ISL80103IR15Z-TK [RENESAS]

ISL80103IR15Z-TK;
ISL80103IR15Z-TK
型号: ISL80103IR15Z-TK
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

ISL80103IR15Z-TK

文件: 总15页 (文件大小:615K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Performance 2A and 3A Linear Regulators  
ISL80102, ISL80103  
Features  
• Stable with all Capacitor Types (Note 11)  
• 2A and 3A Output Current Ratings  
• 2.2V to 6V Input Voltage Range  
The ISL80102 and ISL80103 are low voltage,  
high-current, single output LDOs specified for 2A and 3A  
output current, respectively. These LDOs operate from  
input voltages of 2.2V to 6V and are capable of providing  
output voltages of 0.8V to 5V on the adjustable V  
• ±1.8% V  
Accuracy Guaranteed Over Line, Load  
OUT  
OUT  
versions. Fixed output voltage options are available in  
1.5V, 1.8V, 2.5V, 3.3V and 5V. Other custom voltage  
options available upon request.  
and T = -40°C to +125°C  
J
• Very Low 120mV Dropout Voltage at 3A (ISL80103)  
• Fixed and Adjustable V  
OUT  
Versions  
For applications that demand in-rush current less than  
the current limit, an external capacitor on the soft start  
pin provides adjustment. The ENABLE feature allows the  
part to be placed into a low quiescent current shutdown  
mode. A sub-micron BiCMOS process is utilized for this  
product family to deliver the best in class analog  
performance and overall value.  
• Very Fast Transient Response  
• Excellent 62dB PSRR  
• 100µV  
RMS  
Output Noise  
• Power-Good Output  
• Adjustable In-Rush Current Limiting  
• Short Circuit and Over-Temperature Protection  
These CMOS LDOs will consume significantly lower  
quiescent current as a function of load over bipolar LDOs,  
which translates into higher efficiency and the ability to  
consider packages with smaller footprints. Quiescent  
current is modestly compromised to enable a leading  
class fast load transient response, and hence a lower  
total AC regulation band for an LDO in this category.  
• Available in a 10 Ld DFN (now), 5Ld TO220 and 5Ld  
TO263 (soon)  
Applications*(see page 14)  
• Servers  
Telecommunications and Networking  
• Medical Equipment  
• Instrumentation Systems  
• Routers and Switchers  
Typical Application  
ISL80102, ISL80103  
1.8V ±1.8%  
2.5V ±10%  
1
2
9
V
OUT  
VOUT  
VOUT  
V
VIN  
VIN  
IN  
C
OUT  
C
10  
IN  
10µF  
10µF  
R
PG  
100kΩ  
ON  
3
SENSE  
PG  
7
6
ENABLE  
SS  
OFF  
4
PGOOD  
*C  
SS  
GND  
5
*CSS is optional, (see Note 12) on page 5.  
March 22, 2010  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 2009, 2010. All Rights Reserved  
1
FN6660.1  
All other trademarks mentioned are the property of their respective owners.  
ISL80102, ISL80103  
Block Diagram  
VIN  
R5  
IL/10,000  
M4  
M5  
10µA  
10µA  
M3  
M1  
POWER PMOS  
IL  
VOUT  
+
LEVEL  
SHIFT  
R8  
M6  
-
R1  
R9  
R7  
EN  
EN  
SENSE  
-
500mV  
+
R2  
R4  
EN  
ADJ  
PG  
+
EN  
-
ENABLE  
SS  
M7  
M8  
-
+
-
M2  
500mV  
+
V TO I  
+
-
*R3  
485mV  
EN  
GND  
*R3 is open for ADJ versions.  
Ordering Information  
PART NUMBER  
(Notes 1, 2, 4)  
PART  
MARKING  
TEMP. RANGE  
(°C)  
PACKAGE  
(Pb-Free)  
PKG  
DWG. #  
V
VOLTAGE  
OUT  
ISL80102IRAJZ  
ISL80102IR15Z  
ISL80102IR18Z  
ISL80102IR25Z  
ISL80102IR33Z  
ISL80102IR50Z  
ISL80103IRAJZ  
ISL80103IR15Z  
ISL80103IR18Z  
ISL80103IR25Z  
ISL80103IR33Z  
ISL80103IR50Z  
NOTES:  
DZJA  
ADJ  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
-40 to +125  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
10 Ld 3x3 DFN  
L10.3x3  
L10.3x3  
L10.3x3  
L10.3x3  
L10.3x3  
L10.3x3  
L10.3x3  
L10.3x3  
L10.3x3  
L10.3x3  
L10.3x3  
L10.3x3  
DZMA  
DZNA  
DZPA  
DZRA  
DZSA  
DZAA  
DZDA  
DZEA  
DZFA  
DZGA  
DZHA  
1.5V (Note 3)  
1.8V  
2.5V  
3.3V (Note 3)  
5.0V (Note 3)  
ADJ  
1.5V (Note 3)  
1.8V  
2.5V  
3.3V (Note 3)  
5.0V (Note 3)  
1. Add “-T” or “-TK” suffix for tape and reel. Please refer to TB347 for details on reel specifications.  
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach  
materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both  
SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
3. The 1.5V, 3.3V and 5V fixed output voltages will be released in the future. Please contact Intersil Marketing for more details.  
4. For Moisture Sensitivity Level (MSL), please see device information page for ISL80102, ISL80103. For more information on  
MSL please see tech brief TB363.  
FN6660.1  
March 22, 2010  
2
ISL80102, ISL80103  
Pin Configuration  
ISL80102, ISL80103  
(10 LD 3X3 DFN)  
TOP VIEW  
V
V
V
V
1
2
3
4
5
10  
9
OUT  
OUT  
IN  
IN  
SENSE/ADJ  
PG  
DNC  
8
7
ENABLE  
SS  
GND  
6
Pin Descriptions  
PIN NUMBER PIN NAME  
DESCRIPTION  
1, 2  
3
V
Output voltage pin.  
OUT  
SENSE/ADJ Remote voltage sense for internally fixed V  
options. ADJ pin for externally set V .  
OUT  
OUT  
4
PG  
V
in regulation signal. Logic low defines when V  
is not in regulation. Must be grounded if  
OUT  
OUT  
not used.  
5
6
GND  
SS  
GND pin.  
External cap adjusts in-rush current.  
7
ENABLE  
DNC  
V
independent chip enable. TTL and CMOS compatible.  
IN  
8
Do not connect this pin to ground or supply. Leave floating.  
Input supply pin.  
9, 10  
V
IN  
EPAD  
EPAD at ground potential. Soldering it directly to GND plane is optional.  
Typical Application  
ISL80102, ISL80103  
1.8V  
2.5V ±10%  
1
2
9
V
VOUT  
V
OUT  
IN  
VIN  
VIN  
C
OUT  
C
10  
IN  
VOUT  
10µF  
10µF  
R
PG  
100kΩ  
R
1
10kΩ  
4
PGOOD  
PG  
7
6
ENABLE  
SS  
EN  
**C  
OPEN DRAIN COMPATIBLE  
PB  
R
3
2.61kΩ  
1500pF  
3
ADJ  
*C  
SS  
GND  
R
4
5
1.0kΩ  
*CSS is optional, (see Note 12) on page 5.  
**C  
PB  
is optional. See “Functional Description” on page 12 for more information.  
FIGURE 1. TYPICAL APPLICATION DIAGRAM  
FN6660.1  
March 22, 2010  
3
ISL80102, ISL80103  
Absolute Maximum Ratings (Note 7)  
Thermal Information  
V
V
relative to GND . . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
Thermal Resistance (Typical)  
θ
JA (°C/W) θJC (°C/W)  
48  
IN  
relative to GND . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
OUT  
10 Ld 3x3 DFN Package (Notes 5, 6)  
4
PG, ENABLE, SENSE/ADJ, SS  
Maximum Junction Temperature (Plastic Package). . . +150°C  
Storage Temperature Range. . . . . . . . . . . -65°C to +150°C  
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Relative to GND. . . . . . . . . . . . . . . . . . . . -0.3V to +6.5V  
Recommended Operating Conditions  
(Note 10)  
Junction Temperature Range (T ) . . . . . . . -40°C to +125°C  
J
VIN relative to GND . . . . . . . . . . . . . . . . . . . . . 2.2V to 6V  
V
range . . . . . . . . . . . . . . . . . . . . . . . . . .800mV to 5V  
OUT  
PG, ENABLE, SENSE/ADJ, SS relative to GND . . . . . 0V to 6V  
PG sink current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10mA  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact  
product reliability and result in failures not covered by warranty.  
NOTES:  
5. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach”  
JA  
features. See Tech Brief TB379.  
6. For θ , the “case temp” location is the center of the exposed metal pad on the package underside.  
JC  
7. ABS max voltage rating is defined as the voltage applied for a lifetime average duty cycle above 6V of 1%.  
Electrical Specifications Unless otherwise noted, all parameters are established over the following specified  
conditions: V = V  
+ 0.4V, V  
= 1.8V, C = C  
= 10µF, T = +25°C, I = 0A  
IN OUT  
OUT  
IN  
OUT  
J
LOAD  
Applications must follow thermal guidelines of the package to determine worst case junction  
temperature. Please refer to “Functional Description” on page 12 and Tech Brief TB379.  
Boldface limits apply over the operating temperature range, -40°C to +125°C.  
Pulse load techniques used by ATE to ensure T = T defines established limits.  
J
A
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 8) TYP (Note 8) UNITS  
DC CHARACTERISTICS  
DC Output Voltage Accuracy  
V
V
V
Options: 1.8V.  
OUT  
0.5  
0.5  
%
%
%
%
OUT  
=2.2V; I  
= 0A  
IN  
LOAD  
V
Options: 1.8V.  
-1.8  
1.8  
OUT  
2.2V < V < 3.6V; 0A < I  
< 3A  
IN  
LOAD  
V
V
Options: 2.5V  
OUT  
IN  
=V  
+ 0.4V; I  
LOAD  
= 0A  
OUT  
V
V
Options: 2.5V  
+ 0.4V < V < 6V; 0A < I  
IN LOAD  
-1.8  
491  
-1.8  
OUT  
OUT  
< 3A  
Feedback Pin (ADJ Version)  
DC Input Line Regulation  
V
2.2V < V < 6V, 0A < I  
IN  
< 3A  
LOAD  
500  
0.1  
0.1  
509  
0.4  
0.8  
mV  
%
FB  
ΔV  
/ΔV  
V
V
+ 0.4V < V < 3.6V, V  
= 1.8V  
= 2.5V  
OUT  
IN  
OUT  
OUT  
IN OUT  
+ 0.4V < V < 6V, V  
%
IN OUT  
DC Output Load Regulation  
ΔV  
/ΔI  
0A < I  
< 3A, All voltage options  
< 2A, All voltage options  
-0.8  
-0.6  
%
OUT  
OUT  
LOAD  
LOAD  
0A < I  
%
Feedback Input Current  
Ground Pin Current  
V
= 0.5V  
0.01  
7.5  
8.5  
0.4  
3.3  
120  
81  
1
9
µA  
mA  
mA  
µA  
µA  
mV  
mV  
ADJ  
I
I
I
= 0A, 2.2V < V < 6V  
IN  
Q
LOAD  
LOAD  
= 3A, 2.2V < V < 6V  
IN  
12  
Ground Pin Current in  
Shutdown  
I
ENABLE Pin = 0.2V, V = 5V  
IN  
SHDN  
ENABLE Pin = 0.2V, V = 6V  
IN  
16  
Dropout Voltage (Note 9)  
V
I
I
= 3A, V  
= 2.5V, 10 LD 3x3 DFN  
= 2.5V, 10 LD 3x3 DFN  
185  
125  
DO  
LOAD  
LOAD  
OUT  
OUT  
= 2A, V  
FN6660.1  
March 22, 2010  
4
ISL80102, ISL80103  
Electrical Specifications Unless otherwise noted, all parameters are established over the following specified  
conditions: V = V  
+ 0.4V, V  
= 1.8V, C = C  
= 10µF, T = +25°C, I = 0A  
IN OUT  
OUT  
IN  
OUT  
J
LOAD  
Applications must follow thermal guidelines of the package to determine worst case junction  
temperature. Please refer to “Functional Description” on page 12 and Tech Brief TB379.  
Boldface limits apply over the operating temperature range, -40°C to +125°C.  
Pulse load techniques used by ATE to ensure T = T defines established limits.  
J
A
MIN  
MAX  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
(Note 8) TYP (Note 8) UNITS  
Output Short Circuit Current  
(3A Version)  
ISC  
V
V
V
V
= 0V, V  
+ 0.4V < V < 6V  
IN  
5.0  
2.8  
160  
15  
A
A
OUT  
OUT  
OUT  
OUT  
OUT  
Output Short Circuit Current  
(2A Version)  
= 0V, V  
+ 0.4V < V < 6V  
IN  
OUT  
Thermal Shutdown  
Temperature  
TSD  
+ 0.4V < V < 6V  
IN  
°C  
°C  
Thermal Shutdown  
Hysteresis (Rising Threshold)  
TSDn  
+ 0.4V < V < 6V  
IN  
AC CHARACTERISTICS  
Input Supply Ripple  
Rejection  
PSRR  
f = 1kHz, I  
LOAD  
= 1A; V = 2.2V  
IN  
55  
62  
dB  
f = 120Hz, I  
= 1A; V = 2.2V  
IN  
LOAD  
Output Noise Voltage  
I
= 10mA, BW = 300Hz < f < 300kHz  
100  
µV  
LOAD  
RMS  
ENABLE PIN CHARACTERISTICS  
Turn-on Threshold  
V
2.2V < V < 6V  
IN  
0.3  
0.8  
135  
150  
0.95  
1
V
EN(HIGH)  
Hysteresis (Rising Threshold)  
Enable Pin Turn-on Delay  
Enable Pin Leakage Current  
V
2.2V < V < 6V  
IN  
mV  
EN(HYS)  
t
C
V
= 10µF, I  
= 1A  
µs  
EN  
OUT  
LOAD  
= 6V, EN = 3V  
µA  
IN  
SOFT-START CHARACTERISTICS  
Reset Pull-Down resistance  
Soft Start Charge Current  
PG PIN CHARACTERISTICS  
R
323  
-4.5  
Ω
PD  
I
-7  
-2  
µA  
CHG  
V
V
PG Flag Threshold  
PG Flag Hysteresis  
75  
84  
4
92  
%V  
OUT  
OUT  
OUT  
%
mV  
µA  
PG Flag Low Voltage  
PG Flag Leakage Current  
NOTES:  
I
= 500µA  
47  
100  
1
SINK  
V
= 6V, PG = 6V  
0.05  
IN  
8. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established  
by characterization and are not production tested.  
9. Dropout is defined by the difference in supply V and V  
IN  
when the supply produces a 2% drop in V  
from its nominal  
OUT  
OUT  
value.  
10. Electromigration specification defined as lifetime average junction temperature of +110°C where max rated DC current =  
lifetime average current.  
11. Minimum cap of 10µF X5R/X7R on V and V  
required for stability.  
12. If the current limit for in-rush current is acceptable in application, do not use this feature. Used only when large bulk capacitance  
IN OUT  
required on V  
for application.  
OUT  
FN6660.1  
March 22, 2010  
5
ISL80102, ISL80103  
Typical Operating Performance  
Unless otherwise noted: V = 2.2V, V  
IN  
= 1.8V, C = C  
IN OUT  
= 10µF, T = +25°C, I = 0A.  
OUT  
J
L
1.8  
1.2  
0.6  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
+125°C  
+25°C  
-40°C  
-0.6  
-1.2  
-1.8  
0
1
2
3
4
5
6
-50  
-25  
0
25  
50  
75  
100 125 150  
SUPPLY VOLTAGE (V)  
JUNCTION TEMPERATURE (°C)  
FIGURE 3. OUTPUT VOLTAGE vs SUPPLY VOLTAGE  
FIGURE 2. ΔV  
vs TEMPERATURE  
OUT  
1.8  
9
8
7
6
5
4
3
2
1
0
1.2  
0.6  
+25°C  
0.0  
-0.6  
-1.2  
-1.8  
-40°C  
+125°C  
1.0  
0
0.5  
1.5  
2.0  
2.5  
3.0  
2
3
4
5
6
OUTPUT CURRENT (A)  
INPUT VOLTAGE (V)  
FIGURE 5. GROUND CURRENT vs SUPPLY VOLTAGE  
FIGURE 4. ΔV  
vs OUTPUT CURRENT  
OUT  
12.0  
11.5  
9.1  
8.9  
8.7  
8.5  
8.3  
8.1  
7.9  
7.7  
7.5  
11.0  
10.5  
10.0  
9.5  
-40°C  
-40°C  
+25°C  
9.0  
+125°C  
+125°C  
1.0  
8.5  
+25°C  
2.0  
8.0  
7.5  
0
0.5  
1.5  
2.0  
2.5  
3.0  
0.8  
1.4  
2.6  
3.2  
3.8  
4.4  
5.0  
OUTPUT CURRENT (A)  
OUTPUT VOLTAGE (V)  
FIGURE 7. GROUND CURRENT vs OUTPUT VOLTAGE  
FIGURE 6. GROUND CURRENT vs OUTPUT CURRENT  
FN6660.1  
March 22, 2010  
6
ISL80102, ISL80103  
Typical Operating Performance  
Unless otherwise noted: V = 2.2V, V  
IN  
= 1.8V, C = C  
= 10µF, T = +25°C, I = 0A. (Continued)  
OUT J L  
OUT  
IN  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
12  
11  
10  
9
8
7
6
5
4
3
2
V
= 5V  
IN  
V
= 6V  
IN  
1
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 9. SHUTDOWN CURRENT vs TEMPERATURE  
FIGURE 8. SHUTDOWN CURRENT vs TEMPERATURE  
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2A  
3A  
40  
30  
20  
10  
1A  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
FIGURE 10. DROPOUT VOLTAGE vs TEMPERATURE  
FIGURE 11. DROPOUT VOLTAGE vs OUTPUT CURRENT  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
V
(1V/DIV)  
IN  
SS (1V/DIV)  
V
(1V/DIV)  
OUT  
PG (1V/DIV)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
JUNCTION TEMPERATURE (°C)  
TIME (10ms/DIV)  
FIGURE 13. POWER-UP (V  
= 2.2V)  
FIGURE 12. ENABLE THRESHOLD VOLTAGE vs  
TEMPERATURE  
IN  
FN6660.1  
March 22, 2010  
7
ISL80102, ISL80103  
Typical Operating Performance  
Unless otherwise noted: V = 2.2V, V  
IN  
= 1.8V, C = C  
IN OUT  
= 10µF, T = +25°C, I = 0A. (Continued)  
OUT  
J
L
EN (1V/DIV)  
V
(1V/DIV)  
IN  
SS (1V/DIV)  
SS (1V/DIV)  
V
(1V/DIV)  
V
(1V/DIV)  
OUT  
OUT  
PG (1V/DIV)  
PG (1V/DIV)  
TIME (50µs/DIV)  
TIME (10ms/DIV)  
FIGURE 15. ENABLE START-UP  
FIGURE 14. POWER-DOWN (V  
= 2.2V)  
IN  
300  
250  
200  
150  
100  
50  
EN (1V/DIV)  
SS (1V/DIV)  
V
(1V/DIV)  
OUT  
0
PG (1V/DIV)  
2.0  
2.5 3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
INPUT VOLTAGE (V)  
TIME (5ms/DIV)  
FIGURE 16. ENABLE SHUTDOWN  
FIGURE 17. START-UP TIME vs SUPPLY VOLTAGE  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
300  
250  
200  
150  
100  
50  
ISL80103  
ISL80102  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
FIGURE 18. START-UP TIME vs TEMPERATURE  
FIGURE 19. CURRENT LIMIT vs TEMPERATURE  
FN6660.1  
March 22, 2010  
8
ISL80102, ISL80103  
Typical Operating Performance  
Unless otherwise noted: V = 2.2V, V  
IN  
= 1.8V, C = C  
IN OUT  
= 10µF, T = +25°C, I = 0A. (Continued)  
OUT  
J
L
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
ISL80103  
ISL80102  
V
(1V/DIV)  
OUT  
I
(1A/DIV)  
OUT  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
INPUT VOLTAGE (V)  
TIME (10ms/DIV)  
FIGURE 21. CURRENT LIMIT RESPONSE (ISL80102)  
FIGURE 20. CURRENT LIMIT vs SUPPLY VOLTAGE  
V
(1V/DIV)  
OUT  
V
(1V/DIV)  
OUT  
I
(1A/DIV)  
OUT  
I
(2A/DIV)  
OUT  
TIME (100ms/DIV)  
TIME (20ms/DIV)  
FIGURE 23. CURRENT LIMIT RESPONSE (ISL80103)  
FIGURE 22. THERMAL CYCLING (ISL80102)  
EN (1V/DIV)  
V
(1V/DIV)  
OUT  
I
(2A/DIV)  
(1V/DIV)  
OUT  
I
(2A/DIV)  
OUT  
V
OUT  
TIME (1ms/DIV)  
TIME (50ms/DIV)  
FIGURE 25. IN-RUSH CURRENT WITH NO  
SOFT-START CAPACITOR, C  
FIGURE 24. THERMAL CYCLING (ISL80103)  
= 1000µF  
OUT  
FN6660.1  
March 22, 2010  
9
ISL80102, ISL80103  
Typical Operating Performance  
Unless otherwise noted: V = 2.2V, V  
IN  
= 1.8V, C = C  
IN OUT  
= 10µF, T = +25°C, I = 0A. (Continued)  
OUT  
J
L
EN (1V/DIV)  
EN (1V/DIV)  
I
(2A/DIV)  
(1V/DIV)  
I
(2A/DIV)  
OUT  
OUT  
V
(1V/DIV)  
V
OUT  
OUT  
TIME (1ms/DIV)  
TIME (1ms/DIV)  
FIGURE 26. IN-RUSH WITH 22nF SOFT-START  
CAPACITOR, C = 1000µF  
FIGURE 27. IN-RUSH WITH 47nF SOFT-START  
CAPACITOR, C = 1000µF  
OUT  
OUT  
V
(50mV/DIV)  
(2A/DIV)  
OUT  
V
(50mV/DIV)  
(2A/DIV)  
OUT  
I
OUT  
I
OUT  
di/dt = 30A/µs  
di/dt = 30A/µs  
TIME (200µs/DIV)  
TIME (200µs/DIV)  
FIGURE 28. LOAD TRANSIENT 0A TO 3A,  
FIGURE 29. LOAD TRANSIENT 0A TO 3A,  
C
= 10µF CERAMIC  
C
= 10µF CERAMIC + 100µF OSCON  
OUT  
OUT  
V
(50mV/DIV)  
V
(50mV/DIV)  
OUT  
OUT  
I
(2A/DIV)  
I
(2A/DIV)  
OUT  
OUT  
di/dt = 30A/µs  
di/dt = 30A/µs  
TIME (200µs/DIV)  
TIME (200µs/DIV)  
FIGURE 30. LOAD TRANSIENT 1A TO 3A,  
FIGURE 31. LOAD TRANSIENT 1A TO 3A,  
= 10µF CERAMIC + 100µF OSCON  
C
= 10µF CERAMIC  
C
OUT  
OUT  
FN6660.1  
March 22, 2010  
10  
ISL80102, ISL80103  
Typical Operating Performance  
Unless otherwise noted: V = 2.2V, V  
IN OUT  
= 1.8V, C = C = 1F, T = +25°C, I = 0A. (Continued)  
IN OUT J L  
V
(20mV/DIV)  
OUT  
V
(20mV/DIV)  
OUT  
(2A/DIV)  
I
I
(2A/DIV)  
OUT  
OUT  
di/dt = 3A/µs  
TIME (50µs/DIV)  
di/dt = 3A/µs  
TIME (50µs/DIV)  
FIGURE 32. LOAD TRANSIENT 0A TO 3A,  
= 10µF CERAMIC, No C  
FIGURE 33. LOAD TRANSIENT 0A TO 3A,  
= 10µF CERAMIC, C  
C
(ADJ  
PB  
OUT  
C
= 1500pF  
PB  
OUT  
(ADJ VERSION)  
VERSION)  
3.2V  
2.2V  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
(1V/DIV)  
IN  
1A  
100mA  
10k  
V
(10mV/DIV)  
OUT  
10  
100  
1k  
100k  
1M  
TIME (200µs/DIV)  
FREQUENCY (Hz)  
FIGURE 35. PSRR vs LOAD  
FIGURE 34. LINE TRANSIENT  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
1
100µF  
0.1  
10µF  
47µF  
100k  
I
= 100mA  
L
0.01  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FIGURE 37. SPECTRAL NOISE DENSITY vs  
FREQUENCY  
FIGURE 36. PSRR vs C  
OUT  
FN6660.1  
March 22, 2010  
11  
ISL80102, ISL80103  
capacitances on V  
current can be seen for a significant period of time. The  
where high levels of charging  
OUT  
Functional Description  
in-rush currents can cause V to drop below minimum  
Input Voltage Requirements  
IN  
which could cause V  
OUT  
to shutdown. Figure 38 shows  
Despite other output voltages offered, this family of LDOs  
is optimized for a true 2.5V to 1.8V conversion where the  
input supply can have a tolerance of as much as ±10%  
for conditions noted in the “Electrical Specifications” table  
on page 4. Minimum guaranteed input voltage is 2.2V,  
however, due to the nature of an LDO, V must be some  
margin higher than the output voltage plus dropout at  
the maximum rated current of the application if active  
the relationship between in-rush current and C with a  
SS  
C
of 1000µF.  
OUT  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
IN  
filtering (PSRR) is expected from V to V  
. The  
IN OUT  
dropout spec of this family of LDOs has been generously  
specified in order to allow applications to design for a  
level of efficiency that can accommodate the smaller  
outline package for those applications that cannot  
accommodate the profile of the TO220/263.  
0
0
20  
40  
C
60  
(nF)  
80  
100  
Enable Operation  
SS  
The Enable turn-on threshold is typically 770mV with a  
hysteresis of 135mV. An internal pull-up or pull-down  
resistor is available upon request. As a result, this pin  
FIGURE 38. IN-RUSH CURRENT vs SOFT-START  
CAPACITANCE  
Output Voltage Selection  
must not be left floating. This pin must be tied to V if it  
IN  
An external resistor divider is used to scale the output  
voltage relative to the internal reference voltage. This  
voltage is then fed back to the error amplifier. The output  
voltage can be programmed to any level between 0.8V  
is not used. A 1kΩ to 10kΩ pull-up resistor will be  
required for applications that use open collector or open  
drain outputs to control the Enable pin. The Enable pin  
may be connected directly to V for applications that are  
IN  
and 5V. An external resistor divider, R and R , is used to  
3
4
always on.  
set the output voltage as shown in Equation 1. The  
recommended value for R is 500Ω to 1kΩ. R is then  
chosen according to Equation 2:  
Power-Good Operation  
4
3
Applications not using this feature must connect this pin  
to ground. The PGOOD flag is an open-drain NMOS that  
can sink up to 10mA during a fault condition. The PGOOD  
pin requires an external pull-up resistor which is typically  
connected to the VOUT pin. The PGOOD pin should not  
R
3
(EQ. 1)  
(EQ. 2)  
------  
V
= 0.5V ×  
+ 1  
OUT  
R
4
V
OUT  
---------------  
R
= R  
×
4
1  
be pulled up to a voltage source greater than V . The  
3
IN  
0.5V  
PGOOD fault can be caused by the output voltage going  
below 84% of the nominal output voltage, or the current  
limit fault, or low input voltage. The PGOOD does not  
function during thermal shutdown. The PGOOD functions  
in shutdown.  
External Capacitor Requirements  
External capacitors are required for proper operation.  
Careful attention must be paid to the layout guidelines  
and selection of capacitor type and value to ensure  
optimal performance.  
Soft-Start Operation (Optional)  
OUTPUT CAPACITOR  
If the current limit for in-rush current is acceptable in the  
application, do not use this feature. The soft-start circuit  
controls the rate at which the output voltage comes up to  
regulation at power-up or LDO enable. A constant  
current charges an external soft-start capacitor. The  
external capacitor always gets discharged to ground pin  
potential at the beginning of start-up or enabling. The  
The ISL80102, ISL80103 applies state-of-the-art internal  
compensation to keep selection of the output capacitor  
simple for the customer. Stable operation over full  
temperature, V range, V  
range and load extremes  
IN OUT  
are guaranteed for all capacitor types and values  
assuming a 10µF X5R/X7R is used for local bypass on  
discharge rate is the RC time constant of R and C  
See Figures 25 through 28 in the “Typical Operating  
.
PD  
SS  
V
. This minimum capacitor must be connected to  
and Ground pins of the LDO with PCB traces no  
OUT  
V
OUT  
Performance Curves” beginning on page 10. R  
is the  
PD  
longer than 0.5cm.  
ON-resistance of the pull down MOSFET, M8. R is 300Ω  
PD  
Lower cost Y5V and Z5U type ceramic capacitors are  
acceptable if the size of the capacitor is larger to  
compensate for the significantly lower tolerance over  
X5R/X7R types. Additional capacitors of any value in  
Ceramic, POSCAP or Alum/Tantalum Electrolytic types  
may be placed in parallel to improve PSRR at higher  
typically.  
The soft-start feature effectively reduces the in-rush  
current at power-up or LDO enable until V  
reaches  
OUT  
regulation. The in-rush current can be an issue for  
applications that require large, external bulk  
FN6660.1  
March 22, 2010  
12  
ISL80102, ISL80103  
frequencies and/or load transient AC output voltage  
tolerances.  
(Note 10)” on page 4. The power dissipation can be  
calculated by using Equation 3:  
(EQ. 3)  
P
= (V V  
) × I  
+ V × I  
OUT IN GND  
INPUT CAPACITOR  
D
IN  
OUT  
The minimum input capacitor required for proper  
operation is 10µF having a ceramic dielectric. This  
The maximum allowable junction temperature, T  
and the maximum expected ambient temperature,  
J(MAX)  
minimum capacitor must be connected to V and  
IN  
T
will determine the maximum allowable power  
A(MAX)  
dissipation as shown in Equation 4:  
ground pins of the LDO with PCB traces no longer than  
0.5cm.  
(EQ. 4)  
P
= (T  
T ) ⁄ θ  
J(MAX) A JA  
D(MAX)  
Phase Boost Capacitor (Optional)  
The ISL80102 and ISL80103 are designed to be stable  
with 10µF or larger ceramic capacitor.  
Where θ is the junction-to-ambient thermal  
resistance.  
JA  
Applications using the ADJ versions, may see improved  
performance with the addition of a small ceramic  
For safe operation, please make sure that power  
dissipation calculated in Equation 3, P be less than the  
D
capacitor C as shown in Figure 1 on page 3. The  
PB  
maximum allowable power dissipation P  
.
D(MAX)  
conditions where C may be beneficial are: (1) V  
PB OUT  
>
1.5V, (2) C  
= 10µF, and (3) tight AC voltage  
regulation band.  
The DFN package uses the copper area on the PCB as a  
heat-sink. The EPAD of this package must be soldered to  
the copper plane (GND plane) for heat sinking. Figure 39  
OUT  
C
C
introduces phase lead with the product of R and  
3
PB  
PB  
shows a curve for the θ of the DFN package for  
JA  
that results in increasing the bandwidth of the LDO.  
different copper area sizes.  
Typical R3 x C should be 4μs.  
PB  
46  
44  
42  
40  
38  
36  
34  
C
not recommended for V  
< 1.5V.  
OUT  
PB  
Current Limit Protection  
The ISL80102, ISL80103 family of LDOs incorporates  
protection against overcurrent due to short, overload  
condition applied to the output and the in-rush current  
that occurs at start-up. The LDO performs as a constant  
current source when the output current exceeds the  
current limit threshold noted in the “Electrical  
2
4
6
8
10 12 14 16 18 20 22 24  
2
Specifications” table on page 4. If the short or overload  
condition is removed from V  
EPAD-MOUNT COPPER LAND AREA ON PCB, mm  
, then the output returns  
OUT  
to normal voltage mode regulation. In the event of an  
overload condition, the LDO might begin to cycle on and  
off due to the die temperature exceeding the thermal  
fault condition. The TO220/263 package will tolerate  
higher levels of power dissipation on the die which may  
never thermal cycle if the heatsink of this larger package  
can keep the die temperature below the specified typical  
thermal shutdown temperature.  
FIGURE 39. 3mmx3mm-10 PIN DFN ON 4-LAYER PCB  
WITH THERMAL VIAS θ vs EPAD-MOUNT  
JA  
COPPER LAND AREA ON PCB  
Thermal Fault Protection  
In the event the die temperature exceeds typically  
+160°C, then the output of the LDO will shut down until  
the die temperature can cool down to typically +145°C.  
The level of power combined with the thermal impedance  
of the package (+48°C/W for DFN) will determine if the  
junction temperature exceeds the thermal shutdown  
temperature.  
Power Dissipation and Thermals  
The junction temperature must not exceed the range  
specified in the “Recommended Operating Conditions  
For additional products, see www.intersil.com/product_tree  
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted  
in the quality certifications found at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications  
at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by  
Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any  
infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any  
patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN6660.1  
March 22, 2010  
13  
ISL80102, ISL80103  
Revision History  
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to  
web to make sure you have the latest Rev.  
DATE  
REVISION  
CHANGE  
3/4/10  
FN6660.1  
Corrected Features on page 1 as follows:  
-Changed bullet "• 185mV Dropout @ 3A, 125mV Dropout @ 2A" to "• Very Low 120mV  
Dropout at 3A"  
-Changed bullet "• 65dB Typical PSRR" to "• 62dB Typical PSRR"  
-Deleted 0.5% Initial VOUT Accuracy  
Modified Figure 1 and placed as Typical Application on Page 1.  
Moved Pinout to page 3  
In "Block Diagram" on page 2, corrected resistor associated with M5 from R4 to R5  
Updated Block Diagram on page 2 as follows”  
- Added M8 from SS to ground.  
Updated Figure 1 on page 3 as follows:  
-Corrected Pin 6 from SS to IRSET  
-Removed Note 12 callout "Minimum cap on VIN and VOUT required for stability." Added Note  
"*CSS is optional. See Note 12 on Page 5." and “** CPB is optional. See “Functional  
Description” on page 12 for more information.”  
Added "The 1.5V, 3.3V and 5V fixed output voltages will be released in the future." to Note 3  
on page 2.  
In “Thermal Information” on page 4, updated Theta JA from 45 to 48 per ASYD  
In “Soft-Start Operation (Optional)” on page 12:  
-Changed "The external capacitor always gets discharged to 0V at start-up of after coming out  
of a chip disable." to "The external capacitor always gets discharged to ground pin potential at  
start-up or enabling."  
-Changed "The soft-start function effectively limits the amount of in-rush current below the  
programmed current limit during start-up or an enable sequence to avoid an overcurrent fault  
condition." to "The soft-start feature effectively reduces the in-rush current at power-up or  
LDO enable until VOUT reaches regulation."  
-Added "See Figures 25 through 27 in the “Typical Operating Performance Curves” beginning  
on page 9."  
-Added “RPD is the on resistance of the pull down MOSFET, M8. RPD is 300Ohms typically.”  
Added "Phase Boost Capacitor (CPB)" section on page 13.  
In “Typical Operating Performance” on page 11, revised figure "PSRR vs VIN" which had 3  
curves with "Spectral Noise Density vs Frequency" which has one curve.  
Added "FIGURE 32. LOAD TRANSIENT 0A TO 3A, COUT = 10µF CERAMIC, NO CPB (ADJ  
VERSION)" and "FIGURE 33. LOAD TRANSIENT 1A TO 3A, COUT = 10µF CERAMIC, CPB =  
1500pF (ADJ VERSION)"  
09/30/09  
FN6660.0  
Initial Release.  
Products  
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The  
Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones,  
handheld products, and notebooks. Intersil's product families address power management and analog signal  
processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.  
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device  
information page on intersil.com: ISL80102, ISL80103  
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff  
FITs are available from our website at http://rel.intersil.com/reports/search.php  
ISL80102, ISL80103  
Package Outline Drawing  
L10.3x3  
10 LEAD DUAL FLAT PACKAGE (DFN)  
Rev 6, 09/09  
6
3.00  
A
B
PIN #1 INDEX AREA  
1
2
6
PIN 1  
INDEX AREA  
10 x 0.23  
4
(4X)  
0.10  
1.60  
10x 0.35  
4
TOP VIEW  
BOTTOM VIEW  
C A B  
M
0.10  
(4X)  
0.415  
0.23  
PACKAGE  
OUTLINE  
0.35  
SEE DETAIL "X"  
0.10  
(10 x 0.55)  
(10x 0.23)  
C
C
BASE PLANE  
0.20  
SEATING PLANE  
0.08 C  
SIDE VIEW  
(8x 0.50)  
5
0.20 REF  
0.05  
C
1.60  
TYPICAL RECOMMENDED LAND PATTERN  
DETAIL "X"  
NOTES:  
1. Dimensions are in millimeters.  
Dimensions in ( ) for Reference Only.  
2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.  
3. Unless otherwise specified, tolerance : Decimal ± 0.05  
4. Lead width applies to the metallized terminal and is measured  
between 0.18mm and 0.30mm from the terminal tip.  
Tiebar shown (if present) is a non-functional feature.  
5.  
6.  
The configuration of the pin #1 identifier is optional, but must be  
located within the zone indicated. The pin #1 indentifier may be  
either a mold or mark feature.  
FN6660.1  
March 22, 2010  
15  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY