL  
ISL6398  
+12V  
PWM  
V
IN  
PHASE  
ISL6617  
PWMB  
GND  
GND  
PWM2-5  
+12V  
+5V  
ISEN2-5-  
ISL99140  
+5V  
ISEN2-5+  
V
IN  
V
CC  
PWMA  
PWM PHASE  
GND  
+5V  
EN_PH_SYNC  
EN_PH_SYNC2  
ISENA-  
V
CC  
PWMA  
ISENA+  
ISENB+  
PWMIN  
ISL99140  
ISENB-  
EN_PH_SYNC  
+12V  
ISL6617  
V
IN  
ISENA-  
ISENA+  
I
OUT  
PWMB  
PWM PHASE  
GND  
GND  
PWMIN  
+12V  
PWM6  
+5V  
ISL99140  
+5V  
V
IN  
V
CC  
ISL6617  
PWM PHASE  
GND  
PWMA  
ISEN6-  
ISEN6+  
EN_PH_SYNC  
I
OUT  
ISENB-  
ISENB+  
I
OUT  
ISENA-  
ISENA+  
ISENB+  
GND  
ISL99140  
ISENB-  
PWMB  
PWMIN  
+12V  
V
ISL6617  
PWMB  
GND  
GND  
IN  
PWM PHASE  
GND  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 9 of 57  
ISL6398  
Absolute Maximum Ratings  
Thermal Information  
VCC, VR_RDY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6V  
ISENIN± . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .GND -0.3V to 27V  
Thermal Resistance (Notes 4, 5)  
40 Ld 5x5 TQFN Package . . . . . . . . . . . . . .  
(°C/W)  
29  
(°C/W)  
1
JA  
JC  
All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .GND -0.3V to V + 0.3V  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493  
CC  
Recommended Operating Conditions  
Supply Voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+5V ±5%  
CC  
EEPROM Write and Store Command Temperature . . . . . .-40°C to +85°C  
Ambient Temperature  
ISL6398HRTZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-10°C to +100°C  
ISL6398IRTZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product  
reliability and result in failures not covered by warranty.  
NOTES:  
4. is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See Tech  
JA  
Brief TB379.  
5. For , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
Electrical Specifications Recommended Operating Conditions, V = 5V, Unless Otherwise specified. Boldface limits apply across the  
CC  
operating temperature range.  
MIN  
MAX  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
(Note 7) TYP (Note 7) UNITS  
V
CC  
Nominal Supply  
Shutdown Supply  
V
V
= 5VDC; EN_PWR = 5VDC; F  
= 400kHz  
-
-
35  
27  
45  
33  
mA  
mA  
CC  
SW  
SW  
= 5VDC; EN_PWR = 0VDC; F  
= 400kHz  
CC  
POWER-ON RESET AND ENABLE  
V
V
Rising POR Threshold  
Falling POR Threshold  
4.22  
4.00  
3.5  
4.35  
4.10  
3.6  
4.55  
4.22  
3.7  
V
V
V
V
V
V
V
CC  
CC  
EN_PWR_CFP High Level Turn-OFF Threshold  
EN_PWR_CFP High Level Turn-ON Threshold  
EN_PWR_CFP Latch-OFF Level  
Externally Driven  
Externally Driven  
3.33  
4.80  
-
3.52  
-
3.58  
-
Internally Driven, 5mA Load  
EN_PWR_CFP Internal Pull-Up Impedance  
EN_PWR_CFP Rising Threshold  
12  
34  
0.83  
0.70  
0.85  
0.77  
0.87  
0.84  
EN_PWR_CFP Falling Threshold  
DAC (VID+OFFSET)  
DAC = 1.5V to 3.04 V  
DAC = 0.8V to 1.49V  
DAC = 0.25V to 0.795V  
DAC = 1.5V to 3.04 V  
DAC = 0.8V to 1.49V  
DAC = 0.25V to 0.795V  
DAC = 1.5V to 3.04 V  
DAC = 0.8V to 1.49V  
DAC = 0.25V to 0.795V  
-0.5  
-5  
-
-
-
-
-
-
-
-
-
0.5  
5
%VID  
mV  
System Accuracy of Commercial Temperature  
(T = 0°C to +70°C, Note 6, Closed-Loop)  
J
-8  
8
mV  
-0.55  
-7  
0.55  
7
%VID  
mV  
System Accuracy of ISL6398HRTZ  
(T = -10°C to +100°C, Note 6, Closed-Loop)  
J
-9  
9
mV  
-0.6  
-10  
-10  
0.6  
10  
10  
%VID  
mV  
System Accuracy of ISL6398IRTZ  
(T = -40°C to +85°C, Note 6, Closed-Loop)  
J
mV  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 10 of 57  
ISL6398  
Electrical Specifications Recommended Operating Conditions, V = 5V, Unless Otherwise specified. Boldface limits apply across the  
CC  
operating temperature range. (Continued)  
MIN  
MAX  
PARAMETER  
TEST CONDITIONS  
(Note 7) TYP (Note 7) UNITS  
OSCILLATORS  
390kHz, F3[2:0] = 0h = Original, ISL6398HRTZ  
390kHz, F3[2:0] = 0h = Original, ISL6398IRTZ  
355  
348  
-
390  
425  
kHz  
kHz  
Accuracy of Switching Frequency Setting  
390  
425  
2.025  
-
MHz  
Maximum Switching Frequency  
Minimum Switching Frequency  
-
0.120  
-
MHz  
DVID = 0.3125mV/µs, Minimum  
DVID = 2.5mV/µs  
0.3125  
2.5  
-
3.0  
6.0  
-
-
3.4  
7.0  
-
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
mV/µs  
%
Soft-start Ramp Rate  
DVID = 5.0mV/µs  
5.0  
DVID = 13.25mV/µs, Maximum  
DVID = 0.3125mV/µs, Minimum  
DVID = 13.25mV/µs, Maximum  
390kHz  
13.25  
0.3125  
13.25  
95  
Minimum Dynamic VID Slew Rate  
Maximum Dynamic VID Slew Rate  
Maximum Duty Cycle Per PWM  
PWM GENERATOR  
-
-
-
-
98  
99  
VR  
VR  
VR  
VR  
= 0.7V, ISENIN+ = 12V  
= 1.0V, ISENIN+ = 12V  
= 1.2V, ISENIN+ = 12V  
= 1.5V, ISENIN+ = 12V  
-
-
-
-
0.7  
1.0  
1.2  
1.5  
-
-
-
-
V
V
V
V
RAMP_ADJ  
RAMP_ADJ  
RAMP_ADJ  
RAMP_ADJ  
Sawtooth Amplitude  
BUFFERED COMP AMPLIFIER  
Open-Loop Gain  
R = 10kto ground  
-
96  
20  
-
dB  
MHz  
V
L
-
-
Open-Loop Bandwidth  
Maximum Output Voltage  
Output High Voltage  
No Load  
3.6  
3.4  
1.88  
4.0  
3.9  
-
-
1mA Load  
1mA Load  
V
Output Low Voltage  
1.99  
V
PWM OUTPUT (PWM[6:1])  
PWM = Low with 1mA Load, for Fast Transition  
PWM = Low with 1mA Load, ISL6398HRTZ  
PWM = Low with 1mA Load, ISL6398IRTZ  
PWM = High, Forced to 3.7V  
-
80  
285  
285  
125  
40  
-
PWM[6:1] Sink Impedance  
170  
170  
60  
425  
400  
210  
44  
PWM[6:1] Source Impedance  
PWM Mid-Level  
0.4mA Load, 5V PWM  
36  
%VCC  
%VCC  
PWM Mid-Level  
0.4mA Load, 3.3V PWM  
24  
28  
31  
CURRENT SENSE AND OVERCURRENT PROTECTION  
Sensed Current Tolerance  
CS Offset and Mirror Error Included,  
(T = 0°C to +70°C)  
73  
72  
78  
78  
82.5  
83  
µA  
µA  
J
(T = -40°C to +100°C, HRTZ, IRTZ)  
J
R
= 12.8k  
SET  
Average OC Trip Level at Normal CCM PWM Mode (T = 0°C to +70°C)  
J
96  
95  
103  
103  
111  
112  
µA  
µA  
CS Offset and Mirror Error Included,  
(T = -40°C to +100°C, HRTZ, IRTZ)  
J
R
= 12.8k  
SET  
Average Overcurrent Trip Level at PSI1/2/3 Mode (T = 0°C to +70°C)  
J
92  
90  
107  
125  
122  
124  
µA  
µA  
CS Offset and Mirror Error Included,  
(T = -40°C to +100°C, HRTZ, IRTZ)  
J
R
= 12.8k  
SET  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 11 of 57  
ISL6398  
Electrical Specifications Recommended Operating Conditions, V = 5V, Unless Otherwise specified. Boldface limits apply across the  
CC  
operating temperature range. (Continued)  
MIN  
MAX  
PARAMETER  
TEST CONDITIONS  
(Note 7) TYP (Note 7) UNITS  
Peak Current Limit for Individual Channel  
CS Offset and Mirror Error Included,  
(T = 0°C to +70°C)  
118  
116  
125  
125  
133  
134  
µA  
µA  
J
(T = -40°C to +100°C, HRTZ, IRTZ)  
J
R
= 12.8k  
SET  
IMON OCP Trip Level  
2.9  
2.45  
-
3.0  
2.5  
10  
3.1  
2.56  
-
V
V
IMON VOLTAGE IMAX (FF) TRIP POINT  
READ_IIN (1F) Maximum Threshold  
Input Peak Current Trip Level  
Higher than this will be “FF”  
µA  
µA  
13.9  
15  
16.5  
THERMAL MONITORING  
VR_HOT# Pull-down Impedance  
TM Voltage at VR_HOT# Trip  
-
9.2  
39.12  
3
13  
%VCC  
°C  
µA  
V
TMAX = +100°C (see Table 6), Programmable via Tmax  
-
-
-
VR_HOT# and Thermal Alert# Hysteresis  
Leakage Current of VR_HOT#  
-
With external pull-up resistor connected to V  
-
-
1
CC  
Over-Temperature Shutdown Threshold  
Over-Temperature Shutdown Reset Threshold  
VR READY AND PROTECTION MONITORS  
Leakage Current of VR_RDY  
0.91  
1.04  
0.94  
1.07  
0.97  
1.11  
V
With pull-up resistor externally connected to V  
4mA Load  
-
-
1
µA  
V
CC  
VR READY Low Voltage  
-
-
0.3  
146  
191  
236  
281  
330  
378  
426  
519  
72  
Voltage below VID E1[3:0] = 0h)  
Voltage below VID E1[3:0] = 1h)  
Voltage below VID E1[3:0] = 2h)  
Voltage below VID E1[3:0] = 3h)  
Voltage below VID E1[3:0] = 4h)  
Voltage below VID E1[3:0] = 5h)  
Voltage below VID E1[3:0] = 6h)  
Voltage below VID E1[3:0] = 7h)  
Voltage below VID E1[3:0] = 0h)  
Voltage below VID E1[3:0] = 1h)  
Voltage below VID E1[3:0] = 2h)  
Voltage below VID E1[3:0] = 3h)  
Voltage below VID E1[3:0] = 4h)  
Voltage below VID E1[3:0] = 5h)  
Voltage below VID E1[3:0] = 6h)  
Voltage below VID E1[3:0] = 7h)  
Higher than UVP  
65  
105  
141  
178  
214  
252  
291  
328  
402  
41  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
93  
121  
149  
177  
207  
233  
288  
10  
Undervoltage Protection Threshold (UVP)  
Can Be Disabled by DFh  
35  
72  
109  
146  
186  
226  
268  
307  
389  
-
61  
103  
135  
168  
202  
234  
298  
19  
84  
Undervoltage Warning Threshold (UVP Warning)  
Can Be Disable by DFh  
109  
133  
157  
201  
-
Undervoltage Protection Reset Hysteresis  
Undervoltage Warning Reset Hysteresis  
Higher than UVP Warning  
-
17  
-
FN8575 Rev 1.00  
Aug 13, 2015  
Page 12 of 57  
ISL6398  
Electrical Specifications Recommended Operating Conditions, V = 5V, Unless Otherwise specified. Boldface limits apply across the  
CC  
operating temperature range. (Continued)  
MIN  
MAX  
PARAMETER  
TEST CONDITIONS  
(Note 7) TYP (Note 7) UNITS  
Prior to the End of Soft-start (D8h[4:3] = 0h)  
1.51  
1.75  
2.20  
3.10  
91  
1.58  
1.86  
2.29  
3.32  
135  
177  
218  
260  
342  
425  
460  
549  
110  
83  
1.70  
1.95  
2.40  
3.50  
177  
225  
274  
323  
424  
526  
580  
697  
180  
-
V
Prior to the End of Soft-start (D8h[4:3] = 1h)  
V
Prior to the End of Soft-start (D8h[4:3] = 2h)  
V
Prior to the End of Soft-start (D8h[4:3] = 3h)  
V
End of Soft-start, the voltage above VID D8[2:0] = 0h)  
End of Soft-start, the voltage above VID D8[2:0] = 1h)  
End of Soft-start, the voltage above VID D8[2:0] = 2h)  
End of Soft-start, the voltage above VID D8[2:0] = 3h)  
End of Soft-start, the voltage above VID D8[2:0] = 4h)  
End of Soft-start, the voltage above VID D8[2:0] = 5h)  
End of Soft-start, the voltage above VID D8[2:0] = 6h)  
End of Soft-start, the voltage above VID D8[2:0] = 7h)  
Prior to the end of Soft-start, lower than OVP  
During operation, lower than OVP  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
125  
158  
191  
254  
318  
347  
395  
55  
Overvoltage Protection Threshold (OVP)  
Can Be Disabled by DFh  
Overvoltage Protection Reset Hysteresis  
-
End of Soft-start, the voltage above VID D8[2:0] = 0h)  
End of Soft-start, the voltage above VID D8[2:0] = 1h)  
End of Soft-start, the voltage above VID D8[2:0] = 2h)  
End of Soft-start, the voltage above VID D8[2:0] = 3h)  
End of soft-start, the voltage above VID D8[2:0] = 4h)  
End of soft-start, the voltage above VID D8[2:0] = 5h)  
End of soft-start, the voltage above VID D8[2:0] = 6h)  
End of soft-start, the voltage above VID D8[2:0] = 7h)  
Lower than OVP Warning  
22  
54  
83  
60  
96  
129  
176  
225  
324  
427  
476  
578  
-
97  
138  
179  
264  
347  
389  
474  
42  
132  
205  
273  
308  
377  
-
Overvoltage Warning Threshold (OVP)  
Can Be Disabled by DFh  
Overvoltage Warning Reset Hysteresis  
2
SMBus/PMBus/I C  
Signal Input Low Voltage  
Signal Input High Voltage  
Signal Output Low Voltage  
ALERT# Pull-down Impedance  
DATA Pull-down Impedance  
CLOCK Maximum Speed  
CLOCK Minimum Speed  
Time-out  
-
-
0.8  
VCC  
0.4  
50  
V
V
2.1  
-
-
4mA loading on Alert#  
-
V
-
-
28  
28  
-
Ω
50  
Ω
1.5  
-
-
MHz  
MHz  
ms  
-
0.05  
35  
25  
30  
EEPROM  
Number of NVM_BANK  
NVM_BANK Loading Time  
NOTES:  
-
-
8
-
Including POR delay and Resistor Reading Time  
16  
20  
ms  
6. These parts are designed and adjusted for accuracy with all errors in the voltage loop included.  
7. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 13 of 57  
ISL6398  
RGND - This pin compensates the offset between the remote  
ground of the load and the local ground of this device for  
precision regulation. Connect this pin to the negative rail remote  
sensing point of the microprocessor or load.  
Functional Pin Descriptions  
Refer to Table 19 on page 53 for Design and Layout  
Considerations.  
VCC - Supplies the power necessary to operate the chip. Connect  
this pin directly to a +5V supply with a high quality ceramic  
bypass capacitor. The controller start to operate, when the  
voltage on this pin exceeds the rising POR threshold and shuts  
down when the voltage on this pin drops below the falling POR  
threshold.  
VR_RDY - VR_RDY indicates that soft-start has completed and the  
output remains in normal operation. It is an open-drain logic output.  
When OCP, UVP, OVP, or CFP occurs, VR_RDY is pulled low.  
TM_EN_OTP - Input pin for the temperature measurement.  
Connect this pin through an NTC thermistor to GND and a resistor  
to VCC of the controller. The voltage at this pin is inversely  
proportional to the VR temperature. The device monitors the VR  
temperature based on the voltage at the TM pin. Combined with  
“TCOMP” setting, the sensed current is thermally compensated.  
The VR_HOT# asserts low if the sensed temperature at this pin is  
higher than the maximum desired temperature, “TMAX”. The NTC  
should be placed close to the current sensing element, the output  
inductor or dedicated sense resistor on Phase 1. A decoupling  
capacitor (0.1µF) is typically needed in close proximity to the  
controller. In addition, the controller is disabled when this pin’s  
voltage drops below 0.95 (typically) and is active when it is above  
1.05V (typically); it can serve as Enable and Over-Temperature  
functions, however, when it is used as an Enable toggle input,  
bit2 of STATUS_BYTE (78h) will flag OT; CLEAR_FAULTS (03h)  
command must be sent to clear the fault after VR start-up. If not  
GND - The bottom metal base of ISL6398 is return of VCC supply.  
It is also the return of the PMBus as well as all PWM output  
drivers. Connect it to system ground; also externally connect pins  
13, 14, and 15 to system GND.  
ISENIN+, ISENIN- - These pins are current sense inputs to the  
differential amplifier of the input supply. The sensed current is  
used for input power monitoring and power management of the  
system. When not used, connect ISENIN+ to VIN and a resistor  
divider with a ratio of 1/3 on ISENIN± pin, say 499kΩ in between  
ISENIN± pins and then 1.5MΩ from ISENIN- to ground  
(see Figure 29). Refer to “Input Current Sensing” on page 30 for  
configuration details. Regardless input current sense is used or  
not, ISENIN+ should be connected to input voltage (V ) for  
IN  
feed-forward compensation to maintain a constant loop gain  
over the input line variation.  
used, connect a 1MΩ/2MΩ resistor divider or tie to V  
.
CC  
PWM[6:1] - Pulse width modulation outputs. Connect these pins  
to the PWM input pins of the Intersil driver IC(s). The number of  
active channels is determined by the state of PWM[6:2]. Tie  
PWM(N+1) to VCC to configure for N-phase operation. The PWM  
firing order is sequential from 1 to N with N being the number of  
active phases. If PWM1 is tied high, the VR is disabled.  
EN_PWR_CFP - This pin is a threshold-sensitive enable input and  
a catastrophic failure protection (CFP) output. Connecting the  
power train input supply to this through an appropriate resistor  
divider provides input undervoltage protection and a means to  
synchronize the power sequencing of the controller and the  
MOSFET driver ICs. When EN_PWR_CFP is driven above 0.85V  
but below 3.3V, the controller is actively depending on status of  
the TM_EN_OTP, the internal POR, and pending fault states.  
Driving EN_PWR_CFP below 0.75V or above 3.7V will turn off the  
controller, clear all fault states (except for CFP fault) and prepare  
the ISL6398 to soft-start when re-enabled. In addition, this pin  
will be latched high (VCC) by the input overcurrent (monitored by  
ISENIN±) or VR overvoltage event. The latch resets by cycling VCC  
and cannot reset by TM_EN_OTP or EN_PWR_CFP since when the  
catastrophic failure (CFP) is triggered, the input power is  
removed from VR so is the VTT voltage rail and it is PGOOD  
signal. To keep CFP active, VCC should be biased with a standby  
supply. This feature means to provide protection to the case that  
the VR with shorted high-side MOSFET draws insufficient current  
to trigger the input supply’s over current trip level, this pin will  
send an active high signal (CFP) to disconnect the input supply  
before catching fire or further damage of PCB. Refer  
ISEN[6:1]+, ISEN[6:1] - The ISEN+ and ISEN- pins are current  
sense inputs to individual differential amplifiers of VR. The  
sensed current is used for channel current balancing, overcurrent  
protection, and droop regulation. Inactive channels should have  
their respective current sense inputs, ISEN[6:#]- grounded, and  
ISEN[6:#]+ open. For example, ground ISEN[6:5]- and open  
ISEN[6:5]+ for 4-phase operation. DO NOT ground ISEN[6:1]+. For  
DCR sensing, connect each ISEN- pin to the node between the RC  
sense elements. Tie the ISEN+ pin to the other end of the sense  
capacitor (typically output rail). The voltage across the sense  
capacitor is proportional to the inductor current. Therefore, the  
sensed current is proportional to the inductor current and scaled  
by the DCR of the inductor and R  
.
SET  
BUF_COMP - Buffered output of internal COMP.  
VR_HOT# - Indicator of VR temperature reaching above TMAX set  
by PMBus E8[2:0]. It is an open-drain logic output. Normally open  
if the measured VR temperature is less than TMAX, and pulled  
low when the measured VR temperature exceeds TMAX.  
“Catastrophic Fault Protection” on page 30 for more details.  
VSEN_OVP - This pin monitors the regulator output for  
overvoltage protection. Connect this pin to the positive rail  
remote sensing point of the microprocessor or load. This pin  
tracks with the VSEN pin. If a resistive divider is placed on the  
VSEN pin, a resistive divider with the same ratio should be placed  
on the VSEN_OVP pin to track UVP and OVP.  
RSET - A resistor connected from this pin to ground sets the  
current gain of the current sensing amplifier. The RSET resistor  
value can be set from 3.84kto 60.4kand is 64x of the  
equivalent R  
resistor value. Therefore, the effective current  
ISEN  
sense resistor value can be set between 60and 943.  
VSEN - This pin compensates the voltage drop between the load  
and local output rail for precision regulation. Connect this pin to  
the positive rail remote sensing point of the microprocessor or  
load. It also is the APA level sensing input.  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 14 of 57  
ISL6398  
IMON - IMON is the output pin of sensed, thermally compensated  
(if internal thermal compensation is used) average current of VR0.  
The voltage at the IMON pin is proportional to the load current and  
the resistor value. When it reaches to 3.0V, it initiates an overcurrent  
shutdown, while 2.5V IMON voltage corresponds to READ_IOUT  
(8Ch) maximum reading. By choosing the proper value for the  
resistor at IMON pin, the overcurrent trip level can be set lower than  
the fixed internal overcurrent threshold. During dynamic VID, the  
OCP function of this pin is disabled to avoid false triggering. Tie it to  
GND if not used. Refer to “Current Sense Output” on page 25 for  
more details.  
Multiphase Power Conversion  
High Power processor load current profiles have changed to the  
point that the advantages of multiphase power conversion are  
impossible to ignore. The technical challenges associated with  
producing a single-phase converter (which are both cost-effective  
and thermally viable), have forced a change to the cost-saving  
approach of multiphase. The ISL6398 controller helps reduce the  
complexity of implementation by integrating vital functions and  
requiring minimal output components. The typical application  
circuits diagrams on pages 6 through 9 provide the top level views of  
multiphase power conversion using the ISL6398 controller.  
AUTO - A resistor from the pin to ground sets the current  
Interleaving  
threshold of phase dropping for operation. The AUTO mode can be  
permanently disabled by pulling this pin to ground or PMBus D4h[2].  
See Table 2 on page 17 and Table 8 on page 32 for more details.  
The switching of each channel in a multiphase converter is timed to  
be symmetrically out-of-phase with each of the other channels. In a  
3-phase converter, each channel switches 1/3 cycle after the  
previous channel and 1/3 cycle before the following channel. As a  
result, the 3-phase converter has a combined ripple frequency three  
times greater than the ripple frequency of any one phase, as  
illustrated in Figure 1. The three channel currents (IL1, IL2 and IL3)  
combine to form the AC ripple current and the DC load current. The  
ripple component has three times the ripple frequency of each  
individual channel current. Each PWM pulse is terminated 1/3 of a  
cycle after the PWM pulse of the previous phase. The DC  
SM_PM_I2CLK - Synchronous clock signal input of  
SMBus/PMBus/I C.  
2
SM_PM_I2DATA - I/O pin for transferring data signals  
2
SMBus/PMBus/I C and VR controller.  
SM_PMALERT# - Output pin for transferring the active low signal  
driven asynchronously from the VR controller to SMBus/PMBus.  
VRSEL_ADDR - Register pin used to program VR address  
(PMBus) and to determine 5m/step or 10mV/step mode.  
components of the inductor currents combine to feed the load.  
To understand the reduction of ripple current amplitude in the  
multiphase circuit, examine Equation 1, which represents an  
individual channel’s peak-to-peak inductor current.  
NVM_BANK_BT - Register pin to select NVM memory bank to use  
(up to 8 configuration banks) and boot voltage, which can be set  
by this pin or the value stored in NVM bank.  
V V  
  V  
OUT  
IN  
OUT  
(EQ. 1)  
I
= ---------------------------------------------------------  
p-p  
L F  
V  
Operation  
SW  
IN  
The ISL6398 is the smallest 6-Phase PWM controller. It utilizes  
Intersil’s proprietary Advanced Linear EAPP (Enhanced Active Pulse  
Positioning) digital control scheme that can process voltage and  
current information in real time for fast control and high speed  
protection and realize digital power management capability and  
flexibility. It achieves the extremely fast linear transient response  
with fewer output capacitors and overcomes many hurdles of  
traditional digital approach, which uses non-linear, discrete control  
method for both voltage loop and current balance loop and runs into  
beat frequency oscillation and non-linear response. The ISL6398 is  
designed to cloud computing, networking, datacenter, and POL  
applications. The system parameters and required registers are  
programmable and can be stored into selected NVM_BANK via  
PMBus, no firmware required. It allows up to 8 memory banks, i.e.,  
8 different applications. This greatly simplifies the system design  
for various platforms and lowers inventory complexity and cost by  
using a single device.  
In Equation 1, V and V  
IN OUT  
respectively, L is the single-channel inductor value, and F  
the switching frequency.  
are the input and output voltages  
is  
SW  
IL1 + IL2 + IL3, 7A/DIV  
IL1, 7A/DIV  
PWM1, 5V/DIV  
IL2, 7A/DIV  
PWM2, 5V/DIV  
IL3, 7A/DIV  
PWM3, 5V/DIV  
1µs/DIV  
In addition, this controller is compatible with phase doublers  
(ISL6611A and ISL6617), which can double or quadruple the phase  
count. For instance, the multi-phase PWM can realize up to  
24-phase count system. A higher phase count system can improve  
thermal distribution and power conversion efficiency at heavy load.  
FIGURE 1. PWM AND INDUCTOR-CURRENT WAVEFORMS FOR  
3-PHASE CONVERTER  
The ISL6398 also supports coupled (2-Phase CI) inductor design.  
Refer to Intersil’s application note, AN1268 for detailed coupled  
inductor discussion.  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 15 of 57  
ISL6398  
In the case of multiphase converters, the capacitor current is the  
sum of the ripple currents from each of the individual channels.  
Compare Equation 1 to the expression for the peak-to-peak  
current after the summation of N symmetrically phase-shifted  
inductor currents in Equation 2, the peak-to-peak overall ripple  
INPUT-CAPACITOR CURRENT, 10A/DIV  
current I  
channels, as shown in Figure 2.  
decreases with the increase in the number of  
C(P-P)  
CHANNEL 1  
INPUT CURRENT  
10A/DIV  
CHANNEL 2  
INPUT CURRENT  
10A/DIV  
N=1  
CHANNEL 3  
INPUT CURRENT  
10A/DIV  
2
1µs/DIV  
3
FIGURE 3. CHANNEL INPUT CURRENTS AND INPUT-CAPACITOR  
RMS CURRENT FOR 3-PHASE CONVERTER  
4
5
The converter depicted in Figure 3 delivers 36A to a 1.5V load from  
a 12V input. The RMS input capacitor current is 5.9A. Compare this  
to a single-phase converter also stepping down 12V to 1.5V at 36A.  
6
The single-phase converter has 11.9A  
input capacitor current.  
RMS  
DUTY CYCLE (V  
/V )  
OUT IN  
The single-phase converter must use an input capacitor bank with  
twice the RMS current capacity as the equivalent three-phase  
converter.  
FIGURE 2. RIPPLE CURRENT MULTIPLIER VS. DUTY CYCLE  
Output voltage ripple is a function of capacitance, capacitor  
Equivalent Series Resistance (ESR), and the summed inductor  
ripple current. Increased ripple frequency and lower ripple  
amplitude means that the designer can use less per-channel  
inductance and few or less costly output capacitors for any  
performance specification.  
Figures 37, 38 and 39, as described in “Input Capacitor  
Selection” on page 52, can be used to determine the input  
capacitor RMS current based on load current, duty cycle, and the  
number of channels. They are provided as aids in determining  
the optimal input capacitor solution. Figure 40 shows the single  
phase input-capacitor RMS current for comparison.  
V
OUT  
(EQ. 2)  
-------------------  
I
=
K
cp p  
RCM  
L F  
SW  
N D m + 1  m N D  
PWM Modulation Scheme  
K
= ----------------------------------------------------------------------------  
RCM  
N D  
The ISL6398 adopts Intersil's proprietary Enhanced Active Pulse  
Positioning (EAPP) modulation scheme to improve transient  
performance. The EAPP is a unique dual-edge PWM modulation  
scheme with both PWM leading and trailing edges being  
independently moved to give the best response to transient  
loads. The EAPP has an inherited function, similar to Intersil's  
proprietary Adaptive Phase Alignment (APA) technique, to turn  
on all phases together to further improve the transient response,  
when there are sufficiently large load step currents. The EAPP is  
a variable frequency architecture, providing linear control over  
transient events and evenly distributing the pulses among all  
phases to achieve very good current balance and eliminate beat  
frequency oscillation over a wide range of load transient  
frequencies.  
for  
m 1 N D m  
m = ROUNDUPN D0  
Another benefit of interleaving is to reduce input ripple current.  
Input capacitance is determined in part by the maximum input  
ripple current. Multiphase topologies can improve overall system  
cost and size by lowering input ripple current and allowing the  
designer to reduce the cost of input capacitors. The example in  
Figure 3 illustrates input currents from a three-phase converter  
combining to reduce the total input ripple current.  
To further improve the line and load transient responses, the  
multi-phase PWM features feed-forward function to change the  
up ramp with the input line (voltage on ISENIN+ pin) to maintain  
a constant overall loop gain over a wide range input voltage. The  
up ramp of the internal sawtooth is defined in Equation 3.  
V
V  
RAMP_ADJ  
12V  
IN  
V
= -----------------------------------------------  
(EQ. 3)  
RAMP  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 16 of 57  
ISL6398  
With EAPP control and feed-forward function, the ISL6398 can  
achieve excellent transient performance over wide frequency  
range of load step, resulting in lower demand on the output  
capacitors.  
TABLE 2. PHASE DROPPING CONFIGURATION AT LOW POWER  
NPSI  
D2[1:0]  
AUTO MINIMUM  
PHASE COUNT  
CODE  
SI1  
0h  
1h  
2h  
3h  
SI, (N-1)-CI  
SI, (N-2)-CI  
2-Phase CI  
2-Phase CI  
1-Phase  
2-Phase  
1-Phase  
2-Phase  
Under steady state conditions, the operation of the ISL6398  
PWM modulator is similar to a conventional trailing edge  
modulator. Conventional analysis and design methods can  
therefore be used for steady state and small signal analysis.  
SI2  
CI1  
CI2  
NOTE: For 2-Phase CI option, the dropped coupled phase turns on LGATE  
to circulate current when PWM1 is high. Programmable via PMBus.  
PWM Operation  
The timing of each channel is set by the number of active  
channels. The default channel setting for the ISL6398 is six. The  
switching cycle is defined as the time between PWM pulse  
termination signals of each channel. The cycle time of the pulse  
signal is the inverse of the switching frequency. The PWM signals  
command the MOSFET driver to turn on/off the channel  
MOSFETs.  
While the controller is operational (V above POR, TM_EN_OTP  
CC  
and EN_PWR_CFP are both high, valid VID inputs), it can pull the  
PWM pins to ~40% of V (~2V for 5V V bias, for 5V PWM) or  
CC CC  
~28% of V (for 3.3V PWM) during various stages, such as  
CC  
soft-start delay, phase shedding operation, or fault conditions  
(OC or OV events). The matching driver's internal PWM resistor  
divider can further raise the PWM potential, but not lower it  
below the level set by the controller IC. Therefore, the controller's  
PWM outputs are designed to be compatible with DrMOS and  
Intersil drivers that require 3.3V and 5V PWM signal amplitudes,  
programmed by PMBus.  
The ISL6398 can work in a 0 to 6-Phase configuration. Tie  
PWM(N+1) to VCC to configure for N-phase operation. PWM firing  
order is sequential from 1 to N with N being the number of active  
phases, as summarized in Table 1. For 6-phase operation, the  
channel firing sequence is 1-2-3-4-5-6, and they are evenly  
spaced over 1/6 of a cycle. Connecting PWM6 to V configures  
5-phase operation, the channel firing order is 1-2-3-4-5 and the  
DrMOS and Driver Compatibility  
In operational mode, the ISL6398 can actively drive PWM into  
tri-state level (mid level), which can be programmed to be  
compatible with 3.3V or 5V PWM input DrMOS or Drivers. The  
ISL6398’s PWM “LOW” level is 0V and PWM “HIGH” level is V (5V).  
The PWM “HIGH” minimum threshold of the DrMOS should be  
CC  
phase spacing is 1/5 of a cycle. If PWM2 is connected to V  
,
CC  
only Channel 1 operation is selected. If PWM1 is connected to  
V
, the VR operation is turned off.  
CC  
CC  
TABLE 1. PHASE NUMBER AND PWM FIRING SEQUENCE  
higher than 33% of V for 3.3V PWM logic and 44% of V for 5V  
PWM# TIED  
TO V  
ACTIVE PHASE  
CC CC  
PWM logic, while the PWM “LOW” maximum threshold of the  
DrMOS should be lower than 26% of V for 3.3V PWM logic and  
N
5
4
3
2
1
0
PHASE SEQUENCE  
AT 0A LOAD  
PWM1/3  
PWM1/3  
PWM1/2  
PWM1/2  
PWM1  
CC  
CC  
1-2-3-4-5  
1-2-3-4  
1-2-3  
1-2  
None  
36% of V for 5V PWM logic. Since most of industrial DrMOS  
CC  
PWM5  
PWM4  
PWM3  
PWM2  
PWM1  
devices are not compatible with Intersil’s PWM protocol for diode  
emulation, therefore, the diode emulation mode should be disabled  
in both controller and DrMOS. Coupling with the ISL6627, zero  
current shutdown can be achieved, which minimizes the power  
stage stress.  
1
OFF  
OFF  
Phase Doubler Compatibility  
The controller starts phase shedding the next switching cycle. The  
controller reduces the number of active phases according to the  
logic state on Table 2. “NPSI” register and AUTO pin program the  
controller in operation of standard (SI), 2-phase coupled, or  
(N-x)-phase coupled inductors. Different cases yield different PWM  
output behaviors on both dropped phase(s) and operational  
phase(s) as load changes. When APA is triggered, it pulls the  
controller back to full phase operation to sustain an immediate  
heavy transient load. Note that “N-x” means N-x phase(s) coupled  
and x phase(s) are uncoupled.  
The ISL6398 is compatible with phase doublers (ISL6611A and  
ISL6617), which can double or quadruple the phase count. For  
instance, the multi-phase PWM can realize up to 24-phase count  
system. A higher phase count system can improve thermal  
distribution and power conversion efficiency at heavy load.  
Non-Intersil Phase doubler typically does not have current balance  
and is not compatible with Intersil’s multi-phase controllers.  
Precharged Start-up Capability  
Since the ISL6398 uses 5V bias and the high efficiency power train  
mostly uses 5V driver, this makes the ISL6398 digital power system  
much more robust and reliable for power-up and down as well as  
precharged start-up, which is typically hardly managed for a system  
that deals with 3.3V, 5V, and 12V supplies.  
For 2-Phase coupled inductor (CI) operation, both coupled phases  
should be 180° out-of-phase. In low power conditions, it drops to  
2-phase and the opposite phase of the operational phase turns  
on its low-side MOSFET to circulate inductor current to minimize  
conduction loss when Phase 1 is high.  
Switching Frequency  
The VR’s switching frequency is programmable from 120kHz to  
2.025MHz via PMBus. It is 15kHz/step with a slew rate of  
step/20µs.  
In low power condition, VR is in single-phase CCM operation with  
PWM1, or 2-phase CCM operation with PWM1 and 2, 3 or 4, as  
shown in Table 1. The number of operational phases is  
configured by “NPSI” register, shown in Table 2.  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 17 of 57  
ISL6398  
voltage across the capacitor V is equal to the voltage drop across  
C
the DCR, i.e., proportional to the channel current.  
Current Sensing  
The ISL6398 senses current continuously for fast response. The  
ISL6398 supports inductor DCR sensing, or resistive sensing  
techniques. The associated channel current sense amplifier uses  
the ISEN inputs to reproduce a signal proportional to the inductor  
With the internal low-offset current amplifier, the capacitor  
voltage V is replicated across the sense resistor R  
.
C
ISEN  
, is proportional  
Therefore, the current out of the ISENS+ pin, I  
to the inductor current.  
SEN  
current, I . The sense current, I  
, is proportional to the inductor  
L
SEN  
current. The sensed current is used for current balance, load-line  
regulation, and overcurrent protection.  
Equation 6 shows that the ratio of the channel current to the  
sensed current, I , is driven by the value of the sense resistor  
SEN  
and the DCR of the inductor.  
The internal circuitry, shown in Figures 4 and 5, represents one  
channel of the VR output, respectively. The ISEN± circuitry is  
repeated for each channel, but may not be active depending on  
the status of the PWM[6:2] pins, as described in “PWM  
Operation” on page 17. The input bias current of the current  
sensing amplifier is typically 25nA; less than 8kinput  
impedance is preferred to minimized the offset error, i.e., a larger  
C value as needed.  
DCR  
DCR 64  
-----------------  
------------------------  
I
= I  
= I  
(EQ. 6)  
SEN  
L
L
R
R
ISEN  
SET  
RESISTIVE SENSING  
For more accurate current sensing, a dedicated current-sense  
resistor R in series with each output inductor can serve as the  
SENSE  
current sense element (see Figure 5). This technique however  
reduces overall converter efficiency due to the additional power loss  
INDUCTOR DCR SENSING  
on the current sense element R  
.
SENSE  
An inductor’s winding is characteristic of a distributed resistance,  
as measured by the Direct Current Resistance (DCR) parameter.  
Consider the inductor DCR as a separate lumped quantity, as  
I
L
L
R
ESL  
V
SEN  
R
shown in Figure 4. The channel current I , flowing through the  
OUT  
L
inductor, will also pass through the DCR. Equation 4 shows the  
C
SENSE  
OUT  
-
-
S-domain equivalent voltage across the inductor V .  
V
L
R
R
V (s)  
ISL6398  
C
V s= I  s L + DCR  
(EQ. 4)  
L
L
C
A simple R-C network across the inductor extracts the DCR  
voltage, as shown in Figure 4.  
I
n
I
s  
L
CURRENT  
SENSE  
L
DCR  
V
OUT  
+
-
INDUCTOR  
-
R
ISEN(n)  
ISEN-(n)  
C
OUT  
ISL6398  
V
L
ISEN+(n)  
RSET  
-
V (s)  
C
R
64  
R
C
SEN  
R
I
I
n
C , Optional  
T
--------------------------  
= I  
SEN  
L
SET  
CURRENT  
SENSE  
ISEN-(n)  
FIGURE 5. SENSE RESISTOR IN SERIES WITH INDUCTORS  
+
-
R
ISEN(n)  
A current sensing resistor has a distributed parasitic inductance,  
known as ESL (equivalent series inductance, typically less than  
1nH) parameter. Consider the ESL as a separate lumped  
C , Optional  
ISEN+(n)  
RSET  
T
DCR 64  
I
quantity, as shown in Figure 5. The channel current I , flowing  
------------------------  
= I  
SEN  
L
L
R
SET  
through the inductor, will also pass through the ESL. Equation 7  
shows the s-domain equivalent voltage across the resistor V .  
R
V
s= I  s ESL + R  
SEN  
(EQ. 7)  
R
L
FIGURE 4. DCR SENSING CONFIGURATION  
A simple R-C network across the current sense resistor extracts  
the R voltage, as shown in Figure 5.  
The voltage on the capacitor V , can be shown to be proportional  
C
to the channel current I (see Equation 5).  
SEN  
The voltage on the capacitor V , can be shown to be proportional  
L
L
C
-------------  
s   
+ 1  DCR I   
L
(EQ. 5)  
DCR  
to the channel current I (see Equation 8).  
L
V
s= --------------------------------------------------------------------  
C
s RC + 1  
ESL  
---------------  
s   
+ 1  R  
I   
SEN L  
(EQ. 8)  
R
If the R-C network components are selected such that the RC time  
constant matches the inductor time constant (R*C = L/DCR), the  
SEN  
V
s= -------------------------------------------------------------------------  
C
s RC + 1  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 18 of 57  
ISL6398  
If the R-C network components are selected such that the RC time  
constant matches the ESL-R  
time constant (R*C = ESL/R ),  
IOUT  
SEN  
SEN  
the voltage across the capacitor V is equal to the voltage drop  
C
across the R  
, i.e., proportional to the channel current. As an  
SEN  
example, a typical 1mΩ sense resistor can use R = 348 and  
C = 820pF for the matching. Figures 6 and 7 show the sensed  
waveforms with and without matching RC when using resistive  
sense.  
VOUT  
FIGURE 8. DESIRED LOAD TRANSIENT RESPONSE WAVEFORMS  
If the R-C timing constant is too large or too small, V (s) will not  
C
accurately represent real-time I  
(s) and will worsen the  
OUT  
transient response. Figure 9 shows the load transient response  
when the R-C timing constant is too small. V will sag  
OUT  
excessively upon load insertion and may create a system failure  
or early overcurrent trip. Figure 10 shows the transient response  
FIGURE 6. VOLTAGE ACROSS R WITHOUT RC  
when the R-C timing constant is too large. V  
is sluggish in  
OUT  
drooping to its final value. There will be excessive overshoot if  
load insertion occurs during this time, which may potentially hurt  
the reliability.  
IOUT  
FIGURE 7. VOLTAGE ACROSS C WITH MATCHING RC  
VOUT  
Equation 9 shows that the ratio of the channel current to the  
sensed current, I  
, is driven by the value of the sense resistor  
SEN  
and the R  
.
ISEN  
R
R
64  
SEN  
FIGURE 9. LOAD TRANSIENT RESPONSE WHEN R-C TIME  
CONSTANT IS TOO SMALL  
SEN  
(EQ. 9)  
-----------------  
--------------------------  
I
= I  
= I  
SEN  
L
L
R
R
ISEN  
SET  
However, the R  
ISEN  
value is determined by the R  
be from 3.84kΩ to 60.4kΩ and is 64x of the required I  
SEN  
resistor of each channel is integrated, while its  
resistor. The RSET resistor value can  
resistor  
IOUT  
SET  
value. Therefore, the current sense gain resistor (Integrated R  
)
ISEN  
VOUT  
value can be effectively set at 60Ωto 943Ω.  
The inductor DCR value will increase as the temperature increases.  
Therefore, the sensed current will increase as the temperature of  
the current sense element increases. In order to compensate the  
temperature effect on the sensed current signal, a Negative  
Temperature Coefficient (NTC) resistor can be used for thermal  
compensation, or the integrated temperature compensation  
function of the ISL6398 should be utilized. The integrated  
temperature compensation function is described in “Temperature  
Compensation” on page 28.  
FIGURE 10. LOAD TRANSIENT RESPONSE WHEN R-C TIME  
CONSTANT IS TOO LARGE  
R
AND L/DCR MATCHING FOR COUPLED INDUCTOR  
SET  
The current sense circuitry operates in a very similar manner for  
negative current feedback, where inductor current is flowing  
from the output of the regulator to the PHASE node, opposite of  
flow pictured in Figures 4 and 5. However, the range of proper  
operation with negative current sensing has a limitation. The  
worst-case peak-to-peak inductor ripple current should be kept  
less than 80% of the OCP trip point (~80µA). Care should be  
taken to avoid operation with negative current feedback  
exceeding this threshold, as this may lead to momentary loss of  
current balance between phases and disruption of normal circuit  
operation. Note that the negative current can especially affect  
coupled inductor designs, where the effective inductance is the  
leakage between the two channels, much lower than the  
specified mutual inductance (LM) and self inductance (L). To limit  
the impact, a higher RSET value (1.5x to 2x) is often used to  
reduce the effective negative current seen by the controller in  
coupled inductor designs.  
Decoupling capacitor (C ) on ISEN[6:1]- pins are optional and  
T
might be required for long sense traces and a poor layout.  
L/DCR OR ESL/R  
MATCHING  
SEN  
Assuming the compensator design is correct, Figure 8 shows the  
expected load transient response waveforms if L/DCR or  
ESL/R  
current I  
OUT  
is matching the R-C time constant. When the load  
has a square change, the output voltage V also  
SEN  
OUT  
has a square response, except for the overshoot at load release.  
However, there is always some PCB contact impedance of current  
sensing components between the two current sensing points; it  
hardly accounts into the L/DCR or ESL/R  
matching calculation.  
SEN  
Fine tuning the matching is necessarily done in the board level to  
improve overall transient performance and system reliability.  
Refer to Intersil’s application note, AN1268 for detailed coupled  
inductor discussion and ripple current calculation.  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 19 of 57  
ISL6398  
or 10mV offset, a large ratio resistor divider can be placed on the  
VSEN pin between the output and GND for positive offset or V  
As explained in application note, AN1268 the leakage inductance  
(not self inductance or mutual inductance) of the coupled  
inductor should be used as the inductance in the time constant  
calculation. Therefore, the leakage, self, and mutual inductance  
should be well controlled for a good coupled inductor design.  
CC  
for negative offset, as in Figure 12. The VR operational mode is  
programmed by the “VRSEL_ADDR” pin. Table 3 shows the  
difference between 5mV and 10mV modes. VOUT_MAX and  
VBOOT registers must be programmed accordingly to support  
each mode, otherwise, the VR might NOT power-up correctly.  
Channel-current Balance  
Furthermore, the PMBus register (E4h[9:5]) can program the  
The sensed current I from each active channel is summed  
n
additional droop current (range from -4µA to 3.75µA) into R for  
1
together and divided by the number of active channels. The  
DC offset calibration; a negative current will yield a negative  
offset, while a positive current will yield a positive offset:  
resulting average current I  
provides a measure of the total  
AVG  
load current. Channel current balance is achieved by comparing  
the sensed current of each channel to the average current to  
make an appropriate adjustment to the PWM duty cycle of each  
channel with Intersil’s patented current-balance method.  
OFFSET = R * I(E4[9:5]). In droop applications, E4[4:0] can add  
1
current out of IMON pin and droop current through R  
1
simultaneously (the negative current yields positive offset, and  
vice versa).  
Channel current balance is essential in achieving the thermal  
advantage of multiphase operation. With good current balance,  
the power loss is equally dissipated over multiple devices and a  
greater area. The ISL6398 can adjust the thermal/current  
balance of the VR via registers F7 to FC.  
TABLE 3. 5mV vs 10mV DAC Resolution  
MAXIMUM  
VBOOT  
MAXIMUM  
VBOOT  
(E6)  
MODE  
(VRSEL)  
MAXIMUM  
DAC (V)  
VOUT_MAX  
(24h)  
(“BT” pin)  
5mV  
2.155  
3.011  
Table 18  
1.50  
3.00  
1.52  
3.04  
Voltage Regulation (5mV and 10mV Mode)  
10mV  
Table 4  
Follow DAC  
The compensation network shown in Figure 11 assures that the  
steady-state error in the output voltage is limited only to the error  
in the reference voltage (DAC and OFFSET) and droop current  
source, remote sense, and error amplifier.  
V
CC  
The sensed average current I  
DROOP  
is tied to FB internally and  
will develop a voltage drop across the resistor between FB and  
for droop control. This current can be disconnected from the  
V
OUT  
V
VSEN  
+
OUT  
VSEN  
V
OUT  
FB node via PMBus for non-droop applications.  
+
-
-
The output of the error amplifier, V , is compared to the internal  
COMP  
sawtooth waveforms to generate the PWM signals. The PWM  
signals control the timing of the Intersil MOSFET drivers and regulate  
the converter output to the specified reference voltage.  
DAC = VID+OFFSET  
HIGHER THAN DAC  
DAC = VID+OFFSET  
LOWER THAN DAC  
B. V  
A. V  
OUT  
OUT  
For remote sensing, connect the load sensing pins to the  
non-inverting input, VSEN, and inverting input, RGND, of the error  
amplifier. This configuration effectively removes the voltage error  
encountered when measuring the output voltage relative to the local  
controller ground reference point.  
FIGURE 12. EXTERNAL PROGRAMMABLE REGULATION  
TABLE 4. 5mV OR 10mV VID 8-BIT  
HEX  
5mV  
10mV  
VID (V) OFFSET (mV) OFFSET (mV)  
5mV  
10mV  
BINARY CODE CODE VID (V)  
00000000  
00000001  
00000010  
00000011  
00000100  
00000101  
00000110  
00000111  
00001000  
00001001  
00001010  
00001011  
00001100  
00001101  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
OFF  
OFF  
0
0
COMPENSATION  
DIGITALLY PROGRAMMABLE VIA PMBUS  
0.250  
0.255  
0.260  
0.265  
0.270  
0.275  
0.280  
0.285  
0.290  
0.295  
0.300  
0.305  
0.310  
0.500  
0.510  
0.520  
0.530  
0.540  
0.550  
0.560  
0.570  
0.580  
0.590  
0.600  
0.610  
0.620  
5
10  
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
65  
20  
C2  
R2  
C3  
R3  
C1  
VSEN  
RGND  
RFB = R1  
30  
FB  
INPUT  
BUFFER  
40  
VOFFSET TRIM  
BUF_COMP  
(E4[9:5])  
DAC  
COMP  
50  
IDROOP  
60  
VID+OFFSET  
VOFFSET Trim  
(E4[4:0])  
70  
DROOP  
ENABLE  
80  
FIGURE 11. OUTPUT VOLTAGE AND LOAD-LINE REGULATION  
90  
A digital-to-analog converter (DAC) generates a reference voltage,  
which is programmable via PMBus bus. The DAC decodes the  
PMBus set VID command into one of the discrete voltages shown  
in Table 4. In addition, the output voltage can be margined in  
±5mV step between -640mV and 635mV, ±10mV step between  
-1280mV and 1270mV, as shown in Table 4. For a finer than 5mV  
100  
110  
120  
130  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 20 of 57  
ISL6398  
TABLE 4. 5mV OR 10mV VID 8-BIT (Continued)  
HEX 5mV 10mV  
TABLE 4. 5mV OR 10mV VID 8-BIT (Continued)  
HEX 5mV 10mV  
5mV  
10mV  
5mV  
10mV  
BINARY CODE CODE VID (V) VID (V) OFFSET (mV) OFFSET (mV)  
BINARY CODE CODE VID (V) VID (V) OFFSET (mV) OFFSET (mV)  
00001110  
00001111  
00010000  
00010001  
00010010  
00010011  
00010100  
00010101  
00010110  
00010111  
00011000  
00011001  
00011010  
00011011  
00011100  
00011101  
00011110  
00011111  
00100000  
00100001  
00100010  
00100011  
00100100  
00100101  
00100110  
00100111  
00101000  
00101001  
00101010  
00101011  
00101100  
00101101  
00101110  
00101111  
00110000  
00110001  
00110010  
00110011  
00110100  
00110101  
00110110  
00110111  
00111000  
00111001  
00111010  
E
0.315  
0.320  
0.325  
0.330  
0.335  
0.340  
0.345  
0.350  
0.355  
0.360  
0.365  
0.370  
0.375  
0.380  
0.385  
0.390  
0.395  
0.400  
0.405  
0.410  
0.415  
0.420  
0.425  
0.430  
0.435  
0.440  
0.445  
0.450  
0.455  
0.460  
0.465  
0.470  
0.475  
0.480  
0.485  
0.490  
0.495  
0.500  
0.505  
0.510  
0.515  
0.520  
0.525  
0.530  
0.535  
0.630  
0.640  
0.650  
0.660  
0.670  
0.680  
0.690  
0.700  
0.710  
0.720  
0.730  
0.740  
0.750  
0.760  
0.770  
0.780  
0.790  
0.800  
0.810  
0.820  
0.830  
0.840  
0.850  
0.860  
0.870  
0.880  
0.890  
0.900  
0.910  
0.920  
0.930  
0.940  
0.950  
0.960  
0.970  
0.980  
0.990  
1.000  
1.010  
1.020  
1.030  
1.040  
1.050  
1.060  
1.070  
70  
140  
150  
160  
170  
180  
190  
200  
210  
220  
230  
240  
250  
260  
270  
280  
290  
300  
310  
320  
330  
340  
350  
360  
370  
380  
390  
400  
410  
420  
430  
440  
450  
460  
470  
480  
490  
500  
510  
520  
530  
540  
550  
560  
570  
580  
00111011  
00111100  
00111101  
00111110  
00111111  
01000000  
01000001  
01000010  
01000011  
01000100  
01000101  
01000110  
01000111  
01001000  
01001001  
01001010  
01001011  
01001100  
01001101  
01001110  
01001111  
01010000  
01010001  
01010010  
01010011  
01010100  
01010101  
01010110  
01010111  
01011000  
01011001  
01011010  
01011011  
01011100  
01011101  
01011110  
01011111  
01100000  
01100001  
01100010  
01100011  
01100100  
01100101  
01100110  
01100111  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
0.540  
0.545  
0.550  
0.555  
0.560  
0.565  
0.570  
0.575  
0.580  
0.585  
0.590  
0.595  
0.600  
0.605  
0.610  
0.615  
0.620  
0.625  
0.630  
0.635  
0.640  
0.645  
0.650  
0.655  
0.660  
0.665  
0.670  
0.675  
0.680  
0.685  
0.690  
0.695  
0.700  
0.705  
0.710  
0.715  
0.720  
0.725  
0.730  
0.735  
0.740  
0.745  
0.750  
0.755  
0.760  
1.080  
1.090  
1.100  
1.110  
1.120  
1.130  
1.140  
1.150  
1.160  
1.170  
1.180  
1.190  
1.200  
1.210  
1.220  
1.230  
1.240  
1.250  
1.260  
1.270  
1.280  
1.290  
1.300  
1.310  
1.320  
1.330  
1.340  
1.350  
1.360  
1.370  
1.380  
1.390  
1.400  
1.410  
1.420  
1.430  
1.440  
1.450  
1.460  
1.470  
1.480  
1.490  
1.500  
1.510  
1.520  
295  
300  
305  
310  
315  
320  
325  
330  
335  
340  
345  
350  
355  
360  
365  
370  
375  
380  
385  
390  
395  
400  
405  
410  
415  
420  
425  
430  
435  
440  
445  
450  
455  
460  
465  
470  
475  
480  
485  
490  
495  
500  
505  
510  
515  
590  
600  
610  
620  
630  
640  
650  
660  
670  
680  
690  
700  
710  
720  
730  
740  
750  
760  
770  
780  
790  
800  
810  
820  
830  
840  
850  
860  
870  
880  
890  
900  
910  
920  
930  
940  
950  
960  
970  
980  
990  
1000  
1010  
1020  
1030  
F
75  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
80  
85  
90  
95  
100  
105  
110  
115  
120  
125  
130  
135  
140  
145  
150  
155  
160  
165  
170  
175  
180  
185  
190  
195  
200  
205  
210  
215  
220  
225  
230  
235  
240  
245  
250  
255  
260  
265  
270  
275  
280  
285  
290  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 21 of 57  
ISL6398  
TABLE 4. 5mV OR 10mV VID 8-BIT (Continued)  
HEX 5mV 10mV  
TABLE 4. 5mV OR 10mV VID 8-BIT (Continued)  
HEX 5mV 10mV  
5mV  
10mV  
5mV  
10mV  
BINARY CODE CODE VID (V) VID (V) OFFSET (mV) OFFSET (mV)  
BINARY CODE CODE VID (V) VID (V) OFFSET (mV) OFFSET (mV)  
01101000  
01101001  
01101010  
01101011  
01101100  
01101101  
01101110  
01101111  
01110000  
01110001  
01110010  
01110011  
01110100  
01110101  
01110110  
01110111  
01111000  
01111001  
01111010  
01111011  
01111100  
01111101  
01111110  
01111111  
10000000  
10000001  
10000010  
10000011  
10000100  
10000101  
10000110  
10000111  
10001000  
10001001  
10001010  
10001011  
10001100  
10001101  
10001110  
10001111  
10010000  
10010001  
10010010  
10010011  
10010100  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
0.765  
0.770  
0.775  
0.780  
0.785  
0.790  
0.795  
0.800  
0.805  
0.810  
0.815  
0.820  
0.825  
0.830  
0.835  
0.840  
0.845  
0.850  
0.855  
0.860  
0.865  
0.870  
0.875  
0.880  
0.885  
0.890  
0.895  
0.900  
0.905  
0.910  
0.915  
0.920  
0.925  
0.930  
0.935  
0.940  
0.945  
0.950  
0.955  
0.960  
0.965  
0.970  
0.975  
0.980  
0.985  
1.530  
1.540  
1.550  
1.560  
1.570  
1.580  
1.590  
1.600  
1.610  
1.620  
1.630  
1.640  
1.650  
1.660  
1.670  
1.680  
1.690  
1.700  
1.710  
1.720  
1.730  
1.740  
1.750  
1.760  
1.770  
1.780  
1.790  
1.800  
1.810  
1.820  
1.830  
1.840  
1.850  
1.860  
1.870  
1.880  
1.890  
1.900  
1.910  
1.920  
1.930  
1.940  
1.950  
1.960  
1.970  
520  
525  
530  
535  
540  
545  
550  
555  
560  
565  
570  
575  
580  
585  
590  
595  
600  
605  
610  
615  
620  
625  
630  
635  
-640  
-635  
-630  
-625  
-620  
-615  
-610  
-605  
-600  
-595  
-590  
-585  
-580  
-575  
-570  
-565  
-560  
-555  
-550  
-545  
-540  
1040  
1050  
1060  
1070  
1080  
1090  
1100  
1110  
1120  
1130  
1140  
1150  
1160  
1170  
1180  
1190  
1200  
1210  
1220  
1230  
1240  
1250  
1260  
1270  
-1280  
-1270  
-1260  
-1250  
-1240  
-1230  
-1220  
-1210  
-1200  
-1190  
-1180  
-1170  
-1160  
-1150  
-1140  
-1130  
-1120  
-1110  
-1100  
-1090  
-1080  
10010101  
10010110  
10010111  
10011000  
10011001  
10011010  
10011011  
10011100  
10011101  
10011110  
10011111  
10100000  
10100001  
10100010  
10100011  
10100100  
10100101  
10100110  
10100111  
10101000  
10101001  
10101010  
10101011  
10101100  
10101101  
10101110  
10101111  
10110000  
10110001  
10110010  
10110011  
10110100  
10110101  
10110110  
10110111  
10111000  
10111001  
10111010  
10111011  
10111100  
10111101  
10111110  
10111111  
11000000  
11000001  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
C0  
C1  
0.990  
0.995  
1.000  
1.005  
1.010  
1.015  
1.020  
1.025  
1.030  
1.035  
1.040  
1.045  
1.050  
1.055  
1.060  
1.065  
1.070  
1.075  
1.080  
1.085  
1.090  
1.095  
1.100  
1.105  
1.110  
1.115  
1.120  
1.125  
1.130  
1.135  
1.140  
1.145  
1.150  
1.155  
1.160  
1.165  
1.170  
1.175  
1.180  
1.185  
1.190  
1.195  
1.200  
1.205  
1.210  
1.980  
1.990  
2.000  
2.010  
2.020  
2.030  
2.040  
2.050  
2.060  
2.070  
2.080  
2.090  
2.100  
2.110  
2.120  
2.130  
2.140  
2.150  
2.160  
2.170  
2.180  
2.190  
2.200  
2.210  
2.220  
2.230  
2.240  
2.250  
2.260  
2.270  
2.280  
2.290  
2.300  
2.310  
2.320  
2.330  
2.340  
2.350  
2.360  
2.370  
2.380  
2.390  
2.400  
2.410  
2.420  
-535  
-530  
-525  
-520  
-515  
-510  
-505  
-500  
-495  
-490  
-485  
-480  
-475  
-470  
-465  
-460  
-455  
-450  
-445  
-440  
-435  
-430  
-425  
-420  
-415  
-410  
-405  
-400  
-395  
-390  
-385  
-380  
-375  
-370  
-365  
-360  
-355  
-350  
-345  
-340  
-335  
-330  
-325  
-320  
-315  
-1070  
-1060  
-1050  
-1040  
-1030  
-1020  
-1010  
-1000  
-990  
-980  
-970  
-960  
-950  
-940  
-930  
-920  
-910  
-900  
-890  
-880  
-870  
-860  
-850  
-840  
-830  
-820  
-810  
-800  
-790  
-780  
-770  
-760  
-750  
-740  
-730  
-720  
-710  
-700  
-690  
-680  
-670  
-660  
-650  
-640  
-630  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 22 of 57  
ISL6398  
TABLE 4. 5mV OR 10mV VID 8-BIT (Continued)  
HEX 5mV 10mV  
TABLE 4. 5mV OR 10mV VID 8-BIT (Continued)  
HEX 5mV 10mV  
5mV  
10mV  
5mV  
10mV  
BINARY CODE CODE VID (V) VID (V) OFFSET (mV) OFFSET (mV)  
BINARY CODE CODE VID (V) VID (V) OFFSET (mV) OFFSET (mV)  
11000010  
11000011  
11000100  
11000101  
11000110  
11000111  
11001000  
11001001  
11001010  
11001011  
11001100  
11001101  
11001110  
11001111  
11010000  
11010001  
11010010  
11010011  
11010100  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
1.215  
1.220  
1.225  
1.230  
1.235  
1.240  
1.245  
1.250  
1.255  
1.260  
1.265  
1.270  
1.275  
1.280  
1.285  
1.290  
1.295  
1.300  
1.305  
2.430  
2.440  
2.450  
2.460  
2.470  
2.480  
2.490  
2.500  
2.510  
2.520  
2.530  
2.540  
2.550  
2.560  
2.570  
2.580  
2.590  
2.600  
2.610  
2.620  
2.630  
2.640  
2.650  
2.660  
2.670  
2.680  
2.690  
2.700  
2.710  
2.720  
2.730  
2.740  
2.750  
2.760  
2.770  
2.780  
2.790  
2.800  
2.810  
2.820  
2.830  
2.840  
2.850  
2.860  
-310  
-305  
-300  
-295  
-290  
-285  
-280  
-275  
-270  
-265  
-260  
-255  
-250  
-245  
-240  
-235  
-230  
-225  
-220  
-620  
-610  
-600  
-590  
-580  
-570  
-560  
-550  
-540  
-530  
-520  
-510  
-500  
-490  
-480  
-470  
-460  
-450  
-440  
11101110  
11101111  
11110000  
11110001  
11110010  
11110011  
11110100  
11110101  
11110110  
11110111  
11111000  
11111001  
11111010  
11111011  
11111100  
11111101  
11111110  
11111111  
EE  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
1.435  
1.440  
1.445  
1.450  
1.455  
1.460  
1.465  
1.470  
1.475  
1.480  
1.485  
1.490  
1.495  
1.500  
1.505  
1.510  
1.515  
1.520  
2.870  
2.880  
2.890  
2.900  
2.910  
2.920  
2.930  
2.940  
2.950  
2.960  
2.970  
2.980  
2.990  
3.000  
3.010  
3.020  
3.030  
3.040  
-90  
-85  
-80  
-75  
-70  
-65  
-60  
-55  
-50  
-45  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
-180  
-170  
-160  
-150  
-140  
-130  
-120  
-110  
-100  
-90  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
Load-line Regulation  
Some applications require a precisely controlled output  
resistance. This dependence of output voltage on load current is  
often termed “droop” or “load-line” regulation. By adding a well  
controlled output impedance, the output voltage can effectively  
be level shifted in a direction, which works to achieve the  
load-line regulation required by these manufacturers.  
11010101  
11010110  
11010111  
11011000  
11011001  
11011010  
11011011  
11011100  
11011101  
11011110  
11011111  
11100000  
11100001  
11100010  
11100011  
11100100  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
1.310  
1.315  
1.320  
1.325  
1.330  
1.335  
1.340  
1.345  
1.350  
1.355  
1.360  
1.365  
1.370  
1.375  
1.380  
1.385  
-215  
-210  
-205  
-200  
-195  
-190  
-185  
-180  
-175  
-170  
-165  
-160  
-155  
-150  
-145  
-140  
-430  
-420  
-410  
-400  
-390  
-380  
-370  
-360  
-350  
-340  
-330  
-320  
-310  
-300  
-290  
-280  
In other cases, the designer may determine that a more  
cost-effective solution can be achieved by adding droop. Droop  
can help to reduce the output-voltage spike that results from fast  
load-current demand changes.  
The magnitude of the spike is dictated by the ESR and ESL of the  
output capacitors selected. By positioning the no-load voltage level  
near the upper specification limit, a larger negative spike can be  
sustained without crossing the lower limit. By adding a well  
controlled output impedance, the output voltage under load can  
effectively be level shifted down so that a larger positive spike can  
be sustained without crossing the upper specification limit.  
As shown in Figure 11, a current proportional to the average  
current of all active channels, I  
load-line regulation resistor R , i.e., R . The resulting voltage  
drop across R is proportional to the output current, effectively  
creating an output voltage droop with a steady-state value  
defined, as shown in Equation 10:  
, flows from FB through a  
AVG  
FB  
1
11100101  
11100110  
11100111  
11101000  
11101001  
11101010  
11101011  
11101100  
11101101  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
1.390  
1.395  
1.400  
1.405  
1.410  
1.415  
1.420  
1.425  
1.430  
-135  
-130  
-125  
-120  
-115  
-110  
-105  
-100  
-95  
-270  
-260  
-250  
-240  
-230  
-220  
-210  
-200  
-190  
FB  
V
= I  
R  
AVG  
FB  
(EQ. 10)  
DROOP  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 23 of 57  
ISL6398  
The regulated output voltage is reduced by the droop voltage  
TABLE 5. SLEW RATE OPTIONS  
DVID SLEW RATE  
V
. The output voltage as a function of load current is  
DROOP  
DVID SLEW RATE  
(MINIMUM RATE)  
(mV/µs)  
derived by combining Equation 10 with the appropriate sample  
current expression defined by the current sense method  
employed, as shown in Equation 11:  
DVID  
F6h[4:0]  
(MINIMUM RATE)  
(mV/µs)  
DVID  
F6h[4:0]  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
0.315  
0.625  
1.25  
2.5  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
4.0  
4.44  
5.0  
I
R
X
R
ISEN  
LOAD  
N
(EQ. 11)  
V
= V  
---------------- ----------------- R  
REF FB  
OUT  
5.6  
where V  
is the reference voltage (DAC), I  
is the total  
is the sense resistor  
REF  
output current of the converter, R  
LOAD  
2.85  
3.07  
3.33  
3.63  
6.66  
8.0  
ISEN  
connected to the ISEN+ pin, and R is the feedback resistor, N is  
FB  
the active channel number, and R is the DCR, or R  
X
SENSE  
10  
depending on the sensing method.  
13.25  
Therefore, the equivalent loadline impedance, i.e. Droop  
impedance, is equal to Equation 12:  
During dynamic VID transition and VID step up, the overcurrent  
trip point increases by 140% to avoid falsely triggering OCP  
circuits, while the overvoltage trip point will follow the DAC+OVP  
level, programmable via PMBus (D8h[2:0]).  
R
R
X
FB  
R
= ------------ -----------------  
(EQ. 12)  
LL  
N
R
ISEN  
The major regulation error comes from the current sensing  
elements. To improve load-line regulation accuracy, a tight DCR  
tolerance of inductor or a precision sensing resistor should be  
considered.  
Operation Initialization  
Prior to converter initialization, proper conditions must exist on  
the enable inputs and V . When the conditions are met, the  
CC  
controller begins soft-start. Once the output voltage is within the  
proper window of operation, VR_RDY asserts logic high.  
In addition, the overall load-line can be programmed to fit the  
application needed by the PMBus registers: B0h[7:0] for  
Load-Line and E4h[9:5] for DC offset. Curve 3 shown in Figure 13,  
makes a steeper load line than the target to fully utilize the total  
tolerance band, reduce the output capacitor count and cost.  
Enable and Disable  
While in shutdown mode, the PWM outputs are held in a  
high-impedance state (or pulled to 40% of V ) to assure the  
CC  
drivers remain off. The following input conditions must be met  
before the ISL6398 is released from shutdown mode.  
OFFSET = R1* {I(E4h[9:5])-* I(E4h[4:0])}*D3[0]  
VOUT_MAX  
1. The bias voltage applied at V must reach the internal  
CC  
2
power-on reset (POR) rising threshold. Once this threshold is  
reached, proper operation of all aspects of the ISL6398 is  
guaranteed. Hysteresis between the rising and falling  
thresholds assure that once enabled, ISL6398 will not  
inadvertently turn off unless the bias voltage drops  
substantially (see “Electrical Specifications” on page 10).  
4
1
OFFSET + LLTARGET  
R1 = LLTARGET  
3
OFFSET + (> LLTARGET  
R1 > LLTARGET  
)
VOUT_MIN  
LOAD (A)  
2. The ISL6398 features an enable input (EN_PWR_CFP) for  
power sequencing between the controller bias voltage and  
another voltage rail. The enable comparator holds the  
ISL6398 in shutdown until the voltage at EN_PWR_CFP rises  
above 0.85V. The enable comparator has about 100mV of  
hysteresis to prevent bounce. It is important that the drivers  
reach their POR level before the ISL6398 becomes enabled.  
The schematic in Figure 14 demonstrates sequencing the  
ISL6398 with ISL99140 DrMOS and the ISL66xx family of  
Intersil MOSFET drivers.  
FIGURE 13. PROGRAMMABLE LOAD-LINE REGULATION  
Dynamic VID  
Some applications need to make changes to their voltage as part  
of normal operation. They direct the core-voltage regulator to do  
this by making changes to the VID during regulator operation.  
The power management solution is required to monitor the DAC  
and respond to on-the-fly VID changes in a controlled manner.  
Supervising the safe output voltage transition within the DAC  
range of the load without discontinuity or disruption is a  
necessary function of the voltage regulator.  
3. The voltage on TM_EN_OTP must be higher than 1.08V  
(typically) to enable the controller. This pin is typically  
connected to the output of VTT VR. However, since the  
TM_EN_OTP pin is also used for thermal monitoring, it will  
assert SM_PMALERT# pin low due to thermal alert prior to  
start-up, therefore, it needs to use CLEAR_FAULT (03h)  
command to clear the SM_PMALERT# pin and  
STATUS_BYTE (78h) after power-up. There is no effect on  
normal operation if SM_PMALERT# and STATUS_BYTE are not  
used.  
Sixteen different slew rates can be selected for soft-start and  
during Dynamic VID (DVID) transition for VR.  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 24 of 57  
ISL6398  
When all conditions previously mentioned are satisfied, the  
ISL6398 begins the soft-start and ramps the output voltage to  
the Boot Voltage set by hard-wired “BT” registers. After remaining  
at the boot voltage for some time, the ISL6398 reads the VID  
code. If the VID code is valid, ISL6398 will regulate the output to  
the final VID setting. If the VID code is “OFF” code, ISL6398 will  
remain shut down.  
V
V  
BOOT  
VID  
(EQ. 15)  
---------------------------------------  
s  
t
=
D4  
DVID RATE  
For example, when the V  
BOOT  
set at 5mV/µs, the first soft-start ramp time t will be around  
220µs and the second soft-start ramp time t will be at  
D4  
maximum of 80µs if an SET_VID command for 1.5V is received  
is set at 1.1V and DVID slew rate is  
D2  
after t  
.
ISL6398  
D3  
EXTERNAL CIRCUIT  
V
+12V  
CC  
100kΩ  
POR  
ENABLE  
COMPARATOR  
CIRCUIT  
EN_PWR_CFP  
+
-
t
t
t
t
D2  
D3  
VCC  
D1  
D4  
9.09kΩ  
TM_EN_OTP  
VR_Ready  
0.85V  
1kΩ  
TM_EN_OTP  
+
-
6.8kΩ  
NTC  
FIGURE 15. SOFT-START WAVEFORMS  
1.08V  
Current Sense Output  
The current flowing out of the IMON pin is equal to the sensed  
average current inside the ISL6398. In typical applications, a  
resistor is placed from the IMON pin to GND to generate a  
voltage, which is proportional to the load current and the resistor  
value, as shown in Equation 16:  
SOFT-START  
AND  
FAULT LOGIC  
FIGURE 14. POWER SEQUENCING USING THRESHOLD-SENSITIVE  
ENABLE (EN) FUNCTION  
R
R
X
R
ISEN  
IMON  
N
(EQ. 16)  
V
= -------------------- -----------------I  
LOAD  
IMON  
Soft-start  
where V  
is the voltage at the IMON pin, R  
is the resistor  
IMON  
IMON  
The ISL6398 based VR has 4 periods during soft-start, as shown in  
Figure 15. After V , TM_EN_OTP and EN_PWR_CFP reach their  
between the IMON pin and GND, I  
of the converter, R  
is the total output current  
LOAD  
is the sense resistor connected to the  
CC  
ISEN  
POR/enable thresholds and the NVM_BANK loading time (typically  
16ms, and worst case 20ms) expired, the controller will have a fixed  
ISEN+ pin, N is the active channel number, and R is the DC  
resistance of the current sense element, either the DCR of the  
X
delay period t . After this delay period, the VR will begin first soft-  
inductor or R  
depending on the sensing method.  
D1  
SENSE  
start ramp until the output voltage reaches the V  
BOOT  
voltage at a  
The resistor from the IMON pin to GND should be chosen to  
ensure that the voltage at the IMON pin is typically 2.5V at the  
maximum load current, typically corresponding to the I  
register. The IMON voltage is linearly digitized every 88µs and  
stored in the READ_IOUT register (8Ch). When the IMON voltage  
reaches 2.5V or higher, the digitized I  
fixed slew rate, as in Table 5. Then, the controller will regulate the VR  
voltage at V for another period t until PMBus sends a new  
BOOT D3  
CCMAX  
VID command. If the VID code is valid, ISL6398 will initiate the  
second soft-start ramp at a slew rate, set by DVID command in  
Table 5, until the voltage reaches the new VID voltage. The soft-start  
time is the sum of the 4 periods, as shown in Equation 13.  
will reach the  
OUT  
maximum value of ICCMAX and the SM_PMALERT# pin is pulled  
low.  
(EQ. 13)  
t
= t + t + t + t  
D1 D2 D3 D4  
SS  
2.5V R  
N
ISEN  
(EQ. 17)  
t
is a fixed delay with the typical value as 20µs. t is determined  
D3  
R
= ------------------------------- --------------------------------------  
D1  
IMON  
R
I
CC_MAX_21h  
X
by the time to obtain a new valid VID voltage from PMBus. If the VID  
is valid before the output reaches the boot voltage, the output will  
turn around to respond to the new VID code.  
A small capacitor can be placed between the IMON pin and GND  
to reduce the noise impact and provide averaging. If this pin is  
not used, tie it to GND.  
During t and t , the ISL6398 digitally controls the DAC  
D2 D4  
voltage change at 5mV per step. The soft-start ramp time t  
D2  
and t can be calculated based on Equations 14 and 15:  
D4  
V
BOOT  
-------------------------------  
t
=
s  
(EQ. 14)  
D2  
DVIDRATE  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 25 of 57  
ISL6398  
To deal with layout and design variation of different platforms,  
the ISL6398 is intentionally trimmed to negative range at no  
load, thus, an offset can easily be added to calibrate the digitized  
IMON reading (8Ch in PMBus) whenever needed by PMBus (E4h)  
or the external pull-up resistor in Figure 16. Hence, the slope on  
the IMON pin is set by the equivalent impedance of  
Two actions are taken by ISL6398 to protect the load when an  
overvoltage condition occurs.  
At the inception of an overvoltage event, all PWM outputs are  
commanded low instantly. This causes the Intersil drivers to turn on  
the lower MOSFETs and pull the output voltage below a level to avoid  
damaging the load. When the output voltage falls below the DAC  
plus 100mV, PWM signals enter a high-impedance state. The Intersil  
drivers respond to the high-impedance input by turning off both  
upper and lower MOSFETs. If the overvoltage condition reoccurs, the  
ISL6398 will again command the lower MOSFETs to turn on. The  
ISL6398 will continue to protect the load in this fashion as long as  
the overvoltage condition occurs.  
R
//R  
=R . Additional offset can be added by  
MON1  
IOUT_CAL_OFFSET (E5h).  
MON2  
IMON  
V
R
CC IMON  
R
R
= --------------------------------------------------------------------------  
MON2  
MON1  
V
IMON_OFFSET_DESIRED  
(EQ. 18)  
R
R
IMON2 IMON  
= --------------------------------------------------  
R  
R
IMON2  
IMON  
Once an overvoltage condition is detected, the respective VR  
ceases the normal PWM operation and pulls its VR_Ready low  
until the ISL6398 is reset. Cycling the voltage V below the  
ISL6398  
CC  
EXTERNAL CIRCUIT  
POR-falling threshold will reset the controller. Cycling  
EN_PWR_CFP or TM_EN_OTP will NOT reset the controller.  
V
CC  
R
= #MΩ  
MON 2  
VR_RDY  
IMON  
PMBus DIGITIZED IOUT (8Ch)  
100µA*F4[3:0]  
VSEN  
RGND  
+
-
OPEN SENSE  
PROTECTION  
OC  
R
= #kΩ  
MON1  
I
AVG  
FIGURE 16. IMON NO LOAD OFFSET CALIBRATION  
SOFT-START, FAULT  
AND CONTROL LOGIC  
In addition, if the IMON pin voltage is higher than 3.0V,  
overcurrent shutdown will be triggered, as described in  
“Overcurrent Protection” on page 27.  
3.0V  
VSEN_OVP  
+
+
OV  
OC  
Fault Monitoring and Protection  
-
-
IMON  
The ISL6398 actively monitors output voltage and current to detect  
fault conditions. Fault monitors trigger protective measures to  
prevent damage to a microprocessor load. One common  
power-good indicator (VR_RDY) is provided for linking to external  
system monitors. The schematic in Figure 17 outlines the  
interaction between the fault monitors and the VR_RDY signal.  
ISL6398  
VID + OVP  
D8[2:3]  
PRE_OVP  
D8[4:3]  
FIGURE 17. VR_RDY AND PROTECTION CIRCUITRY  
In addition, the ISL6398 features open sensing protection to  
detect an open of the output voltage sensing as an OVP event,  
which suspends the controller operation. Without this protection,  
the VR can regulate up to maximum duty cycle and damage the  
load and power trains when the output sensing is broken open.  
Furthermore, since the regulation loop is sensed via the VSEN pin  
and the OVP is sensed via the VSEN_OVP pin, they are  
independent paths to keep output within target and below OVP  
level, respectively. Thus, the ISL6398 protects against a single  
point of failure.  
VR_Ready Signal  
The VR_RDY pin is an open-drain logic output which indicates  
that the soft-start period is complete and the output voltage is  
within the regulated range. The VR_RDY is pulled low during  
shutdown and releases high after a successful soft-start. VR_RDY  
will be pulled low when an fault (OCP, OTP, UVP, or OVP) condition  
is detected, or the controller is disabled by a reset from  
EN_PWR_CFP, TM_EN_OTP, POR, or VID OFF-code.  
Overvoltage Protection  
Regardless of the VR being enabled or not, the ISL6398  
overvoltage protection (OVP) circuit will be active after its POR. The  
OVP thresholds are different under different operation conditions.  
When VR is not enabled and during the soft-start intervals t , the  
D1  
OVP threshold is programmable via PMBus (D8h[4:3]). Once the  
VR completes the soft-start, the OVP trip point will change to a  
tracking level of DAC+OVP, programmable via PMBus (D8h[2:0]).  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 26 of 57  
ISL6398  
the average current is measured. The average current is  
continually compared with a reference current (typically 100µA,  
programmable via F2[2:0]), as shown in Figure 17. Once the  
average current exceeds the reference current, a comparator  
triggers the converter to shut down. In addition, the current out of  
V
CC  
V
OUT  
V
VSEN_OVP  
DAC + OVP  
OUT  
VSEN_OVP  
+
+
OV  
-
OV  
the IMON pin is equal to the sensed average current I  
. With a  
AVG  
-
resistor from IMON to GND, the voltage at IMON will be  
proportional to the sensed average current and the resistor value.  
The ISL6398 continuously monitors the voltage at the IMON pin. If  
the voltage at the IMON pin is higher than 3.0V, a precision  
comparator triggers the overcurrent shutdown. Since the internal  
current comparator has wider tolerance than the voltage  
comparator, the IMON voltage comparator is the preferred one for  
OCP trip. Therefore, the resistor between IMON and GND can be  
scaled such that the overcurrent protection threshold is tripping  
lower than 100µA. For example, the overcurrent threshold for the  
DAC + OVP  
A. INCREASED OVP  
B. REDUCED OVP  
FIGURE 18. EXTERNAL PROGRAMMABLE OVP  
Furthermore the regulation loop (VSEN pin) and the OVP sense  
(VSEN_OVP) are separated paths, the OVP level can be  
programmed higher or lower than the target, as in Figure 18. The  
OVP level cannot be scaled too close to DAC to ensure that the  
OVP is not triggered during transient response and start-up.  
sensed average current I  
can be set to 95µA by using a 31.5k  
AVG  
resistor from IMON to GND. Thus, the internal 100µA comparator  
might only be triggered at its lower corner. However, IMON OCP trip  
should NOT be too far away from 125µA, which is used for  
cycle-by-cycle protection and inductor saturation.  
In addition, the ISL6398 also provides early OVP warning; when it  
is triggered, it asserts STATUS_WORD (79h Upper Byte, Bit7) and  
SM_PMALERT#. It however does not shutdown the system,  
assert STATUS_BYTE, or pull VR_RDY low. Disregard this if both  
STATUS_WORD and SM_PMALERT# are not used or disable OVP  
Warning as needed via DFh.  
OUTPUT CURRENT  
Undervoltage Protection  
When the output voltage drops below a level programmed by  
PMBus (E1[3:0]), the VR_RDY is pulled low. The controller can  
respond to UVP with two different options programmed by  
PMBus (E1[6]): 1) acts as a OCP event, hiccup the output with  
9ms duration and pull VR_RDY low; or 2) acts like a PGOOD, pull  
VR_RDY low, monitor only. To avoid faulty triggering at  
0A  
OUTPUT VOLTAGE  
transient/DVID events, the UVP delay is programmable by  
E1[5:4]. Furthermore, the UVP is not enabled during soft-start  
and also can be disabled by DF[5]. The ISL6398 also provides  
early UVP warning; when it is triggered, it asserts STATUS_WORD  
(79h Upper Byte, Bit7) and SM_PMALERT#. It however does not  
shutdown the system, assert STATUS_BYTE or pull VR_RDY low.  
Disregard this if both STATUS_WORD and SM_PMALERT# are not  
used or disable UVP Warning as needed via DFh.  
0V  
2ms/DIV  
FIGURE 19. OVERCURRENT BEHAVIOR IN HICCUP MODE  
F
= 500kHz  
SW  
At the beginning of overcurrent shutdown, the controller places all  
PWM signals in a high-impedance state, commanding the Intersil  
MOSFET driver ICs to turn off both upper and lower MOSFETs. The  
system remains in this state a period of 9ms. If the controller is still  
enabled at the end of this wait period, it will attempt a soft-start. If  
the fault remains, the trip-retry cycles will continue indefinitely  
(as shown in Figure 19) until either controller is disabled or the fault  
is cleared. Note that the energy delivered during trip-retry cycling is  
much less than during full-load operation, so there is no thermal  
hazard during this kind of operation.  
Overcurrent Protection  
The ISL6398 has two levels of overcurrent protection. Each phase  
is protected from a sustained overcurrent condition by limiting its  
peak current, while the combined phase currents are protected on  
an instantaneous basis.  
For the individual channel overcurrent protection, the ISL6398  
continuously compares the sensed peak current (~50ns filter)  
signal of each channel with the reference current (I , typically  
CL  
125µA, programmable via F4[5:3] and F3[2:0]). If one channel  
current exceeds the reference current, the ISL6398 will pull PWM  
signal of this channel to low for the rest of the switching cycle.  
This PWM signal can be turned on next cycle if the sensed  
channel current is less than the reference current. The peak  
current limit of individual channels will only use cycle-by-cycle  
current limiting and will not trigger the converter to shut down.  
Thermal Monitoring (VR_HOT#)  
VR_HOT# indicates the temperature status of the voltage  
regulator. VR_HOT# is an open-drain output, and an external  
pull-up resistor is required. This signal is valid only after the  
controller is enabled.  
The VR_HOT# signal can be used to inform the system that the  
temperature of the voltage regulator is too high.  
In instantaneous protection mode, the ISL6398 utilizes the  
sensed average current I  
to detect an overcurrent condition.  
AVG  
Refer to “Current Sensing” on page 18 for more details on how  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 27 of 57  
ISL6398  
The block diagram of thermal monitoring function is shown in  
Figure 20. One NTC resistor should be placed close to the  
respective power stage of the voltage regulator VR to sense the  
operational temperature, and pull-up resistors are needed to form  
the voltage dividers for the TM pins. As the temperature of the  
power stage increases, the resistance of the NTC will reduce,  
resulting in the reduced voltage at the TM pin. Figure 21 shows the  
TM voltage over the temperature for a typical design with a  
recommended 6.8kNTC (P/N: NTHS0805N02N6801 from  
TM  
40.98%*VCC  
39.12%*VCC  
VR_HOT#  
Vishay, b = 3477) and 1kresistor R . It is recommended to use  
TM  
those resistors for the accurate temperature compensation since  
the internal thermal digital code is developed based upon these  
two components. If a different value is used, the temperature  
TEMPERATURE  
T1  
T2  
coefficient must be close to 3477 and R must be scaled  
TM  
FIGURE 22. VR_HOT# SIGNAL (TMAX = +100°C) vs TM VOLTAGE  
accordingly. For instance, NTC = 10k(b = 3477), then R  
should be 10k/6.8k*1k= 1.47k.  
TM  
Based on the NTC temperature characteristics and the desired  
threshold of the VR_HOT# signal, the pull-up resistor R of TM  
TM  
pin is given by Equation 19:  
VCC  
THERMAL TRIP POINT  
LOOKUP TABLE  
R
= 1.557xR  
NTCT2  
(EQ. 19)  
(+90 TO +1200C)  
TM  
RTM  
VR_HOT#  
R
is the NTC resistance at the VR_HOT# threshold  
NTC(T2)  
TMAX  
TM  
temperature T2. The VR_HOT# is de-asserted at temperature T1,  
as shown in Table 6. The NTC directly senses the temperature of  
the PCB and not the exact temperature of the hottest component  
on the board due to airflow and varied thermal impedance.  
Therefore, the user should select a lower TMAX number,  
depending upon the mismatch between NTC and the hottest  
components, than such component to guarantee a safe  
operation.  
+
-
RNTC1  
o
c
ISL6398  
NTC BETA ~ 3477  
FIGURE 20. BLOCK DIAGRAM OF THERMAL MONITORING  
FUNCTION  
TABLE 6. VR_HOT# TYPICAL TRIP POINT AND HYSTERESIS  
TMAX  
(°C)  
VR_HOT# LOW (°C;  
T2, %V  
VR_HOT# OPEN  
(°C; T1, %V  
HYSTERESIS  
(°C)  
There is a comparator with hysteresis to compare the TM pin  
voltage to the threshold set by the TMAX register (programmable  
via PMBus E8[2:0]) for VR_HOT# signal. With TMAX set at  
+100°C, the VR_HOT# signal is pulled to GND when TM voltage is  
)
)
CC  
CC  
85  
90  
83.1; 48.94%  
88.6; 45.52%  
94.3; 42.26%  
100.0; 39.12%  
106.1; 36.14%  
109.1; 33.32%  
115.5; 30.68%  
118.7; 28.24%  
80.3; 51.04%  
85.9; 47.56%  
91.4; 44.20%  
97.1; 40.98%  
103.0; 37.92%  
106.1; 35.00%  
112.3; 32.24%  
115.5; 29.7%  
2.7  
2.7  
2.9  
2.9  
3.1  
3.0  
3.2  
3.2  
lower than 39.12% of V voltage, and is open (pulled high  
CC  
95  
through TM) when TM voltage increases to above 40.98% of V  
voltage. The comparator trip point will be programmable by  
TMAX values. Figure 21 shows the operation of those signals.  
100  
CC  
100  
105  
110  
115  
120  
90  
80  
70  
60  
50  
40  
30  
20  
In addition, as the temperature increase, the voltage on the TM  
pin drops. The controller is disabled when the TM pin voltage drops  
below 0.95 (typically) and becomes active again when it is above  
1.05V (typically).  
Temperature Compensation  
0
20  
40  
60  
80  
100  
120  
140  
°
TEMPERATURE ( C)  
The ISL6398 supports inductor DCR sensing, or resistive sensing  
techniques. The inductor DCR has a positive temperature  
coefficient, which is about +0.385%/°C. Since the voltage across  
the inductor is sensed for the output current information, the  
sensed current has the same positive temperature coefficient as  
the inductor DCR. n order to obtain the correct current  
information, there should be a way to correct the temperature  
impact on the current sense component.  
FIGURE 21. THE RATIO OF TM VOLTAGE TO NTC TEMPERATURE  
WITH RECOMMENDED PARTS  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 28 of 57  
ISL6398  
that, the NTC should be placed in proximity to the channel 1 and  
the output rail; DON’T place it close to the MOSFET side, which  
generates much more heat.  
Integrated Temperature Compensation  
The ISL6398 utilizes the voltage at the TM pin and “TCOMP”  
register to compensate the temperature impact on the sensed  
current. The block diagram of this function is shown in Figure 23.  
The ISL6398 multiplexes the “TCOMP” value with the TM digital  
signal to obtain the adjustment gain to compensate the  
temperature impact on the sensed channel current. The  
compensated channel current signal is used for droop and  
overcurrent protection functions.  
VCC  
Isen4  
Isen3  
Isen2  
Isen1  
ISL6398  
CHANNEL  
CURRENT  
SENSE  
TABLE 7. “TCOMP” VALUES  
RTM  
E9h  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
TCOMP (°C)  
E9h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
TCOMP (°C)  
16  
NON-LINEAR  
A/D  
TM  
OFF  
-2.5  
0
I4  
I3  
I2  
I1  
oc  
RNTC  
18.9  
21.6  
24.3  
27  
ki  
D/A  
2.5  
5
PLACE NTC  
CLOSE TO  
CHANNEL 1  
7
29.7  
32.4  
35.1  
4-BIT  
A/D  
DROOP AND  
OVERCURRENT  
PROTECTION  
10  
13  
TCOMP  
When a different NTC type or different voltage divider is used for  
the TM function, the TCOMP voltage can also be used to  
compensate for the difference between the recommended TM  
voltage curve in Figure 21 and that of the actual design. If the  
same type NTC (= 3477) but different value is used, the pull-up  
resistor needs to be scaled, as shown in Equation 20:  
FIGURE 23. BLOCK DIAGRAM OF INTEGRATED TEMPERATURE  
COMPENSATION  
When the NTC is placed close to the current sense component  
(inductor), the temperature of the NTC will track the temperature  
of the current sense component. Therefore, the TM voltage can  
be utilized to obtain the temperature of the current sense  
component. Since the NTC could pick up noise from phase node,  
a 0.1µF ceramic decoupling capacitor is recommended on the  
TM pin in close proximity to the controller.  
1k  R  
NTC_NEW  
(EQ. 20)  
R
= -----------------------------------------------  
TM  
6.8k  
Design Procedure  
1. Properly choose the voltage divider for the TM pin to match  
the TM voltage vs temperature curve with the recommended  
curve in Figure 21.  
Based on the V voltage, the ISL6398 converts the TM pin  
CC  
voltage to a 6-bit TM digital signal for temperature  
compensation. With the non-linear A/D converter of ISL6398, the  
TM digital signal is linearly proportional to the NTC temperature.  
For accurate temperature compensation, the ratio of the TM  
voltage to the NTC temperature of the practical design should be  
similar to that in Figure 21.  
2. Run the actual board under the full load and the desired  
cooling condition.  
3. After the board reaches the thermal steady state, record the  
temperature (T  
) of the current sense component (inductor  
CSC  
or MOSFET) and the voltage at TM and V pins.  
CC  
4. Use Equation 21 to calculate the resistance of the NTC, and  
find out the corresponding NTC temperature T  
from the  
NTC  
NTC datasheet or using Equation 22, where b is equal to 3477  
for recommended NTC.  
PHASE1  
POWER  
STAGE  
OUTPUT INDUCTOR  
VOUT  
V
xR  
TM  
TM  
(EQ. 21)  
(EQ. 22)  
R
T
T  
= -----------------------------  
NTC NTC  
V
V  
CC  
TM  
= ------------------------------------------------------------------------ – 273.15  
NTC  
RTM  
------------------------------------  
ln  
+ -----------------  
FIGURE 24. RECOMMENDED PLACEMENT OF NTC  
R
T  
298.15  
NTC NTC  
Since the NTC attaches to the PCB, but not directly to the current  
sensing component, it inherits high thermal impedance between  
the NTC and the current sensing element. The “TCOMP” register  
values can be utilized to correct the temperature difference  
between NTC and the current sense component. Figure 24 shows  
5. In Intersil design worksheet, choose a number close to the  
result as in Equation 23 in the “TCOMP” cell to calculate the  
needed resistor network for the register “TCOMP” pin.  
Note: for worksheet, please contact Intersil Application  
support at www.intersil.com/design.  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 29 of 57  
ISL6398  
Catastrophic Fault Protection  
A catastrophic failure is a failure that will result in an exothermic  
event if the power source is not removed. A predominate  
catastrophic failure is a high-side FET shorting, which can cause  
either output overvoltage or input overcurrent event. When the  
ISL6398 detects either event, an internal switch is turned on to pull  
(EQ. 23)  
T
= T  
T  
CSC NTC  
COMP  
6. Run the actual board under full load again with the proper  
resistors connected to the “TCOMP” pin.  
7. Record the output voltage as V1 immediately after the output  
voltage is stable with the full load. Record the output voltage  
as V2 after the VR reaches the thermal steady state.  
the EN_PWR_CFP pin to V , as an indication of a component  
CC  
failure in the regulator’s power train. As shown in Figure 26, a CFP  
fault signal can be generated by using a resistor divider on this pin.  
To be able to apply the signal to the PS_ON# switch of an ATX power  
supply or a simply external switch (2N7002), the CFP fault signal  
8. If the output voltage increases over 3mV as the temperature  
increases, i.e. V2 - V1 > 3mV, reduce “TCOMP” value; if the  
output voltage decreases over 3mV as the temperature  
increases, i.e. V1 - V2 > 3mV, increase “TCOMP” values.  
should be lower than 0.8V at maximum input voltage, V  
and  
IN(max)  
higher than 3V at lowest normal operational V (4.5V) when the  
CC  
input voltage (VIN) is removed. Given such conditions, the equivalent  
Dynamic VID Compensation (DVC)  
(in parallel) impedance of the upper leg (R ) and lower leg  
UP  
During DVID transitions, extra current builds up in the output  
capacitors due to the C*dv/dt. The current is sensed by the  
controller and fed across the feedback resistor creating extra  
droop (if enabled) and causing the output voltage not properly  
tracking the DAC voltage. An independent compensation for  
DVID up and DVID down are implemented to optimize the DVID  
transition (Patent Pending), programmable by D7 and D9,  
respectively.  
(R  
DW  
= R  
DW1  
+ R  
) should be higher than 1k. For instance, if  
DW1  
we select the total lower leg impedance (R ) as 9.39k, then the  
DW  
R
is calculated as in Equation 25, 100kfor a maximum POR of  
UP  
10.72V, The lower leg impedance is then calculated by 2.74kand  
6.65k, as in Equations 26 and 27, respectively.  
(EQ. 24)  
R
= R  
+ R  
DW1 DW2  
DW  
VINPORmax0.92V  
(EQ. 25)  
Programmable Compensation  
------------------------------------------------------------------  
R
=
R  
UP  
DW  
0.92V  
The ISL6398 controller utilizes Intersil’s proprietary Advanced Linear  
EAPP Digital control scheme that is the best modulation scheme in  
the industry to achieve linear response for both transient and  
current balance and can process voltage and current information in  
real time for fast control and high speed protection and realize  
digital power management capability and flexibility and. The digital  
compensation covers a wide range of poles and zeros, as in  
Figure 25, suitable for computing, networking, ASIC, and many  
general purpose applications. Refer ISL6398 GUI on Table 16 for  
more details and advanced features.  
VINmax  
(EQ. 26)  
(EQ. 27)  
---------------------------  
R
R
=
 R  
+ R  
DW  
DW1  
DW2  
UP  
0.8V  
= R  
R  
DW1  
DW  
VCC  
VIN  
CFP  
RUP  
EN_PWR_CFP  
EN_PWR  
RESET  
RDW1  
CFP  
RDW2  
ISL6375, ISL6376  
FIGURE 26. BI-DIRECTIONAL EN_PWR_CFP  
Prior to an exothermic event, the fault signal (CFP) should be used  
on the platform to remove the power source either by firing a  
shunting SCR to blow a fuse or by turning off the AC power supply.  
Input Current Sensing  
The input current sensing uses Intersil patented technique to  
overcome the high common-mode input requirement challenge.  
An R-C network with thermal compensation across the inductor  
(LIN) extracts the DCR voltage, as shown in Figure 27, while the C  
might need to be split into 2, one close the LIN and one close to  
the controller. The input inductor can be used for current sensing  
and has benefit of isolating noise from the rest of the board.  
However, when there are insufficient bulk capacitors on the  
power-stage side, a resonant tank can be formed by input  
FIGURE 25. TYPE III Compensation Poles and Zero Range  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 30 of 57  
ISL6398  
ceramic capacitors and the inductor, yielding oscillation or audio  
noise during audio frequency range of heavy load transient. In  
VIN_HS_MOSFET  
addition, since Z  
network steals portion of sensed current  
NTC  
PLACE CLOSE  
from R , input current reading will have offset.  
IN1  
TO THE  
CONTROLLER  
1.5M  
In many cases, a narrow input-rail PCB trace (but wide enough to  
carry DC current) is sufficient to serve as the isolation path. Thus,  
the input current sensing can simply be realized with a dedicated  
power resistor, as shown in Figure 28.  
499k  
0.1µF  
ISENIN-  
(PIN 1)  
ISENIN+  
(PIN 2)  
DCR  
LIN  
50nH  
0.3m   
FIGURE 29. DISABLE PIN AND IIN CONFIGURATION  
VIN  
VIN_HS_MOSFET  
Auto-phase Shedding  
ZNTC  
PLACE NTC  
CLOSE TO  
LIN  
165RIN1  
NTC  
2k  
The ISL6398 incorporates auto-phase shedding feature to  
improve light to medium load range. The phase current dropping  
threshold is programmable with the resistor on auto pin. The  
efficiency-optimized current trip point (I1) from 1-Phase to  
2-Phase operation is approximated with Equation 28, which is kx  
larger than the efficiency-optimized current trip step  
(dI = I3 - I2) in between from 2-phase to 3-phase (I2) and from  
3-phase to 4-phase (I3). The optimized-efficiency current trip  
point difference between phases remain constant I1/k, as  
expressed in Equation 29 and Figure 30  
Rsn  
215  
Rpn  
10.2k  
1.8µF  
10nF  
0.1µF  
402RIN2  
PLACE CLOSE  
TO THE  
CONTROLLER  
ISENIN-  
(PIN 1)  
ISENIN+  
(PIN 2)  
FIGURE 27. INPUT DCR-SENSING CONFIGURATION  
2  P  
+ P  
+ P  
COSS  
QG  
CORE  
(EQ. 28)  
I1 ---------------------------------------------------------------------------------  
ESR D + R + L F  
IN  
ON  
DS  
SW  
The full scale of input current sensing is 10µA, read 1Fh with  
READ_IIN(89h), via PMBus, while the input over-current trip point  
is at 15µA (Programmable via F6[6:5]). A greater than 40µs time  
R
= D r  
+ 1 D  r + DCR  
DSON_LOW  
ON  
DSON_UP  
constant [C*R *R )/(R +R )] might be needed if the  
IN1 IN2 IN1 IN2  
where P is the per-phase gate charge loss, P  
is the  
QG  
CORE  
is the sum of high-side and low-side  
MOSFETs’ output charge loss.  
average input current reporting is preferred; and it also reduces  
chance to trigger CFP during heavy load transient depending  
upon the input filter. A design worksheet to select these  
components is available for use. Please contact Intersil  
Application support at www.intersil.com/design.  
inductor core loss, P  
QOSS  
I5  
I4  
I3  
I2  
I1  
LR_SENIN  
1nH  
RSENIN  
0.3m  
VIN  
43.2RIN1  
VIN_HS_MOSFET  
0.1µF  
C
0.1µF  
562  
RIN2  
10nF  
PLACE CLOSE  
TO THE  
CONTROLLER  
ISENIN-  
(PIN 1)  
ISENIN+  
(PIN 2)  
FIGURE 28. INPUT R-SENSING CONFIGURATION  
LOAD (A)  
When not used, connect ISENIN+ to VIN and a resistor divider  
with a ratio of 1/3 on ISENIN± pin, say 499k Ohm in between  
ISENIN± pins and then 1.5MΩ from ISENIN- to ground  
(see Figure 29).  
FIGURE 30. EFFICIENCY VS. PHASE NUMBER  
64 DCR I1  
(EQ. 29)  
(EQ. 30)  
------------------------------------  
I
IMON_OPTIMIZED_1_PHASE  
1.2V  
N
R  
MAX  
SET  
R
= --------------------------------------------------------------------------  
AUTO  
I
IMON_OPTIMIZED_1_PHASE  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 31 of 57  
ISL6398  
TABLE 8. PHASE DROPPING SEQUENCE  
1.2V N  
R  
SET  
MAX  
(EQ. 31)  
(EQ. 32)  
-----------------------------------------------------  
R
AUTO  
PWM# TIED TO V  
CC  
64 DCR I1  
N
6
5
4
3
2
(VCORE)  
PHASE SEQUENCE  
NONE  
6-3-5-2-4-1  
5-4--2-3-1  
4-2-3-1  
3-2-1  
1
K
---  
I
I1 1 +  N 1  
N  
PWM6  
PWM5  
PWM4  
PWM3  
Equations 30 and 31 helps approximate the AUTO resistor, while  
the trip point hysteresis can be programmed via PMBus D1[5:4].  
Typically, the higher the inductor ripple current, the higher  
percentage of hysteresis and k it requires. Following is an easy  
2-1  
way to estimate R  
value:  
To ensure dropped phases have sufficient energy to turn on  
high-side MOSET and sustain instant load apply after VR0 staying  
in light load condition for a long time (hours to days), a  
boot-refresh circuit turns on Low-side MOSFET of each dropped  
phase to refresh the boot capacitor at a rate of slightly above  
20kHz. The boot-fresh circuit is automatically turned off to boot  
efficiency when DAC drops to 0.60V.  
AUTO  
1. Before AUTO trip point tuning, calibrate IMON current close to  
zero with PMBus E4[4:0].  
2. Disable AUTO mode via D4[2] or by tying AUTO pin GND  
3. Obtain efficiency curve for 1- to 6-phase, programmed via  
D0,with appropriate load (~25A/Phase. 0.5A step); and APA  
disabled via D4h as needed.  
Resistor Reader (Patented)  
Intersil has developed a high resolution ADC using a patented  
technique with simple 1%, 100ppm/k or better temperature  
coefficient resistor divider. The same type of resistors are  
preferred so that it has similar change over-temperature. In  
addition, the divider is compared to the internal divider off V  
and GND nodes and therefore must refer to VCC and GND pins,  
not through any RC decoupling network.  
4. Determine I1 from the above test result.  
5. Short AUTO pin to ground with a current meter to measure the  
IMON current (I  
) when VR is at I1 load.  
IMON_OPTIMIZED_1_PHASE  
6. Calculate R  
AUTO  
as in Equation 31.  
and enable AUTO mode.  
7. Solder down R  
AUTO  
CC  
8. Take efficiency curve and compare it with the 1-to 6-Phase  
Efficiency Curves.  
9. Tweak R  
AUTO  
and D1 (k, I1, Hysteresis) as needed for optimal  
EXTERNAL CIRCUIT  
ISL6398  
Efficiency performance at targeted operating input and  
output voltage as well as airflow.  
V
CC  
10. Obtain efficiency curve for couple boards and tweak R  
re-center overall efficiency of these boards.  
to  
AUTO  
R
UP  
REGISTER  
TABLE  
ISL6398  
ADC  
EXTERNAL CIRCUIT  
PHASE  
SHEDDING  
CURRENT  
THRESHOLD  
SELECTION  
AUTO  
R
DW  
R
AUTO  
FIGURE 32. SIMPLIFIED RESISTOR DIVIDER ADC  
NVM_BANK_BT pin is designed to allow the user to select  
different NVM Banks (Pre-configured IC) and/or Boot Voltage  
Level even without PMBus communications; while VRSEL_ADDR  
is to select different operation mode (5mV or 10mV), indirectly  
control Boot Voltage Level and DAC resolution, and PMBus  
Addresses. The programmed values of resistor reader are stored  
in DC and DD of PMBus.  
FIGURE 31. SIMPLIFIED AUTO-PHASE SHEDDING CIRCUIT  
2
In addition, the SMBus, PMBus, or I C gives flexibility to program  
Auto K-factor (D1[3:2]), hysteresis (D1[5:4]), I1 (D1[7:6]), and  
number of operating phases after soft-start and when auto mode  
is disabled by D4[2]. However, all phases will be added back  
when APA is triggered; and if APA is disabled, all phase are  
added back only after reset or OCP retry.  
As an example, Table 9 shows the R and R  
UP DW  
values of each  
pin for a specific system design; DATA for corresponding registers  
can be read out via PMBus commands (DC and DD). In addition,  
some tie-high and tie-low options are available for easy  
programming (save resistor dividers) and can also be used to  
validate the VR operation during In-Circuit Test (ICT). For instance,  
when the system boot voltage is required at 0V, the  
The minimum of auto-phase shedding is defaulted by NPSI in  
PSI1 mode and can also be programmed by the bus command  
code D1h[1:0], as in Table 14. The phase dropping sequence is  
summarized in Table 8.  
NVM_BANK_BT pin can be set to different voltage level, prior to  
power-up, to get a known boot voltage to check VR operation with  
ICT. Resistor reader calculator is available, please contact Intersil  
Application support at www.intersil.com/design.  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 32 of 57  
ISL6398  
TABLE 10. PMBus (DD) RESISTOR READER EXAMPLE (Continued)  
TABLE 9. PMBus (DC) RESISTOR READER EXAMPLE  
R
R
DW  
(kΩ  
R
R
PMBus  
RECOMMENDED  
(kUΩP  
NVM  
BT  
DW  
PMBus (DC)  
(kUΩP  
(kΩ8-Bit ADDRESS APPLICATIONS  
PMBus (DD)  
32h  
40.2  
45.3  
NVM1  
0.9V, 5mV/Step  
1.8V, 10mV/Step  
00h  
01h  
02h  
03h  
08h  
09h  
0Ch  
0Dh  
10h  
11h  
14h  
15h  
80h  
81h  
82h  
83h  
88h  
89h  
8Ch  
8Dh  
90h  
91h  
94h  
95h  
OPEN  
49.9  
45.3  
43.2  
29.4  
28  
10  
80  
82  
84  
86  
C0  
C2  
C8  
CA  
E0  
E2  
E8  
EA  
80  
82  
84  
86  
C0  
C2  
C8  
CA  
E0  
E2  
E8  
EA  
10mV/Step  
10mV/Step  
10mV/Step  
10mV/Step  
10mV/Step  
10mV/Step  
10mV/Step  
10mV/Step  
10mV/Step  
10mV/Step  
10mV/Step  
10mV/Step  
5mV/Step  
5mV/Step  
5mV/Step  
5mV/Step  
5mV/Step  
5mV/Step  
5mV/Step  
5mV/Step  
5mV/Step  
5mV/Step  
5mV/Step  
5mV/Step  
12.4  
12.7  
13.3  
15  
55h  
79h  
9Fh  
59  
84.5  
163  
367  
NVM2  
NVM3  
NVM4  
1.0V, 5mV/Step  
2.0V, 10mV/Step  
78.7  
95.3  
1.2V, 5mV/Step  
2.4V, 10mV/Step  
1.5V, 5mV/Step  
2.0V, 10mV/Step  
15.4  
17.4  
17.8  
19.6  
20.5  
23.2  
24.3  
499  
93.1  
95.3  
100  
113  
115  
130  
133  
147  
154  
174  
182  
24.3  
23.2  
20  
B2h  
DAh  
196  
215  
226  
475  
NVM5  
NVM6  
1.8V, 10mV/Step  
2.5V, 10mV/Step  
NOTE: More options in resistor reader calculator. NVM_BT = Boot Voltage  
Loaded from the Bank, not fixed by resistor reader.  
19.6  
17.4  
16.9  
OPEN  
374  
340  
316  
221  
210  
182  
174  
150  
147  
130  
127  
Memory Banks  
The ISL6398 has 8 memory banks to store up  
(STORE_USER_ALL, 15h) to 8 different configurations, selectable  
via PMBus (DEh) or resistor to GND on the NVM_BANK pin, as in  
Table 11. No decoupling capacitor is allowed on the pin. Prior to  
the soft-start, the selection of memory bank is stored in the data  
registers of PMBus (DDh). They are reset by V POR. In addition,  
CC  
the selected memory bank can be overridden by PMBus (DEh).  
Only the selected memory bank’s configuration is loaded  
(RESTORE_USER_ALL,16h) into the operating memory to have  
control on the VR system prior to issuing soft-start.  
TABLE 11. MEMORY BANK (PMBus, DD)  
DEh  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
MEMORY BANK NAME  
USER_NVM0  
USER_NVM1  
USER_NVM2  
USER_NVM3  
USER_NVM4  
USER_NVM5  
USER_NVM6  
USER_NVM7  
TABLE 10. PMBus (DD) RESISTOR READER EXAMPLE  
R
(kUΩP  
R
DW  
(kΩ  
PMBus (DD)  
00h  
NVM  
BT  
NVM_BT  
NVM_BT  
NVM_BT  
NVM_BT  
NVM_BT  
NVM_BT  
NVM_BT  
NVM_BT  
0.0V  
OPEN  
118  
196  
294  
422  
590  
825  
OPEN  
49.9  
20  
10  
NVM0  
NVM1  
NVM2  
NVM3  
NVM4  
NVM5  
NVM6  
NVM7  
NVM0  
NVM0  
NVM0  
20h  
26.1  
43.2  
64.9  
93.1  
130  
182  
499  
12.4  
19.6  
15.4  
40h  
Other than device’s PMBus Addresses and VR operation mode,  
all system design parameters are programmed by PMBus, as  
summarized in Table 12 and detailed in Table 14.  
60h  
80h  
A0h  
C0h  
E0h  
01h  
10h  
1.7V, 10mV/Step  
09h  
28  
0.6V, 5mV/Step  
1.2V, 10mV/Step  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 33 of 57  
ISL6398  
TABLE 12. SYSTEM PARAMETER SUMMARY (Continued)  
PMBus  
TABLE 12. SYSTEM PARAMETER SUMMARY  
PMBus  
CODE  
DESCRIPTION  
RANGE  
CODE  
DESCRIPTION  
RANGE  
REG  
D6  
DA  
DB  
D3  
D3  
D3  
E4  
REG  
LOCK_VID_OFFSET  
Set_VID  
0h to 3h  
up to 3.04V  
80-8E, C0-CE,  
E0-EE, F0-FE  
PM_ADDR N/A  
VR_MODE N/A  
PMBus Address  
By “VRSELpin  
5m Step Boot Voltage  
10mV Step Boot Voltage  
DVID Slew Rate  
5mV or 10mVstep  
0, 0.25 to 1.52V  
Set_OFFSET  
Droop Enable  
Negative Droop  
Positive Droop  
IDROOP_TRIM  
Output Offset Trim  
NPHASE  
up to 1.270V  
Enable or Disable  
100% to 5%  
Output  
Voltage  
Regulation  
BT  
E6  
0, 0.5, 0.51 to 3.04V  
0.315 to 13.25mV/µs  
Offset, Gain, Slope  
Offset, Gain, Slope  
F6  
D7  
D9  
0mV, 4mV to 32mV  
-4µA to +3.75µA  
-4µA to +3.75µA  
1 TO 6-PHASE  
1.0, 1.25, 1.5, 1.7  
12.5, 16.6, 25, 50%  
80, 90, 100, 110%  
1 TO 4-PHASE  
0.6ms to 4.6ms  
tsw/8 to tsw  
DVID  
DVID UP Compensation  
DVID Down Compensation  
E4  
Maximum Operating  
Temperature  
+85°C to +120°C  
(5°C/Step)  
D0  
D1  
D1  
D1  
D1  
D2  
D2  
D2  
D4  
D4  
D4  
99  
9A  
9B  
9D  
TMAX  
IMAX  
NPSI  
E8  
EA  
D2  
AUTO_K  
I
of Platforms  
0-255A, 1A/LSB  
SI1, SI2, CI1, CI2  
CCMAX  
AUTO_HYS  
Minimum Number of  
Operational Phases in Auto  
AUTO_I1  
D2  
E1  
D8  
24  
DF  
F6  
E9  
Frequency Limiter  
SET_UV  
2F , 1.5F , Infinity  
SW SW  
Minimum Phase  
AUTO Blanking  
APA Time Constant  
APA_Stackup_Delay  
APA LEVEL  
105mV to 402mV  
136mV to 549mV  
Up to 3.11V  
AUTO  
SET_OV  
Maximum Output Voltage  
PROTECTION_DISABLE  
INPUT OCP  
0 to 300ns  
All Faults  
10 to 70mV  
Protection  
100% to 130%  
75% to 100%  
BOOT REFRESH  
AUTO Enable  
MFR_ID  
Enable or Disable  
Enable or Disable  
2 BYTES  
Thermal APA  
AVG_OCP  
CYCLE_LIMITING  
1.0 TO 1.6  
125% to 70%  
F4  
MFR_MODEL  
MFR_REV  
2 BYTES  
USER  
F7-FC  
E4  
Current Balance  
IMON_TRIM  
-12% to +9%  
-4µA to +3.75µA  
-4h to 3h  
2 BYTES  
DIGITAL  
IOUT (8Ch)  
MFR_DATE  
3 BYTES  
E5  
IOUT_CAL_OFFSET  
UP Ramp Amplitude  
NVM_BANK  
D8  
0.75, 1.0, 1.2, 1.5V  
Up to 8 Banks  
DE  
D4  
Dither Enable  
Enable or Disable  
Mismatching Temperature  
Compensation between  
sensing element and NTC  
OFF, -2.5°C to  
+35.1°C  
E9  
E2  
PS Mode Transition  
Compensation  
PS Mode Transition  
LOOP  
E2[4:3]: 20m- 80mV  
E3: Phase Count  
Original Speedup  
High Frequency Transient  
Compensation  
E2, E3  
F5  
SET_FREQ  
120k TO 2.025MHz  
B0-BF  
COMPENSATION  
R -R3 and C1-C3  
1
Original, 2p-16pF  
25mV - 200mV  
F3  
SP_VdBand_K  
0 to 0.75, Disable  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 34 of 57  
ISL6398  
2
before the NVM configuration is loaded completely, the controller  
SMBus, PMBus and I C Operation  
will issue soft-start 16ms (typically, worst case 20ms) after V  
above its POR.  
CC  
There are 32 PMBus address, which can be programmed by a  
resistor divider on VRSEL_ADDR pin, as shown in Figure 32 and  
summarized in Table 13.  
88h-8Eh are two-byte word read with PEC (if applicable), while  
78h, F2h, and other write command codes are one-byte word  
read with PEC (if applicable).  
2
The ISL6398 features SMBus, PMBus and I C with  
programmable address via VRSEL_ADDR pin, as in Table 13,  
while SMBus/PMBus includes an Alert# line and Packet Error  
Check (PEC) to ensure data properly transmitted. In addition, the  
output voltage, droop slope, enable, operating phase number,  
and overvoltage setpoint can be written and read via this bus, as  
summarized in Table 14. Input, output, fault, and temperature  
telemetries can be read as summarized in Table 15. For proper  
When PMBus is not used, simply leave the respective pull-up on  
their pins and not connect to the bus..  
2
TABLE 13. SMBus/PMBus/I C 8-BIT AND 7-BIT FORMAT ADDRESS (HEX)  
8-BIT  
80/81  
82/83  
84/85  
86/87  
88/89  
8A/8B  
8C/8D  
8E/8F  
C0/C1  
C2/C3  
C4/C6  
CE/CF  
7-BIT  
40  
41  
42  
43  
44  
45  
46  
47  
8-BIT  
C8/C9  
CA/CB  
CC/CD  
CE/CF  
E0/E1  
E2/E3  
E4/E5  
E6/E7  
E8/E9  
EA/EB  
EC/ED  
EE/EF  
7-BIT  
64  
65  
66  
67  
70  
71  
8-BIT  
F0/F1  
F2/F3  
F4/F5  
F6/F7  
F8/F9  
FA/FB  
FC/FD  
FE/FF  
7-BIT  
78  
79  
7A  
7B  
7C  
2
operation, users should follow the SMBus, PMBus, and I C  
protocol, as shown Figure 36. Note that STOP (P) bit is NOT  
allowed before the repeated START condition when “reading”  
contents of register, as shown in Figure 36.  
2
The supported SMBus/PMBus/I C addresses are in 8-bit format  
7D  
7E  
(including write and read bit): 80-8E, E0- EE, C0-CE, F0-FE. The  
least significant bit of the 8-bit address is for write (0h) and read  
(1h). For reference purposes, the 7-bit format addresses are also  
summarized in Table 13. There are a series set of read and write  
commands as summarized in Tables 14 and 15, respectively. The  
72  
73  
74  
7F  
60  
61  
62  
63  
75  
76  
77  
2
SMBus/PMBus/I C allows to program the registers as in  
2
Table 12, except for SMBus/PMBus/I C addresses, 16ms  
(typically, worst case 20ms) after V above POR and prior to  
CC  
Enable pins (EN_PWR_CFP) high. The bus can also program  
default content during this period. If all Enable pins are high  
5V  
V
CC  
WRITE AND READ  
CONFIGURATION  
WRITE AND READ  
CONFIGURATION  
LOAD NVM  
WRITE AND READ  
CONFIGURATION  
WRITE AND READ  
CONFIGURATION  
VCC POR  
TIMEOUT  
READER  
DONE  
CONFIGURATION  
5 MS  
10MS  
0MS TO INFINITY  
1 MS  
0MS TO INFINITY  
ENABLE  
PMBUS COMMUNICATION NOT ACTIVATED  
PMBUS  
PMBUS  
PMBUS  
PMBUS  
COMMAND  
COMMAND  
COMMAND  
COMMAND  
VBOOT  
0 V  
V
OUT  
2
FIGURE 33. SIMPLIFIED SMBus/PMBus/I C INITIALIZATION TIMING DIAGRAM  
5V  
V
CC  
WRITE AND READ  
CONFIGURATION  
WRITE AND READ  
CONFIGURATION  
LOAD NVM  
CONFIGURATION  
10MS  
VCC POR  
TIMEOUT  
5 MS  
READER  
DONE  
1 MS  
WRITE AND READ  
CONFIGURATION  
0MS TO INFINITY  
ENABLE  
PMBUS  
COMMAND  
PMBUS COMMUNICATION NOT ACTIVATED  
PMBUS  
COMMAND  
PMBUS  
COMMAND  
VBOOT  
V
0 V  
OUT  
2
FIGURE 34. SIMPLIFIED SMBus/PMBus/I C INITIALIZATION TIMING DIAGRAM WITH ENABLE HIGH BEFORE COMPLETING NVM LOADING  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 35 of 57  
ISL6398  
S: Start Condition  
1. Send Byte Protocol  
A: Acknowledge (“0”)  
1
7 + 1  
1
8
1
8
1
1
N: Not Acknowledge (“1”)  
S
A
Command Code  
Slave Address_0  
A
PEC  
A
P
W: Write (“0”)  
RS: Repeated Start Condition  
R: Read (“1”)  
Optional 9 Bits for SMBus/PMBus  
2
PEC: Packet Error Checking  
P: Stop Condition  
NOT used in I C  
Example command: 03h Clear Faults  
(This will clear all of the bits in Status Byte for the selected Rail)  
Acknowledge or DATA from Slave,  
ISL6398  
Not Used for One Byte Word  
2. Write Byte/Word Protocol  
1
7 + 1  
1
8
1
8
1
8
1
8
1
1
S
A
Command Code  
Slave Address_0  
A
A
High Data Byte  
Low Data Byte  
A
PEC  
A
P
Optional 9 Bits for SMBus/PMBus  
2
NOT used in I C  
Example command: DAh SET_VID (one word, High Data Byte and ACK are not used)  
3. Read Byte/Word Protocol  
1
7 + 1  
1
8
1
Not Used for One Byte Word Read  
S
A
Command Code  
Slave Address_0  
A
1
7 + 1  
1
8
1
8
1
8
1
1
RS  
Low Data Byte  
A
Slave Address_1  
A
High Data Byte  
A
PEC  
P
N
Optional 9 Bits for SMBus/PMBus  
2
NOT used in I C  
Example command: 8B READ_VOUT (Two words, read voltage of the selected rail).  
NOTE: All Writable commands are read with one byte word protocol.  
STOP (P) bit is NOT allowed before the repeated START condition when “reading” contents of a register.  
4. Block Write Protocol  
1
7 + 1  
1
8
1
8
1
8
1
8
1
S
Slave Address_0  
A
Command Code  
A
A
Lowest Data Byte  
Byte Count = N  
A
Data Byte 2  
A
1
8
1
8
1
1
A
Data Byte N  
A
PEC  
A
P
Optional 9 Bits for SMBus/PMBus  
2
NOT used in I C  
Example command: 9Dh MFR_DATA (3 Data Byte)  
2
FIGURE 35. SMBus/PMBus/I C PROTOCOL  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 36 of 57  
ISL6398  
5. Block Read Protocol  
1
7 + 1  
1
1
1
1
8
1
7 + 1  
8
8
S
Byte Count = N  
Lowest Data Byte  
Slave Address_0  
A
Command Code  
A
A
A
RS  
Slave Address_1  
1
1
8
8
1
8
1
1
Data Byte 2  
A
A
Data Byte N  
A
PEC  
P
N
Optional 9 Bits for SMBus/PMBus  
2
NOT used in I C  
Example command: 8B READ_VOUT (Two words, read voltage of the selected rail).  
NOTE: All Writable commands are read with one byte word protocol.  
STOP (P) bit is NOT allowed before the repeated START condition when “reading” contents of a register.  
6. Group Command Protocol - No more than one command can be sent to the same Address  
1
7 + 1  
1
8
1
8
1
8
1
8
1
S
A
Command Code  
Slave ADDR1_0  
A
Low Data Byte  
A
High Data Byte  
A
PEC  
A
1
8
7 + 1  
1
1
1
8
8
1
RS  
Command Code  
Slave ADDR2_0  
A
A
Data Byte  
A
PEC  
A
1
8
1
8
7 + 1  
1
1
8
1
8
1
1
Command Code  
A
RS  
A
High Data Byte  
Slave ADDR3_0  
A
Low Data Byte  
A
PEC  
A
P
Optional 9 Bits for SMBus/PMBus  
2
NOT used in I C  
2
7. Alert Response Address (ARA, 0001_1001, 25h) for SMBus and PMBus, not used for I C  
1
7 + 1  
1
8
7+1  
1
1
1
S
Slave_Address_1  
A
PEC  
ALERT Addr_1  
A
A
P
Optional 9 Bits for SMBus/PMBus  
2
NOT used in I C  
2
FIGURE 36. SMBus/PMBus/I C PROTOCOL  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 37 of 57  
ISL6398  
2
TABLE 14. SMBus, PMBus, AND I C WRITE AND READ REGISTERS  
WRITE  
PROTECT  
LEVEL  
COMMAND  
CODE  
ACCESS  
R/W  
DEFAULT  
COMMAND NAME  
DESCRIPTION  
01h[2:0]  
40h  
EN pin  
OPERATION (or ENABLE)  
Bit[7]: 0 = OFF (0-F); 1 = ON (80-8Fh)  
Bit[6:4] = 0;  
Bit[3:0] = Don’t care  
10h[7:5]  
R/W  
NOT  
80h  
WRITE_PROTECT_ISL  
80h = Disable all standard writes (including send bytes) except  
for WRITE_PROTECT_ISL command.  
40h = Disable all standard writes (including send bytes), all  
compensation registers and some Intersil defined commands,  
BUT not WRITE_PROTECT, OPERATION, CLEAR_FAULT, and some  
Intersil defined commands.  
20h = Disable all standard writes, all compensation registers  
and some Intersil defined commands, BUT NOT  
WRITE_PROTECT, OPERATION, CLEAR_FAULT and some Intersil  
defined commands: LOCK_VID_OFFSET, SET_VID, SET_OFFSET.  
10h = Disable all compensation registers and some Intersil  
defined commands, BUT not WRITE_PROTECT, OPERATION,  
CLEAR_FAULT and some Intersil defined commands (at WRITE  
PROTECTION LEVEL OF 20h): LOCK_VID_OFFSET, Set_VID,  
Set_OFFSET, Configurations (UVP, OVP, OCP, CFP, IMAX, TMAX,  
AUTO, NPHASE, BAL_XX, FREQ, BOOT_VOLTAGE, etc).  
00h = Enable all write commands.  
Reject all command code except for 80h, 40h, 20h, 10h, 0h  
Not support PAGE and ON_OFF_CONFIG; Equivalent  
VOUT_COMAND is Set_VID, Set_OFFSET, LOCK_VID_OFFSET.  
“WRITE PROTECT LEVEL” = ANYTHING SPECIFIED IN THIS LEVEL  
OR BELOW IS ALLOWED TO BE WRITTEN.  
15h  
16h  
SEND  
SEND  
R/W  
00h  
00h  
00h  
N/A  
N/A  
STORE_USER_ALL  
RESTORE_USER_ALL  
VOUT_MAX  
Store user configuration (operating memory) into selected  
USER_NVM#. The device will declare busy at the assertion of this  
command, a new command addressed to this device should be  
sent 300ms afterward.  
Restore user configuration (USER_NVM#) into operating  
memory. The device will declare busy at the assertion of this  
command, a new command addressed to this device should be  
sent 6ms afterward.  
24h[8:0]  
NVM_BANK  
Set maximum output voltage that VR can command  
(VOUT_MAX = VID+OFFSET > BOOT_Voltage).  
5mV Mode: Up to 2.155 (H Byte: 01h; L Byte 7Eh, see Table 18);  
10mV Mode: Up to 3.11V (High Byte: 01h; Low Byte 06h).  
99[15:0]  
9A[15:0]  
9B[15:0]  
9D[23:0]  
BLOCK  
R/W  
00h  
00h  
00h  
00h  
N/A  
N/A  
00h  
MFR_ID  
MFR_MODEL  
User stores ID.  
BLOCK  
R/W  
User stores model number.  
User stores board and/or configuration revision number.  
User stores date.  
BLOCK  
R/W  
MFR_REVISION  
MFR_DATE  
BLOCK  
R/W  
AD[15:0] BLOCK R  
IC_DEVICE_ID  
Intersil Device ID: product ID (update byte, hardcoded) + ISL  
configuration revision (lower byte).  
AE[15:0]  
D0h[2:0]  
BLOCK R  
R/W  
IC_DEVICE_REV  
OPERATE_PHASE_NUMBER  
Intersil Device Revision: Silicon revision (upper byte, hardcoded)  
+ ISL configuration revision (lower byte).  
N
By  
0h = 7h = N  
; 1h=1 Phase;2h = 2 Phases; 3h = 3 Phases;  
PHASE  
Pin  
MAX  
4h = 4 Phases; 5h = 5 Phases; 6h = 6 Phases. N  
set by PWMx  
MAX  
= 5 Phases. D0  
hard wired; for instance if PWM6 = V , N  
CC MAX  
should NOT be written until 50ms after soft-start and re-written  
after DVID. When AUTO (R to GND, not shorted to GND) function  
is enabled, D0h cannot use to program phase number but it  
reports the operating phase number.  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 38 of 57  
ISL6398  
2
TABLE 14. SMBus, PMBus, AND I C WRITE AND READ REGISTERS  
WRITE  
PROTECT  
LEVEL  
COMMAND  
CODE  
ACCESS  
R/W  
DEFAULT  
NVM_BANK  
COMMAND NAME  
DESCRIPTION  
D1h[7:0]  
00h  
NMIN_AUTOK_HYS_I1  
Bit[1:0] - Minimum Number of Auto Phase Shedding  
0h = 1-Phase;1h = 2-Phase; 2h = 3-Phase; 3h = 4-Phase; Default  
by N  
PSI  
Bit[3:2] - AUTO Mode K Factor:  
0h = 1.25; 1h = 1.5; 2h = 1.75; 3h = 1.0; Default by AUTO pin  
Bit[5:4] - AUTO Mode Hysteresis Factor  
0h = 50%; 1h = 25%; 2h = 16.6%; 3h = 12.5%; Default by AUTO pin  
Bit[7:6] - AUTO Mode I1 Factor:  
0h = 100%; 1h = 80%; 2h = 90%; 3h = 110% of AUTO pin  
D2h[9:0]  
R/W  
00h  
NVM_BANK NPSI_AUTOBLK_FLIMITER_APATC Bit[1:0] - Lower Power Phase Number:  
0h = SI1, 1-Phase;  
1h = SI2, 2-Phase;  
2h = CI1, 1-Phase;  
3h = CI2, 2-Phase;  
Bit[3:2] - Time between subsequent phase drops:  
0h = 4.6ms; 1h = 2.3ms; 2h = 1.2ms; 3h = 0.6ms, Default 0h  
Bit[5:4] - Maximum PWM frequency under repetitive Load:  
0h = 2 F ; 1h = 3/2 F ; 2h = 3h = Infinity; Default 0h  
SW SW  
Bit[7:6] - APA Time Constant:  
0h = Tsw; 1h = Tsw/2; 2h = Tsw/4; 3h = Tsw/8. Default 3h  
Bit[9:8] - APA Stackup Delay:  
0h = 0ns; 1h=100ns; 2h = 200ns; 3h = 300ns  
D3h[6:0]  
R/W  
10h  
NVM_BANK  
NEGLL_POSLL  
Bit[0] - Droop Enable:  
0h = Disabled, 1h = Enabled;  
Bit[3:1] Droop Trim (NEGLL) of Full Scale:  
0h = 100%, 1h = 75%, 2h =5 0%, 3h = 25%, 4h = 5%  
Adjust R for finer resolution  
1
Bit[4]: Positive Load Line Enable:  
0h = Disabled; 1h = Enabled  
Bit[6:5]: Positive Load Line Range (POSLL):  
0h = 4mV, 1h = 8mV; 2h = 16mV, 3h = 32mV at IMON Full Scale  
D4h[6:0]  
R/W  
10h  
NVM_BANK BTR_DE_AUTO_DITHER_APALVL Bit[0] - Boot-Refresh Enable:  
0h = Disabled; 1h = Enabled. Boot refresh circuits is  
automatically turned off when DAC is lower than 0.605V  
Bit[1] - Diode Emulation Enable  
0h = Disabled; 1h = Enabled  
Bit[2] - AUTO Enable:  
0h = Disabled; 1h = Enabled  
Bit[3] - DITHER Enable:  
0h = OFF, 1h = -15kHz, 0, 15kHz  
Bit[6:4] - APA Level:  
0h = Disable; 1h = 10mV; 2h = 20mV; 3h = 30mV; 4h = 40mV;  
5h = 50mV; 6h = 60mV; 7h = 70mV  
D5h[1:0]  
D6h[1:0]  
R/W  
R/W  
00h  
20h  
NVM_BANK  
00h  
PWMTRI-LEVEL  
Bit[0] - PWM Support: 0h = Compatible with 3.3V PWM Tri-State  
(Mid) Level (PWM High is still V , 5V); 1h = Compatible with  
CC  
5.0V PWM Tri-State (Mid) Level. 5.0V PWM Driver is also  
compatible with “0h”, but not vice versa.  
LOCK_VID_OFFSET  
Secondary output voltage control protection:  
0h= VID and OFFSET NOT CONTROLLABLE  
1h = Program Small OFFSET, not VID allowed  
2h = Program Large OFFSET, not VID allowed  
3h = VID and OFFSET CONTROLLABLE  
(see Table 16 for details)  
D7h[13:0]  
BLOCK  
R/W  
10h  
NVM_BANK  
DVID_UP_OS_GAIN_SLP  
BIT[5:0] - DVID_UP_OFFSET  
00h = 0mV  
01h = 5mV  
02h = 10mV  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 39 of 57  
ISL6398  
2
TABLE 14. SMBus, PMBus, AND I C WRITE AND READ REGISTERS  
WRITE  
PROTECT  
LEVEL  
COMMAND  
CODE  
ACCESS  
DEFAULT  
COMMAND NAME  
DESCRIPTION  
D7h[13:0]  
BLOCK  
R/W  
10h  
NVM_BANK  
DVID_UP_OS_GAIN_SLP  
3Fh = 315mV  
BIT[8:6] - DVID_UP_GAIN  
00 = deltavid*0  
01h = deltavid/32  
02h = deltavid/16  
...  
07h = deltavid * 7/32  
BIT[13:9] - DVID_UP_SLOPE  
00h = every 4 clocks(125ns per step - 40mV/µs)  
01h = every 8 clocks(250ns per step - 20mV/µs)  
...  
1Fh = every 128 clocks (4µs per step - 1.25mV/µs)  
D8h[6:0]  
R/W  
10h  
NVM_BANK  
SET_OV_VRAMP  
Bit[2:0] - OVP above VID during normal operation:  
0h = 135mV, 1h = 177mV, 2h = 218V, 3h = 260mV, 4h = 342mV,  
5h = 425mV, 6h = 460mV, 7h = 549mV; OVP = VID+Bit[2:0] with  
hysteresis of 83mV. OVP_WARNING = VID+Bit[2:0]-80mV with  
hysteresis of 42mV (see Electrical Specification on Page 10 for  
more details). OVP and OVP Warning can be disabled via DFh.  
Bit [4:3], soft-start OVP (with 110mV Hysteresis):  
0h = 1.58V, 1h = 1.86V; 2h = 2.29V; 3h = 3.32V  
Bit[6:5] - VRAMP  
0h = 0.75V; 1h = 1.0V; 2h = 1.2V; 3h = 1.5V  
D9h[13:0]  
BLOCK  
R/W  
10h  
NVM_BANK  
DVID_DW_OS_GAIN_SLP  
BIT[5:0] - DVID_DW_OFFSET  
00h = 0mV  
01h = 5mV  
02h = 10mV  
3Fh = 315mV  
BIT[8:6] - DVID_DW_GAIN  
00 = deltavid*0  
01h = deltavid/32  
02h = deltavid/16  
...  
07h = deltavid * 7/32  
BIT[13:9] - DVID_DW_SLOPE  
00h = every 4 clocks(125ns per step - 40mV/µs)  
01h = every 8 clocks(250ns per step - 20mV/µs)  
...  
1Fh = every 128 clocks(4us per step - 1.25mV/µs)  
DAh[7:0]  
DBh[7:0]  
DCh[4:0]  
DDh[7:0]  
DEh[2:0]  
R/W  
R/W  
R
20h  
20h  
N/A  
N/A  
20h  
00h  
NVM_BANK  
PIN  
SET_VID  
PMBus VID Code (See Table 4)  
PMBus OFFSET Code (See Table 4)  
Reference to Resistor Reader. DC  
Reference to Resistor Reader. DD  
SET_OFFSET  
Config Registers  
Config Registers  
NVM_BANK  
R
PIN  
R/W  
PIN  
Bit[2:0]:  
0h = USER_NVM#0  
1h = USER_NVM#1  
2h = USER_NVM#2  
3h = USER_NVM#3  
4h = USER_NVM#4  
5h = USER_NVM#5  
6h = USER_NVM#6 (Copy of NVM#0, otherwise, overwritten)  
7h = USER_NVM#7 (Copy of NVM#1, otherwise, overwritten)  
Select which memory bank to store or load the configurations  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 40 of 57  
ISL6398  
2
TABLE 14. SMBus, PMBus, AND I C WRITE AND READ REGISTERS  
WRITE  
PROTECT  
LEVEL  
COMMAND  
CODE  
ACCESS  
R/W  
DEFAULT  
COMMAND NAME  
DESCRIPTION  
DFh[8:0]  
E1h[6:0]  
10h  
NVM_BANK  
PROTECTION_DISABLE  
[UV_WARN, OV_WARN,OTP, UVP, IPH_LIMIT, OCP_V, OCP_I,  
IIN_OCP, OVP]; OCP_V = IMON_3V Trip; OCP_I = 100uA trip;  
IIN_OCP = input OCP; OVP = Output overvoltage trip;  
IPH_LIMIT = Phase Current Limiting; UVP = Undervoltage  
Protection; OTP = TMAX Trip; OV_WARN = Overvoltage  
Warning; UV_WARN = Undervoltage warning.  
R/W  
10h  
NVM_BANK  
SET_UVP_DLY_ACTION  
Bit[3:0] - Output Under-voltage Protection Level:  
0h = 105mV, 1h = 141mV; 2h = 178mV; 3h = 214mV;  
4h = 252mV; 5h = 291mV; 6h = 328V; 7h = 402mV;  
UVP = DAC - UVP Level with 19mV hysteresis;  
UVP_WARNING = DAC-UVP+66mV (or higher) with 17mV  
Hysteresis (see Electrical Specification on Page 10 for more  
details). UVP and UVP Warning can be disabled via DFh.  
Bit[5:4]: Output Under-voltage Protection delay:  
0h = 10µs, 1h = 20µs, 2h= 40µs, 3h = 120µs  
Bit[6] - UVP_Actions:  
0h= Monitor Only; 1h = Hiccup (same as OCP timing)  
E2[11:0]  
R/W  
10h  
NVM_BANK ADVANCED_PSCOMP_CONFIG Bit[2:0] PS2 to PS1/0 DCM OFFSET, but make PS0/1 to 2  
transition worse, which can help with Bit[8:6]. C2_pop1  
momentarily offsets it back up so no dip if C2_pop1 > = bit[2:0]  
(NOT USED).  
0h = 0mV, 1h = 20mV…….7h = 140mV.  
Bit[4:3]: High-Frequency Transient VCOMP Bottom Clamp; the  
lower the better.  
0h = 20mV, 1h = 40mV, 2h = 60mV, 3h = 80mV  
Bit[5] - DECAY_COMP_OFFSET, higher is better (NOT USED))  
0h = 100mV, 1h = 200mV  
Bit[8:6] - PS0/1 to PS2 Offset (C2_pop1), This likely will take the  
same value as Bit[2:0] or higher. This improve PS0/1 to PS2  
transition, no affect on PS2 to PS1/0.  
0h = 0mV, 1h = 20mV…….7h = 140mV  
Bit[10:9] PS1 to PS0 Offset (C2_pop2), no affect on other  
transitions.  
0h = 0, 1h = 20mv, 2h = 40mV, 3h = 60mV  
NOTE:  
PS2: Diode Emulation (DE) Operation (Not used)  
PS1: 1-Phase or 2-Phase Operation in Auto Based Upon NPSI  
PS0: > NSPI Operation Phase  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 41 of 57  
ISL6398  
2
TABLE 14. SMBus, PMBus, AND I C WRITE AND READ REGISTERS  
WRITE  
PROTECT  
LEVEL  
COMMAND  
CODE  
ACCESS  
R/W  
DEFAULT  
COMMAND NAME  
DESCRIPTION  
E3[13:0]  
10h  
NVM_BANK  
ADVANCED_MOD_CONFIG  
Use these registers to Optimize High Frequency Transient  
Response at Different Phase Count with Original Speed up  
(F3[2:0] = 0h = Original)  
Bit[0]: 1 PHASE dBAND;  
0h = normal dBand; 1h = reduced dBand (faster);  
Bit[2:1]: 1 PHASE SPEEDUP  
0h = 3h = 1/2 decay; 1h = normal decay; 2h = 1/4 decay (faster);  
Bit[3]: 2 PHASE dBAND;  
0h = normal dBand; 1h = reduced dBand (faster);  
Bit[5:4]: 2 PHASE SPEEDUP  
0h = 3h = 1/2 decay; 1h = normal decay; 2h = 1/4 decay (faster);  
Bit[6]: 3+ PHASE dBAND;  
0h = normal dBand; 1h = reduced dBand (faster);  
Bit[8:7]: 3+ PHASE SPEEDUP  
0h =3h = 1/2 decay; 1h = normal decay; 2h = 1/4 decay (faster);  
Bit[10:9]: Peak-Detect CAP  
0h = 1pF, 1h = 2pF, 2h = 3pF; 3h = 4pF (smaller cap is less  
sensitive)  
Bit[12:11]: High-pass CAP  
0h = 1pF, 1h = 2pF, 2h = 3pF; 3h = 4pF (bigger cap, more  
sensitive)  
Bit[13]: High-Frequency Balance Gain  
0h = 1x; 1h= 2x gain  
E4[9:0]  
E4[9:0]  
R/W  
R/W  
20h  
20h  
NVM_BANK  
NVM_BANK  
IMON_IDROOP_TRIM  
IMON_IDROOP_TRIM  
Bit[4:0] - No Load IMON Trim (-4.0 µA to 3.75µA), add current  
through R at droop enabled and out of IMON pin together  
1
0h = 0µA......................................10h = -0.25µA  
1h = 0.25µA................................11h = -0.50µA  
2h = 0.50µA................................12h = -0.75µA  
3h = 0.75µA................................13h = -1.00µA  
4h = 1.00µA................................14h = -1.25µA  
5h = 1.25µA................................15h = -1.50µA  
6h = 1.50µA................................16h = -1.75µA  
7h = 1.75µA................................17h = -2.00µA  
8h = 2.00µA................................18h = -2.25µA  
9h = 2.25µA................................19h = -2.50µA  
Ah = 2.50µA................................1Ah = -2.75µA  
Bh = 2.75µA................................1Bh = -3.00µA  
Ch = 3.00µA................................1Ch = -3.25µA  
Dh = 3.25µA................................1Dh = -3.50µA  
Eh = 3.50µA.................................1Eh = -3.75µA  
Fh = 3.75µA.................................1Fh = -4.00µA  
Bit[9:5] - No Load IDROOP Trim (-4.0 µA to 3.75µA), add current  
through R regardless droop enabled or disabled; use it to fine  
1
tune DC offset  
0h = 0µA .....................................10h = -0.25µA  
1h = 0.25µA................................11h = -0.50µA  
2h = 0.50µA................................12h = -0.75µA  
3h = 0.75µA................................13h = -1.00µA  
4h = 1.00µA................................14h = -1.25µA  
5h = 1.25µA................................15h = -1.50µA  
6h = 1.50µA................................16h = -1.75µA  
7h = 1.75µA................................17h = -2.00µA  
8h = 2.00µA................................18h = -2.25µA  
9h = 2.25µA................................19h = -2.50µA  
Ah = 2.50µA................................1Ah = -2.75µA  
Bh = 2.75µA................................1Bh = -3.00µA  
Ch = 3.00µA................................1Ch = -3.25µA  
Dh = 3.25µA................................1Dh = -3.50µA  
Eh = 3.50µA.................................1Eh = -3.75µA  
Fh = 3.75µA.................................1Fh = -4.00µA  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 42 of 57  
ISL6398  
2
TABLE 14. SMBus, PMBus, AND I C WRITE AND READ REGISTERS  
WRITE  
PROTECT  
LEVEL  
COMMAND  
CODE  
ACCESS  
R/W  
DEFAULT  
COMMAND NAME  
DESCRIPTION  
E5[8:0]  
20h  
NVM_BANK  
IOUT_CAL_OFFSET  
OFFSETfor PMBus READ_IOUT (8Ch):  
Bit[2:0] 1-Phase: 0h = 0h; 1h = 1h; 2h = 2h; 3h = 3h; 4h = -4h;  
5h = -3h; 6h = -2h; 7h = -1h;  
Bit[5:3] 2-Phase = 0h = 0h; 1h = 1h; 2h = 2h; 3h = 3h; 4h = -4h;  
5h = -3h; 6h = -2h; 7h = -1h;  
Bit[8:6] 3-6Phase = 0h = 0h; 1h = 1h; 2h = 2h; 3h = 3h; 4h = -4h;  
5h = -3h; 6h = -2h; 7h = -1h;  
E6[7:0]  
R/W  
10h  
NVM_BANK  
B00T_Voltage  
TMAX_IINMAX  
10mV: 0, 0.5V, 0.51 to 3.04V;  
5mV: 0, 0.25, 0.255 To1.52V (see Table 4).  
The data in this register does not represent the boot voltage  
programmed by “BT” pin, which can be read via SET_VID.  
E7[7:0]  
E8[6:0]  
R/W  
R/W  
10h  
10h  
NVM_BANK  
NVM_BANK  
Reserved_RSET  
Bit[2:0] - Tmax:  
0h: 100°C  
1h: 105°C  
2h: 110°C  
3h: 115°C  
4h: 120°C  
5h: 85°C  
6h: 90°C  
7h: 95°C  
Bit[5:3] - IINMAX (Scale IIN_READ):  
0h = 31A; 1h = 15A; 2h = 7A; 3h = 3A; 4h = 1A  
E9[5:0]  
R/W  
10h  
NVM_BANK  
THERMAL_TCOMP_APA  
Bit[3:0] - Thermal Compensation Offset:  
0h: OFF  
1h: -2.5°C  
2h: 0.0°C  
3h: 2.5°C  
4h: 5.0°C  
5h: 7.0°C  
6h: 10.0°C  
7h: 13.0°C  
8h: 16.0°C  
9h: 18.9°C  
Ah: 21.6°C  
Bh: 24.3°C  
Ch: 27.0°C  
Dh: 29.7°C  
Eh: 32.4°C  
Fh: 35.1°C  
Bit[5:4]- Thermal APA:  
0h = 75%; 1h = 82%; 2h = 91%;3h = 100% of TMAX  
EA[7:0]  
R/W  
10h  
NVM_BANK  
IMAX  
Scale READ_IOUT (IMON = 2.5V will read IMAX)  
[0h, 1h:FFh] = [0A, 1A: 255A], 1A/step  
F3h[8:0]  
SPUP_dBAND_K  
For Advanced User ONLY. Speedup (other than Bit[2:0] = Original)  
will disable frequency limiter so the switching frequency could  
increase with the load repetitive rate. The higher the  
capacitance, the faster the speed, which could lead to PSI1/2 to  
PS0 transition oscillation. Use with caution.  
Bit[2:0] Speed UP  
0h = Original; 1h = 2pF; 2h = 4pF; 3h = 6pF; 4h = 8pF; 5h = 10pF;  
6h = 12pF; 7h = 16pF  
Bit[5:3] VCOMP-dBand  
0h = 25mV; 1h = 50mV; 2h = 75mv; 3h = 100mV; 4h = 125mV;  
5h = 150mV; 6h = 175mV; 7h = 200mV;  
Bit[7:6] K-Factor  
0h = 0; 1h = 0.25; 2h = 0.5; 3h = 0.75  
Bit[8] K-Disabled in DCM  
0h = Enable; 1h = Disable  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 43 of 57  
ISL6398  
2
TABLE 14. SMBus, PMBus, AND I C WRITE AND READ REGISTERS  
WRITE  
PROTECT  
LEVEL  
COMMAND  
CODE  
ACCESS  
R/W  
DEFAULT  
COMMAND NAME  
OCP_ICL_TRIM  
DESCRIPTION  
F4[5:0]  
10h  
NVM_BANK  
Bit [3:0]- OCP Level (IOCP_AVG and ICL):  
0h = 1.0, 1h = 1.1, 2h = 1.2; 3h = 1.4, 4h = 1.5, 5h = 1.6 of IMON  
Bit [5:4]- Output Current Cycle Limiting (ICL):  
0h = 125%, 01h = 110%, 2h = 100%; 3h = 95%, 4h = 0%,  
5h = 85%, 6h = 80%, 7h = 70%  
F5h[6:0]  
F6h[6:0]  
R/W  
R/W  
10h  
10h  
NVM_BANK  
NVM_BANK  
SET_FREQ  
DVID_CFP  
0h- 7Fh = 120kHz to 2025kHz, 15kHz/Step  
Bit[4:0] - Soft-Start and DVID Rate  
0h = 0.315mV/µs; 1h = 0.625mV/µs; 2h = 1.25mV/µs;  
3h = 2.5mV/µs; 4h = 2.85mV/µs; 5h = 3.07mV/µs;  
6h = 3.33mV/µs; 7h = 3.63mV/µs, 8h = 4.0mV/µs,  
9h = 4.44 mV/µs; Ah = 5.0mV/µs; Bh = 5.6mV/µs;  
Ch = 6.66mV/µs; Dh = 8.0mV/µs; Eh = 10mV/µs;  
Fh = 13.25mV/µs  
Bit[6:5] - IN_OCP  
0h = 100%, 1h = 110%, 2h = 120%,3h = 130%  
F7h[2:0]  
F8h[2:0]  
F9h[2:0]  
FAh[2:0]  
FBh[2:0]  
FCh[2:0]  
R/W  
10h  
NVM_BANK  
F7 = BAL_TRIM_PHASE1  
F8 = BAL_TRIM_PHASE2  
F9 = BAL_TRIM_PHASE3  
FA = BAL_TRIM_PHASE4  
FB = BAL_TRIM_PHASE5  
FC = BAL_TRIM_PHASE6  
0h = -12% of full scale  
1h = -9% of full scale  
2h = -6% of full scale  
3h = -3% of full scale  
4h = No Offset  
5h = +3% of full scale  
6h = +6% of full scale  
7h = +9% of full scale  
FD[15:0]  
R
N/A  
CHECK_SUM  
Read Calculated CheckSum for individual NVM Bank checksum  
10ms after execute EEh(80h) command and 60ms for the total  
checkSum after execute EEh(40h).  
03h  
ARA  
W
R
40h  
CLEAR_FAULTS  
Clear “Latched” Fault Registers in 78h For Selected Rail  
ALERT_RESPONSE_ADDRESS 8-bit Address: 0001_1001, 19h; 7-bit Address: 0C  
COMPENSATION REGISTERS  
B0h[7:0]  
R/W  
00h  
00h  
NVM_BANK  
NVM_BANK  
R
250 Steps: 1.01018x  
00h = 599.0  
01h = 605.1  
...  
1
F9h = 7471  
B1h[4:0]  
R/W  
R2  
30 Steps: 1.1x  
00h = 2k  
01h = 2.2  
...  
1Dh = 32K  
B2h[4:0]  
B3h[4:0]  
B4h[4:0]  
B5h[4:0]  
B6h[4:0]  
B7h[4:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00h  
00h  
00h  
00h  
00h  
00h  
NVM_BANK  
NVM_BANK  
NVM_BANK  
NVM_BANK  
NVM_BANK  
NVM_BANK  
R3_6PHASE  
R3_5PHASE  
R3_4PHASE  
R3_3PHASE  
R3_2PHASE  
R3_1PHASE  
30 Steps: 1.1x  
00h = 50k  
01h= 55  
...  
1Dh =790  
B2 = 1Fh, will Remove R3/C3 for all Phase Count.  
Larger R3 and/or smaller C3 help reduce output noise coupling.  
Recommend to keep R3/C3 the same values for highest phase  
count (Nmax) and Nmax-1 Phase count for smoother transition.  
B8h[5:0]  
R/W  
00h  
NVM_BANK  
C1  
42 Steps: 1.1x  
00h = 10pF  
01h = 11pF  
...  
29h = 500pF  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 44 of 57  
ISL6398  
2
TABLE 14. SMBus, PMBus, AND I C WRITE AND READ REGISTERS  
WRITE  
PROTECT  
LEVEL  
COMMAND  
CODE  
ACCESS  
R/W  
DEFAULT  
COMMAND NAME  
C2  
DESCRIPTION  
B9h[5:0]  
00h  
NVM_BANK  
42 Steps: 1.1x  
00h = 330pF  
01h = 363pF  
...  
29h = 16.4nF  
BAh[5:0]  
BBh[5:0]  
BCh[5:0]  
BDh[5:0]  
BEh[5:0]  
BFh[5:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00h  
00h  
00h  
00h  
00h  
00h  
NVM_BANK  
NVM_BANK  
NVM_BANK  
NVM_BANK  
NVM_BANK  
NVM_BANK  
C3_6PHASE  
C3_5PHASE  
C3_4PHASE  
C3_3PHASE  
C3_2PHASE  
C3_1PHASE  
42 Steps: 1.1x  
00h = 100pF  
01h = 110pF  
...  
29h = 5.0nF  
DIRECT ACCESS TO EEPROM (ADVANCED USER AND TEST MODE ONLY)  
EC[7:0]  
R/W  
00h  
00h  
00h  
EEP_ADDR_REG  
EEP_DATA_REG  
Give user access to EEPROM Address  
ED[31:0]  
BLOCK  
R/W  
ALL ZEROs  
User Write 4-bytes (32-bits) of data into called address by EC  
EE[7:0]  
R/W  
00h  
0000h  
EEP_ACTIVATE  
EEPROM Control Register  
Bit[0] = 1h, Start EEPROM Read Procedure  
Bit[1] = 1h, Start EEPROM Write Procedure  
Bit[5:2] - Reserved  
Bit[6] = 1h, Generate Total Checksum (FD data).  
Bit[7] = 1h, Generate Individual NVM BANK Checksum (FD data).  
The device will declare busy at the assertion of this command, a  
new command addressed to this device should be sent 300ms  
afterward  
When the controller is reset by the Enable pins (TM_EN_OTP or EN_PWR_CFP), not V , the programmed registers will be stored in operating memory.  
CC  
2
TABLE 15. SMBus, PMBus, AND I C TELEMETRIES  
WORD LENGTH  
CODE  
(BYTE)  
COMMAND NAME  
READ_VIN  
DESCRIPTION  
Input Voltage (25.5V = FF)  
TYPICAL RESOLUTION  
8-BIT, 100mV  
88h[15:0]  
TWO  
Formula: HEX2DEC(Readout)*0.1V  
89h[15:0]  
8Bh[15:0]  
8Ch[15:0]  
TWO  
TWO  
TWO  
READ_IIN  
READ_VOUT  
READ_IOUT  
Input Current (1Fh = 10µA)  
5-BIT, IIN_FULL/31  
10-BIT, 5mV  
VR Output Voltage (HEX2DEC(Readout)*0.05V)  
VR Output Current (2.5V IMON = ICCMAX)  
HEX2DEC(Readout)*ICCMAX/255  
8-BIT,~1A  
8Dh[15:0]  
TWO  
READ_TEMPERATURE_1 TM Temperature (see Table 17)  
8-BIT, ~1°C*  
Approximation Formula for Table 19  
(T in °C): -0.0000221*T + 0.0094935*T - 1.876*T + 213.75  
3
2
96h[15:0]  
97h[15:0]  
78h[8:0]  
TWO  
TWO  
ONE  
READ_POUT  
READ_PIN  
Output Power  
Input Power  
~ 2W (~1A LSB @ 2V)  
~12W (~1A LSB @ 12V)  
STATUS_BYTE  
Fault Reporting;  
Bit7 = Busy  
[BUSY, 0, OV, OC, 0, OT,  
CML, 0]  
Bit6 = 0  
Bit5 = OverVoltage;  
Bit4 = OverCurrent, I  
;
MAX  
Bit3 = 0  
Bit2 = Over-Temperature, T  
;
MAX  
Bit1 = PMBus Communication Error  
Bit0 = 0  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 45 of 57  
ISL6398  
2
TABLE 15. SMBus, PMBus, AND I C TELEMETRIES  
WORD LENGTH  
(BYTE)  
CODE  
COMMAND NAME  
STATUS_WORD  
DESCRIPTION  
TYPICAL RESOLUTION  
79h[15:0]  
TWO  
Lower Byte Fault Reporting (= 78h);;  
Bit7 = Busy  
Bit6 = 0  
Bit5 = OverVoltage;  
Bit4 = OverCurrent, I  
;
MAX  
Bit3 = 0  
Upper Byte: [V , I  
OUT OUT,  
Bit2= Over-Temperature, T  
;
IIN_OCP, 0, 0, 0, 0, 0]  
MAX  
Bit1 = PMBus Communication Error  
Bit0 = 0  
Lower Byte: [BUSY, 0, OV,  
OC, 0, OT, CML, 0]  
Upper Byte Fault Reporting;  
Bit7 = V  
Bit6 = I  
OV, UV, and OV/UV Warning  
OC  
OUT  
OUT  
Bit5 = INPUT OCP >= 1F;  
Bit[4:0] = 0  
NOTE: 88h-8Eh are two bytes word, while all others are one byte word.  
TABLE 16. LOCK_VID_OFFSET  
D6h  
00h  
01h  
02h  
03h  
SET_VID  
Not  
SET_OFFSET  
FINAL DAC  
VBOOT  
TARGETED APPLICATIONS  
Not  
Yes  
Yes  
Yes  
Not output voltage managed needed  
Small offset for compensation  
Large Offset for Voltage Margining  
Dynamic VID Operation Needed  
Not  
VBOOT+OFFSET  
VBOOT + OFFSET  
VID + OFFSET  
Not  
Yes  
NOTE: The ISL6398 is designed to provide secondary output voltage control protection. When D6-0h, it keeps output voltage the same as boot up voltage.  
2
When operating in 01h option, SMBus/PMBus/I C’s OFFSET should only adjust slightly higher or lower (say ±20mV, but IC does not limit the range) for  
PCB loss compensation. To program full range of OFFSET, the user should select 02h or 03h options. 03h option gives users full control of the output  
2
voltage (VID+OFFSET) via SMBus/PMBus/I C, commonly used in over-clocking applications. Prior to a successful written PMBus VID or OFFSET, the  
controller will continue stay at boot up level.  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 46 of 57  
ISL6398  
TABLE 17. TYPICAL TEMPERATURE (8Dh and 8Eh) (Continued)  
TABLE 17. TYPICAL TEMPERATURE (8Dh and 8Eh)  
TEMPERATURE  
(°C)  
V
V
OF CODE TEMPERATURE  
V
V
OF CODE  
TM(S)  
TEMPERATURE  
(°C)  
V
V
OF CODE TEMPERATURE  
V
V
OF CODE  
TM(S)  
TM(S)  
(%) (HEX)  
TM(S)  
(%) (HEX)  
(°C)  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
(%)  
(HEX)  
54  
53  
52  
50  
4F  
(°C)  
(%)  
(HEX)  
96  
94  
92  
90  
8E  
8D  
8B  
89  
87  
85  
83  
82  
80  
7E  
7C  
7B  
79  
77  
75  
74  
CC  
CC  
CC  
CC  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
80.2  
79.7  
79.1  
78.5  
77.9  
77.3  
76.7  
76.1  
75.5  
74.8  
74.2  
73.5  
72.9  
72.2  
71.6  
70.9  
70.2  
69.5  
68.8  
68.2  
67.5  
66.8  
66.1  
65.4  
64.6  
63.9  
63.2  
62.5  
61.8  
61.1  
60.3  
59.6  
CC  
CB  
C9  
C8  
C6  
C5  
C3  
C2  
C0  
BE  
BD  
BB  
B9  
B8  
B6  
B4  
B3  
B1  
AF  
AD  
AC  
AA  
A8  
A6  
A4  
A3  
A1  
9F  
9D  
9B  
99  
98  
33.3  
0
95.0  
94.8  
94.6  
94.4  
94.1  
93.9  
93.6  
93.4  
93.1  
92.8  
92.6  
92.3  
92.0  
91.6  
91.3  
91.0  
90.7  
90.3  
89.9  
89.6  
89.2  
88.8  
88.4  
88.0  
87.6  
87.2  
86.7  
86.3  
85.8  
85.4  
84.9  
84.4  
83.9  
83.4  
82.9  
82.4  
81.9  
81.3  
80.8  
F2  
F1  
F1  
F0  
F0  
EF  
71  
58.9  
32.8  
32.2  
31.7  
31.2  
30.7  
30.2  
29.7  
29.2  
28.7  
28.2  
27.8  
27.3  
26.9  
26.4  
26.0  
25.5  
25.1  
24.7  
24.3  
23.9  
23.5  
23.1  
22.7  
22.3  
21.9  
21.6  
21.2  
20.8  
20.5  
20.1  
1
72  
58.2  
57.5  
56.7  
56.0  
55.3  
54.6  
53.9  
53.2  
52.4  
51.7  
51.0  
50.3  
49.6  
48.9  
48.2  
47.6  
46.9  
46.2  
45.5  
44.9  
44.2  
43.5  
42.9  
42.3  
41.6  
41.0  
40.4  
39.7  
39.1  
38.5  
37.9  
37.3  
36.7  
36.1  
35.5  
35.0  
34.4  
33.9  
2
73  
3
74  
4
75  
4E  
4D  
4B  
4A  
49  
48  
46  
45  
44  
43  
42  
41  
40  
3E  
3D  
3C  
3B  
3A  
39  
38  
37  
36  
36  
35  
34  
33  
5
76  
6
EE  
EE  
ED  
EC  
EC  
EB  
EA  
E9  
E8  
E7  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
E0  
DF  
DE  
DD  
DC  
DA  
D9  
D8  
D7  
D6  
D4  
D3  
D2  
D0  
CF  
CD  
77  
7
78  
8
79  
9
80  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
72  
70  
6F  
6D  
6B  
6A  
68  
66  
65  
63  
62  
60  
5F  
5D  
5C  
5A  
59  
57  
56  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 47 of 57  
ISL6398  
TABLE 18. VOUT_MAX (24h) in 5MV/STEP MODE (Continued)  
TABLE 18. VOUT_MAX (24h) in 5MV/STEP MODE  
Code  
(HEX)  
Code  
(HEX)  
Code  
(HEX)  
Code  
(HEX)  
Code  
(HEX)  
Code  
(HEX)  
VOUT (V)  
0.440  
0.445  
0.450  
0.455  
0.460  
0.465  
0.470  
0.475  
0.480  
0.485  
0.490  
0.495  
0.500  
0.505  
0.510  
0.515  
0.520  
0.525  
0.530  
0.535  
0.540  
0.545  
0.550  
0.555  
0.560  
0.565  
0.570  
0.575  
0.580  
0.585  
0.590  
0.595  
0.600  
0.605  
0.610  
0.615  
0.620  
0.625  
0.630  
VOUT (V)  
1.080  
1.085  
1.090  
1.095  
1.100  
1.105  
1.110  
1.115  
1.120  
1.125  
1.130  
1.135  
1.140  
1.145  
1.150  
1.155  
1.160  
1.165  
1.170  
1.175  
1.180  
1.185  
1.190  
1.195  
1.200  
1.205  
1.210  
1.215  
1.220  
1.225  
1.230  
1.235  
1.240  
1.245  
1.250  
1.255  
1.260  
1.265  
1.270  
VOUT (V)  
1.720  
1.725  
1.730  
1.735  
1.740  
1.745  
1.750  
1.755  
1.760  
1.765  
1.770  
1.775  
1.780  
1.785  
1.790  
1.795  
1.800  
1.805  
1.810  
1.815  
1.820  
1.825  
1.830  
1.835  
1.840  
1.845  
1.850  
1.855  
1.860  
1.865  
1.870  
1.875  
1.880  
1.885  
1.890  
1.895  
1.900  
1.905  
1.910  
VOUT (V)  
0.000  
0.250  
0.255  
0.260  
0.265  
0.270  
0.275  
0.280  
0.285  
0.290  
0.295  
0.300  
0.305  
0.310  
0.315  
0.320  
0.325  
0.330  
0.335  
0.340  
0.345  
0.350  
0.355  
0.360  
0.365  
0.370  
0.375  
0.380  
0.385  
0.390  
0.395  
0.400  
0.405  
0.410  
0.415  
0.420  
0.425  
0.430  
0.435  
VOUT (V)  
0.885  
0.890  
0.895  
0.900  
0.905  
0.910  
0.915  
0.920  
0.925  
0.930  
0.935  
0.940  
0.945  
0.950  
0.955  
0.960  
0.965  
0.970  
0.975  
0.980  
0.985  
0.990  
0.995  
1.000  
1.005  
1.010  
1.015  
1.020  
1.025  
1.030  
1.035  
1.040  
1.045  
1.050  
1.055  
1.060  
1.065  
1.070  
1.075  
VOUT (V)  
1.525  
1.530  
1.535  
1.540  
1.545  
1.550  
1.555  
1.560  
1.565  
1.570  
1.575  
1.580  
1.585  
1.590  
1.595  
1.600  
1.605  
1.610  
1.615  
1.620  
1.625  
1.630  
1.635  
1.640  
1.645  
1.650  
1.655  
1.660  
1.665  
1.670  
1.675  
1.680  
1.685  
1.690  
1.695  
1.700  
1.705  
1.710  
1.715  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
127  
128  
129  
12A  
12B  
12C  
12D  
12E  
12F  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
13A  
13B  
13C  
13D  
13E  
13F  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
14A  
14B  
14C  
14D  
0
1
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
10A  
10B  
10C  
10D  
10E  
10F  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
11A  
11B  
11C  
11D  
11E  
11F  
120  
121  
122  
123  
124  
125  
126  
2
3
4
5
6
7
8
9
A
B
C
D
E
F
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 48 of 57  
ISL6398  
TABLE 18. VOUT_MAX (24h) in 5MV/STEP MODE (Continued)  
TABLE 18. VOUT_MAX (24h) in 5MV/STEP MODE (Continued)  
Code  
(HEX)  
Code  
(HEX)  
Code  
(HEX)  
Code  
(HEX)  
Code  
(HEX)  
Code  
(HEX)  
VOUT (V)  
0.635  
0.640  
0.645  
0.650  
0.655  
0.660  
0.665  
0.670  
0.675  
0.680  
0.685  
0.690  
0.695  
0.700  
0.705  
0.710  
0.715  
0.720  
0.725  
0.730  
0.735  
0.740  
0.745  
0.750  
0.755  
0.760  
0.765  
0.770  
0.775  
0.780  
0.785  
0.790  
0.795  
0.800  
0.805  
0.810  
0.815  
0.820  
0.825  
VOUT (V)  
1.275  
1.280  
1.285  
1.290  
1.295  
1.300  
1.305  
1.310  
1.315  
1.320  
1.325  
1.330  
1.335  
1.340  
1.345  
1.350  
1.355  
1.360  
1.365  
1.370  
1.375  
1.380  
1.385  
1.390  
1.395  
1.400  
1.405  
1.410  
1.415  
1.420  
1.425  
1.430  
1.435  
1.440  
1.445  
1.450  
1.455  
1.460  
1.465  
VOUT (V)  
1.915  
1.920  
1.925  
1.930  
1.935  
1.940  
1.945  
1.950  
1.955  
1.960  
1.965  
1.970  
1.975  
1.980  
1.985  
1.990  
1.995  
2.000  
2.005  
2.010  
2.015  
2.020  
2.025  
2.030  
2.035  
2.040  
2.045  
2.050  
2.055  
2.060  
2.065  
2.070  
2.075  
2.080  
2.085  
2.090  
2.095  
2.100  
2.105  
VOUT (V)  
0.830  
0.835  
0.840  
0.845  
0.850  
0.855  
0.860  
0.865  
0.870  
0.875  
0.880  
VOUT (V)  
1.470  
1.475  
1.480  
1.485  
1.490  
1.495  
1.500  
1.505  
1.510  
1.515  
1.520  
VOUT (V)  
2.110  
2.115  
2.120  
2.125  
2.130  
2.135  
2.140  
2.145  
2.150  
2.155  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
EE  
EF  
14E  
14F  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
15A  
15B  
15C  
15D  
15E  
15F  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
16A  
16B  
16C  
16D  
16E  
16F  
170  
171  
172  
173  
174  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
175  
176  
177  
178  
179  
17A  
17B  
17C  
17D  
17E  
General Design Guide  
This design guide is intended to provide a high-level explanation of  
the steps necessary to create a multiphase power converter. It is  
assumed that the reader is familiar with many of the basic skills  
and ‘techniques referenced in the following. In addition to this  
guide, Intersil provides complete reference designs, which include  
schematics, bills of materials, and example board layouts for  
multi-phase VR applications.  
Power Stages  
The first step in designing a multiphase converter is to determine  
the number of phases. This determination depends heavily upon  
the cost analysis, which in turn depends on system constraints  
that differ from one design to the next. Principally, the designer  
will be concerned with whether components can be mounted on  
both sides of the circuit board; whether through-hole components  
are permitted; and the total board space available for power  
supply circuitry. Generally speaking, the most economical  
solutions are those in which each phase handles between 15A  
and 25A. All surface mount designs will tend toward the lower  
end of this current range. If through-hole MOSFETs and inductors  
can be used, higher per-phase currents are possible. In cases  
where board space is the limiting constraint, current can be  
pushed as high as 40A per phase, but these designs require heat  
sinks and forced air to cool the MOSFETs, inductors and heat  
dissipating surfaces.  
MOSFETs  
The choice of MOSFETs depends on the current each MOSFET will  
be required to conduct; the switching frequency; the capability of  
the MOSFETs to dissipate heat; and the availability and nature of  
heat sinking and air flow.  
F0  
F1  
F2  
F3  
F4  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 49 of 57  
ISL6398  
commutation is t and the approximated associated power loss  
LOWER MOSFET POWER CALCULATION  
1
is P  
.
UP,1  
The calculation for heat dissipated in the lower MOSFET is  
simple, since virtually all of the heat loss in the lower MOSFET is  
due to current conducted through the channel resistance  
t
1
I
I
M
p-p  
2
(EQ. 36)  
P
V  
F
SW  
----   
----- + --------  
UP,1  
IN  
2
N
(r  
). In Equation 33, I is the maximum continuous output  
DS(ON)  
M
At turn on, the upper MOSFET begins to conduct and this  
transition occurs over a time t . In Equation 37, the approximate  
current; I  
P-P  
on page 15); d is the duty cycle (V  
is the peak-to-peak inductor current (see Equation 1  
/V ); and L is the  
2
OUT IN  
power loss is P  
.
per-channel inductance.  
UP,2  
t
I
I
(EQ. 37)  
2
M
p-p  
2
P
V  
F
SW  
----  
----- --------  
2
UP,2  
IN  
2
I
2
N
I
p-p  
(EQ. 33)  
M
P
= r  
+ ---------  1 d  
-----  
LOW1  
DSON  
12  
N
A third component involves the lower MOSFET’s reverse-recovery  
charge, Q . Since the inductor current has fully commutated to the  
upper MOSFET before the lower MOSFET’s body diode can draw all  
rr  
An additional term can be added to the lower MOSFET loss  
equation to account for additional loss accrued during the dead  
time when inductor current is flowing through the lower MOSFET  
body diode. This term is dependent on the diode forward voltage  
of Q , it is conducted through the upper MOSFET across V . The  
rr  
IN  
power dissipated as a result is P  
and is approximated in  
UP,3  
Equation 38:  
at I , V  
; the switching frequency, F ; and the length of  
M
D(ON)  
SW  
(EQ. 38)  
P
= V  
Q F  
dead times, t and t , at the beginning and the end of the  
d1 d2  
UP,3  
IN rr SW  
lower MOSFET conduction interval respectively.  
The resistive part of the upper MOSFET’s is given in Equation 33  
as P  
.
UP,4  
2
2
I
p-p  
I
(EQ. 39)  
M
P
r  
+
d  
---------  
12  
-----  
UP,4  
DSON  
N
I
I
M
N  
I
I
M
p-p  
2
(EQ. 34  
p-p  
2   
P
= V  
F
DONSW  
t
t
d2  
+
----- + --------  
----- --------  
LOW2  
d1  
N
Equation 40 accounts for some power loss due to the drain-  
source parasitic inductance (L , including PCB parasitic  
DS  
inductance) of the upper MOSFETs, although it is not the exact:  
2
I
I
p-p  
2
M
(EQ. 40)  
P
L  
+
--------  
-----  
UP,5  
DS  
Finally, the power loss of output capacitance of the lower  
MOSFET is approximated in Equation 35:  
N
Finally, the power loss of output capacitance of the upper  
MOSFET is approximated in Equation 41:  
2
3
1.5  
(EQ. 35)  
--  
P
V  
C  
V
F  
DS_LOW SW  
LOW,3  
IN  
OSS_LOW  
2
3
1.5  
(EQ. 41)  
--  
P
V  
C  
V
F  
DS_UP SW  
UP,6  
IN  
OSS_UP  
where C  
OSS_LOW  
is the output capacitance of lower MOSFET at the  
. Depending on the amount of ringing, the  
test voltage of V  
DS_LOW  
actual power dissipation will be slightly higher than this.  
where C  
is the output capacitance of lower MOSFET at  
OSS_UP  
test voltage of V  
. Depending on the amount of ringing, the  
DS_UP  
Thus the total maximum power dissipated in each lower MOSFET is  
actual power dissipation will be slightly higher than this.  
approximated by the summation of P  
, P  
UPPER MOSFET POWER CALCULATION  
In addition to r losses, a large portion of the upper MOSFET  
and P  
.
LOW,1 LOW,2  
LOW,3  
The total power dissipated by the upper MOSFET at full load can  
now be approximated as the summation of the results from  
Equations 36 to 41. Since the power equations depend on  
MOSFET parameters, choosing the correct MOSFETs can be an  
iterative process involving repetitive solutions to the loss  
equations for different MOSFETs and different switching  
frequencies.  
DS(ON)  
losses are due to currents conducted across the input voltage (V )  
IN  
during switching. Since a substantially higher portion of the upper  
MOSFET losses are dependent on switching frequency, the power  
calculation is more complex. Upper MOSFET losses can be divided  
into separate components involving the upper-MOSFET switching  
Current Sensing Resistor  
times; the lower MOSFET body-diode reverse-recovery charge, Q ;  
rr  
and the upper MOSFET r  
DS(ON)  
conduction loss.  
The resistors connected to the ISEN+ pins determine the gains in  
the load-line regulation loop and the channel-current balance  
loop as well as setting the overcurrent trip point. Select values for  
these resistors by using Equation 42:  
When the upper MOSFET turns off, the lower MOSFET does not  
conduct any portion of the inductor current until the voltage at  
the phase node falls below ground. Once the lower MOSFET  
begins conducting, the current in the upper MOSFET falls to zero  
as the current in the lower MOSFET ramps up to assume the full  
inductor current. In Equation 36, the required time for this  
R
I
OCP  
N
X
(EQ. 42)  
R
= -------------------------- -------------  
ISEN  
6
100 10  
where R  
ISEN  
is the sense resistor connected to the ISEN+ pin, N  
is the active channel number, R is the resistance of the current  
X
FN8575 Rev 1.00  
Aug 13, 2015  
Page 50 of 57  
ISL6398  
sense element, either the DCR of the inductor or R  
where N is the active channel number, R  
is the sense resistor  
SENSE  
ISEN  
connected to the ISEN+ pin, and R is the resistance of the  
depending on the sensing method, and I  
overcurrent trip point. Typically, I  
OCP  
is the desired  
can be chosen to be 1.2  
OCP  
X
current sense element, either the DCR of the inductor or R  
depending on the sensing method.  
SEN  
times the maximum load current of the specific application.  
With integrated temperature compensation, the sensed current  
signal is independent of the operational temperature of the  
power stage, i.e. the temperature effect on the current sense  
If one or more of the current sense resistors are adjusted for  
thermal balance (as in Equation 43), the load-line regulation  
resistor should be selected based on the average value of the  
current sensing resistors, as given in Equation 46:  
element R is cancelled by the integrated temperature  
X
compensation function. R in Equation 42 should be the  
resistance of the current sense element at the room  
temperature.  
X
R
LL  
R
= ----------  
R
ISENn  
(EQ. 46)  
FB  
R
X
n
When the integrated temperature compensation function is  
disabled by selecting “OFF” TCOMP code, the sensed current will  
be dependent on the operational temperature of the power  
stage, since the DC resistance of the current sense element may  
where R  
is the current sensing resistor connected to the  
ISEN(n)  
th  
n
ISEN+ pin.  
Output Filter Design  
be changed according to the operational temperature. R in  
X
The output inductors and the output capacitor bank together to  
form a low-pass filter responsible for smoothing the pulsating  
voltage at the phase nodes. The output filter also must provide  
the transient energy until the regulator can respond. Because it  
has a low bandwidth compared to the switching frequency, the  
output filter necessarily limits the system transient response. The  
output capacitor must supply or sink load current while the  
current in the output inductors increases or decreases to meet  
the demand.  
Equation 42 should be the maximum DC resistance of the  
current sense element at the all operational temperature.  
In certain circumstances, especially for a design with an  
unsymmetrical layout, it may be necessary to adjust the value of  
one or more ISEN resistors for VR. When the components of one  
or more channels are inhibited from effectively dissipating their  
heat so that the affected channels run cooler than the average,  
choose new, larger values of R  
for the affected phases (see  
ISEN  
the section entitled “Current Sensing” on page 18). Choose  
in proportion to the desired increase in temperature rise  
in order to cause proportionally more current to flow in the cooler  
phase, as shown in Equation 43:  
In high-speed converters, the output capacitor bank is usually the  
most costly (and often the largest) part of the circuit. Output filter  
design begins with minimizing the cost of this part of the circuit.  
The critical load parameters in choosing the output capacitors are  
the maximum size of the load step, DI; the load-current slew rate,  
di/dt; and the maximum allowable output-voltage deviation under  
R
ISEN,2  
T  
2
R
= R  
= R  
----------  
ISEN,2  
ISEN  
T  
(EQ. 43)  
1
transient loading, DV  
. Capacitors are characterized according  
MAX  
R  
R  
ISEN  
ISEN  
ISEN,2  
to their capacitance, ESR, and ESL (equivalent series inductance).  
In Equation 43, make sure that T is the desired temperature rise  
At the beginning of the load transient, the output capacitors supply  
all of the transient current. The output voltage will initially deviate by  
an amount approximated by the voltage drop across the ESL. As the  
load current increases, the voltage drop across the ESR increases  
linearly until the load current reaches its final value. The capacitors  
selected must have sufficiently low ESL and ESR so that the total  
output-voltage deviation is less than the allowable maximum.  
Neglecting the contribution of inductor current and regulator  
response, the output voltage initially deviates by an amount, as  
shown in Equation 47:  
2
above the ambient temperature, and T is the measured  
1
temperature rise above the ambient temperature. Since all  
channels’ R  
are integrated and set by one RSET, a resistor  
) can be in series with the cooler channel’s ISEN+ pin to  
ISEN  
(R  
ISEN  
raise this phase current. However, the ISL6398 can adjust the  
thermal/current balance of the VR via registers F7 to FC.  
Load-line Regulation Resistor  
The load-line regulation resistor is labelled R in Figure 11. Its  
FB  
di  
value depends on the desired loadline requirement of the  
application.  
(EQ. 47)  
V  ESL---- + ESR I  
dt  
The filter capacitor must have sufficiently low ESL and ESR so  
that V < V  
The desired loadline can be calculated using Equation 44:  
.
MAX  
V
DROOP  
R
= ------------------------  
(EQ. 44)  
LL  
I
Most capacitor solutions rely on a mixture of high-frequency  
capacitors with relatively low capacitance in combination with  
bulk capacitors having high capacitance but limited high  
frequency performance. Minimizing the ESL of the high  
frequency capacitors allows them to support the output voltage  
as the current increases. Minimizing the ESR of the bulk  
capacitors allows them to supply the increased current with less  
output voltage deviation.  
FL  
where I is the full load current of the specific application, and  
FL  
VR  
is the desired voltage droop under the full load  
DROOP  
condition.  
Based on the desired loadline R , the loadline regulation  
LL  
resistor can be calculated using Equation 45:  
R  
N R  
LL  
ISEN  
R
X
R
= -----------------------------------------  
(EQ. 45)  
FB  
The ESR of the bulk capacitors also creates the majority of the  
output-voltage ripple. As the bulk capacitors sink and source the  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 51 of 57  
ISL6398  
inductor AC ripple current (see “Interleaving” on page 15 and  
Equation 2), a voltage develops across the bulk-capacitor ESR  
0.3  
0.2  
0.1  
0
equal to I  
(ESR). Thus, once the output capacitors are  
c(p-p)  
selected, the maximum allowable ripple voltage, V  
,
P-P(MAX)  
determines the lower limit on the inductance, as shown in  
Equation 48.  
V
K  
OUT  
RCM  
(EQ. 48)  
L
----------------------------------------------------------  
ESR   
F
V V  
IN  
SW  
PPMAX  
Since the capacitors are supplying a decreasing portion of the  
load current while the regulator recovers from the transient, the  
capacitor voltage becomes slightly depleted. The output  
inductors must be capable of assuming the entire load current  
I
I
I
= 0  
L(P-P)  
L(P-P)  
L(P-P)  
= 0.5 I  
O
= 0.75 I  
0.2  
O
0
0.4  
0.6  
0.8  
1.0  
before the output voltage decreases more than DV  
. This  
MAX  
DUTY CYCLE (V  
/V  
)
OUT IN  
places an upper limit on inductance.  
FIGURE 37. NORMALIZED INPUT-CAPACITOR RMS CURRENT vs  
DUTY CYCLE FOR 2-PHASE CONVERTER  
Equation 49 gives the upper limit on L for the cases when the  
trailing edge of the current transient causes a greater output-  
voltage deviation than the leading edge. Equation 50 addresses  
the leading edge. Normally, the trailing edge dictates the  
selection of L because duty cycles are usually less than 50%.  
Nevertheless, both inequalities should be evaluated, and L  
should be selected based on the lower of the two results. In each  
equation, L is the per-channel inductance, C is the total output  
capacitance, and N is the number of active channels.  
For a 2-phase design, use Figure 37 to determine the input capacitor  
RMS current requirement given the duty cycle, maximum sustained  
output current (I ), and the ratio of the per-phase peak-to-peak  
O
inductor current (I  
) to I . Select a bulk capacitor with a ripple  
L(P-)P  
O
current rating which will minimize the total number of input  
capacitors required to support the RMS current calculated. The  
voltage rating of the capacitors should also be at least 1.25 times  
greater than the maximum input voltage.  
2 N C V  
OUT  
(EQ. 49)  
L ----------------------------------------- V  
I ESR  
MAX  
2
0.3  
I  
I
I
= 0  
I
I
= 0.5 I  
O
L(P-P)  
L(P-P)  
= 0.25 I  
= 0.75 I  
O
L(P-P)  
O
L(P-P)  
(EQ. 50)  
N C  
1.25  
L ---------------------------- V  
I ESR  
V
V  
IN OUT  
MAX  
2
I  
0.2  
0.1  
0
Switching Frequency Selection  
There are a number of variables to consider when choosing the  
switching frequency, as there are considerable effects on the upper-  
MOSFET loss calculation. These effects are outlined in “MOSFETs”  
on page 49, and they establish the upper limit for the switching  
frequency. The lower limit is established by the requirement for fast  
transient response and small output-voltage ripple as outlined in  
“Output Filter Design” on page 51. Choose the lowest switching  
frequency that allows the regulator to meet the transient-response  
and output-voltage ripple requirements.  
0
0.2  
0.4  
0.6  
0.8  
1.0  
DUTY CYCLE (V  
/V  
OUT IN  
)
FIGURE 38. NORMALIZED INPUT-CAPACITOR RMS CURRENT vs  
DUTY CYCLE FOR 3-PHASE CONVERTER  
Input Capacitor Selection  
The input capacitors are responsible for sourcing the AC  
component of the input current flowing into the upper MOSFETs.  
Their RMS current capacity must be sufficient to handle the AC  
component of the current drawn by the upper MOSFETs which is  
related to duty cycle and the number of active phases. The input  
RMS current can be calculated with Equation 51.  
(EQ. 51)  
2
2
2
2
I
=
K
Io + K  
I  
INRMS  
INCM  
RAMPCM  
Lop-p  
N D m + 1  m N D  
(EQ. 52)  
K
K
=
---------------------------------------------------------------------------  
INCM  
2
N
2
3
2
3
m N D m + 1+ m 1 m N D  
=
------------------------------------------------------------------------------------------------------------------  
RAMPCM  
2
2
12N D  
(EQ. 53)  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 52 of 57  
ISL6398  
0.3  
Layout and Design Considerations  
I
I
= 0  
= 0.25 I  
I
I
= 0.5 I  
O
L(P-P)  
L(P-P)  
L(P-P)  
L(P-P)  
= 0.75 I  
O
O
The following layout and design strategies are intended to minimize  
the noise coupling, the impact of board parasitic impedances on  
converter performance and to optimize the heat-dissipating  
capabilities of the printed-circuit board. This section highlights some  
important practices which should be followed during the layout  
process. A layout check list is available for use.  
0.2  
0.1  
Pin Noise Sensitivity, Design and Layout  
Consideration  
Table 19 shows the noise sensitivity of each pin and their design  
and layout consideration. All pins and external components  
should not be across switching nodes and should be placed in  
general proximity to the controller.  
0
0
0.2  
0.4  
DUTY CYCLE (V  
0.6  
/V  
OUT IN  
0.8  
1.0  
)
FIGURE 39. NORMALIZED INPUT-CAPACITOR RMS CURRENT vs  
DUTY CYCLE FOR 4-PHASE CONVERTER  
TABLE 19. PIN DESIGN AND/OR LAYOUT CONSIDERATION  
NOISE  
Figures 38 and 39 provide the same input RMS current  
information for 3 and 4-phase designs respectively. Use the  
same approach to selecting the bulk capacitor type and number  
as previously described.  
PIN NAME  
ISENIN-  
SENSITIVE  
Yes  
DESCRIPTION  
Connect to input supply side of the input  
inductor or resistor pin with L/DCR or  
ESL/R matching network in close  
Low capacitance, high-frequency ceramic capacitors are needed  
in addition to the bulk capacitors to suppress leading and falling  
edge voltage spikes. The result from the high current slew rates  
produced by the upper MOSFETs turn on and off. Select low ESL  
ceramic capacitors and place one as close as possible to each  
upper MOSFET drain to minimize board parasitic impedances  
and maximize noise suppression.  
proximity to the controller. Place NTC in  
the close proximity to input inductor for  
thermal compensation. A local 10nF  
decoupling capacitor between ISENIN+  
and ISENIN- is preferred. DCR sensing  
with thermal compensation will yield no  
load offset reading. Resistor sensing is  
preferred for accurate input current  
reporting. > 40 µs time constant  
0.6  
0.4  
0.2  
[C*R *R )/(R +R )] might  
IN1 IN2 IN1 IN2  
be needed if the average input  
current reporting is preferred; and it  
also reduces chance to trigger CFP  
during heavy load transient.  
ISENIN+  
Yes  
Connects to the Drain of High-side  
MOSFET side of the input inductor or  
resistor pin. A local 0.1µF ceramic  
capacitor is recommended. When not  
used, connect ISENIN+ to V and a  
IN  
I
I
I
= 0  
= 0.5 I  
= 0.75 I  
L(P-P)  
L(P-P)  
L(P-P)  
resistor divider with a ratio of 1/3 on  
ISENIN± pin, say 499kΩ in between  
ISENIN± pins and then 1.5MΩ from  
ISENIN- to ground (see Figure 29). The  
voltage of this pin is used feed-forward  
compensation.  
O
O
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
DUTY CYCLE (V  
/V )  
OUT IN  
FIGURE 40. NORMALIZED INPUT-CAPACITOR RMS CURRENT vs  
DUTY CYCLE FOR SINGLE-PHASE CONVERTER  
EN_PWR_CFP  
Yes  
There is an internal 1µs filter. Decoupling  
capacitor is NOT needed, but if needed,  
use a low time constant one to avoid too  
large a shut-down delay. It will also be the  
output of CFP function: 34strong  
pull-up. 25 mils spacing from other  
traces.  
MULTIPHASE RMS IMPROVEMENT  
Figure 40 is provided as a reference to demonstrate the dramatic  
reductions in input-capacitor RMS current upon the  
implementation of the multiphase topology. For example,  
compare the input RMS current requirements of a 2-phase  
converter versus that of a single phase. Assume both converters  
have a duty cycle of 0.25, maximum sustained output current of  
40A, and a ratio of I  
would require 17.3A  
converter would only require 10.9A  
RGND  
VSEN  
Yes  
Yes  
Pair up (within 20 mils) with the positive  
rail remote sensing line that connected to  
FB resistor, and routing them to the load  
sensing points.  
to I of 0.5. The single phase converter  
L,PP  
RMS  
O
current capacity while the 2-phase  
. The advantages become  
Pair up (within 20 mils) with the negative  
rail of remote sensing line that connected  
to RGND, and route them to the load  
sensing points.  
RMS  
even more pronounced when output current is increased and  
additional phases are added to keep the component cost down  
relative to the single phase approach.  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 53 of 57  
ISL6398  
TABLE 19. PIN DESIGN AND/OR LAYOUT CONSIDERATION (Continued)  
NOISE  
TABLE 19. PIN DESIGN AND/OR LAYOUT CONSIDERATION (Continued)  
NOISE  
PIN NAME  
SENSITIVE  
DESCRIPTION  
PIN NAME  
SENSITIVE  
DESCRIPTION  
VSEN_OVP  
Yes  
Used for Overvoltage protection sensing.  
V
Yes  
Place a high quality ceramic capacitor  
(~ 1µF) in close proximity to the  
controller.  
CC  
VRSEL_ADDR  
No  
Register setting is locked prior to soft-  
start. Since the external resistor-divider  
ratio compares with the internal resistor  
NVM_BANK_BT  
PWM1-6  
NO  
Avoid the respective PWM routing across  
or under other phase’s power  
ratio of the V , their rail should be  
CC  
exactly tied to the same point as V pin,  
CC  
not through an RC filter. DON’T use  
decoupling capacitors on these pins.  
trains/planes and current sensing  
network. Don’t make them across or  
under external components of the  
controller. Keep them at least 20mils  
away from any other traces.  
VR_RDY  
IMON  
No  
Open drain and high dv/dt pin. Avoid its  
pull-up higher than V Tie it to ground  
CC.  
when not used.  
ISEN[6:1]+  
ISEN[6:1]-  
Yes  
Yes  
Connect to the output rail side of the  
respective channel’s output inductor or  
resistor pin. Decoupling is optional and  
might be required for long sense traces  
and a poor layout.  
Yes  
Refer to GND, not RGND. Place R and C in  
general proximity to the controller. The  
time constant of RC should be sufficient,  
typically 200µs, as an averaging function  
for the digital IOUT.  
Connect to the phase node side of the  
respective channel’s output inductor or  
VR_HOT#  
No  
Open drain and high dv/dt pin during  
transitions. Avoid its pull-up rail higher  
resistor pin with L/DCR or ESL/R  
SEN  
matching network in close proximity to  
the ISEN± pins of VR. Differentially  
routing back to the controller by paring  
with respective ISEN+; at least 20 mils  
spacing between pairs and away from  
other traces. Each pair should not cross or  
go under the other channel’s switching  
nodes [PHASE, UGATE, LGATE] and power  
planes even though they are not in the  
same layer.  
than V . 30 mils spacing from other  
traces.  
CC  
SM_PM_I2CL  
SM_PM_I2DA  
Yes  
50kHz to 1.5MHz signal when the SMBus,  
2
PMBus, or I C is sending commands,  
pairing up with PMALERT# and routing  
2
carefully back to SMBus, PMBus or I C.  
20 mils spacing within I2DATA,  
PMALERT#, and I2CLK; and more than 30  
mils to all other signals. Refer to the  
2
SMBus, PMBus or I C design guidelines  
GND  
Yes  
This EPAD is the return of PWM output  
drivers and PMBus. Use 4 or more vias to  
directly connect the EPAD to the power  
ground plane. Avoid using only single via  
or 0Ω resistor connection to the power  
ground plane. Also connect pins 13, 14  
and 15 to ground plane.  
and place proper terminated (pull-up)  
resistance for impedance matching.  
Ground them when not used.  
PMALERT#  
No  
Open drain and high dv/dt pin during  
transitions. Route it in the middle of  
I2DATA and I2LK. Also see above. Leave it  
open or tie it ground when not used.  
General  
Comments  
The layer next to the Top or Bottom layer  
is preferred to be ground players, while  
the signal layers can be sandwiched in  
the ground layers if possible.  
BUF_COMP  
TM_EN_OTP  
Yes  
Yes  
Buffer output of internal Comp Signal.  
Place NTC in close proximity to the output  
inductor of Channel 1 and to the output  
rail, not close to MOSFET side (see Figure  
24); the return trace should be 25 mils  
away from other traces. Place 1kpull-  
up and decoupling capacitor (typically  
0.1µF) in close proximity to the controller.  
The pull-up resistor should be exactly tied  
to the same point as V pin, not through  
CC  
an RC filter. If not used, connect this pin to  
1M /2M resistor divider, or tie to V  
.
CC  
AUTO  
RSET  
Yes  
Yes  
Program AUTO phase shedding threshold  
a resistor from this pin to GND. AUTO  
phase shedding is disabled when this pin  
tied to GND.  
Place the R in close proximity to the  
controller. DON’T use decoupling  
capacitor on this pin.  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 54 of 57  
ISL6398  
Sometimes the gate might measure short due to residual  
gate charge. Therefore, a measured short gate with  
ohmmeter cannot validate if the MOSFET is damaged unless  
the Drain to Source is also measured short.  
Component Placement  
Within the allotted implementation area, orient the switching  
components first. The switching components are the most critical  
because they carry large amounts of energy and tend to generate  
high levels of noise. Switching component placement should take  
into account power dissipation. Align the output inductors and  
MOSFETs such that space between the components is minimized  
while creating the PHASE plane. Place the Intersil MOSFET driver  
IC as close as possible to the MOSFETs they control to reduce the  
parasitic impedances due to trace length between critical driver  
input and output signals. If possible, duplicate the same  
6. When re-work is needed for the L/DCR matching network, use  
an ohmmeter across the C to see if the correct R value is  
measured before powering the VR up; otherwise, the current  
imbalance due to improper re-work could damage the power  
trains.  
7. After everything is checked, apply low input voltage (1-5V)  
with appropriate current limiting (~0.5A). All phases should  
be switching evenly when AUTO disabled.  
placement of these components for each phase.  
8. Remove the pull-up from EN_PWR_CFP pin, using bench  
Next, place the input and output capacitors. Position the high  
frequency ceramic input capacitors next to each upper MOSFET  
drain. Place the bulk input capacitors as close to the upper  
MOSFET drains as dictated by the component size and  
dimensions. Long distances between input capacitors and  
MOSFET drains result in too much trace inductance and a  
reduction in capacitor performance. Locate the output capacitors  
between the inductors and the load, while keeping ceramic  
capacitors in close proximity to the microprocessor socket.  
power supplies, power-up V with current limiting  
CC  
(typically ~ 0.25A if 5V drivers included) and slowly increase  
Input Voltage with current limiting. For typical application, V  
limited to 0.25A, VIN limited to 0.5A should be safe for  
powering up with no load. High core-loss inductors likely need  
to increase the input current limiting. All phases should be  
switching evenly.  
CC  
Voltage Regulator (VR) Design  
Materials  
To improve the chance of first pass success, it is very important  
to take time to follow the above outlined design guidelines and  
Intersil generated layout check list, see more details in  
“Voltage Regulator (VR) Design Materials” on page 55. Proper  
planning for the layout is as important as designing the circuits.  
Running things in a hurry, you could end up spending weeks and  
months to debug a poorly-designed and improperly laid out  
board.  
To support VR design and layout, Intersil also developed a set of  
worksheets and evaluation boards, as listed in Tables 20 and 21,  
respectively. The tolerance band calculation (TOB) worksheets for  
VR output regulation and IMON have been developed using the  
Root Sum Squared (RSS) method with 3 sigma distribution point  
of the related components and parameters. Note that the  
“Electrical Specifications” table beginning on page 10 specifies  
no less than 6 sigma distribution point, not suitable for RSS TOB  
calculation. Contact Intersil’s local office or field support for the  
latest available information.  
Powering Up And Open-Loop Test  
The ISL6398 features very easy debugging and powering up. For  
first-time powering up, an open-loop test can be done by applying  
sufficient voltage (current limiting to 0.25A) to V , signal high to  
CC  
TABLE 20. AVAILABLE DESIGN ASSISTANCE MATERIALS  
TM_EN_OTP (>1.05V) and EN_PWR_CFP (>0.9V and less than  
3.5V) pins with the input voltage (VIN) disconnected.  
ITEM  
DESCRIPTION  
0
1
Design and Validation  
1. Each PWM output should operate at maximum duty cycle and  
correct switching frequency.  
Design Worksheet for Compensation and Component  
Selection  
2. Read data in DC and DD of PMBus to confirm its proper  
setting.  
2
2
3
4
5
SMBus/PMBus/I C Communication Tool with Software  
3. If 5V drivers are used and share the same rail as V , the  
CC  
Resistor Register Calculator  
Layout Design Guidelines  
proper switching on UGATEs and LGATEs should be seen.  
4. If 12V drivers are used and can be disconnected from VIN and  
sourced by an external 12V supply, the proper switching on  
UGATEs and LGATEs should be observed.  
Evaluation Board Schematics in OrCAD Format and Layout in  
Allegro Format  
5. If the above is not properly operating, you should check  
soldering joint, resistor register setting, Power Train  
connection or damage, i.e, shorted gates, drain and source.  
NOTE: For worksheets, please contact Intersil Application support  
at www.intersil.com/design/.  
TABLE 21. AVAILABLE EVALUATION BOARDS  
2
EVALUATION BOARDS  
ISL6398EVAL1Z  
PACKAGE  
5x5 40Ld  
TARGETED APPLICATIONS  
SMBus/PMBus/I C  
PEAK EFFICIENCY ICCMAX (A)  
3-Phase POL with ISL99140, 6x6 DrMOS  
Digital Compensation with NVM  
Yes  
93%, 1.2V@40A  
100A  
ISL6398EVAL2Z  
5x5 40Ld  
6-Phase with ISL99140, 6x6 DrMOS  
Digital Compensation with NVM  
Yes  
94%, 1.8V@50A  
215A  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 55 of 57  
ISL6398  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you  
have the latest revision.  
DATE  
REVISION  
FN8575.1  
CHANGE  
2
August 13, 2015  
Updated “SMBus/PMBus/I C” section of Electrical Specification table on page 13.  
-Added PMBus specs Signal Input Low Voltage, Signal Input High Voltage and Signal Output Low Voltage.  
-Added min/max Time-out spec  
-Changed the Time-out typical from “35” to “30”.  
Updated the second sentence under “Soft-start” on page 25.  
Updated Table 9 on page 33 by splitting PMBus (DC) and PMBus (DD) (now Table 10) into two different tables,  
also updated R  
value for 80h from “10” to “499”.  
DW  
2
Updated third paragraph under “SMBus, PMBus and I C Operation” on page 35.  
Updated Figure 33 on page 35.  
Updated Figure 35 on page 36.  
Updated Figure 36 on page 37.  
Updated DFh[8:0] description in Table 14 on page 41 and changed bit from “[7:0]” to “[8:0]”.  
Updated POD to current revision. Changes from revision 1 to revision 2 are as follows:  
Added tolerance ± values.  
April 18, 2014  
FN8575.0  
Initial release  
About Intersil  
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products  
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.  
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product  
information page found at www.intersil.com.  
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.  
Reliability reports are also available from our website at www.intersil.com/support  
© Copyright Intersil Americas LLC 2014-2015. All Rights Reserved.  
All trademarks and registered trademarks are the property of their respective owners.  
For additional products, see www.intersil.com/en/products.html  
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted  
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html  
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such  
modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are  
current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its  
subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 56 of 57  
ISL6398  
Package Outline Drawing  
L40.5x5  
40 LEAD THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE  
Rev 2, 7/14  
4x3.60  
36x0.40  
A
B
5.00 ±0.05  
6
6
PIN #1 INDEX AREA  
PIN 1  
INDEX AREA  
0.15  
(4X)  
40x0.4 ± 0.1  
0.20  
b
BOTTOM VIEW  
TOP VIEW  
0.10 M  
C A B  
4
PACKAGE OUTLINE  
0.40  
0.750 ±0.10  
SEE DETAIL “X”  
0.10 C  
//  
BASE PLANE  
SEATING PLANE  
0.08 C  
C
0.050  
SIDE VIEW  
(36x0.40)  
0.2 REF  
(40x0.20)  
(40x0.60)  
5
C
0.00 MIN  
0.05 MAX  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3.  
Unless otherwise specified, tolerance: Decimal ± 0.05  
4. Dimension b applies to the metallized terminal and is measured  
between 0.15mm and 0.27mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 identifier may be  
either a mold or mark feature.  
JEDEC reference drawing: MO-220WHHE-1  
7.  
FN8575 Rev 1.00  
Aug 13, 2015  
Page 57 of 57  

相关型号:

ISL6401

Synchronizing Current Mode PWM for Subscriber Line Interface Circuits (SLICs)
INTERSIL

ISL6401CB

Synchronizing Current Mode PWM for Subscriber Line Interface Circuits (SLICs)
INTERSIL

ISL6401CB-T

Synchronizing Current Mode PWM for Subscriber Line Interface Circuits (SLICs)
INTERSIL

ISL6401CBZ

Synchronizing Current Mode PWM for Subscriber Line Interface Circuits (SLICs)
INTERSIL

ISL6401CBZ-T

Synchronizing Current Mode PWM for Subscriber Line Interface Circuits (SLICs)
INTERSIL

ISL6401CR

Synchronizing Current Mode PWM for Subscriber Line Interface Circuits (SLICs)
INTERSIL

ISL6401CR-T

Synchronizing Current Mode PWM for Subscriber Line Interface Circuits (SLICs)
INTERSIL

ISL6401CRZ

Synchronizing Current Mode PWM for Subscriber Line Interface Circuits (SLICs)
INTERSIL

ISL6401CRZ-T

Synchronizing Current Mode PWM for Subscriber Line Interface Circuits (SLICs)
INTERSIL

ISL6401IB

Synchronizing Current Mode PWM for Subscriber Line Interface Circuits (SLICs)
INTERSIL

ISL6401IB

1 A SWITCHING CONTROLLER, 600 kHz SWITCHING FREQ-MAX, PDSO14, PLASTIC, MS-012AB, SOIC-14
ROCHESTER

ISL6401IB-T

1A SWITCHING CONTROLLER, 600kHz SWITCHING FREQ-MAX, PDSO14, PLASTIC, MS-012AB, SOIC-14
RENESAS